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ABSTRACT Traditionally, approaches to facilitate debugging have relied on
static or dynamic program analysis to detect anomalies or depen-
dencies in the source code and thus narrow the set of potential
failure causes. In this paper, we propose a novel and very differ-
ent approach. Rather than focusing on the source code as failure

relevant variables and values by systematically narrowing the stateCaUSe, we concentrate prﬁgram ;itf?tesas tgjey occurk(]jurlng pro-
difference between a passing run and a failing run—by assessingd'am execution—especially, on tiigferencebetween the program

the outcome of altered executions to determine wether a change inStates of a run wherg the failure in question occurs, and the states
of a run where the failure does not occur.

the program state makes a difference in the test outcome. Applying . ) 3 -
Usingautomated testingve systematically narrow these initial

Delta Debugging to multiple states of the program automatically giff d I f variables: “The fail
reveals thecause-effect chaiof the failure—that is, the variables ~ differences down to a small set of variables: “The failure occurs
if and only if variablex has the valugy (instead ofy’)". That is,

and values that caused the failure. . efor the failure- ifx is altered tov’. the fail
In a case study, our prototype implementation successfully iso- X = Y IS acauselor the failure: itx is altered toy’, the failure no
lated the cause-effect chain for a failure of ta&U C compiler: longer occurs. If we narrow down the relevant state differences at
' multiple locations in the program, we automatically obtagaase-

“Initially, the C program to be compiled contained an addition of . ; . .
1.0; this caused an addition operator in the intermedgaterepre- effect-chainthat lists the consecutive relevant state differences—
. from the input to the failure.

sentation; this caused a cycle in tREL tree—and this caused the . .
4 State differences are not only causes of failures, buteffects

compiler to crash.” . : -
of the program code. By increasing the granularity of the cause-
. . . effect chain, one can interactively isolate the moment where the
Categories and Subject Descriptors program state changed from “intended” to “faulty”. This moment
in time is when the piece of code was executed that caused the
faulty state (and thus the failure)—that is, “the error” in the pro-
gram to be examined.

Our approach also differs from program analysis in that it is
General Terms purely experimentalAll that is needed is the ability to run an au-
tomated test and to access and alter program states. Knowledge
or analysis of the program code is not required, although hints on
dependencies and anomalies can effectively guide the experimental
Keywords narrowing process and thus reduce the number of test runs.

This paper is organized as follows. Sectbsummarizes how to
isolate failure-inducing circumstances automatically, usirgCa
failure as example. Sectidhshows how to access program states
1. INTRODUCTION and to isolate their difference, obtaining a cause-effect chain for the
Program debugging is commonly understood as the process of iden-GCCfailure. Sectiort shows how to narrow down failure-inducing
tifying and correcting errors in the program code. Debugging is a program code—that is, “the error” lBCC. Section5 answers why
difficult task, because normally, errors can only be detected indi- and when this approach actually works. Sec@atiscusses related
rectly by the failures they cause. Now, let us assume we have somework and Sectior? closes with conclusion and consequences.

program test that fails. How did this failure come to be?
2. ISOLATING RELEVANT INPUT

In this Section, we recapitulate our earlier work on isolating failure-
inducing input P1]. As an ongoing example, consider tfel.c

Permission to make digital or hard copies of all or part of this work for  hrogram in Figurel. This program is interesting in one aspect: It

personal or classroom use is granted without fee provided that copies are. ses th&NU C compiler GCO) to crash—at least, when using

not made or distributed for profit or commercial advantage and that copies . . - L )
bear this notice and the full citation on the first page. To copy otherwise, to YErsion 2.95.2 on Intel-Linux with optimization enabled:
republish, to post on servers or to redistribute to lists, requires prior specific $ gcc—O fail.c

permission and/or a fee. . ’ . . .
SIGSOFT 2002/FSE-16lovember 1822, 2002, Charleston, SC, USA. gcc: Internal compiler error: program ccl got fatal signal 11
Copyright 2002 ACM 1-58113-514-9/02/0011$5.00. $_

Consider the execution of a failing program as a sequence of pro-
gram states. Each state induces the following state, up to the failure.
Which variables and values of a program state are relevant for the
failure? We show how thBelta Debugginglgorithm isolates the

D.2.5 [Software Engineering: Testing and Debugging-debug-
ging aids, diagnostics, testing tools, tracing
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Automated debugging, program comprehension, testing, tracing
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doublemult(doubleZ]], int n)
{
inti, j;
i =0;
for(j=0;] < n;j++){
=14+ j+ 1
4i] = 4i] = (0] + 1.0);
}

returnzn;

}

Figure 1: The fail.c program that crashesGCC

If we say ‘fail.c causessCCto crash”, what do we actually mean?
Generally, thecauseof any event is a preceding event without
which the event in question (theffec) would not have occurred.
Indeed, if we remove the contentsfafl.c from the input—that is,
we compile an empty file—GCC works fine. These two experi-
ments (the failing and the passing run) actually prove flidt is

a cause of the failure.

2.1 A Divide-and-Conquer Process

In practice, we typically want a mongrecisecause than just the
contents ofail.c—that is, a smaller difference between the failing
and the passing experiment. For instance, we could try to isolate
thesmallest possible differendetween twasCCinputs. This can

be done using a simple divide-and-conquer method, as illustrated
in Tablel.

In Step 1, we see the entire indail.c, causing thesCcCfailure
(“07. In Step 2, the contents dhil.c have been deleted (shown
in grey); this empty input compiles fine[{”). In Step 3, we take
away only themult body. This input also compiles fine. Thus,
we have narrowed the failure-inducing difference tortgt body:
“Something within themult body causesCcCto crash”. In Steps
4 and 5, we have narrowed the cause toftindoop.

Continuing this divide-and-conquer method, we eventually nar-
row down the cause to the characte#sl'0” in Steps 18 and 19.
This difference %4-1.0" is minimal, as it can not be further reduced:
Removing either 4” or “1.0” would result in aGCC syntax error
(Steps 20 and 21)—a third outcome besides failure and success
denoted here a®”. So, we have isolated£1.0” as a minimal dif-
ference or precise cause for tieCfailure—GCcCfails if and only
if “ +1.0" is present irfail.c.

2.2 Delta Debugging

The interesting thing about the divide-and-conquer process to iso-
late failure-inducing input is that it can lbeitomated-all one needs

is a means to alter the input, and an automated test to assess the efx

fects of the input. In fact, Tablé does not show the narrowing
process as conducted by a human, but the execution dbefta
Debuggingalgorithm, an automatic experimental method to isolate
failure causesZ1].

Delta Debugging requires two program runs and rp—one
run ry where the failure occurs, and one run where the fail-
ure does not occur. Theifferencebetween these two runs is de-
noted ass; the difference can bappliedto rp to producerp, or
8(rp) = rp. Formally,§ is a failure cause—the failure occurs if
and only if§ is applied. The aim of Delta Debugging, though, is

# GCCinput test
1 doublemult(...) {inti, j;i =0;for(...){...}...} O
2 O
3 doublemult(...) { } O
4 doublemult(...) {inti, j;i =0; } O
5 doublemult(...) {inti, j;i =0;for(...){...} ..} O
6 doublemult(...) {inti, j;i=0;for(..){...} ..} O
18 Z[i] = Z[i] * (Z[0] + 1.0); O
19 Z[i] = Zi] % (Z[0] ); O
20 Z[i] = Zi] = (0] + 1.0); ?
21 Z[i] = Z[i] = (Z[0] + 1.0); ?

Table 1: Isolating failure-inducing GCC input

run on the empty input, ands is the run on the failure-inducing
inputfail.c. We model the differencé betweerry andrg as a set

of atomic deltasj, where eacls; inserts tha-th C token offail.c

into the input. We further assume the existence tésting func-
tion namedtestthat takes a set of atomic differences, applies the
differences ta g, and returns the test outcomé-if the test fails
(i.e. the expected failure occurd), if the test passes (the failure
doesnotoccur), and? in case the outcome imresolved-such as

a non-expected failure.

Let us defineny = @ andcy = {81, 32, - . ., 8n} as sets of atomic
differences. By definitiortestc;) = O holds (becauseochanges
are applied top); testcy) = O holds, too (becausal changes are
applied torg, changing it ta o).

In our GCC example,test constructs the input from the given
changes and checks whether the failure occuesicy) applies
no changes to the empty input and r@scC, the failure does not
occur. testcp) inserts all characters déil.c into the empty input,
effectively changing the input ttail.c, and runsGCC, the failure
would occur. To make sure thestreturnsO if and only if the
original failure occurs, we makestreturn if and only if the run
crashes at the same locatiorr gs-that is, the program counter and
the backtrace of calling functions must be identical. Otherviest,
returnsOd if the program exits normally, andlin all other cases.

Givencg, ¢g, andtest Delta Debugging now isolates two sets
¢}, andc], with c; € ¢}, C ¢f; € cg, tesi(c);) = O, andtes{(c()) =
0. Furthermore, the set differende= c/, — ¢/, is 1-minima—that
Is, no singles; € A can be removed frord, to make the test pass
or added ta&/, to make the test fail. Hence is a precise cause for
the failure.

Applied to theGCCinput, Delta Debugging executes exactly the
tests as illustrated in Table Delta Debugging first splits the input
in two parté. Compiling the header alone works fine (Step 3), and
adding the initialization of andj to the input (Step 4) does not yet
ake a difference. However, adding the “for” loop (Step 5) makes
CCcrash. At this stage/, is set up as shown in Stepd, is set
up as in Step 5, and their difference = ¢/, — ¢/, is exactly the
“for” loop—in other words, the “for” loop is a more precise cause
of the failure.

Resuming the narrowing process eventually lead$ s shown
in Step 18 ana/, as shown in Step 19: The remaining difference
is exactly the addition of+1.0". Steps 20 and 21 verify that each
of these two remaining tokens is actually relevant for the failure.
So, the remaining 1-minimal difference-1.0" is what Delta De-
bugging returns—after only 21 tests, or roughly 2 secondst

to produce a cause that is as precise as possible. We thus decoml|p, this example, we assume a “smart” splitting function that splits

pose the original difference into a number abmic differences
§=238106p0---06n.
Let us illustrate these sets in 0GCC example.rg is theGCC

input at C delimiters like parentheses, braces, or semicolons.

2All times were measured onlaNUX PC with a 500 MHz Pen-
tium Il processor.



Let C be the set of all differences (in input or state) between program runsestet?C — {d, O, ?} be a testing function that determines
for a configuratiorc € C whether some given failure occurs)(or not 0) or whether the test is unresolve®) (

Now, letcy andcy be configurations witl; € ¢y C C such thatesicy) = O Atesicy) = O. ¢ is the “passing” configuration (typically,
co = ¥ holds) andcy is the “failing” configuration.

The Delta Debugging algorithm d@g, co) isolates the failure-inducing difference betweenandc. It returns a pair(c/;, c) =
dd(cqg, ¢p) such thaty C cf, € ¢f, € cp, tesi(c),) = O, andtestc)) = O hold andc], — ¢/, is 1-minimai—that is, no single circumstang¢e
of ¢, can be removed frorf; to make the failure disappear or addedtoto make the failure occur.

Thedd algorithm is defined add(cg, cn) = dda(c, co, 2) with

ddp(c), ¢, U A, 2) if 3i € {1,...,n} -testc, UA)) =0
ddp(c; — Aj, ¢, 2) if 3 € {L,...,n}-testc, — A)) =0
dda(ch U Aj, ¢, maxn—1,2) elseifdi € {1,...,n} tes(c, UA)) =0
dda(ch, ¢ — Aj,maxn — 1,2)) elseifdi € {1,...,n} tes(c; — A)) =0
ddy(c, ¢, min2n, |A]) elseifn < |A|

(¢}, ch) otherwise

ddZ(C/D ) C/Da n) =

whereA = ¢/, — ¢/, = A;U A U---U Ap with all Aj pairwise disjoint, an&A; - |Aj| ~ (|A]/n) holds.
The recursion invariant faddy is testc))) = O Ates(c)) = DA N < |A].

Figure 2: The Delta Debugging algorithm in a nutshell. The functiondd isolates the failure-inducing difference between two sets
cg and cg. For a full description of the algorithm and its properties, see P1].

us assume that an automated test already exists (for instance, as 81 ‘ 5_2 _ ‘ 83 _ 84

part of theGCC test suite); also, let us assume we have a simple regrtx_-no curinsnuid firstloop_storeinsn lastlinenum test
scanner to decompose the input (a 10-minute programming assign- "o 32 74 Ox81fc4ed 150
ment). Then, finding the cause in aB¢Cinput comes at virtually o 31 70 0x81fc4a0 14 0

no cost, compared to the manual editing and testirfgibt.

The actual algorithm is summarized in Fig@.eThe number of
required tests grows with the number of unresolved test outcomes.
In the worst case, nearly all outcomes are unresolved; then, the

Table 2: Differing variables in two GCC runs

number of tests i$ = |col2 + 3|col. However, this worst case # regrix_.no curinsnuid firstloop_storeinsn lastlinenum test
never occurs in practice, because in case of unresolved outcomes, 1 32 74 0x81fc4al 14 0
the Delta Debugging algorithm has been designed to try runs more 2 32 74 0x81fcde4 14 ?
similar tocy andco. The central assumption is that the closer we 3 32 74 0x81fc4al 15 0

are to the original runs, the lesser are the chances of unresolved test
outcomes—an assumption backed by a number of case stadjes [
In the best case, we have no unresolved test outcomes; all tests are

either passing or failing. Then, the number of tdsis limited by . L . .
t < log(|c1|)—basically, we obtain a binary search. The problem, though, is, that even a minimized difference in the

input may induce a large difference in the program state. Yet, only
some of these differences are relevant for the failure. Sappéy

Table 3: Isolating failure-inducing variables

3. ISOLATING RELEVANT STATES °* Delta Debugging on program statésorder to isolate the variables
Let us reconsider the isolated causel“0”. Although removing and values that are relevant for the failure; these isolated variables
“4+1.0” from fail.c makes thesccfailure disappear, this is not the ~ constitute thecause-effect chaithat leads from the root cause to
way to fix the error once and for all; we rather want to fix Gec the failure. This is the contribution of this paper: a fully automatic

code instead. Unfortunately, processing such arithmetic operationsMeans to narrow down program states and program runs to the very
is scattered all over the compiler code. Nonetheless, during the Small fraction that is actually relevant for the given failure.

compilation process,£1.0” eventually induces a faultgCC state . .
which manifests itself as a failure. How does$1.0” eventually 3.1 Accessmg and Compa“ng States
cause the failure? And how do we get to the involved program Our requirements are easy to satisfy; all we need is an ordinary

code? debugger tool that allows us to retrieve and alter variables and their
The basic idea of this paper is illustrated in Fig@®ewhich values. Let us initiate tw@CCruns: a rurmrg onfail.cand arunmg
depicts a program execution as a seriepmigram states-that on pass.¢ wherefail.c and pass.cdiffer only by “+1.0”. Using

is, variables and their values. On the left hand side, the program the debugger, we interrupt both runs at the same locatiahen,
processes some input. Only a part of the input is relevant for the we retrieve eacleCC state as a set alvariable value) pairs. As
failure—that is, a difference like{1.0” between an input that is  a mental experiment, let us assume that all variables have identical
failure-inducing and an input that is not. This difference in the in- values inrg andrg, except for the four variables in Tabte

put causes a difference in later program states, up to the difference Obviously, this difference in the program state is the difference
in the final state that determines whether there is a failure or not.  which eventually causes the failure: If we set the differing variables
in ry to the values found img and resume execution, th&tTcC
3The process described in Secti®is patent pending. should behave as iy and fail.
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Figure 3: Narrowing a cause-effect chain. In each state, out o variables, only few are relevant for the failure. These can be isolated
by narrowing the state difference between a working run and a failing run.

We can use Delta Debugging to narrow down the cause. Now,
the deltas; becomedifferences between variable valuepplying
adj inrgp means setting thieth differing variable irr to the value
found inrg. Thetestfunction executesy, interrupts execution
at L, applies the given deltas, resumes execution and determines
the test outcome.

As a difference example, considgrands, from Table2. To test
81 and§, means to executeCC on pass.qrunrg), to interrupt it
atL, to setreg.rtx_noto 32 andcur_insn.uid to 74, and to resume
execution. If we actually do that, it turns out thaCC runs just
fine—testreturnsd and we have narrowed the failure cause by
these two differences.

Unfortunately, things are not so simple. If we continue the nar-
rowing process using Delta Debugging, we end up in trouble, as
shown in Table3. Step 1 is the application & andé,, as dis-
cussed before—everything fine so far. In Step 2, though, we would
apply the changés, setting the pointefirst loop_storeinsnto the
address found img. This would cause an immediate core dump
of the compiler—not really surprising, considering that an address
from rp probably has little meaning in; .

In Step 3, we can excludastlinenumas a cause and thus ef-
fectively isolatefirst_loop_store.insnas remaining failure-inducing
difference, so we can easily see that our process is feasible. How-
ever, our state model is insufficient: We must also tdkeived

variables into account—that is, all memory locations being pointed Figure 4: A simple memory graph. Pointers reference records
to or otherwise accessible from the base variables. each referencing its members.

<Root>

first_loop_store_insn

(.code | ().fld[0].rtx 0.fld[1].rtx

SET ’ ‘0x81f0494‘

0x820e23c ‘

O.fld[0].rtx N\ ().fld[1].rtx

‘ PLUS ‘ ‘ 0X8204=230‘

0x820e224 ‘

3.2 Memory Graphs

To fetch theentire state, we capture the state of a program as a  Memory graphs are obtained by querying the base variables of
memory grapH22]. A memory graph contains all values and all a program and by systematically unfolding all data structures en-
variables of a program, but represents operations like variable ac-countered; if two values share the same type and address, they are
cess, pointer dereferencing, struct member access, or array elemennerged to a single vertex. (More details on memory graphs, includ-
access by edges. ing formal definitions and extraction methods, are availab#.]

As a memory graph example, consider Figdirdepicting a sub- Memory graphs give us access to the entire state of a program
graph of theGCC memory graph. The immediate descendants of and thus avoid problems due to incomplete comparison of program
the (RooY vertex are the base variables of the program. For in- states. They also abstract from concrete memory addresses and
stance, the base varialfiest_loop_store.insncan be found by fol- thus allow for comparing and altering pointer values appropriately.
lowing the leftmost edge fronfRooY. The dereferenced value is However, memory graphs also indicate another problem: The
found following the edge labelet{)*—a record with three mem-  set of variables itself magiffer in the two states to be compared.
bersvalue fld[0].rtx, andfld[1].rtx. The latter points to another  As an example, consider FiguBe In the upper left corner, you
record which is also referenced by tlivek variable. can see two memory grapl@; and Gp, obtained from the two
runsrg andrg. As a human, you can quickly see that, to change

4Each variable name is constructed from the incoming edge, where Go into Gp, one must insert element 15 into the list and delete el-
the placeholdef) stands for the name of the parent. ement 20. To detect this automatically for arbitrary data structures,
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Figure 5: Determining structural differences between memory graphs. Any node not contained in the common subgraph (dotted
lines) is either inserted or deleted (top left). Applyingsis on rp creates the list element 15, applyingyq deletes list element 20.
Applying both deltas (bottom right) transforms rg to (8150 §20)(rg) = rp.

one must compute @ommon subgrapbf G andGp: Any vertex plain to see that element 15 &y has no match irG; likewise,
that is not in the common subgraph®f, andGg has either been element 20 inG; has no match itG.
inserted or deleted. For our purposes, we translate these differences into atomic deltas

How does one compute a large common subgraph? We actuallythat create or delete new variables—one delta for each non-matched
use two different algorithms. For small graphs, we compute the variable. In this example, we obtain a deftg; that creates the
largestcommon subgraph, for larger graphs, we quickly compute a list element 15 and a delq that deletes list element 20. Both
large subgraph. deltas can be applied independently (upper right and lower left).

Altogether, we thus obtain deltas that change variable values, as
e To compute thdargestcommon subgraph, we use the ap- sketched in SectioB.1, as well as deltas that alter data structures.
proach of Barrow and BurstaM], starting from ecorrespon-
dence graplas computed by the algorithm of Bron and Ker- 3.3 Isolating the GCC Cause-Effect Chain

bosch p]. The correspondence graph matches correspond- | ot s now put all these building blocks together. We have built a
ing vertex cpntents and edge labels. This is very suitable in prototype calledHOWCOMEthat relies on the&NU debugger¢DB)

our case, since we no_rmaIIy have several differing contents {4 avtract the program state (Figuse Eachs; is associated with
and labels. However, in the worst case (all contents and la- appropriatesDB commands that alter the state.

bels are equal), computing the largest common subgraph is " grom Sectiorg, we already know the failure-inducing difference

an NP-complete problem. in the input, namely the token sequeneel:0”, which is present
e To compute darge common subgraph, we use simar-
allel traversal: Starting from the(Roo} vertex, we deter- | Extraction of Cause-Effect Chains

mine all matching edges originating from the current node

and ending in a vertex with matching content. These edges 1 relevan petas

and vertices become part of the common subgraph; the pro-| Isolation of Relevant States (Delta Debugging) et
cess is then repeated recursively. The resulting common sub- /N state Delias

graphs are not necessarily the largest, but sufficiently large | State Extraction and Comparison | petias | | Test

for our purposes. Also, the complexity is that of a simple Results

graph traversal. ] s

Debugger (GDB) |
In Figure5, we have determined the largest common subgraph, Sonral /] s
drawn using dotted lines aswatchingbetweenGg andGp.” Itis |

Debuggee |

5An edge is part of the matching (= the common subgraph) if its
vertices match; there is no such edge in this example. Figure 6: HOWCOME components



Figure 7: The GCC Gy memory graph

in fail.c, but not inpass.c HOWCOME' testfunction is also set up
as discussed in Secti@

At which locations do we compare executions? For technical
reasons, we requireomparablestates—since we cannot alter the
set of local variables, the current program counter and the backtrace
of the two locations to be compared must be identical. From the
standpoint of causality, though, any location during execution is as
causal as any other.

HOWCOME thus starts with a sample tfiree eventspccurring
in both the passing run, and the failing rump:

1. After the program start (in our case, whegCs subprocess
cclreaches the functiomain)

2. Inthe middle of the program run (wheelreaches the func-
tion combineinstructiong

3. Shortly before the failure (whencl reaches the function
if_thenelsecondfor the 95th time—a call that never returns)

3.3.1 Atmain

HOWCOME starts by capturing the two program statesofindrg
in main Both graphsGy andGp have 27139 vertices and 27159
edges (Figur&); to squeeze them through te®B command-line
bottleneck requires 15 minutes each.

After 12 second$lOWCOME determines that exactly one vertex
is different inGg and Gp—namelyargy{2], which is"fail.i"
in rg and"pass.i" in rg. These are the names of the prepro-
cessed source files as passeactt by the GCC compiler driver.
This difference is minimal, so we do not need a Delta Debugging
run to narrow it further.

3.3.2 At combingnstructions

As combineinstructionsis reachedGCChas already generated the
intermediate code (calle®TL for “register transfer list”) which is
now optimized. HOWCOME quickly captures the graptGy with
42991 vertices and 44290 edges as wellGaswith 43147 ver-
tices and 44460 edges. The common subgrapBofindG has

Delta Debugging Log
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Figure 8: Narrowing at combineinstructions

run to the values from the failing rurGg). This obviously is a
rather insane thing to do, agCCimmediately aborts with an error
message complaining about inconsistent state. Changing the other
half of variables does not help either. After these two unresolved
outcomes, Delta Debugging increases granularity and alters only
218 variables. After a few unsuccessful attempts (with various un-
commonGCC messages), this number of altered variables is small
enough to makesCC pass (Figure8). Eventually, after only 44
tests HOWCOME has narrowed the failure-inducing difference to
one single vertex, created with t®B commands

set variable$m9 = (struct rtxdef *)malloc(12)

set variable$m9—code = PLUS

set variable$m9—mode = DFmode

set variable$m9—jump =0

set variable$m9—fld[0].rtx = loop_mems[0].mem

set variable$m9—fld[1].rtx = $m10

set variable firsioop_storeinsn—fld[1].rtx —
fld[1].rtx—fld[3].rtx —fld[1].rtx = $m9

That is, the failure-inducing difference is now the insertion of a
node in therTL tree containing &LUSoperator—the proven effect
of the initial change 41.0” from pass.do fail.c. Each of the tests
required about 20 to 27 secondsH®wWwCOMEtime, and 1 second
of GCCtime.

3.3.3 Atifthenelsecond

Shortly before the failure, iff_thenelsecond HOWCOME cap-
tures the graph&g with 47071 vertices and 48473 edges as well
as Gg with 47313 vertices and 48744 edges. The common sub-
graph ofGp and G has 46605 vertices; 1224 vertices have been
either added irG or deleted inG.

Again, HOWCOME runs Delta Debugging on the deltas of the
1224 differing vertices (Figur8). As every second test fails, the
difference narrows quickly. After 15 testslOWCOME has iso-
lated a minimal failure-inducing difference—a single pointer ad-
justment, created with theDB command

set variable link->fld[0].rtx —fld[0].rtx = link

This final difference is the difference that caus&xCto fail: It cre-

42637 vertices; thus, we have 871 vertices that have been addedates a cycle in thRTL tree—the pointelink—fld[0].rtx—fld[0].rtx

in G or deleted inG.

The deltas for these 871 vertices are now subject to Delta De-

bugging, which begins by setting 48 C variables in the passing

points back talink! The RTL tree is no longer a tree, and this
causes endless recursion in the functibthenelsecond even-
tually crashingccl
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Figure 9: Narrowing at if then_elsecond

3.4 The GCC Cause-Effect Chain

The total cause-effect chain fecl, as reported bHOWCOME,
looks like this:
This is what happens when you invoke ccl as “ccl -O fail.i":

1. Execution reachemain.
Since the program was invoked as “cc1 -O fail.i",
variableargv[2] is now*“fail.i” .

2. Execution reachesombineinstructions.
Since argv[2] was “fail.i",
variable*first _loop_store insn— fld[1].rtx —fld[1].rtx—
fld[3].rtx—fld[1].rtx is now(new rtx_def).

3. Execution reache$_then_elsecond (95th hit).
Since *firstloop_storeiinsn— fld[1].rtx —fld[1].rtx —
fld[3].rtx—fld[1].rtx was (new rtxdef,
variablelink — fld[0].rtx —fld[0].rtx is nowlink.

4. Execution ends.
Since variable link>fld[0].rtx—fld[0].rtx was link,
the program nowerminates with a SIGSEGV signal
The program fails.

+

main combine_instructions if_then_else_cond

combine.c:4011 combine.c:1758

combine.c:4271

o |E| |D Eli D| D|

Execution time
Figure 10: Narrowing down relevant events

GCcClists some possibilities: One could prevent an inputp1:0”,
avoidPLUSoperators irRTL or break cycles in thRTL tree. Again,
from the standpoint of causality, each of these fixes is equivalent in
preventing the failure.

For the programmer, though, these fixes aot equivalent—
obviously, we need a fix that not only prevents the failure in ques-
tion, but also prevents similar failures, while preserving the existing
functionality. The programmer must thus choose the best place to
break the cause-effect chain—a piece of code commonly referred
to as “the error”. Typically, this piece of code is found by determin-
ing thetransition between anntendedprogram state and faulty
program state. In the absence of an oracle, we must rely on the
programmer to make this distinction: A cause can be determined
automatically; the fault is in the eye of the beholder.

Nonetheless, cause-effect chains can be an effective help for the
programmer to isolate the transition: All the programmer has to
do is to decide whether the isolated state in the failing run is in-
tended or not. In th&CC example, we assume that the states at
main and atcombineinstructionsare intended; th&®TL cycle at
if_thenelsecondobviously is not. So, somewhere between the in-
vocation ofcombineinstructionsand if_thenelsecond the state
must have changed from intended](") to faulty (“O"). We focus
on this interval to isolate further differences.

Figure 10 shows the narrowing process. We isolate the failure-
inducing state at some point in time betwemmbineinstructions
andif_thenelsecond namely atombine.dn line 1758: Here, the
newpatvariable points back téink—the cause for the cycle and
thus a faulty state. The transition between intended and faulty state
must have occurred betweeambineinstructionsand line 1758.

Only two more narrowing steps are required: At line 404Qw-
COME again isolates an addition®ILUS node in theRTL tree—
an intended effect of the+1.0” input (not faulty); at line 4271,
HOWCOME again finds a failure-inducingTL cycle (faulty). This
isolates the transition down to lines 4013-4019. In this piece of
code, executed only in the failing run, tR&L expression

With this summary, the programmer can easily follow the cause-
effect chain from the root cause (the passed arguments) via an in-
termediate effect (a new node in tR&L tree) to the final effect (a )
cycle in therRTL tree). The whole run was generated automatically; 1S transformed to
no manual interaction was requirelOWCOMErequired 6 runs to (PLUS (MULT a ¢)(MULT b ©))
extractGCC state (each taking 15—-20 minutes) and 3 Delta Debug- 8
ging runs (each taking 8-10 minutes) to isolate the failure-inducing Wherec = c; = ¢ holds” Unfortunately,c; andc; are created
difference$ asaliasesof ¢, which causes the cycle in tiRTL tree! To fix the

It should be noted again that the output above is produced in a €fror, one should make, a true copy ofc;—and this is how the
fully automatic fashion. All the programmer has to specify is the error was fixed inGCC2.95.3. o
program to be examined as well as the passing and failing invo- Do we really need the programmer to narrow down the point in
cations of the automated test. Given this informatie@WCOME time where the state becomes faulty? Not necessarily:
then automatically produces the cause-effect chain as shown above. First, one could simply increase teanularity of the cause-

effect chain, and thus present more detailed information.

(MULT (PLUS a b) ©)

4. ISOLATING THE ERROR 7 Actually, HOWCOME reports thisPLUSnode as being located at
The ultimate aim of debugging is to break the cause-effect chain undobutundos—next—next— next— next->next—next—-next-

such that the failure no longer occurs. Our cause-effect chain for Next—nexi which indicates that finding the most appropriate de-
nomination for a memory location is an open research issue.

6A non-prototypical implementation could speed up state access by 8This application of the distributive law allows for potential opti-
1-3 magnitudes by bypassing t3®B command line. mizations, especially for addresses.




e Second, one could attempt to isolat@use transitionsu-
tomatically. For instance, the narrowing process as shown
above could also have been guided by the fact whether the
RTL tree differencé’LUSis relevant or not—and would have
isolated the very same location.

e Third, one could apphheuristicsto automatically focus on
events that are likely to be relevant—such as code being ex-
ecuted in only one of the two runs. We are currently exper-
imenting with differentanomaly detectiomethods listed in
Section6.2

5. WHY DOES THIS WORK?

AND WHEN DOES THIS WORK?

Event Edges Vertices Deltas Tests

sampleatmain 26 26 12 4
sampleat shellsort 26 26 12 7
sampleatsample.c37 26 26 12 4
cclatmain 27139 27159 1 0
cclatcombineinstructions 42991 44290 871 44
cclatif_thenelsecond 47071 48473 1224 15
bisonat openfiles 431 432 2 2
bisonatinitialize_conflicts 1395 1445 431 42
diff atanalyze.c966 413 446 109 9
diff atanalyze.c1006 413 446 99 10
gdbatmain.c615 32455 33458 1 0

gdbatexec.c320 34138 35340 18 7

BesidesGCC, we have appliedHOWCOME to some more well-
known programs to isolate cause-effect chains (Tdple

e In the sampleexample from th@®DD manual, Delta Debug-

ging quickly isolated a bashelLsort call.®

In the bison parser generator, a shift/reduce conflict in the
grammar input causes the varialsleift table to be altered,
which in turn generates a warning.

In the diff file comparison program, printing of file differ-
ences is controlled bghangeswhose value is again caused
by files—changedflag.

Invoking thegdbdebugger with a different debuggee changes
18 variables, but only the change in the variatig is rele-
vant for the actual debuggee selection.

In all cases, the resulting failure-inducing difference contained only
one element; the number of tests was at most 42.

What we found most surprising about these experiments was that
one can alter program variables to more or less meaningless values
and get away with it. We made the following observations, all used
by Delta Debugging:

1. The altered values are not meaningless; they stem from a

consistent state, and itis only a matter of statistics (e.g. which
and how many variables are transferred) whether they in-
duce an inconsistent state. The chances for consistency can
be increased by grouping variables according to the program
structure (whiccHOWCOME does not do yet).

. The remainder of the program (and the fitesdt function)
acts as dilter: If anything happens that did not happen in the

Table 4: Summary of case studies

each new program. And, of course, isolating relevant states
is much more valuable than isolating input alone, since we
can actually look at what's going on inside the program.

Nonetheless, isolating cause-effect chains as presented here has its
weaknesses, all to be considered:

e Delta Debugging always requires atiernate runin order

to compare state¥ This alternate run also determines the
causes Delta Debugging can infer: A variable can be isolated
as a cause only if it exists in both runs and if its value differs.

e Anisolated cause may be helpful omhdirectly. If the value

reported for the failing run is not “faulty”, we found an ac-
complice, but not yet the scoundrel: One must infer how
the isolated cause interacts with the common state. In most
cases, though, we expect this to be indicated by the remain-
der of the cause-effect chain.

o Delta Debugging as presented here isolates only one cause

from several potential causesfor instance,fail.c can be
changed in several ways besides removind.0”, and so

can the induced states. Although Delta Debugging could eas-
ily be extended to search for alternative causes—which is the
“best” cause, then, to present to the programmer?

e Delta Debugging may require a large number of tests to find

that alarge differencecan no longer be narrowed. Such large
differences will typically occur in programs where a large
part of the state decides whether a test passes or fails; typical
examples are numerical or cryptographic programs.

two original runs, the test outcome becomes unresolved, and In general,_ weaknesses in searching algorithms can_be overcome
the next alternative is sought. If variables have been altered PY increasing the knowledge about the search domain, and Delta

and the outcome is still similar to the original two runs, then

Debugging is no exception. Hence, we expect weaknesses in Delta

these variables are obviously irrelevant for the outcome. Pre- D€bugging to be overcome by combining Delta Debugging with

cision can be arbitrarily increased by making téstfunction
pickier about similarity 21].

analysis methods as discussed in the next Section.

6. RELATED WORK

. In a program with a good separation of concerns, only a few
variables should be responsible for a specific behavior, in-
cluding failures—and this small number makes Delta Debug-
ging efficient.

6.1 Program Slicing

Program slicing[17, 18] facilitates debugging by focusing on rele-

vant program fragments. Roughly spokesliaefor a statemens

. Program state hassructureand can thus easily be decom-
posed. In contrast, decomposiimput as sketched in Sec-

in a program consists of all other statements that could possibly in-
fluence some variable at(“all statements thas depends upon”).

tion 2 requires the input syntax to be specified manually for

10For an “almost correct” program, this should not be too difficult; if
9A HOWCOME demonstration program for this example, is avail- a program fails under all conditions, anomaly detection techniques

able online, including sample Delta Debugging source cafle [ (Section6.2) are probably a better choice.



As a very simple slicing example, consider the code lying on an external specification. This could easily be combined
with our approach to narrow down the failure-inducing code as dis-

cussed in Sectiod: “Is PLUSIn theRTL tree correct (y/n)?”

6.4 Testing for Debugging

Surprisingly, there are very few applications of testing for pur-
oses of debugging or program understanding. Our own contri-
utions R1] as well as inferring relationships between code and

tests [L2] have already been mentioned.

In practice, slicing is not yet as useful as would be expected, . SPecifically related to ouGCC case study is the isolation of
since each statement is quickly dependent on many other State_fallure-lnduclngRTL optimizations in a compiler, using simple bi-

ments. The end result is often a program slice which is not dramat- N7y Séarch over the optimizations applied][ An experimental
ically smaller than the program itself—the program dependencies 2PProach comparable to Delta Debuggingfiange impact analy-

are too coarselfl]. Also, data and control-flow analysis of real-life sis[19], identifying code changes that are relevant for a failure.

programs is non-trivial. For programs with pointers, the necessary 7 CONCLUSION AND CONSEQUENCES

points-to analysis makes dependencies even more c&irse [

Dynamic slicing 3, 7, 13] is a variant of slicing that takesan- Cause-effect chains explain the causes of program failures automat-
crete program runinto account. The basic idea is that within a ically and effectively. All that is required is an automated test, two
concrete run, one can determine more accurate data dependenciesomparable program runs and access to the state of an executable
between variables, rather than summarizing them as in static slic-program. Although relying on several test runs to prove causality,
ing. In the dynamic slice ot’, as abovex’ is dependent o, v, the isolation of cause-effect chains requires no manual interaction
andp only if p was found to be true. and thus saves valuable developer time.

In cause-effect chaing, x, andy are the cause for the value As the requirements are simple to satisfy, we expect that future
of x if and only if altering them also changes the valuexgfas automated test environments will come with an automatic isolation
proven by test runs. Ix = 0 holds, for instancep can never be of cause-effect chains. Whenever a test fails, the cause-effect chain
a cause for the value of, because’ will never alter its valuey could be automatically isolated, thus showing the programmer not
cannot be a cause, either. Consequently, cause-effect chains havenly whathas failed, but alsahyit has failed. Although fixing the
a far higher precision than static or dynamic slices. On the other program is still manual (and creative) work, we expect that the time
hand, cause-effect chains require several test runs (which is possispent for debugging will be reduced significantly.
bly slower than analysis), apply to a single program run only, and  All this optimism should be taken with a grain of salt, as there
give no hints on the involved statements. The intertwining of pro- is still much work to do. Our future work will concentrate on the
gram analysis and testing promises several mutual advantages. following topics:

if pthen X' :=xxy fi

Here, the variable’ is control dependent op and data dependent

on x andy (but not on, say,z); the slice ofx’ would also include
earlier dependencies @ x, andy. The slice allows the program-
mer to focus on relevant statements; a slice also has the advantag
that it is valid forall possible program rungand thus needs to be
computed only once.

Optimization. As stated in Sectios.4, HOWCOME could be run-
ning faster by several orders of magnitude by bypassing the
GDB bottleneck and re-implementingdOWCOME in a com-
piled language. Regarding Delta Debugging, we are working
on grouping variablessuch that variables related by occur-
ring in the same function or module are changed together,
rather than randomly assigning variables to subsets.

6.2 Detecting Anomalies

Dicing [14] determines thalifferenceof two program slices. For
instance, a dynamic dice could contain all the statements that may
have influenced a variableat some location in a failing rum, but
not in a passing rung. The dice is likely to include the statement
relevant for the value of.

Running several tests at once allows one to estalpdikttion-
shipsbetween the executed code and the test outcome. For in-Program analysis. As hinted at in Sectior, the integration of

stance, one could isolate code that was only executed in failing
tests [L2]. This differential approach would also have isolated the
erroneous code in oBCCexample.

Dynamic invariant§6] can be used to detect anomalous program
behavior B]. During execution, a tool checks the program against
a model that is continuously updated; invariant violations can be
immediately reported. This approach has several exciting uses; one
related to our work is to check a failing run against invariants ob-
tained from a passing run.

As discussed in Sectio#, the idea that an automated process
could isolate “the” erroneous code automatically in the absence of
an oracle can only be based leuristics,and this is what these ap-

G

program analysis could make extracting cause-effect chains
much more effective. For instance, variables that cannot in-
fluence the failure in any way could be excluded right from
the start. Anomaly detection could help to guide the search
towards specific variables or specific events.

reater state. Right now, our method only works on the state that

is accessible via the debugger. However, differences may
also resideoutsideof the program state—for instance, a file
descriptor may have the same valueirandr, but be tied

to a different file. We are working on how to capture such
external differences.

proaches provide—including the risk of being misleading. Nonethe- More case studies.We are currently building debugging server

less, a heuristic can be very good at isolating possible causes; and
it can be even more helpful when guiding a divide-and-conquer ap-
proach like Delta Debugging.

6.3 The Debugging Process

Algorithmic debuggingd16] automates the debuggimpgocessThe
idea is to isolate a failure-inducing clause iRROLOGprogram by
querying systematically whether subclauses hold or not. The query
is resolved either manually by the programmer or by an oracle re-

namedAsklgor [1] where anyone can submit failing pro-
grams via the Web (Figurél) to have HOWCOME deter-
mine and report their cause-effect chains. Asklgorre-
quests feedback from its users, we will be able to evaluate
the effectiveness and usability of our diagnoses for a large
number of real-life case studies. We plan to extésé#lgor

to accomodate and combine a variety of services for program
comprehension, including program slicing and anomaly de-
tection.
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