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Abstract—Control Flow Integrity (CFI) provides a strong
protection against modern control-flow hijacking attacks. How-
ever, performance and compatibility issues limit its adoption.

We propose a new practical and realistic protection method
called CCFIR (Compact Control Flow Integrity and Random-
ization), which addresses the main barriers to CFI adoption.
CCFIR collects all legal targets of indirect control-transfer in-
structions, puts them into a dedicated “Springboard section” in
a random order, and then limits indirect transfers to flow only
to them. Using the Springboard section for targets, CCFIR can
validate a target more simply and faster than traditional CFI,
and provide support for on-site target-randomization as well
as better compatibility. Based on these approaches, CCFIR can
stop control-flow hijacking attacks including ROP and return-
into-libc. Results show that ROP gadgets are all eliminated. We
observe that with the wide deployment of ASLR, Windows/x86
PE executables contain enough information in relocation tables
which CCFIR can use to find all legal instructions and jump
targets reliably, without source code or symbol information.

We evaluate our prototype implementation on common web
browsers and the SPEC CPU2000 suite: CCFIR protects large
applications such as GCC and Firefox completely automati-
cally, and has low performance overhead of about 3.6%/8.6%
(average/max) using SPECint2000. Experiments on real-world
exploits also show that CCFIR-hardened versions of IE6,
Firefox 3.6 and other applications are protected effectively.

I. INTRODUCTION

Many protection mechanisms including DEP (Data Ex-
ecution Prevention [1]), ASLR (Address Space Layout
Randomization [2][3]), GS/SSP (Stack Smashing Protec-
tor [4][5]), and SafeSEH (Safe Structured Exception Han-
dling [6]) have gained wide adoption, and they are making it
more difficult for attackers to exploit vulnerabilities. These
mechanisms can mitigate various standard attacks, but these
reactive defenses can often be bypassed by advanced ex-
ploitation techniques [7][8]. Attacker countermeasures that
originally sounded impossible become easier and easier,
and sometimes automatable, over time. A better long term
approach is to focus on what we want to protect, and then
design protection measures accordingly.

A natural protection against control-flow hijacking attacks
is to enforce CFI (Control Flow Integrity [9]): a guarantee
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that all control-flow transfers in a program will be the ones
intended in the original program (i.e., those represented in
the compiler’s control-flow graph). CFI can stop all control-
flow hijacking attacks, including sophisticated ROP exploits
(Return Oriented Programming [10][11][12]). CFI provides
a guarantee that is strong, and can be easily reasoned about
formally; this also makes it useful as a building block for
other protections [13][14]. The world would be a much more
secure place if every binary was protected with CFI.

Unfortunately, despite its long history (the original paper
proposing it was in 2005 [9]), CFI has not seen wide indus-
trial adoption. CFI suffers from a perception of complexity
and inefficiency: reported overheads (average/max) have
been as high as 7.7%/26.8% [13] and 15%/46% [9]. Many
CFI systems require debug information that is not available
in COTS applications, and cannot be deployed incrementally
because hardened modules cannot inter-operate with un-
hardened modules.

We propose a new practical and realistic protection
method called CCFIR (Compact Control Flow Integrity and
Randomization, pronounced “see-see-fur”), which fills most
of the gap between existing lightweight protection mecha-
nisms on one hand, and CFI on the other. It introduces low
performance overhead, and is compatible with unmodified
legacy binaries. These properties address the main barriers
to adopting CFI widely.

CCFIR enforces a policy on indirect control transfers that
prevents jumps to any but a white-list of locations; it also
distinguishes between calls and returns, and prevents unau-
thorized returns into sensitive functions. These restrictions
capture the most important aspects of CFI protection, with-
out requiring difficult and imprecise alias analysis. For effi-
ciency and compatibility, CCFIR performs this enforcement
by directing indirect control transfers through a dedicated
“Springboard section” that encodes target restrictions via
code alignment. The execution time overhead of this check-
ing is low, 3.6%/8.6% (average/max) over SPECint2000.
As a further layer of protection, the Springboard section
facilitates randomly permuting the allowed jump targets at
program startup, further increasing the difficulty of control-
flow injection.

We build CCFIR as a purely binary transformation. It does



not depend on source code or debug information. Instead,
it analyzes binary executables based on relocation tables
which are available with the wide deployment of ASLR. It
can be validated independently and deployed progressively.
We have applied it to parts of IE6 and Firefox 3.6 and 5
other applications to stop 10 known vulnerabilities. CCFIR
protects binaries as large as the 11MB xul.dll in Firefox
completely automatically.

In summary, our CCFIR protection approach has the
following key advantages:
• Robust protection: provides strong defense against

control-flow hijacking attacks including return-to-libc and
ROP. ROP gadgets are eliminated.

• On-site randomization: an additional lightweight layer of
protection beyond CFI to frustrate control-flow attacks.

• High performance: low overhead compared to previous
CFI implementations, only 3.6%/8.6% (average/max).

• Binary only: no source code or debug symbols required.
• Progressive deployment: protected and unprotected code

can inter-operate, without raising false alarms.
• Verifiable: can be verified independently.

The remainder of this paper is organized as follows: We
talk about related work in Section II, and then give an
overview of our approach in Section III. We describe the
design and implementation of our system in Section IV. Sec-
tion V gives our evaluation of performance and protection.
Section VI discusses security topics including remaining
possible attacks. Finally Section VII concludes.

II. RELATED WORK

Binary Disassembling and Rewriting. Schwarz et
al. [15] cover the disassembly problem in detail, including
two standard algorithms and a new combination. Their
approach also uses relocation tables, but less extensively.
A common challenge for disassembly is mixing of code
and data within the code section. Many other approach-
es [16][17][18] have depended heavily on heuristics which
with unjustified assumptions that miss some fraction of code.
With the deployment of DEP, compilers are more restricted
in the ways they can mix code and data. We believe we
are the first to point out that the binaries generated with
modern compilers’ security-sensitive modes (DEP, ASLR)
can be thoroughly analyzed using their relocation tables.
Some of the systematic binary rewriting modes we use were
previously proposed in systems such as Vulcan [19].

Control Flow Hijacking Attacks and Mitigation. Mem-
ory safety enforcement can protect against control-flow hi-
jacking attacks; it also defeats non-control-data attacks [20].
A representative technique is automatic bounds check-
ing [21][22]; however these techniques require recompilation
from source, and their performance overheads are too high
for practical deployment. Recently proposed techniques,
such as SoftBound [23] with CETS [24], also introduce
an overhead of 116%. Approaches that enforce data-flow

integrity [25] can also stop many kinds of exploits, but cause
a 2.5x slowdown. PointGuard [26] use pointer encryption to
protect function pointers from tampering. However it causes
compatibility issues and has weaknesses [27].

Modern operating systems widely adopt lightweight and
efficient protection mechanisms, like DEP [1], ASLR [2],
and SafeSEH [6]. However, advanced exploit techniques
like return-to-libc and ROP-based exploits [10][11] can
defeat these protections. An indication of the power of
these techniques is that they can provide attackers a Turing
complete language for malicious functionality [10][28].

Some new mitigation techniques have focused on pro-
tecting against ROP [29], but this has also spawned newer
variants of attacks [12]. More comprehensive ROP protec-
tions, such as ROPdefenser [30] and ILR [18] introduce high
overhead. IPR [31] uses randomization in basic blocks with
minimal overhead, but provides only partial protection.

Control Flow Integrity. Abadi et al. introduced the term
CFI [9] and proposed a technique to enforce it. Rather
than trying to protect the integrity of function pointers and
return addresses, this technique marks the valid targets of
these indirect control transfers (i.e. function entry points and
landing points for returns) with unique identifiers (IDs), and
then inserts ID-checks before each indirect call or return
instruction. They propose identifying the set of valid targets
(i.e. the points-to set) through a precise control flow graph
(CFG) construction and enforcing control flow only to this
set for each indirect transfer instruction.

However, a precise CFG construction needs a sophisti-
cated pointer analysis, which is especially difficult without
source code or debug symbols. Compatibility is a problem:
hardened modules and un-hardened modules cannot inter-
operate, preventing incremental deployment which is often
needed in real systems. A further challenge is diversity of
IDs. The more IDs the code uses, the more restricted jumps
are, but any overlapping points-to-sets must be unified to
use the same ID. Sharing of jump targets such as library
functions can lead to many sites having only one ID.

In the absence of detailed analysis, Abadi et al. suggest
that using a single identifier for all sites (a 1-ID approach) or
one for calls and another for returns (a 2-ID approach) could
still provide substantial protection. Their implementation
used a conservative CFG in which any indirect call could
target any function whose address is taken. This allows
modular transformation of libraries, while still supporting
multiple return IDs for directly-called functions. However
calls and returns into untransformed code are still prohibited,
so this approach does not support incremental deployment.
CCFIR implements a 3-ID approach, which extends the 2-
ID approach by further separating returns to sensitive and
non-sensitive functions. This stops the jumps that would be
most useful to attackers, but the three-way separation can
be compactly represented in the Springboard section layout
without requiring separate ID values and checks.



MoCFI [32] applies CFI to ARM binaries, but due to the
imperfection of pointer analysis on binaries, they let statical-
ly unresolved calls/jumps transfer to any valid function entry.
CFIMon [33] utilizes the Performance Monitoring Unit in
modern processors for performance, but it is not reliable
in practice because of false negatives and false positives.
CPM [34] uses source code analysis to find all possible
targets of an indirect call and masks (e.g. bitwise AND) the
runtime target with these possible addresses to determine its
validity. Since the target information is encoded at the call
site statically, shared libraries are not supported. Control-
flow locking [35] implements a similar policy and has
similar restrictions. HyperSafe [36] provides integrity for
supervisor-mode code such as a hypervisor, including a CFI-
like technique that replaces jump targets with integer indexes
into function-specific tables. This approach can provide finer
granularity protection for returns compared to basic CFI,
but it can not support modular compilation or dynamic
linking. Whole-system overhead was modest for benchmarks
dominated by I/O or user-space execution, but HyperSafe’s
approach would likely be significantly more expensive than
CCFIR if applied to CPU-bound user-space applications.

SFI (Software(-based) Fault Isolation [37][38][39]) uses
instruction rewriting but provides isolation (sandboxing)
rather than hardening, typically allowing jumps anywhere
within a sandboxed code region. CFI is also useful as a
foundation for enforcing SFI [13], or other higher level
policies, such as XFI [14] or write-integrity [40].

III. THE CCFIR APPROACH

The goal of CCFIR is to enforce control-flow integrity in
user mode applications by ensuring that the targets of all
indirect control transfer instructions are legal. We identify
the valid targets in binary modules and rewrite them so
that the valid targets can be distinguished from invalid ones
efficiently. Then we insert checks before each indirect con-
trol transfer instruction to make this distinction. To enforce
control-flow integrity fully, all modules have to be rewritten,
but this ideal is not always possible. To support incremental
deployment, our scheme allows unprotected libraries as well.

A. Assumptions

In this paper, we assume the following properties hold:
• ASLR and a W⊕X protection such as DEP are in use.

This usually holds in modern systems. In order to support
ASLR, modern compilers generate relocation tables in
target binaries, which are used by our binary analysis.
With DEP, compilers separate code and data sections
and thus ease disassembling. DEP also prohibits attackers
from tampering with code (including direct transfer in-
structions’ targets) or executing code in the data section.

• The target executable does not self-modify its code or
dynamically generate code. Traditional executables com-
piled from high level languages always satisfy this. For

executables that do not conform to this assumption, our
CCFIR scheme is not suitable because static rewriting
cannot enforce runtime control flow integrity.

• Limited information disclosure vulnerabilities are avail-
able to attackers. If intended functionality or a separate
information-disclosure bug allows attackers to read entire
memory regions such as the Springboard, or to selectively
reveal Springboard stub addresses of their choice, the
protection provided by randomization can be negated.

B. Protection Targets of CCFIR

There are several types of control flow transfers in user
mode Windows x86 binaries:
• Exceptions. When exceptions occur, the operating system

takes control and then transfers to user-defined exception
handlers. These handlers are only invoked by the OS and
will not be targets of indirect transfers. In addition, these
exception handlers are well protected by SafeSEH.

• Direct jmp/call and conditional jump (jo, jz etc.) instruc-
tions. Most jmp/call instructions fall into this category.
Their targets are fixed in the code, so DEP or W⊕X
protection prevents attackers from tampering with them.

• Indirect jmp/call instructions, as used for function pointers
and virtual method dispatch. Their targets usually are read
from memory and may be controlled by attackers.

• All ret instructions. Their targets are computed and pushed
onto the stack at run-time by corresponding call instruc-
tions. Attackers may overwrite the return address on the
stack to launch attacks like ROP and return-to-libc.
The first two kinds of transfers are already well protected,

so CCFIR protects the last two. As shorthand we refer to
an intended target of an indirect call or jump instruction as
a function pointer, and the target of a return instruction as
a return address.

C. Identify Indirect Transfer Targets

To protect targets of indirect transfers (i.e., return address-
es and function pointers) in binary executables, the binary
should be disassembled first. And then, we need to find
where all transfer targets are created and used, in order to
deploy further protection.

In general, it is challenging to disassemble an x86 PE
(Portable Executable format [41]) file correctly, because x86
is a CISC platform with variable-length instructions and a
dense encoding. However, we can take advantage of the fact
that ASLR and DEP are widely adopted on Windows. These
facts result in the following important deductions:
R1. ASLR-protected executables must have relocation ta-

bles, because absolute addresses in code must be relo-
cated when loading.

R2. Compilers can freely choose the starting address for a
function or a segment.

R3. Programmers get the addresses of functions or in-
structions only through ways provided by high level
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Figure 1: Illustration of CCFIR: a code section is split up into 2
sections, and all indirect control transfers (dashed lines) are only
permitted to flow to an aligned address in the Springboard section.
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Figure 2: Memory layout for executables hardened
by CCFIR: only Springboard sections are placed
in a memory area for which the 27th bit is 0.

languages.1 Programs in high-level languages comply
with this rule, and even most inline assembly code does.

R4. If the targets of indirect call/jmp instructions are hard-
coded in binaries, they must be absolute addresses and
can be indexed through relocation tables (as rule R1).

R5. Compilers separate code and data sections (in order to
conform to DEP). In code sections, the only data which
can appear are special control structures, such as jump
tables for switch statements and exception tables.

These rules hold for binaries generated by modern com-
pilers today. Due to the rule R4, we can find most possible
indirect code entries. Then with the help of the export
table and the EntryPoint of the target PE file, it can be
disassembled recursively to identify all possible instructions.

Combined with other policies described in Section IV-B,
we take an approach that can disassemble a PE file com-
plying with rules R1∼R5 correctly and automatically. For
binaries not respecting R5, we can still identify most code
and data correctly and tag unidentified parts explicitly for
manual review. These remaining parts are usually small even
for large binaries, and can be easily reviewed.

As binaries can be disassembled correctly, we can identify
where transfer targets are created (i.e., all occurrences of
function pointers and return addresses) and where transfer
targets are used (i.e., all control-transfer instructions).

D. The Springboard and New Memory Layout

While CFI enforcement techniques have been used to
make software fault isolation (SFI) more efficient [13],
we conversely use ideas of layout-based checking from
SFI [38][39] to make CFI enforcement more efficient.

1getpc() is a seldom-used method for addressing code and data in normal
binaries, although it’s more popular in malicious code. In our experiments
we find only one case of getpc in Windows binaries, setjmp() discussed in
Section IV-C2.

For each module, we introduce a new code section called
the Springboard. As shown in Figure 1, for each valid
indirect control-transfer target (e.g. nodes 5 and 3 in this
figure), the Springboard contains an associated unique stub
(nodes 5′ and 3′ respectively) containing a direct jump to the
given target. The nodes 2′ and 2′′ are used to make sure the
node 3′ is aligned. Using techniques known from SFI, we
make sure that any indirect control-flow transfer instruction
can only jump to a code stub inside the Springboard. As
a result, diverting the execution to an attacker-supplied
arbitrary target becomes impossible.

The Springboard section is distinguishable from other
memory areas through the memory layout. As shown in Fig-
ure 2, it is enforced that any executable code section whose
address’s 27th bit is 0 can only be a Springboard section. In
other words we divide the program’s virtual memory space
into 128MB-large (227) slices, so that Springboard sections
are always in even slices, and other code sections are in odd
slices. Data sections are not constrained.

Real-world applications’ code sections are typically small-
er than 10MB, and they can be placed freely anywhere into
an odd 128MB memory slice, as long as the whole section
is inside the slice. Multiple Springboards or multiple code
sections can be contained in the same 128MB slice but
never mixed. Thus one bit testing instruction is capable of
checking if an address belongs to a Springboard section.

Make Valid Targets Distinguishable. In order to dis-
tinguish valid targets of indirect transfer instructions from
invalid targets (e.g. those supplied by attackers), valid targets
are all redirected to code stubs in the Springboard. Further,
to defeat advanced attacks like ROP and return-to-libc, code
stubs within the Springboard are further distinguishable.

First, function pointer stubs and return address stubs are
different. Second, return address stubs for return-landing



Executable Bits Meaning
27 26 3 2-0

no * * * *** Non-executable section
yes 1 * * *** Normal code section
yes 0 * * !000 Springboard’s invalid entry
yes 0 * 1 000 Springboard’s function pointer stub
yes 0 1 0 000 Springboard’s sensitive return stub
yes 0 0 0 000 Springboard’s normal return stub

Table I: Bit Mask of stubs in Springboard.

points within sensitive library functions (e.g. system()
in libc) are different from return address stubs for normal
functions. In other words, there are three kinds of code stubs
in the Springboard (i.e., a 3-ID CFI implementation).

As shown in Table I, stubs inside the Springboards are
aligned and placed at distinguishable addresses based on
their types. Function pointer stubs are 8-byte aligned but not
16-byte aligned. All return address stubs are 16-byte aligned.
Further the 26th bits of sensitive return address stubs are 1,
while they are 0 for normal return stubs.

With this distinction, the type of indirect transfer targets
can be quickly determined at runtime, and a stricter security
policy can be enforced on indirect control transfers.

E. Enforcing Control Flow Integrity

Due to the careful design of the Springboard and stubs
alignment, one or two bit-testing instructions inserted before
an indirect control transfer are capable of validating its target
and so enforcing control flow integrity.

Indirect call and jump instructions can only jump to
function pointer stubs in the Springboard: In particular, they
are enforced to jump to targets within Springboard that are 8-
byte aligned but not 16-byte aligned. Moreover, there are no
function pointer stubs for sensitive functions in the Spring-
board because these functions are never used as targets of
indirect transfers, as discussed in Section IV-E. With this
enforcement, attackers cannot invoke invalid functions or
sensitive functions through indirect call/jmp instructions.

Return instructions in normal functions can only jump
to normal return address stubs in the Springboard, but not
sensitive return address stubs: In particular, these return
instructions are enforced to jump to 16-byte aligned stubs
whose 26th bits are 0. With this enforcement, the capacity of
return-to-libc attacks is greatly constrained because exploits
cannot jump into sensitive functions. Especially, the Turing-
completeness of return-to-libc attacks [28] is broken.

Return instructions in sensitive functions can jump to
any return address stubs in the Springboard: In particular,
these return instructions are enforced to jump to 16-byte
aligned stubs regardless of their 26th bits.

It is worth noting that user programs may invoke sensitive
functions, and thus returns within sensitive functions may
jump to user functions. On the other hand, we have never
observed a need for sensitive functions to call user functions,
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so CCFIR prohibits returns within user functions from
jumping to sensitive functions. While simple, we believe this
3-ID scheme achieves a good balance between compatibility
and safety.

In addition, all return instructions’ targets are 16-byte
aligned stubs in Springboard. And thus, attacks like ROP
that jump into the middle of instructions or basic blocks are
prohibited. It also greatly raises the bar for exploits which
weave together small snippets of code (e.g. gadgets).

CCFIR provides an extra protection to randomize the
order of the stubs inside the Springboard at load-time to
defeat guessing the addresses of function pointer and return
address stubs. Section IV-E will discuss this in detail.

IV. SYSTEM DESIGN & IMPLEMENTATION

CCFIR consists of three major modules: BitCover, Bi-
tRewrite & BitVerify. Its architecture is shown in Figure 3.

The first module BitCover disassembles a given PE file,
and identifies all indirect call/jmp/ret instructions and all
potential indirect control-transfer targets (Section IV-B).

BitRewrite statically rewrites the target PE file. In particu-
lar, it inserts Springboard sections for each module, encodes
valid transfer targets with pointers to Springboard stubs
(Section IV-C1), and instruments runtime checks before
indirect transfers to validate the targets (Section IV-C2).
BitRewrite also pays much attention to compatibility issues
(Section IV-D) to support incremental deployment.

In addition, BitRewrite introduces a further layer of pro-
tection, randomization, to increase the difficulty of attacks
(Section IV-E).

A separate module BitVerify checks whether a given bina-
ry conforms to our defined security policies (Section IV-F).
It is the last module before a binary is executed.

A. Background: Relocation Table

The relocation table is a feature of binary code required
to support dynamic linking and ASLR, and BitCover also
uses it to support disassembly. We use the following terms
to describe the structure of a PE-format relocation table:

• Relocation item: a 2-byte entry in the relocation table.
The lower 12 bits of an item are used together with a page
base to compute the address of a relocation slot;
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• Relocation slot: a memory area that is to contain a
relocation entry. For instance on a 32-bit archi-
tecture a typical slot will be 4 bytes long.

• Relocation entry: the value to be stored in the
relocation slot at relocation (load) time. This is
usually the address of a function or global variable.
For example, in Figure 4, a relocation item 0x31A4 exists

in the relocation table (i.e. the .reloc section). The highest
4 bits (i.e. 0x3) indicate this is a normal relocation item.

The address of the relocation slot represented by this item
is 0x4011A4, which is the sum of the image base of the
PE (e.g. 0x400000), the relocatable page’s Relative Virtual
Address (e.g. 0x1000) and the relocation slot’s offset within
this page (e.g. 0x1A4, lower 12 bits of the relocation item).

The actual content stored in this relocation slot, i.e. the
relocation entry, is 0x401120. This is the address of a
function foo, which needs to be updated at load time.

B. BitCover

The goal of BitCover is to identify all indirect control
transfer instructions and all valid transfer targets. As shown
in Figure 5, the workflow of Bitcover consists of two phases.

1) Phase 1: Explore the Code and Data: The EntryPoint
and entries in the export table of a PE file are possible
code entries. In addition, relocation entries are possible code
entries too according to rule R4 in Section III-C. For each
possible code entry, BitCover starts disassembling from it
recursively. Every executable instruction will be reachable
by recursive disassembly from some code entry.

However, not all export entries or relocation entries are
real code entries; for instance a relocation entry might
represent data rather than code. BitCover uses the following
heuristics to determine when disassembly reaches a byte
sequence that cannot be a valid instruction. If BitCover
encounters an invalid sequence during recursive exploration,
it marks the code entry from where it starts disassembling
as invalid.
H1. No invalid instruction are permitted.
H2. No instruction overlaps with another.
H3. A valid instruction must lead to other valid instructions.
H4. When disassembling starting from a code entry, all pos-

sible paths should stop at return instructions, indirect

jump instructions which jump to unknown targets, or
instructions which invoke must-terminate functions.

H5. All addresses’ sizes must be valid.
H6. If an instruction contains a relocation slot, the content

of this slot (i.e., a relocation entry) must be a valid
immediate value or offset.

H7. Instructions cannot start from relocation slots.
H8. All absolute addresses in code must be relocated, except

special hard-coded system values.
H9. I/O instructions and interrupt instructions are permitted

only in specific situations.
H10. Only specific segment registers can be used in code.

Here, a must-terminate function is one that will never
return to its caller, such as exit or abort in C/C++.
During exploration, BitCover also marks any function that
calls a must-terminate function unconditionally as a must-
terminate function itself. BitCover stops disassembling after
a path reaches a call to a must-terminate function, since
the bytes after that call would not be executed: they may
belong to another function or not be code at all. A function
that might call a must-terminate function under some but
not all circumstances we call a may-terminate function.
BitCover also analyzes which function may terminate, and
if it encounters an invalid byte sequence after a call to a
may-terminate function, it treats that call like a call to a
must-terminate function.

In phase 1, we also identify control tables like switch jump
tables [42]. We use both instruction and data characteristics
to distinguish switch jump tables from instructions. A switch
jump table must be an array of relocation slots containing
pointers which point to valid code entries. Following H7,
BitCover can accurately recognize any switch jump table
as data, i.e. not parts of instructions. In fact, heuristic H7
can filter out most control tables, including vtables for C++
objects, but not jump index tables [42] for switch statements,
because entries in these tables are not relocation slots.

After this phase, all candidate code entries and some
known control tables have been identified. There are still
some invalid candidate code entries and some unknown data
left. A second phase analysis is needed to remove all those
invalid candidate code entries, and identify control tables
like switch jump index tables from the unknown data.



2) Phase 2: Refine the Disassembling Result: In this
phase, BitCover removes unreachable entries, tags other
suspect entries, and identifies remaining control tables.

If a relocation entry does not exist in the export table
and is not the target of any direct jump or call (i.e., is
not explicitly a function pointer), and all relocation slots
containing this relocation entry are parts of some instructions
(and thus the relocation entry must be an offset or immediate
value according to H6), and this relocation entry will not be
assigned to a register (e.g., directly moved to registers), then
this relocation entry is called as an unreachable entry.

For example, if a relocation entry E is only used in in-
struction mov eax, E[ebx*4], then E is an unreachable
entry. For unreachable entries, there is no chance to transfer
their values to any registers or memory; the program cannot
use it as a valid indirect target. So, we can claim that:
R6. All unreachable entries must not be valid code entries.

Based on rule R6, we can filter out switch jump index
tables [42] and other remaining tables in code sections. In
addition, after filtering out unreachable entries, the remain-
ing code entries in phase 1 are all candidate entries. If a
candidate entry does not point to an entry in a known control
table, it must be a valid code entry, according to rule R5
in Section III-C. So, BitCover can disassemble the whole
program automatically.

For binaries not obeying R5, BitCover will find unknown
data in their code sections. In this case, BitCover tags the
location as a “suspected” target, and leave it for manual
review. In our experiments, there are limited suspected
entries even in big binaries such as mshtml.dll, and an
expert can tag code entries in them quickly.

C. BitRewrite
The BitRewrite module carries out the central task, instru-

menting the binary to enforce control-flow integrity. This is
done in two steps:
• All valid indirect control transfer targets, e.g. function

pointers and return addresses, are modified by redirecting
them to unique stubs located inside the Springboard sec-
tion. This makes the validity of the addresses verifiable.

• Before each indirect control transfer instruction, e.g. cal-
l/jmp/ret, a special dynamic check is inserted, which
ensures that the transfer target is a valid stub in the
Springboard section.
1) Redirecting Indirect Control Transfer Targets: Bi-

tRewrite redirects both indirect call/jmp and ret instructions’
targets, i.e. function pointers and return addresses. As dis-
cussed in Section III-E, in order to enforce a better security
policy, function pointers and return addresses are redirected
to different kinds of stubs in the Springboard. In addition,
the ways function pointers and return addresses are created
and used are different. So, they are handled differently.

Redirecting function pointers. Function pointers in a
compiler-generated binary may be hard-coded in virtual

function tables, global variables and instructions. All these
occurrences of function pointers can be found, based on the
relocation table, as described in Section III.

As shown in Figure 6, as foo is loaded into a register
and may be a potential target of an indirect call, a unique
8-byte aligned stub foo sb in the Springboard is associated
with it. This stub contains a direct jump which will jump to
the entry point of foo. BitRewrite then replaces foo in the
instruction mov ecx, foo with foo sb.
Optimizations. As discussed in Section III-B, func-

tion pointers hard-coded in direct call/jmp instructions (e.g.,
call foo) and structured exception handlers used by the OS
are protected by DEP and SafeSEH and cannot be tampered
with by attackers. In addition, these pointers cannot be
used by indirect transfer instructions. Thus we can improve
performance by no redirecting these pointers, and suffer no
loss of security or correctness.

Moreover, function pointers inside jump tables need not
be redirected. These pointers cannot be tampered with
because of DEP, and can only be targets of jump instructions
for switch statements, such as jmp jtable[eax*4]. When
we confirm that compilers implement jump table lookups
correctly, i.e., jumping out of this table is impossible, these
pointers can be safely skipped.

Redirecting return addresses. The most frequent indirect
control transfer targets are return addresses, which also
makes them the most popular targets of attacks. Return
addresses are generally pushed onto the stack by corre-
sponding call instructions. To redirect valid return addresses,
BitRewrite relocates all call instructions.

Figure 7 shows the relocation of a direct call. Like
function pointers, a unique 16-byte aligned stub in the
Springboard (here back sb) is associated with each call site.
A direct jump instruction in this stub will jump back to the
original return-landing point (i.e. back). To make this stub
the new return address, the original call is replaced by a
jump to a new call instruction placed right before this stub.
This way, when the function is called, the return address
pushed onto the stack will be the verifiable address of the
stub back sb, which will seamlessly lead back the execution
after the original call site.

Figure 6 shows that indirect calls are modified similarly
to a direct call. The only difference is because the length of
a direct call instruction is 5 bytes, while the length of an
indirect one is 2. Hence their modified targets are back rsb-5
and back rsb-2 respectively. Moreover, as discussed in Sec-
tion III-D, for return-landing points in sensitive functions,
the 26th bits of associated return address stubs must be 1,
while they are 0 for normal return address stubs.

Having all indirect control transfer targets redirected to
their aligned stubs in the Springboard section makes legal
targets distinguishable from illegal ones.

2) Validating Indirect Control Transfers: As discussed
earlier, we focus on validating indirect call/jump and return



 call ecx

 ret

back:

 ret

foo:

 jmp back_sb-2
back:

foo_sb:
 jmp foo

 jmp back

 call ecx
back_sb:

 mov ecx,foo

 mov ecx,foo_sb

foo:

 ...

 ...  jnz error
 test [esp],M_R

 jnz error
 test ecx,M_F

 ...

 ...

 ...

 ...
 test ecx,8
 jz error

Original

Hardened

Direct control transfer

Indirect control transfer

Figure 6: Rewriting of an indirect call and return

 call foo

 ret

back:

 jmp back_sb-5

 ret

back:

 call foo

 jmp back

foo:

back_sb:

 ...

foo:

 ...

 jnz error
 test [esp],M_R

 ...

 ...

Original

Hardened

Direct control transfer

Indirect control transfer

Figure 7: Rewriting of a direct call and return

instructions’ targets before the control transfers. The policy
our scheme enforces is the following:
• Indirect call/jump instructions’ targets must be function

pointer stubs (i.e 8-byte aligned but not 16-byte aligned)
in the Springboard.

• The target of a return back to a sensitive function can be
any valid return stub (i.e. 16-byte aligned).

• Any other return instruction’s target must be a valid
normal return stub (i.e., 16-byte aligned with the 26th
bit 0).
As discussed in Section III-D, this enforcement can be

performed using one or two bit-testing instructions.
For any indirect call/jump instruction, its target should be

in the Springboard (i.e. the 27th bit is 0) and only 8-bytes
aligned (i.e. the 0-2 bits are 0, but the 3rd bit is 1). Thus if
the target address is bitwise ANDed with 8, the result should
be non-zero. In addition, if the TARGET is bitwise ANDed
with the mask 0x8000007 (i.e. M_F in Figure 6), the result
should be zero. As shown in Figure 6, these bitwise AND
operations are performed with the test instruction. If one
of these conditions is violated, the control flow is directed
to a predefined error handler (i.e. error in Figure 6). In
our implementation, the error handler will log the buggy
EIP value and the invalid transfer target, and then terminate
the process. (To record the EIP, there is a separate copy of
error for each indirect call/jump and return.)

Figure 6 also shows how the validation is inserted before
return instructions. Before returning, the target of the return
is on the top of the stack, pointed to by the esp register. The
return address is then tested against a mask M_R. The mask
is 0x800000f for returns from functions called by sensitive
functions, and 0xc00000f for all other return instructions.
An Exceptional Case. The function longjmp()

ends with an indirect jump, but its target is a return address

saved by a call to setjmp(), and so is 16-byte aligned. Thus
the check for this special jmp instruction matches the check
for a return instruction: test ecx, 0xc00000f.
Optimizations. Indirect jump instructions which are

used for switch statements, such as jmp jtable[eax*4], do not
need dynamic checks. For any switch statement, regardless
of what its control expression is, the control flow in the
binary generated by modern compilers (e.g., GCC and VC)
is forced to one entry in its jump table. For example, GCC
first makes a bound check against eax (corresponding to the
case value in switch statements). If it exceeds the bound,
then eax is assigned with a default value (corresponding
to the default case). And then, the control flow transfers
through jmp jtable[eax*4]. In this way, the control flow is
always forced to the jump table entries and thus cannot be
hijacked by attackers. Thus BitRewrite skips validating these
indirect jump instructions, to improve performance.

D. Compatibility Issues

A protected module only allows indirect control transfers
whose targets are valid Springboard stubs. But the stubs are
not restricted to be within the current module’s Springboard
section. Stubs within other modules’ Springboard sections
are also permitted, since their addresses are compatible; they
are validated the same way. And thus if every module in a
program (i.e. the main program and all DLLs) is rewritten,
according to the scheme described in the previous section,
the separate modules will be compatible with each other in
any combination and the control-flow integrity is enforced.

However, rewriting all modules is not always possible
in practice (e.g. system DLLs on Windows 7 cannot be
altered). While control transfers from an unprotected module
to a protected one cause no problem, if there is an indirect
control transfer from the protected module to an unprotected



mov ecx,
 [foo_slot]

 jmp [foo_slot]

.iat:

foo_sb:

 ...

foo_slot:
 foo

mov ecx,
[foo_slot_wrap]

.iat:
 ...

foo_slot:
 foo

 foo_sb
foo_slot_wrap:

Original

Hardened

 gpa_sb
gpa_slot_wrap:

 jmp gpa_wrap
gpa_sb:

points to

gpa_wrap:

#fill new stub

call [gpa_slot]

#ret stub ptr

 ...

 ...

gpa_slot:
 GetProcAddress

Figure 8: Redirection of imported functions and GPA

one, the check will fail. In order to support the need for
incremental deployment, BitRewrite makes special efforts
for compatibility.

Compatibility issues come up when a protected module
returns to an unprotected module, or calls/jumps to an
external function in an unprotected module through
• an imported function pointer,
• a function pointer resolved at runtime by special API, e.g.,

GetProcAddress(), or
• a non-exported function pointer.

1) Imported function pointers: Most calls to external
functions are done through imported function pointers. Im-
ported function pointers are all stored in the import address
table (IAT) and then are accessed through IAT entries. For
example, in Figure 8, the imported function foo’s address is
stored in the .iat section (i.e., the foo slot). All references
to foo are accessed through its IAT entry foo slot, e.g., mov
ecx, [foo_slot]. Imported function pointers will be
resolved at load time by the dynamic linker and the IAT
entries will be updated.2 As a result, statically modifying
these IAT entries does not work.

To work around this issue, for each IAT entry, BitRewrite
generates a read-only and non-executable wrapper to replace
it. As shown in Figure 8, for the imported function foo, a
wrapper foo slot wrap is generated to replace foo slot. The
wrapper stores a function pointer which will jump to the
original imported function.
Optimizations. Because the IAT is read-only, im-

ported function pointers directly used in call/jmp instruc-
tions, such as call/jmp [foo slot], can also skip redirection
to improve performance.

2) Run-time resolved function pointers: Sometimes dy-
namic libraries are not loaded and linked at load time, but at
run-time using LoadLibrary. Function pointers in such cases

2Although the IAT will be updated by the dynamic linker, it is usually
read-only and non-executable at runtime.

can be obtained by the GetProcAddress call (comparable to
dlopen and dlsym in Unix). Since in this case the address
of a given function is computed at runtime, if the library
is unprotected, the redirection of this function can only be
made at runtime as well.

We leave stubs in the Springboard section which can
be filled at run-time. For this, write permission has to be
given for the page containing the stub, but only for the time
of the update. The run-time stub generation is carried out
by a special function which wraps GetProcAddress. As an
exception from the above described redirection technique
for imported functions, GetProcAddress is redirected to our
wrapper function, as depicted in Figure 8. This is possible
because the function GetProcAddress has to be imported.

The stub code for GetProcAddress, i.e. gpa sb, does not
jump back to the original GetProcAddress function directly,
but to the wrapper. The wrapper will call the original
GetProcAddress function, create a new stub for the returned
function pointer in one of the blank slots in the Springboard,
and return the pointer to the newly created stub instead of the
original function pointer. Only the page containing this stub
in the Springboard is writable for the time of this update.
This way all function pointers retrieved by GetProcAddress
are redirected to the Springboard section and 8-byte aligned.

3) Non-exported-function pointers: The overwhelming
majority of external functions are called either through
imports or resolved at runtime via GetProcAddress, i.e., they
are exported by an external module.

However, occasionally an external function that is not
exported by any external module can also be called, such
as through the vtable of an object that exported by an
unprotected library. Since this function pointer is never
redirected to a Springboard stub anywhere, it will fail the
check in the protected module.

4) Return to unprotected module: It is also possible that
a protected function has to return to an unprotected module,
e.g. when a function is exported by the protected module and
invoked by the unprotected module. When the invocation
finishes, the protected function tries to return to unprotected
module, and then triggers a false alarm.

We handle these rare cases of 3) and 4) by running
BitCover on all libraries which can possibly be loaded by
a hardened module, but cannot be protected (e.g. Win-
dows system DLLs). The same algorithm described in
Section IV-B is used to collect all valid indirect transfer
targets. Instead of using this information for instrumenting
the binary, a hash table is built from the valid code pointers.
When the error handler is triggered at run-time, in case of a
failed check, this hash table is looked up as a final chance
to validate the target.

If the target being looked up is not in the hash table,
the lookup procedure will terminate the process. Otherwise,
the error handler will jump back to the original control
flow. To jump back, the error handler for each instrumented



validation is different. Each error handler saves registers
before calling the common hash table lookup procedure, and
then restores registers after the lookup and jumps back.

This hash table lookup scheme provides the same level
of protection as the previous alignment-based checking. We
also emphasize that since the vast majority of unprotected
targets are already covered by the first two categories (im-
port tables and GetProcAddress), the hash table is seldom
used and thus the introduced overhead is negligible. As
our experiments show, the hash tables for applications in
SPEC2000 [43] and SPEC2006 [44] are never looked up.

When all the involved modules can be rewritten and
protected by CCFIR, none of these compatibility features
or their overhead are required. However when that is not
possible, CCFIR can still be applied to a single module,
which can work with other un-hardened modules. This
feature allows the incremental deployment of the protection
scheme, which we identified as an important requirement of
practicality.

E. Security Enforcement and Randomization

BitRewrite enforces that indirect call/jump instructions
can only jump to function stubs in the Springboard. Re-
turn instructions are constrained to jump to return address
stubs in the Springboard, and normal return instructions
are prohibited from jumping to sensitive return stubs. Thus
it is impossible for an attacker to inject a jump into the
middle of an instruction, or to an instruction in the middle
of a basic block. This greatly reduces the scope for attack
techniques based on stringing together small code snippets
such as ROP gadgets. However a buffer overflow could still,
for instance, allow an attacker to replace a function pointer
with a different legal function pointer, if the attacker guessed
its value or caused it to be leaked [45][46][47].

The first countermeasure is to harden sensitive functions.
These include:

• system and the execl, execv family of functions
in msvcrt.dll and WinExec, CreateProcess in ker-
nel32.dll. They can be used to execute a file or create a
process.

• The LoadLibrary and GetProcAddress functions
in kernel32.dll which can retrieve function addresses.

• memcpy and other memory operation functions.
• The VirtualProtect and VirtualAlloc family of

functions which can disable memory page protections.
• The fopen and CreateFile families of functions.
• The longjmp function. It is the key to performing

branching in Turing-complete return-to-libc attacks [28].
• Other similar functions in application-specific libraries.

We suggest that these sensitive functions should only be
used via direct calls, and CCFIR raises an alert if they
are called indirectly. Thus we can assume that a binary
hardened by CCFIR has no function pointer stubs in the

Springboard for sensitive functions, and indirect jumps can-
not target them. Similarly, CCFIR’s prohibition of normal
return instructions from returning into the middle of sensitive
functions prevents attackers from accessing parts of their
functionality.

The second countermeasure is to introduce randomization.
Unlike other recent work [18][31], CCFIR randomizes each
stub in the Springboard at load-time. In particular, an extra
section is introduced in the PE file to record all redirected
stubs’ addresses, similar to the relocation table. This section
will only be used by the loader, and will not be mapped
into the process’s address space. So, attackers cannot steal
redirected stubs from this extra section.

With this extra section, the loader can reorder those
redirected stubs in the Springboard. The stubs are randomly
moved to new addresses within the Springboard. And all
references to the stubs are updated accordingly. This load-
time reordering usually is very fast, as shown in Section V.

In our prototype, this load-time reordering is done by
custom bootstrap code planted in the executable. In the
future, this could be done using the loader.

The randomization introduced here is an orthogonal layer
of protection from the previous CFI-style checking. Even
if the randomization is totally disclosed, the original 3-ID
CFI still exists. Moreover, the location of each stub in the
Springboard is virtually independent. Attackers need a very
targeted disclosure (e.g., the stub for system) to launch an
attack, in contrast to ASLR where attackers can learn the
base address of a whole module and reveal all targets.
F. BitVerify

Separate verification provides an independent check of
whether the target obeys specified security policies. The
CCFIR verifier, BitVerify, checks whether a given binary
conforms to the following rules:
• Any executable section whose 27th bit is zero is a Spring-

board section.
• Code stubs in the Springboard section are all aligned.
• Dynamic checks have been inserted before all indirect

call/jmp/ret instructions that should not be skipped.
• Function pointers that should not be skipped have all been

rewritten and redirected to the Springboard section.
• All call instructions have been rewritten to make sure the

pushed return address points to the Springboard section.
These rules together guarantee that all indirect call/jmp

and ret instructions in the executable can only flow to
valid code entries. Based on the results from BitCover,
BitVerify can get all valid code entries and indirect control
flow transfer instructions. Also, the Springboard section and
stubs in it are all identified. So this validation process is
straightforward and fast.

As required, BitVerify can also check extra require-
ments. For example, we can prohibit sensitive API
VirtualProtect() from being legal targets, as dis-
cussed in Section VI-A.
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Figure 9: Performance of BitCover and BitRewrite.
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Figure 10: Performance overhead brought by CCFIR.

V. EVALUATION

We implement a prototype of CCFIR for x86 PE executa-
bles on the Windows platform. In this C++ implementation
prototype, BitCover uses an open source disassembler library
Udis86 [48] to parse x86 instructions. In addition the 8K
LOC of Udis86, BitCover and BitVerify take about 5k LOC,
while BitRewrite takes another 5k LOC and an additional
custom PE file parser takes 2k LOC.

We test CCFIR with the SPEC CPU2000 (consisting of
SPECint2000 and SPECfp2000) benchmark binaries [43],
SPECint2006 [44] and several COTS binaries including Fire-
fox 3.6 (denoted as FF3) and Internet Explorer 6 (denoted
as IE6)3 , to evaluate its overhead and protection.
A. Performance

SPECint2000 consists of 12 applications written in
C/C++, while SPECfp2000 consists of 4 applications written
in C/C++ and 10 in Fortran. We compile all these 16 C/C++
applications with Microsoft Visual Studio 2010 (abbreviated
MSVC2010). For the 10 applications written in Fortran
we use the GNU Fortran compiler (distributed with the
MinGW port of GCC). Because CCFIR can also protect
the return address, the buffer security check (/GS flag)
provided by MSVC2010 and the stack smashing protection
(-fno-stack-protector) by GCC are turned off. For
each application, all modules are statically linked together
in order to get the approximate performance overhead of
applying CCFIR to the whole system. The experiments are
performed on a Windows 7 32-bit system, with an Intel
Core2 Duo CPU at 3.00GHz.

Then CCFIR is used to automatically disassemble and
rewrite all 26 benchmark binaries. We compare the function
pointer information determined by BitCover with the symbol
information from the source code, and confirm that BitCover
has no false positives or false negatives when parsing the
executables. The final binaries rewritten by BitRewrite are

3For newer browsers, newer OS is needed. But it is difficult to replace
modules in newer OS. In addition, there are few public available exploits
for newer browsers. So, we chose two old browsers as a benchmark here.

then run 9 times. The SPEC harness scripts check that the
hardened applications exhibit the same behavior and output
as their original counterparts.

For the browser FF3 and IE6, two core modules
xul.dll and mshtml.dll are hardened separately,
whereas other modules are left intact, to evaluate incremental
deployment. The module xul.dll in FF3 is very large
(more than 11MB) and has more than 67,000 functions.
CCFIR hardens it automatically without any problems. The
module mshtml.dll in IE6 is also fairly large, 3MB with
more than 15,000 functions. While BitCover identified a few
hundreds of suspects, an expert can tag code entries quick-
ly. These experiments are conducted in a virtual machine
running Windows XP SP3 with 512M memory and 1 core
CPU.

Because CCFIR currently does not support dynamically
generated code, the JIT (just-in-time compiler) browser
option is turned off in the hardened browsers. (To provide
a similar protection, the JIT compiler should generate code
obeying the same restrictions as CCFIR. In addition, the JIT
should protect the generated code from tampering, which is
out of the scope of CCFIR.) We check that the hardened
browsers work fine and can visit popular websites.

1) Performance of Static Analysis: Figure 9 shows the
performance of BitCover and BitRewrite when analyzing the
SPEC CPU2000 benchmark. Only three of the benchmark
binaries, gcc, perlbmk and mesa, take more than 7
seconds. The other 23 applications take 1.8 seconds on
average. The analysis time is positively correlated with the
file size (especially the code segment size), the count of
function pointers and indirect call/jmp/ret instructions. For
example, gcc is 1,200KB large and takes 63 seconds, while
mgrid with 70KB takes only 0.14 seconds.

We also evaluate BitVerify’s performance. Experimental
results show that it can also verify binaries quickly. It takes
about 20 seconds to verify the 1.2MB gcc, about 37 seconds
for the 11MB xul.dll in FF3, and less than 10 seconds
for other programs in the benchmark suite.

It is worth noting that this static analysis overhead is



Table II: Statistical data of CCFIR when applying to applications

App.
modifications performance #gadgets file size (KB)

redirected fp/ret addr validated inst optimiz. original new overhead
#fp #imp #GPA #call #indirect #ret #skipped run run original new valid original new

call/jmp fp/import time time

SPECint2000 Avrg: 3.6385%
gzip 77 20 3 976 106 430 171 84.30 86.50 2.6097% 2484 0 0 101 140
vpr 85 20 3 1578 110 768 190 66.00 66.00 0.0001% 4437 0 0 231 301
gcc 1000 26 3 12185 263 5628 612 38.33 39.90 4.0870% 42884 0 0 1181 1642
mcf 73 20 3 896 105 392 173 31.90 31.97 0.2089% 1791 0 0 80 116
crafty 88 23 3 2135 114 930 228 43.03 43.50 1.0845% 7483 0 0 290 368
parser 78 20 3 1600 114 751 173 93.23 98.60 5.7562% 4400 0 0 159 226
eon 1546 28 3 4391 381 2325 316 57.50 60.50 5.2174% 10366 0 0 440 618
perlbmk 924 39 3 7017 203 3229 419 64.47 70.01 8.6002% 30949 0 0 605 829
gap 758 22 3 9991 1352 2672 181 43.30 46.43 7.2363% 20455 0 0 439 639
vortex 164 23 3 3429 124 1715 213 74.33 78.97 6.2334% 13408 0 0 488 648
bzip2 69 20 3 826 103 367 171 68.87 71.00 3.0978% 1824 0 0 91 131
twolf 81 20 3 1385 109 674 183 107.00 107.00 0.0000% 3987 0 0 262 332

SPECfp2000 Avrg: 0.5855%
wupwise 7 4 0 127 35 31 48 171.00 174.00 1.7544% 255 0 0 67 83
swim 7 4 0 82 30 15 44 347.00 347.00 0.0000% 116 134 0 48 61
mgrid 7 4 0 104 31 21 44 588.00 588.00 0.0000% 161 166 0 49 63
applu 7 4 0 118 29 27 42 484.00 484.00 0.0000% 182 172 0 165 181
mesa 585 22 3 8513 495 3539 345 72.87 75.77 3.9799% 21696 0 0 531 681
galgel 11 4 0 534 62 142 58 265.00 265.00 0.0000% 1515 952 0 281 317
art 73 20 3 895 105 406 174 31.40 31.43 0.1060% 1874 0 0 89 129
equake 69 19 3 862 103 381 154 46.50 46.83 0.7168% 1710 0 0 93 129
facerec 7 4 0 213 55 50 66 239.00 239.00 0.0000% 826 775 0 127 150
ammp 181 20 3 2014 132 901 178 91.87 93.53 1.8143% 5039 0 0 217 279
lucas 7 4 0 98 43 20 55 151.00 150.00 -0.6623% 129 0 0 121 127
fma3d 7 4 0 1341 77 438 72 200.00 201.00 0.5000% 4161 0 0 1429 1633
sixtrack 13 4 0 667 92 208 72 425.00 425.33 0.0786% 3979 3312 0 1463 1618
apsi 7 4 0 372 40 98 54 351.00 351.00 0.0000% 1126 878 0 201 236

Browsers
mshtml.dll 1,526 139 21 64,662 10,452 15,344 29,557 78,676 0 0 2,995 4,594
xul.dll 145,224 283 34 262,079 55,025 65,359 17,273 273,437 0 0 11,498 15,620

offline and does not influence the runtime performance.
2) Performance of Load-Time Randomization: In our

prototype, the load-time randomization is done by bootstrap
code placed in the protected executable. Results show that
the load time randomization is very fast.

For mshtml.dll in IE6, there are less than 216 code
stubs in the Springboard section, and each stub occupies
less than 16 bytes. The whole memory movement when
reordering is less than 16 · 216 = 1M . And the evaluated
load time is about 16 milliseconds. Similarly, xul.dll has
less than 219 stubs and takes about 117 milliseconds.

3) Runtime Overhead on SPEC CPU2000: All the 26
applications in the SPEC CPU2000 benchmark are hardened
by CCFIR. Then the median run time over 9 trials is
evaluated. Figure 10 shows the performance overhead caused
by CCFIR, while Table II shows the detailed run time data.

When protecting targets of all indirect call/jmp/ret instruc-
tions, CCFIR introduces an overhead of 3.6% on the aver-
age over the SPECint2000 benchmark and only 0.59% for
SPECfp2000. The largest overhead is 8.6% on perlbmk,
an interpreter in which every opcode is implemented with an
indirect jump. For lucas, there is a slight speed-up, maybe
due to increased code alignment.

On SPECint2006, the average overhead is about 4.2%.
For space reasons, the detailed data are not listed here.

Compared with other protections, such as [13][49], CCFIR
is capable of protecting all binaries in the SPEC 2000/2006
benchmarks, with a reasonable overhead.

Statistics: Table II also lists the modifications made by
CCFIR to the SPEC CPU2000 applications and 2 browsers.

The columns under redirected fp/ret_addr in
the table represent the count of code entries redirected by
CCFIR, including hard-coded function pointers, imported
function pointers, pointers returned by GetProcAddress and
return addresses pushed by call instructions. Taking gcc as
an example, 1000 hard coded function pointers and 26 im-
ported functions are redirected, and GetProcAddress is called
3 times. Moreover, there are 12185 call instructions in the
whole application. All these 13214 (= 1000+26+3+12185)
code entries are redirected by CCFIR.

The columns under validated instructions
record the count of indirect call/jmp/ret instructions which
are validated by CCFIR. For gcc, there are only 263 indirect
call/jmp instructions and 5628 ret instructions. So, targets of
5891 (= 263+5628) instructions are validated by CCFIR.

Performance Analysis: As discussed in Section IV-C,
BitRewrite skips redirecting some function pointers and
skips instrumenting checks for some indirect jumps. The
column under optimiz. in Table II counts how many
function pointers are skipped. For gcc, 612 function point-



ers are skipped, while only 1029 (=1000+26+3) pointers
are redirected. So, about 38% function pointers are not
redirected and thus the runtime overhead are greatly reduced.

For the original CFI, the attached ID (a potentially s-
low prefetchnta instruction) will always be executed
in direct control transfers. But for CCFIR, there are no
extra overheads in this case. In addition, the direct control
transfers cover most of the control transfers in applications.
And thus, CCFIR is much faster than original CFI.

Return instructions play a large part in CCFIR’s overall
performance. We also repeated our measurements (detailed
data omitted) in a mode in which CCFIR protects only
indirect call/jmp but not ret instructions. In this configuration
the overhead is 0.79% for SPECint2000, much smaller than
the 3.6% overhead when ret instructions are also protected.

The 10 Fortran applications in SPECfp2000 have few
indirectly used function pointers and imported functions, so
the overhead is much smaller than applications written in
C/C++, as those in SPECint2000.

4) Runtime Overhead on Real World Browsers.: One core
module each of FF3 and IE6 is hardened by CCFIR sepa-
rately, as described above. We attempted to test each browser
against the Sunspider [50] and Google V8 benchmarks [51].

Unfortunately the benchmarks do not support IE6, so
we only report results for Firefox (JIT is turned off).
The overhead caused by CCFIR was small. When testing
with Sunspider, the run time increases from 2130.7ms to
2150.3ms. When testing with the Google V8 benchmark,
the score drops from 369 to 361 (larger results are better).

B. Protection Effects

1) Eliminating ROP Gadgets: CCFIR can be used to
defend against ROP attacks because it will validate ret
instructions’ targets. Only instructions directly following a
call site can be the targets of ret instructions. As a result,
after applying CCFIR on the target binary, ROP gadgets that
do not directly follow call sites are unusable, including any
that start from the middle of legal instructions.

To evaluate this protection we count the number of
gadgets in our benchmark applications. First, we use the tool
Mona [52] to count the gadgets in the original applications
and the rewritten applications. As shown in the columns
under #gadgets in Table II, after hardening, Mona only
finds gadgets in 7 out of the 26 applications, but none of
these gadgets will pass the validation of CCFIR.

2) Randomization Entropy: CCFIR’s load-time random-
ization makes it hard to guess the address of a target function
or a return site, and thus raises the bar for attackers to hijack
the control flow, including return-to-libc and ROP attacks.
Our Springboard’s size is 128MB (i.e. 227). All code stubs
are randomized within the Springboard. Each stub takes less
than 16 bytes and is aligned to 8 or 16 bytes.

This degree of randomization makes a brute-force search
infeasible. For each stub, there are 223 (=227/16) possible

Table III: Real World Exploit Samples Prevented by CCFIR.

ID App Vul Type Vul Module Protected
CVE-2011-0065 FF 3 Use After Free xul.dll yes
CVE-2010-0249 IE 6 Use After Free mshtml.dll yes
CVE-2010-3962 IE 6 Use After Free mshtml.dll yes
CVE-2011-1260 IE 6 Mem. Corrupt mshtml.dll yes
CVE-2005-1790 IE 6 Mem. Corrupt mshtml.dll yes
CVE-2008-0348 coolplayer Stack Overflow core exe yes
CVE-2010-5081 RM-MP3 Stack Overflow core exe yes
OSVDB-83362 urlhunter Stack Overflow core exe yes
CVE-2007-1195 XM ftp Format String core exe yes
OSVDB-82798 ComSndFTP Format String core exe yes

positions after load-time randomization. To chain k target
gadgets together, the attacker has to probe 223 · (223 − 1) ·
· · · · (223 − k + 1) times in the worst case.

3) Protection against Real World Exploits: We also chose
10 publicly available exploits from Metasploit [53] against
FF3, IE6 and 5 other applications. These experiments are
performed in a virtual machine running Windows XP SP3
within a separate experiment network. Table III shows the
10 vulnerabilities attacked by exploits we used.

Taking CVE-2011-0065 as an example, this vulnerability
exists in Firefox 3.x before 3.6.17. It is a use-after-free
vulnerability which can cause arbitrary code execution, when
exploited by techniques such as heap spray [54].

After hardening the vulnerable module xul.dll with
CCFIR, we drive Firefox to access the attack URL again,
and the error handler added by CCFIR is triggered. The
remaining 9 exploits, which target IE6 and other 5 applica-
tions, are also prevented by CCFIR in a similar manner.

VI. DISCUSSION

A. Possible Attacks

To attack CCFIR, an attacker may:
(a) forge a valid target.
(b) change memory pages’ protection attributes to change

instructions directly or to add forged targets.
(c) use a dangerous target that is used by the program.
(d) jump to valid targets or chain them to launch attacks.

For (a), the attacker has to use a page which is writable
and executable at the same time. For modern programs
protected by DEP, this depends on the attack (b).

Some APIs are inherently dangerous (e.g. WinExec), or
are dangerous because they can disable page protections (e.g.
VirtualProtect in the Virt* family). These functions
are rarely used through indirect calls in regular applications.
CCFIR raises an alert if such functions are called indirectly.
CCFIR randomizes their entry addresses to make it even
harder for attackers to guess or steal them, providing some
protection before developers provide a patch.

If a program calls Virt* functions directly and only
uses constant flProtect or flNewProtect arguments
which do not make the page executable, it will be immune
to such attacks as (a) or (b) after being hardened by



CCFIR. If a program calls Virt* functions to make a
page executable for JIT, attackers still have a chance to
utilize these functions, but again they need to penetrate the
randomization generated by CCFIR. We still suggest that the
program carefully check the arguments before such calls.

For (d), attackers’ abilities are greatly constrained by
CCFIR. As discussed in Section IV-E, indirect call/jmp are
enforced to flow to valid and non-sensitive function entry
points. In addition, normal return instructions cannot jump
into sensitive functions or any function entries. So, the
Turing-completeness of return-to-libc attacks is broken. Be-
sides, ROP attacks that to jump to the middle of instructions
or basic blocks become impossible, while chaining gadgets
also becomes much more difficult.

When CCFIR is only applied to parts of a program,
attackers still have a chance to modify pointers flowing
to unprotected external modules. In this situation, ASLR
and other memory-allocation-based protection methods will
provide valuable defense and make attackers spend much
more effort to find the vulnerable locations. But of course
we still recommend applying CCFIR to the whole system to
provide the best protection.
B. Race Condition of Return Address

The code sequence that CCFIR uses to validate a return
address has a TOCTTOU (time of check to time of use) race
condition in a multi-threaded program. CCFIR checks the
value of [esp] and then executes ret in the next instruction,
but the return address is stored in memory in the interim,
where it could be modified by another thread.

The race could be avoided by storing the value in a
register, but this would have a substantial performance penal-
ty because it would disrupt the CPU’s branch prediction.
(Modern CPUs use a private shadow stack to predict the
targets of return instructions, while other indirect jumps use
a less sophisticated prediction mechanism.)

This race condition affects any other return protection
scheme that checks the return value in-place, including
MSVC’s /GS, GCC’s SSP, and PittSFIeld [38]. However the
time window in the race is extremely small, so in practice
the odds of a successful attack will be small. To avoid the
possibility of repeated attacks within a process, CCFIR’s
validation will terminate a process immediately if it detects
an illegal return address.

VII. CONCLUSION

In this paper, we propose a new approach called CCFIR
to ensure that indirect control transfers jump only to known
targets. It can be used to enforce CFI, which provides a solid
base for software protection. It can block various attacks
against control transfers, including most ROP attacks.

CCFIR can be applied through binary rewriting on exe-
cutables generated by modern compilers. Its runtime over-
head is low (about 3.6% measured by SPECint2000). CC-
FIR’s techniques can also be used directly in the compilation
process to provide protections for software.

ACKNOWLEDGMENTS

This research was supported in part by the National
Natural Science Foundation of China under the grant No.
61003216 and 61003217; the Chinese NDRC InfoSec Foun-
dation under Grant No.[2010]3044; the NSF grants 0842695,
0831501, CCF-0424422 and CNS-0831298; the ONR grants
N000140911081 and N000140710928; an AFOSR grant
FA9550-09-1-0539; and a DARPA award HR0011-12-2-
005.

REFERENCES

[1] S. Andersen and V. Abella, “Data Execution Prevention:
Changes to Functionality in Microsoft Windows XP Service
Pack 2, Part 3: Memory Protection Technologies,” http://
technet.microsoft.com/en-us/library/bb457155.aspx, 2004.

[2] PaX Team, “PaX address space layout randomization
(ASLR),” http://pax.grsecurity.net/docs/aslr.txt, 2003.

[3] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfusca-
tion: an efficient approach to combat a broad range of memory
error exploits,” in USENIX Security Symposium, 2003.

[4] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton, “Stack-
Guard: Automatic adaptive detection and prevention of buffer-
overflow attack,” in USENIX Security Symposium, 1998.

[5] M. Frantzen and M. Shuey, “StackGhost: Hardware facilitated
stack protection,” in USENIX Security Symposium, 2001.

[6] Microsoft Visual Studio 2005, “Image has safe ex-
ception handlers,” http://msdn.microsoft.com/en-us/library/
9a89h429%28v=vs.80%29.aspx.

[7] J. Pincus and B. Baker, “Beyond stack smashing: Recent
advances in exploiting buffer overruns,” IEEE Symposium on
Security and Privacy, 2004.

[8] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Sur-
gically returning to randomized lib(c),” in Annual Computer
Security Applications Conference (ACSAC), 2009.

[9] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in ACM Conference on Computer and Com-
munications Security (CCS), 2005.

[10] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in
ACM Conference on Computer and Communications Security
(CCS), 2007.

[11] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When
good instructions go bad: generalizing return-oriented pro-
gramming to RISC,” in ACM Conference on Computer and
Communications Security (CCS), 2008.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented program-
ming without returns,” in ACM Conference on Computer and
Communications Security (CCS), 2010.

[13] B. Zeng, G. Tan, and G. Morrisett, “Combining control-
flow integrity and static analysis for efficient and validated
data sandboxing,” in ACM Conference on Computer and
Communications Security (CCS), 2011.
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