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ABSTRACT
Consider the execution of a failing program as a sequence of pro-
gram states. Each state induces the following state, up to the failure.
Which variables and values of a program state are relevant for the
failure? We show how theDelta Debuggingalgorithm isolates the
relevant variables and values by systematically narrowing the state
difference between a passing run and a failing run—by assessing
the outcome of altered executions to determine wether a change in
the program state makes a difference in the test outcome. Applying
Delta Debugging to multiple states of the program automatically
reveals thecause-effect chainof the failure—that is, the variables
and values that caused the failure.

In a case study, our prototype implementation successfully iso-
lated the cause-effect chain for a failure of theGNU C compiler:
“Initially, the C program to be compiled contained an addition of
1.0; this caused an addition operator in the intermediateRTL repre-
sentation; this caused a cycle in theRTL tree—and this caused the
compiler to crash.”

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—debug-
ging aids, diagnostics, testing tools, tracing

General Terms
Algorithms, Reliability, Experimentation, Verification

Keywords
Automated debugging, program comprehension, testing, tracing

1. INTRODUCTION
Program debugging is commonly understood as the process of iden-
tifying and correcting errors in the program code. Debugging is a
difficult task, because normally, errors can only be detected indi-
rectly by the failures they cause. Now, let us assume we have some
program test that fails. How did this failure come to be?
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Traditionally, approaches to facilitate debugging have relied on
static or dynamic program analysis to detect anomalies or depen-
dencies in the source code and thus narrow the set of potential
failure causes. In this paper, we propose a novel and very differ-
ent approach. Rather than focusing on the source code as failure
cause, we concentrate onprogram statesas they occur during pro-
gram execution—especially, on thedifferencebetween the program
states of a run where the failure in question occurs, and the states
of a run where the failure does not occur.

Usingautomated testing, we systematically narrow these initial
differences down to a small set of variables: “The failure occurs
if and only if variablex has the valuey (instead ofy′)”. That is,
x = y is acausefor the failure: ifx is altered toy′, the failure no
longer occurs. If we narrow down the relevant state differences at
multiple locations in the program, we automatically obtain acause-
effect-chainthat lists the consecutive relevant state differences—
from the input to the failure.

State differences are not only causes of failures, but alsoeffects
of the program code. By increasing the granularity of the cause-
effect chain, one can interactively isolate the moment where the
program state changed from “intended” to “faulty”. This moment
in time is when the piece of code was executed that caused the
faulty state (and thus the failure)—that is, “the error” in the pro-
gram to be examined.

Our approach also differs from program analysis in that it is
purely experimental: All that is needed is the ability to run an au-
tomated test and to access and alter program states. Knowledge
or analysis of the program code is not required, although hints on
dependencies and anomalies can effectively guide the experimental
narrowing process and thus reduce the number of test runs.

This paper is organized as follows. Section2 summarizes how to
isolate failure-inducing circumstances automatically, using aGCC
failure as example. Section3 shows how to access program states
and to isolate their difference, obtaining a cause-effect chain for the
GCCfailure. Section4 shows how to narrow down failure-inducing
program code—that is, “the error” inGCC. Section5 answers why
and when this approach actually works. Section6 discusses related
work and Section7 closes with conclusion and consequences.

2. ISOLATING RELEVANT INPUT
In this Section, we recapitulate our earlier work on isolating failure-
inducing input [21]. As an ongoing example, consider thefail.c
program in Figure1. This program is interesting in one aspect: It
causes theGNU C compiler (GCC) to crash—at least, when using
version 2.95.2 on Intel-Linux with optimization enabled:

$ gcc−O fail.c
gcc: Internal compiler error: program cc1 got fatal signal 11
$ _
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doublemult (doublez[], int n)
{

int i , j ;

i = 0;
for ( j = 0; j < n; j ++) {

i = i + j + 1;
z[i ] = z[i ] ∗ (z[0] + 1.0);

}

returnz[n];
}

Figure 1: The fail.c program that crashesGCC

If we say “fail.c causesGCC to crash”, what do we actually mean?
Generally, thecauseof any event is a preceding event without
which the event in question (theeffect) would not have occurred.
Indeed, if we remove the contents offail.c from the input—that is,
we compile an empty file—,GCC works fine. These two experi-
ments (the failing and the passing run) actually prove thatfail.c is
a cause of the failure.

2.1 A Divide-and-Conquer Process
In practice, we typically want a moreprecisecause than just the
contents offail.c—that is, a smaller difference between the failing
and the passing experiment. For instance, we could try to isolate
thesmallest possible differencebetween twoGCC inputs. This can
be done using a simple divide-and-conquer method, as illustrated
in Table1.

In Step 1, we see the entire inputfail.c, causing theGCC failure
(“✘”). In Step 2, the contents offail.c have been deleted (shown
in grey); this empty input compiles fine (“✔”). In Step 3, we take
away only themult body. This input also compiles fine. Thus,
we have narrowed the failure-inducing difference to themult body:
“Something within themult body causesGCC to crash”. In Steps
4 and 5, we have narrowed the cause to thefor loop.

Continuing this divide-and-conquer method, we eventually nar-
row down the cause to the characters “+1.0” in Steps 18 and 19.
This difference “+1.0” is minimal, as it can not be further reduced:
Removing either “+” or “1 .0” would result in aGCC syntax error
(Steps 20 and 21)—a third outcome besides failure and success,
denoted here as “”. So, we have isolated “+1.0” as a minimal dif-
ference or precise cause for theGCC failure—GCC fails if and only
if “ +1.0” is present infail.c.

2.2 Delta Debugging
The interesting thing about the divide-and-conquer process to iso-
late failure-inducing input is that it can beautomated—all one needs
is a means to alter the input, and an automated test to assess the ef-
fects of the input. In fact, Table1 does not show the narrowing
process as conducted by a human, but the execution of theDelta
Debuggingalgorithm, an automatic experimental method to isolate
failure causes [21].

Delta Debugging requires two program runsr✘ and r✔—one
run r✘ where the failure occurs, and one runr✔ where the fail-
ure does not occur. Thedifferencebetween these two runs is de-
noted asδ; the difference can beapplied to r✔ to producer✘, or
δ(r✔) = r✘. Formally, δ is a failure cause—the failure occurs if
and only if δ is applied. The aim of Delta Debugging, though, is
to produce a cause that is as precise as possible. We thus decom-
pose the original difference into a number ofatomic differences
δ = δ1 ◦ δ2 ◦ · · · ◦ δn.

Let us illustrate these sets in ourGCC example.r✔ is theGCC

# GCC input test
1 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✘
2 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✔
3 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✔
4 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✔
5 doublemult (. . . ) { int i , j ; i = 0; for (. . . ) { . . .} . . .} ✘
6 doublemult (. . . ) { int i , j ; i = 0; for (. . .) { . . .} . . .} ✔
...

...
...

18 . . . z[i ] = z[i ] ∗ (z[0] + 1.0); . . . ✘
19 . . . z[i ] = z[i ] ∗ (z[0] + 1.0); . . . ✔
20 . . . z[i ] = z[i ] ∗ (z[0] + 1.0); . . .
21 . . . z[i ] = z[i ] ∗ (z[0] + 1.0); . . .

Table 1: Isolating failure-inducing GCC input

run on the empty input, andr✘ is the run on the failure-inducing
input fail.c. We model the differenceδ betweenr✘ andr✔ as a set
of atomic deltasδi , where eachδi inserts thei -th C token offail.c
into the input. We further assume the existence of atesting func-
tion namedtest that takes a set of atomic differences, applies the
differences tor✔, and returns the test outcome—✘ if the test fails
(i.e. the expected failure occurs),✔ if the test passes (the failure
doesnot occur), and in case the outcome isunresolved—such as
a non-expected failure.

Let us definec✔ = ∅ andc✘ = {δ1, δ2, . . . , δn} as sets of atomic
differences. By definition,test(c✔) = ✔ holds (becausenochanges
are applied tor✔); test(c✘) = ✘ holds, too (becauseall changes are
applied tor✔, changing it tor✘).

In our GCC example,test constructs the input from the given
changes and checks whether the failure occurs.test(c✔) applies
no changes to the empty input and runsGCC; the failure does not
occur. test(c✘) inserts all characters offail.c into the empty input,
effectively changing the input tofail.c, and runsGCC; the failure
would occur. To make sure thattest returns✘ if and only if the
original failure occurs, we maketestreturn✘ if and only if the run
crashes at the same location asr✘—that is, the program counter and
the backtrace of calling functions must be identical. Otherwise,test
returns✔ if the program exits normally, andin all other cases.

Given c✔, c✘, andtest, Delta Debugging now isolates two sets
c′

✔ andc′
✘ with c✔ ⊆ c′

✔ ⊆ c′
✘ ⊆ c✘, test(c′

✔) = ✔, andtest(c′
✘) =

✘. Furthermore, the set difference1 = c′
✘ −c′

✔ is 1-minimal—that
is, no singleδi ∈ 1 can be removed fromc′

✘ to make the test pass
or added toc′

✔ to make the test fail. Hence,1 is a precise cause for
the failure.

Applied to theGCC input, Delta Debugging executes exactly the
tests as illustrated in Table1. Delta Debugging first splits the input
in two parts1. Compiling the header alone works fine (Step 3), and
adding the initialization ofi and j to the input (Step 4) does not yet
make a difference. However, adding the “for” loop (Step 5) makes
GCCcrash. At this stage,c′

✔ is set up as shown in Step 4,c′
✘ is set

up as in Step 5, and their difference1 = c′
✘ − c′

✔ is exactly the
“for” loop—in other words, the “for” loop is a more precise cause
of the failure.

Resuming the narrowing process eventually leads toc′
✘ as shown

in Step 18 andc′
✔ as shown in Step 19: The remaining difference

is exactly the addition of “+1.0”. Steps 20 and 21 verify that each
of these two remaining tokens is actually relevant for the failure.
So, the remaining 1-minimal difference “+1.0” is what Delta De-
bugging returns—after only 21 tests, or roughly 2 seconds.2 Let

1In this example, we assume a “smart” splitting function that splits
input at C delimiters like parentheses, braces, or semicolons.
2All times were measured on aLINUX PC with a 500 MHz Pen-
tium III processor.
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Let C be the set of all differences (in input or state) between program runs. Lettest: 2C → {✘, ✔, } be a testing function that determines
for a configurationc ⊆ C whether some given failure occurs (✘) or not (✔) or whether the test is unresolved ().

Now, letc✔ andc✘ be configurations withc✔ ⊆ c✘ ⊆ C such thattest(c✔) = ✔∧ test(c✘) = ✘. c✔ is the “passing” configuration (typically,
c✔ = ∅ holds) andc✘ is the “failing” configuration.

The Delta Debugging algorithm dd(c✔, c✘) isolates the failure-inducing difference betweenc✔ and c✘. It returns a pair(c′
✔, c′

✘) =

dd(c✔, c✘) such thatc✔ ⊆ c′
✔ ⊆ c′

✘ ⊆ c✘, test(c′
✔) = ✔, andtest(c′

✘) = ✘ hold andc′
✘ − c′

✔ is 1-minimal—that is, no single circumstance
of c′

✘ can be removed fromc′
✘ to make the failure disappear or added toc′

✔ to make the failure occur.

Thedd algorithm is defined asdd(c✔, c✘) = dd2(c✔, c✘, 2) with

dd2(c′
✔, c′

✘, n) =



dd2(c′
✔, c′

✔ ∪ 1i , 2) if ∃i ∈ {1, . . . , n} · test(c′
✔ ∪ 1i ) = ✘

dd2(c′
✘ − 1i , c′

✘, 2) if ∃i ∈ {1, . . . , n} · test(c′
✘ − 1i ) = ✔

dd2
(
c′

✔ ∪ 1i , c′
✘, max(n − 1, 2)

)
else if∃i ∈ {1, . . . , n} · test(c′

✔ ∪ 1i ) = ✔

dd2
(
c′

✔, c′
✘ − 1i , max(n − 1, 2)

)
else if∃i ∈ {1, . . . , n} · test(c′

✘ − 1i ) = ✘

dd2
(
c′

✔, c′
✘, min(2n, |1|)

)
else ifn < |1|

(c′
✔, c′

✘) otherwise

where1 = c′
✘ − c′

✔ = 11 ∪ 12 ∪ · · · ∪ 1n with all 1i pairwise disjoint, and∀1i · |1i | ≈ (|1| /n) holds.
The recursion invariant fordd2 is test(c′

✔) = ✔ ∧ test(c′
✘) = ✘ ∧ n ≤ |1|.

Figure 2: The Delta Debugging algorithm in a nutshell. The functiondd isolates the failure-inducing difference between two sets
c✔ and c✘. For a full description of the algorithm and its properties, see [21].

us assume that an automated test already exists (for instance, as
part of theGCC test suite); also, let us assume we have a simple
scanner to decompose the input (a 10-minute programming assign-
ment). Then, finding the cause in anyGCC input comes at virtually
no cost, compared to the manual editing and testing offail.c.

The actual algorithm is summarized in Figure2. The number of
required tests grows with the number of unresolved test outcomes.
In the worst case, nearly all outcomes are unresolved; then, the
number of tests ist = |c✘|

2
+ 3|c✘|. However, this worst case

never occurs in practice, because in case of unresolved outcomes,
the Delta Debugging algorithm has been designed to try runs more
similar toc✔ andc✘. The central assumption is that the closer we
are to the original runs, the lesser are the chances of unresolved test
outcomes—an assumption backed by a number of case studies [21].
In the best case, we have no unresolved test outcomes; all tests are
either passing or failing. Then, the number of testst is limited by
t ≤ log2

(
|c✘|

)
—basically, we obtain a binary search.

3. ISOLATING RELEVANT STATES 3

Let us reconsider the isolated cause “+1.0”. Although removing
“+1.0” from fail.c makes theGCC failure disappear, this is not the
way to fix the error once and for all; we rather want to fix theGCC
code instead. Unfortunately, processing such arithmetic operations
is scattered all over the compiler code. Nonetheless, during the
compilation process, “+1.0” eventually induces a faultyGCCstate
which manifests itself as a failure. How does “+1.0” eventually
cause the failure? And how do we get to the involved program
code?

The basic idea of this paper is illustrated in Figure3, which
depicts a program execution as a series ofprogram states—that
is, variables and their values. On the left hand side, the program
processes some input. Only a part of the input is relevant for the
failure—that is, a difference like “+1.0” between an input that is
failure-inducing and an input that is not. This difference in the in-
put causes a difference in later program states, up to the difference
in the final state that determines whether there is a failure or not.

3The process described in Section3 is patent pending.

δ1 δ2 δ3 δ4
reg rtx no cur insn uid first loop store insn lastlinenum test

r✘ 32 74 0x81fc4e4 15 ✘
r✔ 31 70 0x81fc4a0 14 ✔

Table 2: Differing variables in two GCC runs

# reg rtx no cur insn uid first loop store insn lastlinenum test
1 32 74 0x81fc4a0 14 ✔
2 32 74 0x81fc4e4 14
3 32 74 0x81fc4a0 15 ✔

Table 3: Isolating failure-inducing variables

The problem, though, is, that even a minimized difference in the
input may induce a large difference in the program state. Yet, only
some of these differences are relevant for the failure. So, weapply
Delta Debugging on program statesin order to isolate the variables
and values that are relevant for the failure; these isolated variables
constitute thecause-effect chainthat leads from the root cause to
the failure. This is the contribution of this paper: a fully automatic
means to narrow down program states and program runs to the very
small fraction that is actually relevant for the given failure.

3.1 Accessing and Comparing States
Our requirements are easy to satisfy; all we need is an ordinary
debugger tool that allows us to retrieve and alter variables and their
values. Let us initiate twoGCCruns: a runr✘ on fail.c and a runr✔

on pass.c, wherefail.c and pass.cdiffer only by “+1.0”. Using
the debugger, we interrupt both runs at the same locationL; then,
we retrieve eachGCC state as a set of(variable, value) pairs. As
a mental experiment, let us assume that all variables have identical
values inr✔ andr✘, except for the four variables in Table2.

Obviously, this difference in the program state is the difference
which eventually causes the failure: If we set the differing variables
in r✔ to the values found inr✘ and resume execution, thenGCC
should behave as inr✘ and fail.
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Figure 3: Narrowing a cause-effect chain. In each state, out ofm variables, only few are relevant for the failure. These can be isolated
by narrowing the state difference between a working run and a failing run.

We can use Delta Debugging to narrow down the cause. Now,
the deltasδi becomedifferences between variable values: applying
aδi in r✔ means setting thei -th differing variable inr✔ to the value
found in r✘. The test function executesr✔, interrupts execution
at L, applies the given deltas, resumes execution and determines
the test outcome.

As a difference example, considerδ1 andδ2 from Table2. To test
δ1 andδ2 means to executeGCC on pass.c(run r✔), to interrupt it
at L, to setreg rtx no to 32 andcur insn uid to 74, and to resume
execution. If we actually do that, it turns out thatGCC runs just
fine—test returns✔ and we have narrowed the failure cause by
these two differences.

Unfortunately, things are not so simple. If we continue the nar-
rowing process using Delta Debugging, we end up in trouble, as
shown in Table3. Step 1 is the application ofδ1 andδ2, as dis-
cussed before—everything fine so far. In Step 2, though, we would
apply the changeδ3, setting the pointerfirst loop store insn to the
address found inr✘. This would cause an immediate core dump
of the compiler—not really surprising, considering that an address
from r✘ probably has little meaning inr✔.

In Step 3, we can excludelast linenumas a cause and thus ef-
fectively isolatefirst loop store insnas remaining failure-inducing
difference, so we can easily see that our process is feasible. How-
ever, our state model is insufficient: We must also takederived
variables into account—that is, all memory locations being pointed
to or otherwise accessible from the base variables.

3.2 Memory Graphs
To fetch theentire state, we capture the state of a program as a
memory graph[22]. A memory graph contains all values and all
variables of a program, but represents operations like variable ac-
cess, pointer dereferencing, struct member access, or array element
access by edges.

As a memory graph example, consider Figure4, depicting a sub-
graph of theGCC memory graph. The immediate descendants of
the 〈Root〉 vertex are the base variables of the program. For in-
stance, the base variablefirst loop store insncan be found by fol-
lowing the leftmost edge from〈Root〉. The dereferenced value is
found following the edge labeled*()4—a record with three mem-
bersvalue, fld[0].rtx , andfld[1].rtx . The latter points to another
record which is also referenced by thelink variable.

4Each variable name is constructed from the incoming edge, where
the placeholder() stands for the name of the parent.

<Root>

0x81fc4e4

first_loop_store_insn

0x820e23c

link

{...}

*()

{...}

*()

SET

().code

0x81fc494

().fld[0].rtx

0x820e23c

().fld[1].rtx

PLUS

().code

0x820e230

().fld[0].rtx

0x820e224

().fld[1].rtx

*()

Figure 4: A simple memory graph. Pointers reference records,
each referencing its members.

Memory graphs are obtained by querying the base variables of
a program and by systematically unfolding all data structures en-
countered; if two values share the same type and address, they are
merged to a single vertex. (More details on memory graphs, includ-
ing formal definitions and extraction methods, are available [22].)
Memory graphs give us access to the entire state of a program
and thus avoid problems due to incomplete comparison of program
states. They also abstract from concrete memory addresses and
thus allow for comparing and altering pointer values appropriately.

However, memory graphs also indicate another problem: The
set of variables itself maydiffer in the two states to be compared.
As an example, consider Figure5. In the upper left corner, you
can see two memory graphsG✔ and G✘, obtained from the two
runsr✔ andr✘. As a human, you can quickly see that, to change
G✔ into G✘, one must insert element 15 into the list and delete el-
ement 20. To detect this automatically for arbitrary data structures,
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G✔

G✘
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22
()->next

20

δ15
−−−−−→

()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

δ20

y δ20

y

()->next ()->nextlist

14 18 22
()->next

15

()->nextlist

14 18 22

()->next

20

δ15
−−−−−→

()->next ()->nextlist

14 18 22
()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

Figure 5: Determining structural differences between memory graphs. Any node not contained in the common subgraph (dotted
lines) is either inserted or deleted (top left). Applyingδ15 on r✔ creates the list element 15, applyingδ20 deletes list element 20.
Applying both deltas (bottom right) transforms r✔ to (δ15 ◦ δ20)(r✔) = r✘.

one must compute acommon subgraphof G✔ andG✘: Any vertex
that is not in the common subgraph ofG✔ andG✘ has either been
inserted or deleted.

How does one compute a large common subgraph? We actually
use two different algorithms. For small graphs, we compute the
largestcommon subgraph, for larger graphs, we quickly compute a
largesubgraph.

• To compute thelargest common subgraph, we use the ap-
proach of Barrow and Burstall [4], starting from acorrespon-
dence graphas computed by the algorithm of Bron and Ker-
bosch [5]. The correspondence graph matches correspond-
ing vertex contents and edge labels. This is very suitable in
our case, since we normally have several differing contents
and labels. However, in the worst case (all contents and la-
bels are equal), computing the largest common subgraph is
an NP-complete problem.

• To compute alarge common subgraph, we use simplepar-
allel traversal: Starting from the〈Root〉 vertex, we deter-
mine all matching edges originating from the current node
and ending in a vertex with matching content. These edges
and vertices become part of the common subgraph; the pro-
cess is then repeated recursively. The resulting common sub-
graphs are not necessarily the largest, but sufficiently large
for our purposes. Also, the complexity is that of a simple
graph traversal.

In Figure5, we have determined the largest common subgraph,
drawn using dotted lines as amatchingbetweenG✔ andG✘.5 It is

5An edge is part of the matching (= the common subgraph) if its
vertices match; there is no such edge in this example.

plain to see that element 15 inG✘ has no match inG✔; likewise,
element 20 inG✔ has no match inG✘.

For our purposes, we translate these differences into atomic deltas
that create or delete new variables—one delta for each non-matched
variable. In this example, we obtain a deltaδ15 that creates the
list element 15 and a deltaδ20 that deletes list element 20. Both
deltas can be applied independently (upper right and lower left).
Altogether, we thus obtain deltas that change variable values, as
sketched in Section3.1, as well as deltas that alter data structures.

3.3 Isolating the GCC Cause-Effect Chain
Let us now put all these building blocks together. We have built a
prototype calledHOWCOMEthat relies on theGNU debugger (GDB)
to extract the program state (Figure6). Eachδi is associated with
appropriateGDB commands that alter the state.

From Section2, we already know the failure-inducing difference
in the input, namely the token sequence “+1.0”, which is present

Debuggee

Debugger (GDB)

State Extraction and Comparison

Isolation of Relevant States (Delta Debugging)

Extraction of Cause-Effect Chains

Relevant Deltas

State Deltas

State

Test
Results

Deltas

Event
Selection

Control State

Figure 6: HOWCOME components
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Figure 7: The GCC G✔ memory graph

in fail.c, but not inpass.c. HOWCOME’s testfunction is also set up
as discussed in Section2.

At which locations do we compare executions? For technical
reasons, we requirecomparablestates—since we cannot alter the
set of local variables, the current program counter and the backtrace
of the two locations to be compared must be identical. From the
standpoint of causality, though, any location during execution is as
causal as any other.

HOWCOME thus starts with a sample ofthree events,occurring
in both the passing runr✔ and the failing runr✘:

1. After the program start (in our case, whenGCC’s subprocess
cc1reaches the functionmain)

2. In the middle of the program run (whencc1reaches the func-
tion combineinstructions)

3. Shortly before the failure (whencc1 reaches the function
if thenelsecondfor the 95th time—a call that never returns)

3.3.1 At main
HOWCOMEstarts by capturing the two program states ofr✔ andr✘

in main. Both graphsG✔ andG✘ have 27139 vertices and 27159
edges (Figure7); to squeeze them through theGDB command-line
bottleneck requires 15 minutes each.

After 12 seconds,HOWCOMEdetermines that exactly one vertex
is different inG✔ andG✘—namelyargv[2], which is "fail.i"
in r✘ and "pass.i" in r✔. These are the names of the prepro-
cessed source files as passed tocc1 by the GCC compiler driver.
This difference is minimal, so we do not need a Delta Debugging
run to narrow it further.

3.3.2 At combineinstructions
As combineinstructionsis reached,GCChas already generated the
intermediate code (calledRTL for “register transfer list”) which is
now optimized.HOWCOME quickly captures the graphsG✔ with
42991 vertices and 44290 edges as well asG✘ with 43147 ver-
tices and 44460 edges. The common subgraph ofG✔ andG✘ has
42637 vertices; thus, we have 871 vertices that have been added
in G✘ or deleted inG✔.

The deltas for these 871 vertices are now subject to Delta De-
bugging, which begins by setting 436GCCvariables in the passing
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Figure 8: Narrowing at combineinstructions

run to the values from the failing run (G✘). This obviously is a
rather insane thing to do, andGCCimmediately aborts with an error
message complaining about inconsistent state. Changing the other
half of variables does not help either. After these two unresolved
outcomes, Delta Debugging increases granularity and alters only
218 variables. After a few unsuccessful attempts (with various un-
commonGCCmessages), this number of altered variables is small
enough to makeGCC pass (Figure8). Eventually, after only 44
tests,HOWCOME has narrowed the failure-inducing difference to
one single vertex, created with theGDB commands

set variable$m9 = (struct rtxdef *)malloc(12)
set variable$m9→code = PLUS
set variable$m9→mode = DFmode
set variable$m9→jump = 0
set variable$m9→fld[0].rtx = loop mems[0].mem
set variable$m9→fld[1].rtx = $m10
set variable firstloop store insn→fld[1].rtx→

fld[1].rtx→fld[3].rtx→fld[1].rtx = $m9

That is, the failure-inducing difference is now the insertion of a
node in theRTL tree containing aPLUSoperator—the proven effect
of the initial change “+1.0” from pass.cto fail.c. Each of the tests
required about 20 to 27 seconds ofHOWCOME time, and 1 second
of GCC time.

3.3.3 At if thenelsecond
Shortly before the failure, inif thenelsecond, HOWCOME cap-
tures the graphsG✔ with 47071 vertices and 48473 edges as well
as G✘ with 47313 vertices and 48744 edges. The common sub-
graph ofG✔ andG✘ has 46605 vertices; 1224 vertices have been
either added inG✘ or deleted inG✔.

Again, HOWCOME runs Delta Debugging on the deltas of the
1224 differing vertices (Figure9). As every second test fails, the
difference narrows quickly. After 15 tests,HOWCOME has iso-
lated a minimal failure-inducing difference—a single pointer ad-
justment, created with theGDB command

set variable link→fld[0].rtx→fld[0].rtx = link

This final difference is the difference that causesGCCto fail: It cre-
ates a cycle in theRTL tree—the pointerlink→fld[0].rtx→fld[0].rtx
points back tolink! The RTL tree is no longer a tree, and this
causes endless recursion in the functionif thenelsecond, even-
tually crashingcc1.
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Figure 9: Narrowing at if then elsecond

3.4 The GCC Cause-Effect Chain
The total cause-effect chain forcc1, as reported byHOWCOME,
looks like this:
This is what happens when you invoke cc1 as “cc1 -O fail.i”:y

1. Execution reachesmain.
Since the program was invoked as “cc1 -O fail.i”,
variableargv[2] is now“fail.i” .

2. Execution reachescombineinstructions.
Since argv[2] was “fail.i”,
variable*first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now〈new rtx def〉.

3. Execution reachesif then elsecond (95th hit).
Since *firstloop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx was 〈new rtxdef〉,
variable link→fld[0].rtx→fld[0].rtx is nowlink .

4. Execution ends.
Since variable link→fld[0].rtx→fld[0].rtx was link,
the program nowterminates with a SIGSEGV signal.
The program fails.

With this summary, the programmer can easily follow the cause-
effect chain from the root cause (the passed arguments) via an in-
termediate effect (a new node in theRTL tree) to the final effect (a
cycle in theRTL tree). The whole run was generated automatically;
no manual interaction was required.HOWCOME required 6 runs to
extractGCCstate (each taking 15–20 minutes) and 3 Delta Debug-
ging runs (each taking 8–10 minutes) to isolate the failure-inducing
differences.6

It should be noted again that the output above is produced in a
fully automatic fashion. All the programmer has to specify is the
program to be examined as well as the passing and failing invo-
cations of the automated test. Given this information,HOWCOME
then automatically produces the cause-effect chain as shown above.

4. ISOLATING THE ERROR
The ultimate aim of debugging is to break the cause-effect chain
such that the failure no longer occurs. Our cause-effect chain for

6A non-prototypical implementation could speed up state access by
1–3 magnitudes by bypassing theGDB command line.

main if_then_else_condcombine_instructions

combine.c:1758
combine.c:4011

combine.c:4271

✔ ✔ ✔ ✘ ✘ ✘

Execution time

Figure 10: Narrowing down relevant events

GCClists some possibilities: One could prevent an input of “+1.0”,
avoidPLUSoperators inRTL or break cycles in theRTL tree. Again,
from the standpoint of causality, each of these fixes is equivalent in
preventing the failure.

For the programmer, though, these fixes arenot equivalent—
obviously, we need a fix that not only prevents the failure in ques-
tion, but also prevents similar failures, while preserving the existing
functionality. The programmer must thus choose the best place to
break the cause-effect chain—a piece of code commonly referred
to as “the error”. Typically, this piece of code is found by determin-
ing the transition between anintendedprogram state and afaulty
program state. In the absence of an oracle, we must rely on the
programmer to make this distinction: A cause can be determined
automatically; the fault is in the eye of the beholder.

Nonetheless, cause-effect chains can be an effective help for the
programmer to isolate the transition: All the programmer has to
do is to decide whether the isolated state in the failing run is in-
tended or not. In theGCC example, we assume that the states at
main and atcombineinstructionsare intended; theRTL cycle at
if thenelsecondobviously is not. So, somewhere between the in-
vocation ofcombineinstructionsand if thenelsecond, the state
must have changed from intended (“✔”) to faulty (“✘”). We focus
on this interval to isolate further differences.

Figure10 shows the narrowing process. We isolate the failure-
inducing state at some point in time betweencombineinstructions
andif thenelsecond, namely atcombine.cin line 1758: Here, the
newpatvariable points back tolink—the cause for the cycle and
thus a faulty state. The transition between intended and faulty state
must have occurred betweencombineinstructionsand line 1758.

Only two more narrowing steps are required: At line 4011,HOW-
COME again isolates an additionalPLUS node in theRTL tree—
an intended effect of the “+1.0” input (not faulty);7 at line 4271,
HOWCOMEagain finds a failure-inducingRTL cycle (faulty). This
isolates the transition down to lines 4013–4019. In this piece of
code, executed only in the failing run, theRTL expression

(MULT (PLUS a b) c)

is transformed to

(PLUS (MULT a c1)(MULT b c2))

wherec = c1 = c2 holds.8 Unfortunately,c1 andc2 are created
asaliasesof c, which causes the cycle in theRTL tree! To fix the
error, one should makec2 a true copy ofc1—and this is how the
error was fixed inGCC2.95.3.

Do we really need the programmer to narrow down the point in
time where the state becomes faulty? Not necessarily:

• First, one could simply increase thegranularityof the cause-
effect chain, and thus present more detailed information.

7Actually, HOWCOME reports thisPLUSnode as being located at
undobuf.undos→next→next→next→next→next→next→next→
next→next, which indicates that finding the most appropriate de-
nomination for a memory location is an open research issue.
8This application of the distributive law allows for potential opti-
mizations, especially for addresses.
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• Second, one could attempt to isolatecause transitionsau-
tomatically. For instance, the narrowing process as shown
above could also have been guided by the fact whether the
RTL tree differencePLUSis relevant or not—and would have
isolated the very same location.

• Third, one could applyheuristicsto automatically focus on
events that are likely to be relevant—such as code being ex-
ecuted in only one of the two runs. We are currently exper-
imenting with differentanomaly detectionmethods listed in
Section6.2.

5. WHY DOES THIS WORK?
AND WHEN DOES THIS WORK?

BesidesGCC, we have appliedHOWCOME to some more well-
known programs to isolate cause-effect chains (Table4):

• In thesampleexample from theDDD manual, Delta Debug-
ging quickly isolated a badshell sort call.9

• In the bison parser generator, a shift/reduce conflict in the
grammar input causes the variableshift table to be altered,
which in turn generates a warning.

• In the diff file comparison program, printing of file differ-
ences is controlled bychanges, whose value is again caused
by files→changedflag.

• Invoking thegdbdebugger with a different debuggee changes
18 variables, but only the change in the variablearg is rele-
vant for the actual debuggee selection.

In all cases, the resulting failure-inducing difference contained only
one element; the number of tests was at most 42.

What we found most surprising about these experiments was that
one can alter program variables to more or less meaningless values
and get away with it. We made the following observations, all used
by Delta Debugging:

1. The altered values are not meaningless; they stem from a
consistent state, and it is only a matter of statistics (e.g. which
and how many variables are transferred) whether they in-
duce an inconsistent state. The chances for consistency can
be increased by grouping variables according to the program
structure (whichHOWCOMEdoes not do yet).

2. The remainder of the program (and the finaltest function)
acts as afilter: If anything happens that did not happen in the
two original runs, the test outcome becomes unresolved, and
the next alternative is sought. If variables have been altered
and the outcome is still similar to the original two runs, then
these variables are obviously irrelevant for the outcome. Pre-
cision can be arbitrarily increased by making thetestfunction
pickier about similarity [21].

3. In a program with a good separation of concerns, only a few
variables should be responsible for a specific behavior, in-
cluding failures—and this small number makes Delta Debug-
ging efficient.

4. Program state has astructureand can thus easily be decom-
posed. In contrast, decomposinginput as sketched in Sec-
tion 2 requires the input syntax to be specified manually for

9A HOWCOME demonstration program for this example, is avail-
able online, including sample Delta Debugging source code [2].

Event Edges Vertices Deltas Tests
sampleatmain 26 26 12 4
sampleatshell sort 26 26 12 7
sampleatsample.c:37 26 26 12 4
cc1atmain 27139 27159 1 0
cc1atcombineinstructions 42991 44290 871 44
cc1at if thenelsecond 47071 48473 1224 15
bisonatopenfiles 431 432 2 2
bisonat initialize conflicts 1395 1445 431 42
diff atanalyze.c:966 413 446 109 9
diff atanalyze.c:1006 413 446 99 10
gdbatmain.c:615 32455 33458 1 0
gdbatexec.c:320 34138 35340 18 7

Table 4: Summary of case studies

each new program. And, of course, isolating relevant states
is much more valuable than isolating input alone, since we
can actually look at what’s going on inside the program.

Nonetheless, isolating cause-effect chains as presented here has its
weaknesses, all to be considered:

• Delta Debugging always requires analternate runin order
to compare states.10 This alternate run also determines the
causes Delta Debugging can infer: A variable can be isolated
as a cause only if it exists in both runs and if its value differs.

• An isolated cause may be helpful onlyindirectly. If the value
reported for the failing run is not “faulty”, we found an ac-
complice, but not yet the scoundrel: One must infer how
the isolated cause interacts with the common state. In most
cases, though, we expect this to be indicated by the remain-
der of the cause-effect chain.

• Delta Debugging as presented here isolates only one cause
from several potential causes—for instance,fail.c can be
changed in several ways besides removing “+1.0”, and so
can the induced states. Although Delta Debugging could eas-
ily be extended to search for alternative causes—which is the
“best” cause, then, to present to the programmer?

• Delta Debugging may require a large number of tests to find
that alarge differencecan no longer be narrowed. Such large
differences will typically occur in programs where a large
part of the state decides whether a test passes or fails; typical
examples are numerical or cryptographic programs.

In general, weaknesses in searching algorithms can be overcome
by increasing the knowledge about the search domain, and Delta
Debugging is no exception. Hence, we expect weaknesses in Delta
Debugging to be overcome by combining Delta Debugging with
analysis methods as discussed in the next Section.

6. RELATED WORK

6.1 Program Slicing
Program slicing[17, 18] facilitates debugging by focusing on rele-
vant program fragments. Roughly spoken, aslice for a statements
in a program consists of all other statements that could possibly in-
fluence some variable ats (“all statements thats depends upon”).

10For an “almost correct” program, this should not be too difficult; if
a program fails under all conditions, anomaly detection techniques
(Section6.2) are probably a better choice.
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As a very simple slicing example, consider the code

if p then x′ := x ∗ y fi

Here, the variablex′ is control dependent onp and data dependent
on x and y (but not on, say,z); the slice ofx′ would also include
earlier dependencies ofp, x, andy. The slice allows the program-
mer to focus on relevant statements; a slice also has the advantage
that it is valid forall possible program runsand thus needs to be
computed only once.

In practice, slicing is not yet as useful as would be expected,
since each statement is quickly dependent on many other state-
ments. The end result is often a program slice which is not dramat-
ically smaller than the program itself—the program dependencies
are too coarse [11]. Also, data and control-flow analysis of real-life
programs is non-trivial. For programs with pointers, the necessary
points-to analysis makes dependencies even more coarse [9].

Dynamic slicing[3, 7, 13] is a variant of slicing that takes acon-
crete program runinto account. The basic idea is that within a
concrete run, one can determine more accurate data dependencies
between variables, rather than summarizing them as in static slic-
ing. In the dynamic slice ofx′, as above,x′ is dependent onx, y,
and p only if p was found to be true.

In cause-effect chains, p, x, and y are the cause for the value
of x′ if and only if altering them also changes the value ofx′, as
proven by test runs. Ifx = 0 holds, for instance,p can never be
a cause for the value ofx′, becausex′ will never alter its value;y
cannot be a cause, either. Consequently, cause-effect chains have
a far higher precision than static or dynamic slices. On the other
hand, cause-effect chains require several test runs (which is possi-
bly slower than analysis), apply to a single program run only, and
give no hints on the involved statements. The intertwining of pro-
gram analysis and testing promises several mutual advantages.

6.2 Detecting Anomalies
Dicing [14] determines thedifferenceof two program slices. For
instance, a dynamic dice could contain all the statements that may
have influenced a variablev at some location in a failing runr✘, but
not in a passing runr✔. The dice is likely to include the statement
relevant for the value ofv.

Running several tests at once allows one to establishrelation-
shipsbetween the executed code and the test outcome. For in-
stance, one could isolate code that was only executed in failing
tests [12]. This differential approach would also have isolated the
erroneous code in ourGCCexample.

Dynamic invariants[6] can be used to detect anomalous program
behavior [8]. During execution, a tool checks the program against
a model that is continuously updated; invariant violations can be
immediately reported. This approach has several exciting uses; one
related to our work is to check a failing run against invariants ob-
tained from a passing run.

As discussed in Section4, the idea that an automated process
could isolate “the” erroneous code automatically in the absence of
an oracle can only be based onheuristics,and this is what these ap-
proaches provide—including the risk of being misleading. Nonethe-
less, a heuristic can be very good at isolating possible causes; and
it can be even more helpful when guiding a divide-and-conquer ap-
proach like Delta Debugging.

6.3 The Debugging Process
Algorithmic debugging[16] automates the debuggingprocess.The
idea is to isolate a failure-inducing clause in aPROLOGprogram by
querying systematically whether subclauses hold or not. The query
is resolved either manually by the programmer or by an oracle re-

lying on an external specification. This could easily be combined
with our approach to narrow down the failure-inducing code as dis-
cussed in Section4: “Is PLUSin theRTL tree correct (y/n)?”

6.4 Testing for Debugging
Surprisingly, there are very few applications of testing for pur-
poses of debugging or program understanding. Our own contri-
butions [21] as well as inferring relationships between code and
tests [12] have already been mentioned.

Specifically related to ourGCC case study is the isolation of
failure-inducingRTL optimizations in a compiler, using simple bi-
nary search over the optimizations applied [19]. An experimental
approach comparable to Delta Debugging ischange impact analy-
sis [15], identifying code changes that are relevant for a failure.

7. CONCLUSION AND CONSEQUENCES
Cause-effect chains explain the causes of program failures automat-
ically and effectively. All that is required is an automated test, two
comparable program runs and access to the state of an executable
program. Although relying on several test runs to prove causality,
the isolation of cause-effect chains requires no manual interaction
and thus saves valuable developer time.

As the requirements are simple to satisfy, we expect that future
automated test environments will come with an automatic isolation
of cause-effect chains. Whenever a test fails, the cause-effect chain
could be automatically isolated, thus showing the programmer not
only whathas failed, but alsowhyit has failed. Although fixing the
program is still manual (and creative) work, we expect that the time
spent for debugging will be reduced significantly.

All this optimism should be taken with a grain of salt, as there
is still much work to do. Our future work will concentrate on the
following topics:

Optimization. As stated in Section3.4, HOWCOMEcould be run-
ning faster by several orders of magnitude by bypassing the
GDB bottleneck and re-implementingHOWCOME in a com-
piled language. Regarding Delta Debugging, we are working
on grouping variablessuch that variables related by occur-
ring in the same function or module are changed together,
rather than randomly assigning variables to subsets.

Program analysis. As hinted at in Section6, the integration of
program analysis could make extracting cause-effect chains
much more effective. For instance, variables that cannot in-
fluence the failure in any way could be excluded right from
the start. Anomaly detection could help to guide the search
towards specific variables or specific events.

Greater state. Right now, our method only works on the state that
is accessible via the debugger. However, differences may
also resideoutsideof the program state—for instance, a file
descriptor may have the same value inr✘ andr✔, but be tied
to a different file. We are working on how to capture such
external differences.

More case studies.We are currently building adebugging server
namedAskIgor [1] where anyone can submit failing pro-
grams via the Web (Figure11) to haveHOWCOME deter-
mine and report their cause-effect chains. AsAskIgor re-
quests feedback from its users, we will be able to evaluate
the effectiveness and usability of our diagnoses for a large
number of real-life case studies. We plan to extendAskIgor
to accomodate and combine a variety of services for program
comprehension, including program slicing and anomaly de-
tection.
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Figure 11: TheAskIgor public debugging server

A discipline of debugging. Notions like causes and effects and ap-
proaches like running experiments under changed circum-
stances can easily be generalized to serve in arbitrary debug-
ging contexts. We are currently compiling atextbook[20]
that shows how debugging can be conducted as systemati-
cally and as all other software engineering disciplines—be it
manually or automated.

Overall, we expect that debugging may become as automated as
testing—not only detectingthat a failure occurred, but alsowhy it
occurred. And since computers were built to relieve humans from
boring, monotonous tasks—let’s have them do the debugging!
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