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Abstract

In this paper, we study the dividend strategies for a shareholder with non-constant discount

rate in a diffusion risk model. We assume that the dividends can only be paid at a bounded rate

and restrict ourselves to the Markov strategies. This is a time inconsistent control problem. The

extended HJB equation is given and the verification theorem is proved for a general discount

function. Considering the pseudo-exponential discount functions (Type I and Type II), we get

the equilibrium dividend strategies and the equilibrium value functions by solving the extended

HJB equations.

Keywords: Dividend strategies; Non-exponential discounting; Time inconsistence; Equilib-

rium strategies; Extended HJB equation

1 Introduction

Since it was proposed by De Finetti (1957), the optimization of dividend strategy has been inves-
tigated by many researchers under various risk models. This problem is usually phrased as the
management’s problem of determining the optimal timing and the size of dividend payments in the
presence of bankruptcy risk. For more literature on this problem, we refer the reader to a recent
survey paper Avanzi (2009).

In the very rich literature, a common assumption is that the discount rate is constant over time
so the discount function is exponential. However, the empirical studies of human behavior suggest
that the assumption of constant discount rate is unrealistic, see, e.g., Thaler (1981), Ainslie (1992)
and Loewenstein and Prelec (1992). Indeed, there is experimental evidence that people are impatient
about choices in the short term but are more patient when choosing between long-term alternatives.
More precisely, events in the near future tend to be discounted at a higher rate than events that occur
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in the long run. Considering such effect, individual behavior is best described by the hyperbolic
discounting (see Phelps and Pollak (1968)), which has been extensively studied in the areas of mi-
croeconomics, macroeconomics, and behavioral finance, such as Laibson (1997) and Barro (1999)
among others.

However, difficulties arise when we solve an optimal control problem with a non-constant dis-
count rate by the standard dynamic programming approach. In fact, the standard optimal control
techniques give rise to time inconsistent strategies, i.e, a strategy that is optimal for the initial time
may be not optimal later. This is the so-called time inconsistent control problem and the classical
dynamic programming principle does not hold any more. Strotz (1955) studies the time inconsistent
problem within a game theoretic framework by the using of Nash equilibrium points. They seek the
equilibrium policy as the solution of a subgame-perfect equilibrium where the players are the agent
and her future selves.

Recently, there is an increasing attention in the time inconsistent control problem due to the
practical applications in economics and finance. A modified HJB equation is derived in Marín-
Solano and Navas (2010) which solves the optimal consumption and investment problem with the
non-constant discount rate for both naive and sophisticated agents. The similar problem is also con-
sidered by another approach in Ekeland and Lazrak (2006) and Ekeland and Pirvu (2008), which
provide the precise definition of the equilibrium concept in continuous time for the first time. They
characterize the equilibrium policies through the solutions of a flow of BSDEs, and they show, with
special form of the discount factor, this BSDE reduces to a system of two ODEs which has a solu-
tion. Considering the hyperbolic discounting, Ekeland et al. (2012) studies the portfolio management
problem for an investor who is allowed to consume and take out life insurance, and they characterize
the equilibrium strategy by an integral equation. Following their definition of the equilibrium strat-
egy, Björk and Murgoci (2010) studied the time-inconsistent control problem in a general Markov
framework, and derived the extended HJB equation together with the verification theorem. Björk
et al. (2012) studied the Markowitz’s problem with state-dependent risk aversion by utilizing the
extended HJB equation obtained in Björk and Murgoci (2010).

In this paper, we study the dividend strategies for the shareholders with non-constant discount
rate in a diffusion risk model. We assume that the dividends can only be paid at a bounded rate
and restrict ourselves to the Markov strategies. We use the extended HJB equation to solve this
problem. In contrast to the papers mentioned above which consider a fixed time horizon or an
infinite time horizon, in the dividend problem the ruin risk should be taken into account and the time
horizon is a random variable (the time of ruin). Thus, the extended HJB equation given in this paper
looks different with the one obtained in Björk and Murgoci (2010). We first give the extended HJB
equation and the verification theorem for a general discount function. Then we solve the extended
HJB equation for two special non-exponential discount functions which are proposed by Ekeland
and Lazrak (2006) and Ekeland and Pirvu (2008). They called them the pseudo-exponential discount
functions (Type I and Type II). For more details about these discount functions, we refer the reader
to their papers (see also Section 4). Under the Type I discount function, our results show that if the
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bound of the dividend rate is small enough the equilibrium strategy is to always pay the maximal
dividend rate; otherwise, the equilibrium strategy is to pay the maximal dividend rate when the
surplus is above a barrier and pay nothing when the surplus is below the barrier. The results are
similar under the Type II discount function, except that if the bound is large enough the equilibrium
strategy is to pay nothing at all time. These features of the equilibrium dividend strategies are similar
to the optimal strategies obtained in Asmussen and Taksar (1997) which considers the exponential
discounting in the diffusion risk model.

The remainder of this paper is organized as follows. The dividend problem and the definition of
equilibrium strategy are given in Section 2. The extended HJB equation and verification theorem are
presented in Section 3. In Section 4, we study two cases with pseudo-exponential discount functions
(Type I and Type II).

2 The model

In the case of no control, the surplus process is assumed to be

dXt = µdt +σdWt, t ≥ 0,

where µ,σ are positive constants and {Wt}t≥0 is a 1-dimensional standard Brownian motion on a
filtered probability space

(
Ω,F , {Ft}t≥0 ,P

)
satisfying the usual hypothesis. The filtration {Ft}t≥0 is

completed and generated by {Wt}t≥0.
A dividend strategy is described by a stochastic process {lt}t≥0. Here, lt ≥ 0 is the rate of dividend

payout at time t which is assumed to be bounded by a constant M > 0. We restrict ourselves to the
feedback control strategies (Markov strategies), i.e. at time t, the control lt is given by

lt = π(t, x),

where x is the surplus level at time t and the control law π : [0,∞)× [0,∞) → [0,M] is a Borel
measurable function.

When applying the control law π, we denote by the controlled risk process {Xπ
t }t≥0. Considering

the controlled system starting from the initial time t ∈ [0,∞), {Xπ
s } evolves according todXπ

s = µds +σdWs−π(s,Xπ
s )ds, s ≥ t,

Xπ
t = x.

Let
τπt := inf

{
s ≥ t : Xπ

s ≤ 0
}

be the time of ruin under the control law π. Without loss of generality, we assume that Xπ
s ≡ 0 for

s ≥ τπt .
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Let h : [0,∞)→ R be a discount function which satisfies h(0) = 1, h(s) ≥ 0 and
∫ ∞

0 h(t)dt <∞.
Furthermore, h is assumed to be continuously differentiable on [0,∞).

Definition 2.1. A control law π is said to be admissible if it satisfies: 0 ≤ π(t, x) ≤ M for all (t, x) ∈
[0,∞)× [0,∞), π(t,0) ≡ 0 for all t ∈ [0,∞). We denote by Π the set of all admissible control laws.

For a given admissible control law π and an initial state (t, x) ∈ [0,∞)× [0,∞), we define the
return function Vπ by

Vπ(t, x) = Et,x

∫ τπt

t
h(s− t)π(s,Xπ

s )ds
 ,

where Et,x[·] is the expectation conditioned on the event {Xπ
t = x}. Note that for any admissible

strategy π ∈ Π, we have

Et,x

∫ τπt

t

∣∣∣h(s− t)π(s,Xπ
s )

∣∣∣ds
 ≤ M

∫ ∞

0
h(t)dt <∞, ∀(t, x) ∈ [0,∞)× [0,∞), (2.1)

which means the performance function Vπ(t, x) are well-defined for all admissible strategy.
In classical risk theory, the optimal dividend strategy, denoted by π∗, is an admissible strategy

such that
Vπ∗(t, x) = sup

π∈Π
Vπ(t, x).

However, in our settings, this optimization problem is time-inconsistent in the sense that the Bellman
optimality principle fails.

Similar to Ekeland and Pirvu (2008) and Björk and Murgoci (2010), we view the entire problem
as a non-cooperative game and look for Nash equilibria for the game. More specifically, we consider
a game with one player for each time t, where player t can be regarded as the future incarnation of
the decision maker at time t. Given state (t, x), player t will choose a control action π(t, x), and she/he
wants to maximize the functional Vπ(t, x). In the continuous-time model, Ekeland and Lazrak (2006)
and Ekeland and Pirvu (2008) give the precise definition of this equilibrium strategy for the first time.
Intuitively, equilibrium strategies are the strategies such that, given that they will be implemented in
the future, it is optimal to implement them right now.

Definition 2.2. Choose a control law π̂ ∈Π, a fixed l ∈ [0,M] and a fixed real number ε > 0. For any
fixed initial point (t, x) ∈ [0,∞)× [0,∞), we define the control law πε by

πε(s,y) =


0, for s ∈ [t,∞), y = 0;

l, for s ∈ [t, t + ε], y ∈ (0,∞);

π̂(s,y), for s ∈ [t + ε,∞), y ∈ (0,∞).

If

liminf
ε→0

V π̂(t, x)−Vπε (t, x)
ε

≥ 0,
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for all l ∈ [0,M], we say that π̂ is an equilibrium control law. And the equilibrium value function V

is defined by
V(t, x) = V π̂(t, x). (2.2)

In the following section, we will first give the extended HJB equation for the equilibrium value
function V , and then prove a verification theorem.

3 The Extended Hamilton-Jacobi-Bellman Equation

In this section, we consider the objective function having the form

Vπ(t, x) = Et,x

∫ τπt

t
C

(
t, s,π(s,Xπ

s )
)
ds

 , (3.1)

where C
(
t, s,π(s,Xπ

s )
)

= h(s− t)π(s,Xπ
s ), for s ≥ t.

For all π ∈ Π and any real valued function f (t, x) ∈ C1,2 ([0,∞)× (0,∞)), which means that the
partial derivatives ∂ f

∂t ,
∂ f
∂x ,

∂2 f
∂x2 exist and are continuous on [0,∞)× (0,∞), we define the infinitesimal

generator Lπ by

Lπ f (t, x) =
∂ f
∂t

(t, x) + (µ−π(t, x))
∂ f
∂x

(t, x) +
1
2
σ2∂

2 f
∂x2 (t, x).

Motivated by Björk and Murgoci (2010), we assume that there exists an equilibrium strategy π̂
and we consider the extended HJB equation given in the following definition. Since the ruin risk is
considered in the dividend problem, the following extended HJB equation appears different with the
one in Björk and Murgoci (2010).

Definition 3.1. Given the objective functional (3.1), the extended HJB equation for V is given by

sup
π∈Π

{
LπV(t, x) +C (t, t,π(t, x))−Lπc (t, t, x) +Lπct(t, x)

}
= 0, t ≥ 0, x > 0, (3.2)

with the boundary condition
V(t,0) = 0, t ≥ 0 (3.3)

Here,
cs(t, x) = c(s, t, x), 0 ≤ s ≤ t, (3.4)

and for every fixed 0 ≤ s ≤ t, the function cs(t, x) satisfies

Lπ̂cs(t, x) +C (s, t, π̂(t, x)) = 0, t ≥ 0, x > 0, (3.5)

and
cs(t,0) = 0, t ≥ 0. (3.6)

where π̂ attains the supremum in (3.2).
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Remark 3.2. (i) The difference between cs(t, x) and c(s, t, x), is that we view c as a function of the
three variables s, t and x, whereas cs is, for a fixed s, viewed as a function of variables t and x. It is
easy to simplify the Equation (3.2) to

sup
π∈Π

{(
LπV

)
(t, x) +C (t, t,π(t, x))

}
−
∂c
∂s

(t, t, x) = 0, t ≥ 0, x ≥ 0, (3.7)

where ∂c
∂s denotes the partial derivative with respective to the first variable of c.

In fact, for any π ∈ Π, one has

Lπc (t, t, x)−Lπct(t, x)

=
∂c
∂s

(t, t, x) +
∂c
∂t

(t, t, x) + (µ−π(t, x))
∂c
∂x

(t, t, x) +
1
2
σ2 ∂

2c
∂x2

(t, t, x)

−

[
∂ct

∂t
(t, x) + (µ−π(t, x))

∂ct

∂x
(t, x) +

1
2
σ2∂

2ct

∂x2
(t, x)

]
.

Recalling that c (t, t, x) = ct (t, x), we get

Lπc (t, t, x)−Lπct(t, x) =
∂c
∂s

(t, t, x) ,

which is independent of π.
(ii) In order to solve V from Equation (3.7), we need to know c. But c is determined by the

equilibrium control law π̂ through (3.5) and (3.6), which in turn is determined by the sup-part of
the equation satisfied by V . Thus, we have a system of recursion equation for the simultaneous
determination of V and c.

Since the extended HJB system given in Definition 3.1 is informal, we are now giving a strict
verification theorem.

Theorem 3.3. (Verification Theorem) Assume that the supremum in Definition 3.1 is attained for

each (t, x) given a control law π̂, and there are bounded functions V and c, which are smooth enough

(C1,2([0,∞)× (0,∞))∩C([0,∞)× [0,∞))), solve the extended HJB equation system in Definition 3.1,

then π̂ is the equilibrium control law, and V is the corresponding equilibrium value function.

Proof. We give the proof by two steps:
1. First we show that V is the value function corresponding to π̂, i.e., V(t, x) = V π̂(t, x).
2. Then we prove that π̂ is indeed the equilibrium control law which is defined by Definition 2.2.
Step 1.
The method is similar to Højgaard and Taksar (1999, Section 2.3). Recalling Definition 2.1 of

admissible strategies (see also (2.1)), for given s ≤ t, we have

Et,x

∫ τπ̂t

t

∣∣∣∣C (
s,z, π̂(z,Xπ̂

z )
)∣∣∣∣dz

 <∞, ∀(t, x) ∈ [0,∞)× [0,∞).
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Let
τn = n∧τπ̂t , n ≥ t, n = 1,2, · · · .

Then, by (3.5), (3.6) and Dynkin’s formula we have

cs(t, x) = Et,x
[
cs(τn,Xπ̂

τn
)
]
−Et,x

[∫ τn

t
Lπ̂cs(z,Xπ̂

z )dz
]

= Et,x

[
cs(τπ̂t ,X

π̂
τπ̂t

)1{n≥τπ̂t }
]
+ Et,x

[
cs(n,Xπ̂

n )1{n<τπ̂t }
]

+Et,x

[∫ τn

t
C

(
s,z, π̂(z,Xπ̂

z )
)
dz

]
= Et,x

[
cs(n,Xπ̂

n )1{n<τπ̂t }
]
+ Et,x

[∫ τn

t
C

(
s,z, π̂(z,Xπ̂

z )
)
dz

]
.

Letting n→∞, it follows from dominated convergence theorem that

Et,x
[
cs(n,Xπ̂

n )1{n<τπ̂t }
]
→ 0,

and

Et,x

[∫ τn

t
C

(
s,z, π̂(z,Xπ̂

z )
)
dz

]
→ Et,x

∫ τπ̂t

t
C

(
s,z, π̂(z,Xπ̂

z )
)
dz

 .
Thus,

cs(t, x) = Et,x

∫ τπ̂t

t
C

(
s,z, π̂(z,Xπ̂

z )
)
dz

 , 0 ≤ s ≤ t <∞. (3.8)

Here (3.8) gives the probabilistic interpretation of ct(t, x). From (3.7) and (3.3) we have

(
Lπ̂V

)
(t, x) +C (t, t, π̂(t, x))−

∂c
∂s

(t, t, x) = 0, t ≥ 0, x > 0,

V(t,0) = 0, t ≥ 0.

Similarly, by Dynkin’s formula we have

V(t, x) = Et,x
[
V(τn,Xπ̂

τn
)
]
+ Et,x

[∫ τn

t

(
C

(
z,z, π̂(z,Xπ̂

z )
)
−
∂c
∂s

(
z,z,Xπ̂

z

))
dz

]
.

Noting that for any t ≤ z ≤ τn ≤ τ
π̂
t , it holds that τπ̂z = τπ̂t a.s.. Thus, it follows from (3.8) that

Et,x

[∫ τn

t

∂c
∂s

(
z,z,Xπ̂

z

)
dz

]
= Et,x

∫ τn

t
Ez,Xπ̂z

∫ τπ̂z

z

∂C
∂s

(
z,v, π̂(v,Xπ̂

v )
)
dv

dz


= Et,x

∫ τn

t

∫ τπ̂t

z

∂C
∂s

(
z,v, π̂(v,Xπ̂

v )
)
dvdz


= Et,x

[∫ τn

t

∫ v

t

∂C
∂s

(
z,v, π̂(v,Xπ̂

v )
)
dzdv

]
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+Et,x

∫ τπ̂t

τn

∫ τn

t

∂C
∂s

(
z,v, π̂(v,Xπ̂

v )
)
dzdv


= Et,x

[∫ τn

t
C

(
v,v, π̂(v,Xπ̂

v )
)
dv

]
−Et,x

[∫ τn

t
C

(
t,v, π̂(v,Xπ̂

v )
)
dv

]
+Et,x

∫ τπ̂t

τn

C
(
τn,v, π̂(v,Xπ̂

v )
)
dv

−Et,x

∫ τπ̂t

τn

C
(
t,v, π̂(v,Xπ̂

v )
)
dv

 .
Thus,

V(t, x) = Et,x
[
V(n,Xπ̂

n )1{n<τπ̂t }
]
+ Et,x

∫ τπ̂t

t
C

(
t,v, π̂(v,Xπ̂

v )
)
dv


−Et,x

∫ τπ̂t

τn

C
(
τn,v, π̂(v,Xπ̂

v )
)
dv

 .
Note that

Et,x

∫ τπ̂t

τn

C
(
τn,v, π̂(v,Xπ̂

v )
)
dv

 ≤ M
∫ ∞

0
h(v)dv <∞.

Letting n→∞ and applying dominated convergence theorem again, we obtain

V(t, x) = Et,x

∫ τπ̂t

t
C

(
t,v, π̂(v,Xπ̂

v )
)
dv

 = V π̂(t, x).

Step 2. For a given l ∈ [0,M], and a fixed real number ε > 0, we define πε by Definition 2.2.
For simplicity, we denote by Xε the path under the control law πε . Without loss of generality, we
consider the case where ε is sufficient small such that t + ε < τπ

ε

t ∧ τ
π̂
t . By the definition of Vπ, we

obtain

V π̂(t, x)−Vπε (t, x) = Et,x

∫ τπ̂t

t
C

(
t, s, π̂

(
s,Xπ̂

s

))
ds−

∫ τπεt

t
C

(
t, s,πε

(
s,Xε

s
))

ds


= Et,x

[∫ t+ε

t
h(s− t)

(
π̂
(
s,Xπ̂

s

)
−πε

(
s,Xε

s
))

ds
]

+Et,x
[
V π̂

(
t + ε,Xπ̂

t+ε

)
−V π̂ (t + ε,Xε

t+ε
)]

+Et,x

∫ τπ̂t

t+ε
(h (s− t)−h (s− t− ε)) π̂

(
s,Xπ̂

s

)
ds


−Et,x

∫ τπεt

t+ε
(h (s− t)−h (s− t− ε)) π̂

(
s,Xε

s
)
ds

 . (3.9)

Here π̂(s,Xε
s) and π̂(s,Xπ̂

s ) are the equilibrium control processes associated the path Xε and Xπ̂,
respectively.

According to the equation (3.9), we now consider the limitation limε→0
V π̂(t,x)−Vπε (t,x)

ε in four
parts separately:

1. Noting that
∫ ∞

0 h(t)dt < ∞, l and π̂ are bounded and applying the dominated convergence
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theorem, we get

lim
ε→0

Et,x
[∫ t+ε

t h(s− t)
(
π̂
(
s,Xπ̂

s

)
−πε

(
s,Xε

s
))

ds
]

ε
= π̂ (t, x)−πε(t, x).

2. We rewrite the second part in the right-side of the equation (3.9) by

Et,x
[
V π̂

(
t + ε,Xπ̂

t+ε

)
−V π̂ (t + ε,Xε

t+ε
)]

= Et,x
[
V π̂

(
t + ε,Xπ̂

t+ε

)
−V π̂ (t, x)

]
−Et,x

[
V π̂ (t + ε,Xε

t+ε
)
−V π̂ (t, x)

]
= Et,x

[∫ t+ε

t
dV π̂

(
u,Xπ̂

u

)]
−Et,x

[∫ t+ε

t
dV π̂ (u,Xε

u
)]
.

Applying the Itô formula, we get

lim
ε→0

Et,x
[∫ t+ε

t dV π̂
(
u,Xπ̂

u

)]
ε

=
∂V π̂(t, x)

∂t
+ (µ− π̂ (t, x))

∂V π̂(t, x)
∂x

+
1
2
σ2∂

2V π̂(t, x)
∂x2

=
(
Lπ̂V π̂

)
(t, x)

=
(
Lπ̂V

)
(t, x) ,

and

lim
ε→0

Et,x
[∫ t+ε

t dV π̂ (u,Xε
u
)]

ε

=
∂V π̂(t, x)

∂t
+ (µ− l)

∂V π̂(t, x)
∂x

+
1
2
σ2∂

2V π̂(t, x)
∂x2

=
(
Lπ

ε
V π̂

)
(t, x)

=
(
Lπ

ε
V
)
(t, x) .

3. Considering the cases with τπ̂t ≥ τ
πε

t and τπ̂t ≤ τ
πε

t and noting that π̂
(
s,Xπ̂

s

)
≡ 0 for s ≥ τπ̂t , we

have

Et,x

∫ τπ̂t

t+ε
(h (s− t)−h (s− t− ε)) π̂

(
s,Xπ̂

s

)
ds


−Et,x

∫ τπ
ε

t

t+ε
(h (s− t)−h (s− t− ε)) π̂

(
s,Xε

s
)
ds


≥Et,x

∫ τπ
ε

t

t+ε
(h (s− t)−h (s− t− ε))

[
π̂
(
s,Xπ̂

s

)
− π̂

(
s,Xε

s
)]

ds

 .
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Noting that π̂ is bounded and
∫ ∞

0 h(s)ds <∞, by the dominated convergence theorem, we get

lim
ε→0

Et,x

[∫ τπεt
t+ε [h (s− t)−h (s− t− ε)]

(
π̂
(
s,Xπ̂

s

)
− π̂

(
s,Xε

s
))

ds
]

ε
= 0.

Therefore, we obtain

lim
ε→0

V π̂(t, x)−Vπε (t, x)
ε

≥
[
Lπ̂V (t, x) +C (t, t, π̂(t, x))

]
−

[
Lπ

ε
V (t, x) +C

(
t, t,πε (t, x)

)]
. (3.10)

It follows from (3.7) that(
Lπ̂V

)
(t, x) +C (t, t, π̂(t, x)) = sup

π∈Π

{(
LπV

)
(t, x) +C (t, t,π(t, x))

}
(3.11)

=
∂c
∂s

(t, t, x) .

Therefore, (3.10) and (3.11) imply that

lim
ε→0

V π̂(t, x)−Vπε (t, x)
ε

≥ 0.

This complete the proof. �

4 The Solutions

In this section, we try to find the solution of the HJB system in Definition 3.1 for specific discount
functions. First of all, we make a conjecture of the equilibrium strategy for a general discount
function. From (3.7), we can rewrite the HJB equation as

sup
π(t,x)∈[0,M]

{(
1−

∂V
∂x

(t, x)
)
π(t, x)

}
+
∂V
∂t

(t, x) +µ
∂V
∂x

(t, x)

+
1
2
σ2∂

2V
∂x2 (t, x)−

∂c
∂s

(t, t, x) = 0, t ≥ 0, x > 0, (4.1)

V(t,0) = 0, t ≥ 0; (4.2)

and for every fixed s, the function cs(t, x) satisfies

∂cs

∂t
(t, x) + (µ− π̂(t, x))

∂cs

∂x
(t, x) +

1
2
σ2∂

2cs

∂x2 (t, x) + h(t− s)π̂(t, x) = 0, t ≥ 0, x > 0, (4.3)

cs(t,0) = 0, t ≥ 0. (4.4)

We assume that there exists a constant b ≥ 0 such that ∂V
∂x (t, x) ≥ 1, if 0 ≤ x < b, and ∂V

∂x (t, x) < 1,
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if x ≥ b. It follows from (4.1) that the equilibrium strategy is given by

π̂(t, x) =

0, if 0 ≤ x < b,

M, if x ≥ b.

Note that π̂ given above is time homogeneous, i.e., π̂(t, x) = π̂(s, x) for t , s. If the time homogeneous
strategy π̂ is indeed a equilibrium strategy, then

V(t, x) = Et,x

∫ τπ̂t

t
h(s− t)π̂(s,Xπ̂

s )ds


= Et,x

∫ τπ̂t −t

0
h(z)π̂(z + t,Xπ̂

z+t)dz


= Et,x

∫ τπ̂t −t

0
h(z)π̂(z,Xπ̂

z+t)dz


= E0,x

∫ τπ̂0

0
h(z−0)π̂(z,Xπ̂

z )dz


= V(0, x),

where the forth equation follows from the fact that
{
Xπ̂

z+t(t, x), τπ̂t − t
}
z≥0

and
{
Xπ̂

z (0, x), τπ̂0
}
z≥0

have the

same distribution. Here
{
Xπ̂

z+t(t, x)
}
z≥0

means it starts from the initial state (t, x).
Thus, we just want to find a time homogeneous function V , and the equations (4.1)-(4.4) can be

represented as

1
2σ

2 ∂2V
∂x2 (x) +µ∂V

∂x (x)− ∂c
∂s (t, t, x) = 0, 0 < x < b,

1
2σ

2 ∂2V
∂x2 (x) + (µ−M) ∂V

∂x (x)− ∂c
∂s (t, t, x) + M = 0, x ≥ b,

V(0) = 0,
∂cs

∂t (t, x) +µ∂cs

∂x (t, x) + 1
2σ

2 ∂2cs

∂x2 (t, x) = 0, 0 < x < b,
∂cs

∂t (t, x) + (µ−M) ∂cs

∂x (t, x) + 1
2σ

2 ∂2cs

∂x2 (t, x) + h(t− s)M = 0, x ≥ b,

cs(t,0) = 0,

(4.5)

where V(x) ≡ V(t, x) for all t ≥ 0.
Then it follows from (3.8) that

c(s, t, x) = cs(t, x)

= Et,x

∫ τπ̂t

t
C

(
s,z, π̂(z,Xπ̂

z )
)
dz


= Et,x

∫ τπ̂t

t
h(z− s)π̂(z,Xπ̂

z )dz

 . (4.6)
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Remark 4.1. (i) Note that for different discount functions h, the function c has different structures.
From the first three equations of (4.5), we do not need the expression of c(s, t, x) but only c(t, t, x) to
solve V . In fact, if we get the equilibrium strategy π̂, then c(s, t, x) defined by (4.6) always satisfies
the HJB equation. Thus, in the following we focus on finding the equilibrium strategy π̂ and the
equilibrium value function V for specific discount functions.

(ii) If h(t) = e−δt where δ > 0 is a constant, i.e., the exponential discounting, the problem reduces
to the one studied by Asmussen and Taksar (1997, Section 2). It easy to check ∂c

∂s (t, t, x) = δV(x)
and the first two equations of (4.5) becomes the equations (2.12) and (2.13) of Asmussen and Tak-
sar (1997). This means that if the control problem is time consistent, the equilibrium strategy is
consistent with the optimal strategy (see also Björk and Murgoci (2010)).

In the following subsections, we try to obtain the solutions of V under two special cases be-
sides the exponential discounting, which are called pseudo-exponential discount functions (Type I
and Type II). We refer the reader to Ekeland and Pirvu (2008) for explanations of these discount
functions.

4.1 Type I

Let us consider a case where the dividends are proportionally paid to two inhomogenous sharehold-
ers. In terms of inhomogenous, we mean that the shareholders have different discount rates. Then
given a control law π, the return function is

Vπ(t, x) = Et,x

∫ τπt

t
ωe−δ1(s−t)π(s,Xπ

s )ds +

∫ τπt

t
(1−ω)e−δ2(s−t)π(s,Xπ

s )ds
 ,

where ω ∈ [0,1] is the proportion at which the dividends are paid to the shareholders, δ1, δ2 > 0 are
the constant discount rates of the shareholders, respectively.

In fact, a mixture of exponential discount functions is used in the above example. This is the
Type I pseudo-exponential discount function which is defined as

h(t) = ωe−δ1t + (1−ω)e−δ2t, t ≥ 0, (4.7)

where 0< δ1 ≤ δ2 and ω ∈ [0,1]. It is obvious that when δ1 = δ2 or ω= 0 or ω= 1, h is the exponential
discount function. However in our paper, we only discuss the non-exponential case with 0 < δ1 < δ2

and 0 < ω < 1.
Recalling (4.6), we have

c(s, t, x) = Et,x

∫ τπ̂t

t

[
ωe−δ1(z−s) + (1−ω)e−δ2(z−s)

]
1{Xπ̂z ≥b}Mdz

 ,
which implies that

∂c
∂s

(t, t, x) = ωδ1V1(x) + (1−ω)δ2V2(x),
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where 
V1(x) = Et,x

[∫ τπ̂t
t e−δ1(z−t)1{Xπ̂z ≥b}Mdz

]
,

V2(x) = Et,x

[∫ τπ̂t
t e−δ2(z−t)1{Xπ̂z ≥b}Mdz

]
.

(4.8)

Moreover, V(x) can be expressed by

V(x) = ωV1(x) + (1−ω)V2(x). (4.9)

To get the form of V(x), we only need to find V1 and V2. By the standard techniques (see Gerber and
Shiu (2004, 2006)), the equations satisfied by Vi, i = 1,2 are given by

1
2σ

2 ∂2Vi
∂x2 (x) +µ∂Vi

∂x (x)−δiVi(x) = 0, 0 < x < b,
1
2σ

2 ∂2Vi
∂x2 (x) + (µ−M) ∂Vi

∂x (x)−δiVi(x) + M = 0, x ≥ b,

Vi(0) = 0.

(4.10)

Denote by θ1(η,c) and −θ2(η,c) the positive and negative roots of the equation 1
2σ

2y2 +ηy−c = 0,
respectively. Then θ1(η,c) =

−η+
√
η2+2σ2c
σ2 ,

θ2(η,c) =
η+
√
η2+2σ2c
σ2 .

Thus a general solution of the equation (4.10) has the form

Vi(x) =

Ci1eθ1(µ,δi)x +Ci2e−θ2(µ,δi)x, 0 ≤ x < b,
M
δi

+Ci3eθ1(µ−M,δi)x +Ci4e−θ2(µ−M,δi)x, x ≥ b,
(4.11)

for i = 1,2.
Since Vi(0) = 0, and Vi(x) > 0, for all x > 0, we have Ci1 = −Ci2 := Ci > 0, i = 1,2. Note that

for any barrier b in (4.8), Vi(x) will not exceed
∫ ∞

0 e−δixMdx = M
δi

, for all x ≥ 0, i = 1,2. Therefore
Ci3 = 0 and Ci4 := −di < 0, i = 1,2.

Now to find the value of C1, C2, d1, d2 and b, we use “the principle of smooth fit” to get

V1(b+) = V1(b−),

V′1(b+) = V′1(b−),

V2(b+) = V2(b−),

V′2(b+) = V′2(b−),

V′(b+) = 1
(
or equivalently, V′(b−) = 1

)
.

(4.12)

Therefore denoting

θi1 = θ1(µ,δi), θi2 = θ2(µ,δi), θi3 = θ2(µ−M, δi), i = 1,2,
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we can rewrite (4.12) as

C1
(
eθ11b− e−θ12b

)
=

M
δ1
−d1e−θ13b, (4.13)

C1
(
θ11eθ11b + θ12e−θ12b

)
= d1θ13e−θ13b, (4.14)

C2
(
eθ21b− e−θ22b

)
=

M
δ2
−d2e−θ23b, (4.15)

C2
(
θ21eθ21b + θ22e−θ22b

)
= d2θ23e−θ23b, (4.16)

ωC1
(
θ11eθ11b + θ12e−θ12b

)
+ (1−ω)C2

(
θ21eθ21b + θ22e−θ22b

)
= 1. (4.17)

From (4.13) - (4.16) we can get Ci and di in the expression of b:

Ci =
Mθi3

δi

[
(θi1 + θi3)eθi1b + (θi2− θi3)e−θi2b

]−1
, (4.18)

di =
M
δi

eθi3b θi1eθi1b + θi2e−θi2b

(θi1 + θi3)eθi1b + (θi2− θi3)e−θi2b , (4.19)

for i = 1,2.
Substituting C1 and C2 into (4.17), we obtain

A1e(θ11+θ12)b + A2e−(θ22−θ12+θ21−θ11)b + A3e−(θ21+θ22)b + A4 = 0, (4.20)

where

A1 = ω
Mθ13

δ1
θ11 (θ21 + θ23) + (1−ω)

Mθ23

δ2
θ21 (θ11 + θ13)− (θ11 + θ13) (θ21 + θ23)

= [ωP + (1−ω)Q−1]θ11θ21− (1−ωP)θ11θ23− [1− (1−ω)Q]θ13θ21− θ13θ23,

A2 = ω
Mθ13

δ1
θ11 (θ22− θ23) + (1−ω)

Mθ23

δ2
θ22 (θ11 + θ13)− (θ11 + θ13) (θ22− θ23)

= [ωP + (1−ω)Q−1]θ11θ22 + (1−ωP)θ11θ23− [1− (1−ω)Q]θ13θ22 + θ13θ23,

A3 = ω
Mθ13

δ1
θ12 (θ22− θ23) + (1−ω)

Mθ23

δ2
θ22 (θ12− θ13)− (θ12− θ13) (θ22− θ23)

= [ωP + (1−ω)Q−1]θ12θ22 + (1−ωP)θ12θ23 + [1− (1−ω)Q]θ13θ22− θ13θ23,

A4 = ω
Mθ13

δ1
θ12 (θ21 + θ23) + (1−ω)

Mθ23

δ2
θ21 (θ12− θ13)− (θ12− θ13) (θ21 + θ23)

= [ωP + (1−ω)Q−1]θ12θ21− (1−ωP)θ12θ23 + [1− (1−ω)Q]θ13θ21 + θ13θ23,

and
P = M

θ13

δ1
, Q = M

θ23

δ2
.

Denoting

F(b) : = A1e(θ11+θ12)b + A2e−(θ22−θ12+θ21−θ11)b + A3e−(θ21+θ22)b + A4,
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then we have

F(0) = (θ11 + θ12) (θ21 + θ22) [ωP + (1−ω)Q−1] .

Lemma 4.2. If M
[
ω θ13

δ1
+ (1−ω) θ23

δ2

]
> 1, then F(b) = 0 has a positive solution.

Proof. The condition M
[
ω θ13

δ1
+ (1−ω) θ23

δ2

]
> 1 implies that F(0) > 0.

From Lemma 2.1 of Asmussen and Taksar (1997), we know that(
M
δi
−

1
θi3

)
θi1 < 1, i = 1,2,

which implies that
(P−1)θ11 < θ13, and (Q−1)θ21 < θ23.

Thus,

A1 = ω(P−1)θ11θ21 + (1−ω)(Q−1)θ11θ21− (1−ωP)θ11θ23− [1− (1−ω)Q]θ13θ21− θ13θ23

< ωθ13θ21 + (1−ω)θ11θ23− (1−ωP)θ11θ23− [1− (1−ω)Q]θ13θ21− θ13θ23

= (1−ω)(Q−1)θ13θ21 +ω(P−1)θ11θ23− θ13θ23

< (1−ω)θ13θ23 +ωθ13θ23− θ13θ23

= 0.

Also noting that θ22 − θ12 + θ21 − θ11 > 0, it follows that F(+∞) = −∞. Together with F(0) > 0, we
know that there exists a positive solution b such that F(b) = 0. �

Theorem 4.3. Given the discount function (4.7), there exists a twice continuously differentiable

concave solution to (4.1) and (4.2).

(i) If M
[
ω θ13

δ1
+ (1−ω) θ23

δ2

]
≤ 1, then b = 0, i.e., the equilibrium strategy is to always pay the

maximal dividend rate, and the equilibrium value function is given by

V(x) = ω
M
δ1

(
1− e−θ13x

)
+ (1−ω)

M
δ2

(
1− e−θ23x

)
, x ≥ 0. (4.21)

(ii) If M
[
ω θ13

δ1
+ (1−ω) θ23

δ2

]
> 1, then

V(x) =

ωC1
(
eθ11x− e−θ12x

)
+ (1−ω)C2

(
eθ21x− e−θ22x

)
, 0 ≤ x < b,

ω
(

M
δ1
−d1e−θ13x

)
+ (1−ω)

(
M
δ2
−d2e−θ23x

)
, x ≥ b,

(4.22)

where (C1,C2,d1,d2,b) is the unique solution to (4.13)-(4.17).
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Proof. (i) Obviously, the function V defined by (4.21) is concave and satisfies V(0) = 0, and

V′(0) = ω
M
δ1
θ13 + (1−ω)

M
δ2
θ23 ≤ 1.

Therefore V′(x) ≤ 1 for all x > 0 and

(M−π)
(
V′(x)−1

)
≤ 0, π ∈ [0,M]. (4.23)

Given b = 0, it is easy to see from the system of equations (4.10) that

Vi(x) =
M
δi

(
1− e−θi3x

)
, i = 1,2.

Thus, the function V given by (4.21) satisfies

1
2
σ2V′′(x) + (µ−M)V′(x)−

∂c
∂s

(t, t, x) + M = 0. (4.24)

Adding (4.23) to (4.24), we get (4.1).
(ii) Obviously, we have V(0) = 0. The first and second derivatives of (4.22) are given by

V′(x) =

ωC1
(
θ11eθ11x + θ12e−θ12x

)
+ (1−ω)C2

(
θ21eθ21x + θ22e−θ22x

)
, 0 ≤ x < b,

ωd1θ13e−θ13x + (1−ω)d2θ23e−θ23x, x ≥ b,

and

V′′(x) =

ωC1
(
θ2

11eθ11x− θ2
12e−θ12x

)
+ (1−ω)C2

(
θ2

21eθ21x− θ2
22e−θ22x

)
, 0 ≤ x < b,

−ωd1θ
2
13e−θ13x− (1−ω)d2θ

2
23e−θ23x, x ≥ b,

respectively.
It is easy to check that V′(x) > 0, for all x ≥ 0, which implies that V is strictly increasing. Next

we show that V is a concave function on [0,∞), i.e. V′′(x) < 0, for all x ≥ 0.
At first we show that V′′(x) is continuous at x = b. Apparently, V′′(x) < 0, for all x ≥ b. Recalling

(4.9), (4.10) and (4.12), we have

1
2
σ2V′′(b−) = −µV′(b) +ωδ1V1(b) + (1−ω)δ2V2(b),

1
2
σ2V′′(b+) = − (µ−M)V′(b) +ωδ1V1(b) + (1−ω)δ2V2(b)−M.

Since V′(b) = 1, we get V′′(b−) = V′′(b+) = V′′(b).
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Figure 4.1: Equilibrium value functions with Type I pseudo-exponential discount function

Obviously, for all 0 ≤ x ≤ b, we have

V′′′(x) = ωC1
(
θ3

11eθ11x + θ3
12e−θ12x

)
+ (1−ω)C2

(
θ3

21eθ21x + θ3
22e−θ22x

)
> 0.

Thus V′′(x) is an increasing function on [0,b], which means that V′′(x)≤ V′′(b)< 0, for all 0≤ x ≤ b.
Above all, we have shown that V is an increasing and concave function on [0,∞). Note that the

uniqueness of b is assured by the strict concavity of V .
Now we verify that (4.22) satisfies (4.1).
If x ≤ b, then V′(x) > 1. Adding the inequality −π (V′(x)−1) ≤ 0 to the first equation in (4.5),

we obtain (4.1). And similarly, if x ≥ b, then V′(x) ≤ 1. Adding (M−π) (V′(x)−1) ≤ 0 to the second
equation in (4.5), we obtain (4.1).

This completes the proof. �

Example 4.4. Let µ = 1, σ = 1, M = 0.8, δ1 = 0.2, δ2 = 0.4. Figure 4.1 illustrates the equilibrium
value functions for Type I pseudo-exponential discount functions with ω = 0, 0.4, 0.7 and 1. The
barrier b are 0.6525, 0.8781, 1.0207 and 1.1452, respectively. The cases with ω = 0 and 1 are time
consistent and the equilibrium strategies are optimal.

4.2 Type II

The Type II pseudo-exponential discount function is defined as

h(t) = (1 +λt)e−δt, t ≥ 0, (4.25)
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where λ > 0, δ > 0 are parameters. In this case, we have

c(s, t, x) = Et,x

∫ τπ̂t

t
[1 +λ(z− s)]e−δ(z−s)1{Xπ̂z ≥b}Mdz

 ,
which implies that

∂c
∂s

(t, t, x) = −λV3(x) +δV4(x), (4.26)

where

V3(x) = Et,x

∫ τπ̂t

t
e−δ(z−t)1{Xπ̂z ≥b}Mdz

 ,
V4(x) = Et,x

∫ τπ̂t

t
[1 +λ(z− t)]e−δ(z−t)1{Xπ̂z ≥b}Mdz


= V(x).

The function for V3 is given by
1
2σ

2 ∂2V3
∂x2 (x) +µ∂V3

∂x (x)−δV3(x) = 0, 0 < x < b,
1
2σ

2 ∂2V3
∂x2 (x) + (µ−M) ∂V3

∂x (x)−δV3(x) + M = 0, x ≥ b,

V3(0) = 0.

(4.27)

Recalling the situation we discussed in Subsection 5.1, the equation (4.27) has a general solution

V3(x) =

C
(
eθ1(µ)x− e−θ2(µ)x

)
, 0 ≤ x < b,

M
δ −de−θ2(µ−M)x, x ≥ b,

where C > 0, d > 0 are two unknown constants to be determined, θ1(η) and −θ2(η) are the positive
and negative roots of the equation 1

2σ
2y2 +ηy−δ = 0, respectively.

According to “the principle of smooth fit”, we haveV3(b+) = V3(b−),

V′3(b+) = V′3(b−),
(4.28)

which yields that

C =
Mθ3

δ

[
(θ1 + θ3)eθ1b + (θ2− θ3)e−θ2b

]−1
,

d =
M
δ

eθ3b θ1eθ1b + θ2e−θ2b

(θ1 + θ3)eθ1b + (θ2− θ3)e−θ2b ,

18



where
θ1 = θ1(µ), θ2 = θ2(µ), θ3 = θ2(µ−M).

After obtaining V3, we substitute (4.26) into the equations for V in (4.5), and then we have
1
2σ

2 ∂2V
∂x2 (x) +µ∂V

∂x (x)−δV(x) +λV3(x) = 0, 0 < x < b,
1
2σ

2 ∂2V
∂x2 (x) + (µ−M) ∂V

∂x (x)−δV(x) +λV3(x) + M = 0, x ≥ b,

V(0) = 0,

(4.29)

which admits a general solution

V(x) =


λV3(x)
δ + D1eθ1(µ)x + D2e−θ2(µ)x, 0 ≤ x < b,

λV3(x)+M
δ + D3eθ1(µ−M)x + D4e−θ2(µ−M)x, x ≥ b.

Since V(0) = 0, V3(0) = 0 and V(x) > 0, V3(x) > 0, for all x > 0, we have D1 = −D2 := Ĉ > 0.
Noting that for any control, the discounted cumulative dividend will not exceed

∫ ∞
0 (1 +λt)e−δtMdt =

M
δ

(
λ
δ + 1

)
. Thus we need to find V(x) ≤ M

δ

(
λ
δ + 1

)
, for all x ≥ 0. Since V(x) is bounded, it follows

that D3 = 0. For simplicity, denote by D4 := −d̂.

Applying "the principle of smooth fit", we obtain
V(b+) = V(b−),

V′(b+) = V′(b−),

V′(b+) = 1
(
or equavalently, V′(b−) = 1

)
.

(4.30)

Recalling (4.28), we have

Ĉ = C =
Mθ3

δ

[
(θ1 + θ3)eθ1b + (θ2− θ3)e−θ2b

]−1
,

d̂ = d =
M
δ

eθ3b θ1eθ1b + θ2e−θ2b

(θ1 + θ3)eθ1b + (θ2− θ3)e−θ2b .

Then using V′(b+) = 1, we have[(
λ

δ
+ 1

) Mθ3

δ
θ1− (θ1 + θ3)

]
eθ1b =

[
(θ2− θ3)−

(
λ

δ
+ 1

) Mθ3

δ
θ2

]
e−θ2b.

Lemma 4.5. If 1 <
(
λ
δ + 1

)
Mθ3
δ < 1 +

θ3
θ1

, there exists a unique positive triple
(
Ĉ, d̂,b

)
solving (4.30).

Proof. If 1 <
(
λ
δ + 1

)
Mθ3
δ < 1 +

θ3
θ1

, then A :=
(θ2−θ3)−

(
λ
δ+1

) Mθ3
δ θ2(

λ
δ+1

) Mθ3
δ θ1−(θ1+θ3)

> 1, and we get a unique solution for

b given by

b =
1

θ1 + θ2
log A > 0. (4.31)
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Then it follows that

Ĉ = C =
Mθ3

δ

[
(θ1 + θ3) A

θ1
θ1+θ2 + (θ2− θ3) A−

θ2
θ1+θ2

]−1

, (4.32)

d̂ = d =
M
δ

θ1A
θ1+θ3
θ1+θ2 + θ2A−

θ2−θ3
θ1+θ2

(θ1 + θ3) A
θ1

θ1+θ2 + (θ2− θ3) A−
θ2

θ1+θ2

. (4.33)

�

Theorem 4.6. Given the discount function (4.25), there exists a twice continuously differentiable

concave solution to (4.1) and (4.2).

(i) If
(
λ
δ + 1

)
Mθ3
δ ≤ 1, then b = 0, i.e. the equilibrium strategy is to always pay the maximal

dividend rate, and the equilibrium value function is given by

V(x) =

(
λ

δ
+ 1

) M
δ

(
1− e−θ3x

)
, x ≥ 0. (4.34)

(ii) If 1 <
(
λ
δ + 1

)
Mθ3
δ < 1 +

θ3
θ1

, then

V(x) =

C
(
λ
δ + 1

) (
eθ1x− e−θ2x

)
, 0 ≤ x < b,(

λ
δ + 1

) (
M
δ −de−θ3x

)
, x ≥ b,

(4.35)

where b, C , and d are given by (4.31), (4.32), and (4.33), respectively.

(iii) If
(
λ
δ + 1

)
Mθ3
δ ≥ 1+

θ3
θ1

, then b = +∞, i.e. the equilibrium strategy is never pay the dividend and

the equilibrium value function V(x) ≡ 0.

Proof. (i) It is easy to see the function V defined by (4.34) is a concave function, V(0) = 0 and
V′(0) =

(
λ
δ + 1

)
M
δ θ3 ≤ 1. Therefore V′(x) ≤ 1 for all x > 0 and

(M−π)
(
V′(x)−1

)
≤ 0, π ∈ [0,M]. (4.36)

Given b = 0, it is easy to get

V3(x) =
M
δ

(
1− e−θ3x

)
.

Thus, the function V given by (4.34) satisfies

1
2
σ2V′′(x) + (µ−M)V′(x)−

∂c
∂s

(t, t, x) + M = 0. (4.37)

Adding (4.36) to (4.37), we get (4.1).
(ii) Obviously, V is an increasing function on [0,∞). Next we show that V′′(x) < 0, for all x > 0.

Similarly to the previous subsection, we first show that V′′ is continuous at b. According to (4.29)
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and (4.30), we have

1
2
σ2V′′(b−) = −µV′(b) +δV(b)−λV3(b),

1
2
σ2V′′(b+) = − (µ−M)V′(b) +δV(b)−λV3(b)−M

= −µV′(b) +δV(b)−λV3(b),

which yields that V′′(b+) = V′′(b−) = V′′(b).
The second derivative of V is given by

V′′(x) =

C
(
λ
δ + 1

) (
θ2

1eθ1x− θ2
2e−θ2x

)
, 0 ≤ x < b,

−d
(
λ
δ + 1

)
θ2

3e−θ3x, x ≥ b.

Obviously, V′′(x) < 0, for all x ≥ b.
Since V′′′(x) = C

(
λ
δ + 1

) (
θ3

1eθ1x + θ3
2e−θ2x

)
> 0, for all 0 ≤ x ≤ b, we know that V′′(x) is an in-

creasing function on [0,b]. Thus the maximum of V′′ on [0,b] is V′′(b) < 0, which implies that
V′′(x) < 0, for all 0 ≤ x ≤ b. Therefore, V is concave on [0,∞).

Similar to the proof of Theorem 4.3, we know that (4.35) satisfies (4.1).
(iii) In this case, we check the limit of the first order derivative of V(x) given by the first equation

of (4.35). It is easy to see

lim
b→∞,x→∞

(
λ

δ
+ 1

)
C

(
θ1eθ1x + θ2e−θ2x

)
=

(
λ

δ
+ 1

) Mθ3

δ

θ1

θ1 + θ3
≥ 1,

which means that V′(x) ≥ 1 for all x ∈ [0,∞]. Thus, the equilibrium strategy is never to pay the
dividend and V(x) ≡ 0 which is obviously satisfies (4.1).

This completes the proof. �

Example 4.7. Let µ = 1, σ = 1, M = 0.8, δ = 0.4. Figure 4.2 shows the equilibrium value functions
for Type II pseudo-exponential discount functions with λ = 0, 0.1 and 0.3. The barrier b are 0.6525,
0.8772 and 1.5522, respectively. The case with λ = 0 is time consistent and the equilibrium strategy
is optimal.
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