Improving Software Diagnosability via Log Enhancement

Ding Yuanit Jing Zheng

Soyeon Park Yuanyuan Zhoti

Stefan Savage

tUniversity of California, San Diegd,University of lllinois at Urbana-Champaign
{diyuan,j3zheng,soyeon,yyzhou,savage}@cs.ucsd.edu

Abstract

Diagnosing software failures in the field is notoriouslyfidiflt, in
part due to the fundamental complexity of trouble-shootamy
complex software system, but further exacerbated by theigau
of information that is typically available in the produatisetting.
Indeed, for reasons of both overhead and privacy, it is commo
that only the run-time log generated by a system (e.g., gyslan
be shared with the developers. Unfortunately, the ad-hoar@af
such reports are frequently insufficient for detailed fagldiagno-
sis. This paper seeks to improve this situation within theriruof
existing practice. We describe a toblpgEnhancerthat automati-
cally “enhances” existing logging code to aid in future pfasture
debugging. We evaluateogEnhanceron eight large, real-world
applications and demonstrate that it can dramaticallycedie set
of potential root failure causes that must be considerethgudi-
agnosis while imposing negligible overheads.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging): Diagnostics

General Terms Reliability
Keywords Log, Software Diagnosability, Static Analysis

1. Introduction

Complex software systems inevitably have complex failuceles:
errors only triggered by some combination of latent sofenaugs,
environmental conditions and/or administrative errordil/con-
siderable effort is spent trying to eliminate such probldrefore
deployment or at run-time [9, 14, 38, 48], the size and coriple
of modern systems combined with real time and budgetary con-
straints on developers have made it increasingly diffiautieliver
“bullet-proof” software to end-users. Consequently, msofgware
failures still occur in fielded systems providing produat&ervices.

1.1 Production Failure Reporting

Production failures are problematic at two different levefFirst,
they demand tremendous urgency; a production failure cae ha
direct impact on the customer’s business, and system vemadost
make the diagnosis and remediation their highest priddbfortu-
nately, this goal conflicts with a second problem — the sutiith
difficulty in analyzing such failures. Indeed, diagnosirmger fail-
ures can be challenging even in a controlled setting, butygro

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11 March 5-11, 2011, Newport Beach, California, USA.
Copyright(© 2011 ACM 978-1-4503-0266-1/11/03. .. $10.00

tion deployments are particularly daunting since oftenpsupen-
gineers are given insufficient information to identify thet cause,
let alone reproduce the problem in the lab.

To address this problem, a range of research efforts have fo-
cused on techniques for capturing external and non-detéstiu
inputs, thereby allowing post-mortem deterministic rgle3, 20,
28, 33, 40, 44, 49, 50, 52, 55]. However, these approaches
been slow to gain traction in the commercial world for sel/eza-
sons, including high overhead, environmental complextg.(in-
teractions between multiple licensed software and hareram
different vendors), and substantive privacy concerns.

A more established vehicle for diagnosis is the “core dump”,
which captures memory context and execution state in a fibev-H
ever, core dumps have their own drawbacks. They are typicall
collected onlyat the timeof the crash failure. They only capture
program state but no execution history information (whistre-
quently critical for diagnosis), and the comprehensivetwapof
process state can once again preclude sharing such files gue t
vacy concerns.

Consequently, thaine qua nonof production failure debug-
ging remains the log file. Virtually all software systems, etirer
commercial or open source, log important events such as er-
ror or warning messages, as well as sohigtoric intermediate
progress/bookkeeping information generated during nbewre-
cution. It is a common industry practice for support engiage
request such logs of their customers upon failure, or eveous-
tomers to allow their systems to transmit such logs autarabyi
(i.e., “call home” [18]). Since these logs focus on the sysse
own status and “health”, they are usually considered to feden-
sitive than other data. Moreover, since they are typicallyjnhn-
readable, customers can inspect them first (either afteituadaor
during initial contract negotiations). Consequently, mo®dern
systems today from EMC, NetApp, Cisco, Dell are able to col-
lect logs from at least 50% of their customers, and many afthe
even have enabled the capability to automatically sendtiogse
vendor [1, 2, 18, 47].

1.2 Diagnosing via Log Messages

Thus in many cases, log messages are the sole data souteblavai

for vendors to diagnose reported failures. Support engintien
attempt to map log message content to source code statements
and work backwards to infer what possible conditions mighiteh

led to the failure. While a range of research projects hawvsh

that statistical machine learning techniques can be usel@ttct
anomalies or catch recurring failures that match knownesg8, 8,

hav

1Some systems, such as Windows Error Reporting [26] and Mawzil
Quality Feedback Agent [41] attempt to mitigate the privessues through
data minimization (typically limiting the scope of captdrstate to the
execution context and stack trace) but at the cost of yetcedtidebugging
effectiveness. Indeed, these systems succeed becausagtivegate large
numbers of failures with common causes, rather than duesio dbility to
substantively aid in the debugging of any singular failurgtance.

Bug Report in Lighttpd:
“Log remote IP for message 'request timed out after
writing...” will be very useful!”
Patch in Lighttpd, server.c
if (...) {

Bug Report in Apache HTTPD:
When mod_ssl logs OpenSSL errors it doesn't include
the associated error string.. Omitting the error string
renders the error output almost useless.
Patch in ssl_engine_loc.c

Bug Report in Apache Ant:
Improve error message on “[war] error while
reading original manifest: error opening zip file”
Adds filename to output error message!
Patch in Jar.java

- log_error_write(srv, "sbsosds",
+ log_error_write(srv, "ssbsosds",
+ inet_ntop_cache_get_ip(srv, &(con->dst_addr)), | -

"NOTE: a request for", +

if (at)

ap_log_error(file, line, level, 0, s,
"SSL Library Error: %lu %s %s", e, err, at);
"SSL Library Error: %lu %s %s %s",e, err, data, at); | +

} catch (Throwable t) {

log(“error while reading original manifest: “ +
t.getMessage(),
t.getMessage() + zipFile.toString(),);

Figure 1. Example of real-world patches just for the purpose of enimgniog messages.

16, 29, 56], the detective work of mapping log messages toceou
statements and then sifting through potential causes @fichdl
crashes remains a heavily manual activity.

Recent work on the SherLog system [57] addresses the fiftst par

of this problem by automating this manual inference procghsr-
Log is a post-mortem diagnosis tool that uses failure logsagss
as starting points to automatically infer what source catbgpmay
have been executed during a failed execution. Although LStger
can conduct deeper inference than manual efforts, it idigtited
by the amount of information available in log messages. likest

additional log information can significantly narrow dowrethum-
ber of possible code paths and execution states for engirieer
examine to pinpoint a failure’s root cause.

In brief, we enhance log content in a very specific fashiomgus
program analysis to identifyhichstate should be captured at each
log point (a logging statement in source code) to minimizeseh
ambiguity. In particular, we say that the “uncertainty” and a
log message reflects the control-flow paths or data valuesatea
causally-related but cannot be inferred from the origingl ines-
sage itself. Using a constraint solver we identify whichdidate

manual inference by the programmers, if a log message ddes no variable values, if known, would resolve this ambiguity.tdlave

contain enough information, automatic log inference eegihave
limited starting information to disambiguate betweenetiént po-
tential causal paths that led to a failure. It is precisely imitation

that motivates the work in this paper. In Section 4.2 we withg

three real world cases to demonstrate how automatic logenée
engines like SherLog can perform better after log messagesm
hanced with more causally-related information that is engtically

collected byLogEnhancer

do not try to disambiguate the entire execution path leatbrtpe

log message. For example, a branch whose directions have no e
fect for the execution to reach the log message will not belves
since it is not causally-related.

We explore two different policies for collecting these wdnfie
values:delayed collection which captures only those causally-
related key values that are “live” at the log point or canibe
ferred directly from live data, andn-time collection, which, in

At its essence, the key problem is that existing log messages addition to those recorded in delayed collection, also ndhis-

contain too little information. Despite their widespreagkun fail-
ure diagnosis, it is still rare that log messages are systeatig de-
signed to support this function. In many cases, loggingestants
are inserted into a piece of software in an ad hoc fashion to ad
dress a singular problem. For example, in many cases, anlego
message may simply contain “system failed” without pravigany
further context for diagnosis. While there are a number ofé's of
thumb” for designing better logging messages (e.g., sutbgging
the error symptoms [51] and the thread ID with each messafj [5
these still do not capture the specific information (e.@tesvari-
able values) that are frequently necessary to infer a pnobleoot
cause. Instead, developers update log messages to addnfure i
mation as they discover they need it. For example, there are m
than 900 different error log messages in apache httpd, Gagtu
various failure types, and over its five year history, we hialesti-
fied 5,409 “enhancements” in the form of patches to theseagess
to improve their fidelity. Figure 1 shows three such enharergs)
each of which expanded the log messages to capture diskauets
of diagnostic state. In our work we propose to systematicatd
automatically add such enhancements to log messages,exetyh
improve the diagnostic power of logging in general.

1.3 Our Contributions

In the remainder of this paper, we present a tool called)-
Enhancer that modifieseach log message in a given piece of
software to collect additionalausally-relatednformation to ease
diagnosis in case of failurés To be clearLogEnhancedoes not
detect bugs nor failures itself. Rather it is a tool for rddgcthe
burden of failure diagnosis by enhancing the informaticat firo-
grammers should have captured when writing log messages. Su

2We target for production failure diagnosis even though oarkacan also
be useful for in-house testing and debugging.

torical causally-related key values before they are overwrittéor pr
to the log point. The latter approach imposes additionattozed
(2-8% in our experiments) in exchange for a richer set of diag
nostic context, while delayed collection offers the reeenade-
off, annotating log messages with only variable values"liat log
points, while imposing minimal overhead (only at the timeean
isting message is logged).

We also develop a variant of the delayed collection methat th
derives equivalent information from a core dump. Thus we can
perform a similar analysis with unmodified binaries wherediles
are available.

Finally, we evaluatd.ogEnhancemvith 8 large, real-world ap-
plications (5 servers and 3 client applications). We find thag-
Enhancermutomaticallyidentifies 95% of the same variable values
that developers have added to their log messages over time-M
over, it identifies an additional set of key variable valu#g-22)
which, when logged, dramatically reduce the number of pgaien
causal paths that must be considered by a factor of 35. We also
selected 15 representativeal-world failures (with 13 caused by
bugs and 2 caused by mis-configurations) from the aboveappli
tions to demonstrate how the enhanced log messages canédnpip d
nosis. In all these cases, the enhanced log messages wacktyqu
reduce the number of possible partial execution paths amdime
states, helping both manual diagnosis and automatic legente
engines like SherLog to narrow down and identify the rootsesu
Finally, we show that both log size and run-time overheadarall,
and almost negligible with delayed collection.

To the best of our knowledge, our work is the first attempt to
systematicallyand automaticallyenhance log messages to collect
causally-relatednformation for diagnosis in case of failures. It can
be used to enhanaweryexisting log message in the target software
prior to release, oblivious to what failure might occur imguction.

1 int remove_entry (char *filename, struct dirent *dp){ 1 int remove_entry (char *filename, struct dirent *dp){
2 # ifndef __GLIBC__ 2 # ifndef __GLIBC__
3 struct stat sbuf; 3 struct stat sbuf;
4 if (dp) 4 if (dp)
5 is_dir = (dp->d_type == DT_DIR) ? T_YES : T_NO;
6 else {
7 if (lstat (filename, &sbuf))
8 .
9 is_dir = S_ISDIR (sbuf.st_mode) ? T_YES : T_NO;
10
11
12 if (is_dir == T_NO) { 12 if (is_dir == T_NO) {
13 if (unlink(filename) ==) 13 if (unlink(filename) == 0)
14 return RM_OK; 1‘5* return RM_OK; dp: 0x100120
15 :
16 error (@, errno, "cannot remove %s", filename); 16 error (@, errno,"cannot remove %s, %x", filename,dp);
17 return RM_ERROR; Log Point 1 g ; return RM_ERROR; Log Point 1
18
19 #eﬁdif 19 #endif
20 return RM_NONEMPTY_DIR; 20 } return RM_NONEMPTY_DIR;
21}

return;

. May-Execute |:| Must-Execute |:| Must-Not-Execute

(A) Original code. (B) Remaining Uncertainty if dp was printed at line 16.

Figure 2. Highly simplified code for rm in coreutils-4.5.4.Different colors highlight which information can be infed given the log message was printed
on line 16. For example, “Must-Execute” reflects code pdltias tan be completely inferred based on the given log mes¥agable values that cannot be
inferred are also highlighted.

2. Overview at line 4, depending on the value @, and both paths may set
is_dir to beT_N0. Further, sincep is a parameter, we must find the
caller ofremove_entry. Unfortunately, there are two callers and we
are not sure which one leads to the failure. In other wordsergi
only the log message, there remain severatertaintiesthat pre-
vent us from diagnosing the failure. Note that this chaleignot

ca limitation of manual diagnosis, but of how much informatie
communicated in a log message. In Section 4.2 we will showv tha
automatic log inference engines such as SherLog can do ter bet
than manual inference in this case.

In addition to control flow, backward inference to understan
a failure also requires analyzing data flow dependencieschwh

2.1 Manual Diagnosis can be considerably more subtle. We know from our control flow

analysis that the conditional at line 12 is satisfied andetfoee

is_dir must equalT_No. However,why is_dir holds this value
depends on data flow. The valueigfdir was previously assigned

at either line 5 or 9, and has data dependencies on eitheathe v

of dp->d_type Or sbuf.st_mode, respectively. Determining which

data dependency matters goes back to control flow: whichchran

did the program follow at line 4?

Unfortunately, the error message at line 16 simply does not
provide enough information to answer this question corotig
The conditional at line 4 isincertain — either path (line 5, or
line 7 to 10) could have been taken (indicated as “may-er&dnt
Figure 2(A)). Similarly, the values @p->d_type andsbuf . st_mode
are also uncertain, as is the context in whighove_entry () was
called. While the ambiguity is modest in this small examptiés
easy to see how the number of options that must be considared ¢
quickly explode when diagnosing a system of any complexity.

However, a complete execution trace is not necessary ttveeso
this uncertainty. Indeed, if the program had simply inciidee
single value ofip in the logging statement at line 16, the situation
would have been far clearer (we illustrate how this piece e n

To explain howLogEnhancemorks, we first examine how diag-
nosis is performed manually today. Figure 2(A) shows a simpl
fied version of a real world failure case in tk& program from
the GNU core utilities. This is a particularly hard-to-diexge fail-
ure case since it has complex environmental requiremendtsmaly
manifests on FreeBSD systems using NFS that do not have GLIB
installed. In particular, when executirg -r diri for an NFS di-
rectorydiri in such an environmengn fails with the following
error message:

rm: cannot remove ‘dirl/dir2’:Is a directory

Upon receiving such a failure report, a support engine@tsig
to find the “log point” in the source code and then, workingksac
wards, to identify thecausally-relatedcontrol flow and data flow
that together could explain why the message was logged.d@ure
trol flow dependencies are relatively easy to reason abodtypon
inspection one can infer that the error message (printeidextl6)
can only be logged if the conditional at line 1% (dir == T_NO)
is taken and the conditional at line 18a{ink(filename == 0))
is not taken. This suggests that treatedfilename (dirt/dir2 in
this case) as aon-directoryand subsequently failed to “unlink”
it. Indeed, purely based on control flow, one can infer thagdi
14-15, and 20-22 could not have been executed (highligimted i
Figure 2(A) as “Must-Not-Execute”), while lines 1-4, 11;%hd
16-19 must have been executed (similarly labeled in thedigsr
“Must-Execute”). Already, the amount of ambiguity in the@gram
is reduced and the only remaining areas of uncertainty withé
function are on lines 5-10, and lines 23-32 (also highligline=ig-
ure 2(A) as “May-Execute”).

However, further inference of whys_dir equalsr_no is consid-
erably more complicated. There are two possibilities fertthanch

information would help in Figure 2(B)). In this caagis non-zero,
and thus the code at line 5 is now in a “must-execute” pathlewhi
lines 6-10 “must not” have executed. In turn, it removes #éedto
consider the value afbuf . st_mode Sinceis_dir now only depends
ONndp->d_type.

The remaining uncertainties then include: (1) which fubcti
(remove_cmd_entries Of rm_1) calledremove_entry? (2) What was
the value ofdp->d_type at line 5? Resolving these would require
logging some additional information such as the call staakngs,
and dp->d_type (oOr, someequivalent valuehat can be used to
infer dp->d_type’s value at line 5; we will discuss how to find an
equivalent value in Section 3.2).

The goal ofLogEnhancelis to automate exactly the kind of
analysis we described above — identifyingusally-relatedvari-
able values for each “log point” and enhancing the log mess&y
incorporate these values. Moreover, because it is autopiaig-
Enhancercan be applied comprehensively through out the entire
program, thereby capturing the information needed to diagn
unanticipated failures that may occur in the future.

2.2 Usage

log message. Starting from each log point and working back-
wards, we identify the conditions thatusthave happened to allow
the program execute to each log point (eig.dir == T_NO and
unlink(filename) are such conditions igm). Using these con-
ditions as clues, we continue to work backwards to infdry
these conditions occurred through data-flow analysis ,(em.
dp->d_type and sbuf.st_mode are identified through data-flow
analysis starting froms_dir). This process is repeated recursively
for each potential caller (e.g., the data dependencyi@p from
remove_cwd_entries iS identified in this step). To prune out in-
feasible pathslL.ogEnhancemuses a SAT solver to eliminate those
combinations with contradictory constraints.

(2) Value Selection This analysis is to identify key values that
would “solve” the uncertain code paths or values constaiinethe
previous analysis. It consists the following sub-stepsidgntify
values that are certain from the constraint (i.e., the dom for

the log message to be printed), and prune them out using a SAT
solver; (i) Parse the uncertain values intocanditional value
format, e.g.,[dp] :dp—>d_type, indicating the valueip->d_type is

only meaningful under conditiofip ! =NULL; (iii) Identify the values

that would be overwritten before the target log point; (ivpdF

LogEnhancefs a source-based enhancement tool that operates onequivalent values that can be used to infer those overwrkesy

a program'’s source code and produces a new version with eatlan
data logging. It can be used to enhameery existindog printing
statement in the target software’s source code or to enhamge
newly insertedog printing statement. The only real configuration
requirement is for the developer to identify log points.(itgpically
just the name of the logging functions in use). For examgle, t
cvs revision control system uses GLIBC's standard logginggliigr
error (), SO simply issuing

LogEnhancer --logfunc="error" CVS/src
is sufficient forLogEnhanceto do its work.

Once invoked LogEnhanceteverages the standatthke pro-
cess to compile all program source code into the CIL inteimed
ate language [45], then identifies log points (e.g., statdésnia cvs
that callerror ()), uses program analysis to identify kegusally-
related variablesinstruments the source code statically to collect
the values of these variables at the log points and thenmgites
the modified source to generate a new binary.

During production-runs, when an log message is printed, the
additional log enhancement information (variable valued aall
stack) will be printed into aseparatelog file. LogEnhancercan
also be optionally configured to record additional log ertdesnent
information only whererror messages are printed.

In the rm example, at the log point at line 16, the following
information will be added(1) dp: helps determining the control
flow in line 4; (2) The call stackhelps knowing which call path
leads to the problem(3) dp->d_type Or sbuf.st_mode depending
on the value ofip helps determining whys_dir was assigned to
T_NO; (4) filename: Since it's used immnlink system call, whose
return value determines the control flow to log point at lifge (6)
dirp in functionremove_cwd_entries if this function appears on the
call stack.

During diagnosisLogEnhancés enhanced log from produc-
tion run can be manually examined by developers at each l@g me
sage, or can be fed to automatic inference engines such dsoghe
which automatically infer execution paths and variableigal Sec-
tion 4.2 shows three such examples.

2.3 Architecture Overview

The complexity in our system is largely in the analysis, whic
consists of three main tasks:
(1) Uncertainty Identification: This analysis identifies “uncer-

tain” control-flow and variable values that are causallgted
and whose state could not be resolved using only the original

values; (v) From the uncertain value set, find the minimum set
by eliminating redundant values that can be inferred by iemg
uncertain values. Finally,ogEnhancemuilds anUncertain Value
Tableto identify the selected variable values to be recordeddohe
log point.

(3) Instrumentation: Before each log point,ogEnhancemserts a
procedureE KeyValues (LogID) to record the variable values in the
Uncertain Value Table corresponding to thID, whereLogID is

a unique identifier for each log point. At run-tinte&g_Keyvalues ()
collects these variable values from the stack and loedy at the
log pointdelayed collection). For in-time collectiohpgEnhancer
further instruments source code to keep a “shadow copy” gf an
key values that will be overwritten before the log point aagmot
be inferred via equivalent values live at the log point.

2.4 LogEnhancer’'s Assumptions

No tool is perfect, and.ogEnhanceris no exception. There is
an inevitable trade-off between the completeness andlstigla
We make certain simplifying assumptions to make implementa
tion practical and to scale to large real world programshatdost
of a few incomplete (missing certain variable values) andiv
sound (logging non-causally-related variable values)ltesHow-
ever,LogEnhancedoes not impact the validity of diagnosis since
all values recorded by.ogEnhancerare obtained right from the
failed execution. We briefly outline the issues surrounding as-
sumptions and their impact below.
(1) How far and deep cahogEnhancego in analysis?To avoid
path explosionLogEnhancemlaces a number of limits on how
far its analysis is applied within a program. Given the peobl
of inferring causally-related information, our design dises on
analyzing only the functions thahusthave a causal relationship
with the log point (i.e., functions that are on the call-&acwhose
return values are causally-related to a log point), whileoring
the side-effects of other functions. Moreover, we do nofqren
program analysis more than one level deep into functionisaie
not on the call stack at the log point. Each function is aredyanly
once, ignoring the side-effects caused by recursive calls.
Although we limit our analysis in this fashion, we still idég
an average of 108 causally-related branches for each logt poi
(with a max of 22,070 such branches for a single log point in
PostgreSQL). Moreover, our experience is that the varsatligh
most diagnostic value are commonly on the execution path to a

log point and such variables are naturally collected udiog-
Enhances style of analysis.

(2) What and how many values are logged per message?ore

of our analysis is to first identify causally-related braestio each
log point and then infer a compact set of values that resdloset
branch choices. In our evaluation, 108 causally-relatethdires
are identified for each log point on average, that can beveddy
16.0 variable values (this includes the effects of removidyun-
dant values).

(3) What about privacy concernslust as with existing log mes-
sages, the information we record focuses narrowly on thieesys
own “health”. Because we are only recording a small number of
variable values per message, it is much easier, comparéccwié
dumps, for users to to check that no private informationveated.

It is also easier to combine our system with automatic pyiviae
formation filtering techniques (e.g., [12] that can filtertalahat
can potentially leak private user information). In additicollected
logs can be analyzed at customers’ sites by sending an atitcoma
log analysis engine like SherLog [57] to collect back thesirdd
and less-sensitive information (e.g. the execution patinguhe
occurred failure).

(4) How do we handle inter-thread or inter-process data dejes-
cies?Due to the limitations of static analysis, we do not analyze
data dependencies across threads or processes. Any Vadhiesd
causally-related to the log point through these dependsritius
would be missed. In most cases, such dependencies do net inte
fere with our analysis since most shared data do not makeienbig
pact on control flows and are not causally-related to a logsamges
However, in some rare cases, we may not log enough informttio
figure out why certain shared key variables have particudduas.
The sub-steps (iii)-(v) in our value selection might alsarieeccu-
rate on shared data since the inter-thread data-flow is radyzed.
Therefore, for applications with very intensive interd¢hd data de-
pendencies orontrol variables, we might disable these sub-steps
and conservatively treat any shared data as overwrittes anthe
log point.

Note this limitation does not mean that we cannot handle con-
current programs. For concurrent programs, we still aralje
intra-thread/process data flow to identify key variable®tp Such
variables are useful for diagnosing failures in progranes|(&ntial
and concurrent). Five of our evaluated applications areaoant,
including Apache, CVS, Squid, PostgreSQL and lighttpdtisae
shows our evaluation results on these applications. Natestina-
jority of failures in real world are caused by semantic bugd a
mis-configurations, not by concurrency bugs [36].

Also, our objective is to collect more diagnostic infornoetj
not to to pinpoint the exact root cause (although it would ke e
tremely nice, it is too ideal to be realistic). So even for aon
rency bugs, the causally-related key variable values frotrei
thread/process analysis is still useful to reduce the disimspace.

Additionally, unlike static analysis for bug detectionagturate
data flow analysis doesot introduce false bug reports since all
the recorded values are from the production-run execufidre
only consequence is that some logged variable values magsbe |
useful for diagnosis or that we are still missing some caysal
related variable values. However, the recorded variableegaare
still valid, just as if programmers manually added thosealdes
into logging statements.

Addressing these issues would require more complicatecthr
aware code analysis. For each variable that is causabyeetlto
the log message, in addition to analyzing the intra-threddtca-
process data flow, we would also need to analyze any inteathor
inter-process modifications. Although theoretically we still use
the same Uncertainty Identification algorithm to recursifellow
intra-thread/procesand inter-thread/process data-flow, we imag-

ine practical scalability and precision issues might aiGieen an
uncertain variable valug in function F, any modifications tar
that might be executed concurrently witmeed to be considered.
Without precise information about which functions mightde-
cuted concurrently and with the complications caused bytpoi
aliasing, we might end up analyzing many data-flows that ate n
causally related to the log point at all. This might add digant
overhead to our analysis, and more importantly, end up déegr

a huge number of irrelevant variables. Annotations can lesl us
in expressing which functions are concurrent [19, 24], wiéch-
niques presented in RacerX can help to automatically irffer t
information [23]. Previous work [42, 43] also show that foem-

ory safe languages like Java where pointer usages are atedim

it is possible to analyze the concurrency behavior of a @nogr
much more precisely. Leveraging these techniques to hamigie
thread/process data-flows remains as our future work.

(5) What if there is no log messagé?®this work, we are trying to
improve the world as it is. As mentioned in our introductiomst
commercial and open source software already containsfigigni
number of logging statements as logging has become a sthndar
practice. Hence we focus on enhancing existing log messages
and assumethat such log messages exist. If a software program
generates no log message at élagEnhanceroffers no value.
Fortunately, this is usually not the case in most commeiaal
open source software.

3. Design and Implementation

LogEnhances source code analysis is implemented using the Sat-
urn static analysis framework [5]. Saturn models C progranes
cisely and allows user to express the analysis algorithmlogia
programming language. It is summary-based, meaning itwcsd
its analysis for each function separately and then gereeataim-
mary for each function. At the calling sites of a functiong sum-
mary is used instead of going deep into the function. Satlsm a
provides a SAT solver.

In this section we will not repeat the all the details of Satur
Except for the Data-flow analysis described in Section 31tha
analysis processes, design and implementation issuesigreeLto
LogEnhanceand solved by us.

3.1 Uncertainty Identification

For each log message in the target software, the goal of thiosr
Identification is to identify uncertain control or data flowrsat
are causally-related to this log point but cannot be deteeohi
assuming the log point is executed. Our analysis starts frarse
variable values that are directly included in the condgidor the
log point to be executed. It then analyzes the data-flow ofethe
variable values to understamchythese conditions hold.

Within each functionf, LogEnhancestarts from the beginning
and goes through each instruction once. At any program p@int
within f, LogEnhancesimultaneously performs two kinds of anal-
ysis: (1)data-flow analysishat representsverymemory locationf
accesses in the form of@nstrained expressiaiCE); (2) control-
flow analysighat computes the control-flow constraint to redeh
If the currentP is a log pointL P, LogEnhancetakes the control-
flow constraintC, and converts each memory location involved in
C to its CE. Thus both the control and data flow branch condition
related to the log point can be captured together in one @inst
formula, and it is stored as the summary foto reachLP. The
same process is recursively repeated into the callgr éf the end
of the analysis, for every functiofi’ along a possible call-chain to
a log pointL P, a summary off’ is generated which captures the
causally-related constraint withiff to eventually reacid P.

Data-flow analysis and memory model:LogEnhancerdirectly
uses Saturn’s memory model for data-flow analysis. Saturthefso
every memory location accessed by functiprat every program
point P in the form of a constrained expression (CE). A CE is rep-
resented in the format of=E:c, indicating the value of equals
the expressiom under conditiorc. At the beginning of each func-
tion f, Saturn first statically enumerates all the memory location
(heap and stack) accessed fiyand initializes each location as
V=V:True, indicating the value of is unknown (symbolic). This
is possible because we model the loops as tail-recursivaifuns,
thus each function body is loop-free (see Handling Looper Itis
section). At an assignment instructidh v=exp;, the value ofv is
updated texp:c, wherec is the control-flow constraint to readh.

At any merge point on the control-flow graph (CFG), all the-con
ditions of v from every incoming edge are merged. This will prune
all non-causally-related conditions to reaBhFigure 3 shows the
CE ofis_dir in rm at log point 1.

T.YES: Cyes = dp&&dp->d_type==DT_DIR
is.dir — | | 'dp&&S_ISDIR (sbuf .st_mode)
- T_NO: Cpno = dp&&dp->d_type!=DT_DIR

| | 'dp&&!S_ISDIR(sbuf.st_mode)

Figure 3. The constrained expression fos_dir at line 16.Cyes and
Cho are constraints fots_dir to hold valueT_YES andT_NO respectively.

Each variable involved in the CE is lave-in variable to the
function f, i.e. variable whose value is first read before written in
f [4]. Thus we can represent all memory locations accessefl by
with a concise set of variable values (i.e. live-ins) to reglihe
number of redundant values to record. For exampdedir is not
a live-in variable, and its value can be represented by al seabf
live-in values such agp, T-YES, etc., as shown in Figure 3.
Control-flow analysis: At each program poin®?, LogEnhancer
also computes the constraint for the control-flow to re&thAt
a log pointLP, every variable value involved in the control-flow
constraint would be replaced by its constrained expresdiben
this constraint is solved by a SAT solver to test its satidfigb
An unsatisfiable constraint indicates no feasible path eachr
LP, therefore, we can prune out such a constraint. The safisfiab
constraint thus contains all the causally-related cordral data-
flow conditions to reacl.P. This constraintC' will be stored as a
part of this function’s summary, along with the location bf.

It records that functionf would reachL P under constrainC'.
Non-standard control flows such asit, abort, _exit and their
wrappers are identified and adjusted on the CEéagjmps are
correlated withsetjmps through function summaries in a manner
similar to that described in [57].

In the rm example, the control-flow constraint withiremove
_entry to reach log point 1 would be&s_dir==T_NO && unlink
(filename)!=0. Thenis_dir is replaced by its CE as shown in
Figure 3. The SAT solver determinasyEs cannot satisfy this
control-flow constraint, thug_ves and its constraint are pruned.
The remaining result is a simplified, feasible constraifnt which
is stored as the summary sdmove_entry to reach log point 1:

C, = (dp && dp->d_type!=DT_DIR || !dp &&
!S_ISDIR(sbuf.st_mode)) && unlink(filename)

Inter-Procedural analysis: The above process is then recursively
repeated in the caller by traversing the call-graph in bottgp or-

der. Inrm, after analyzingremove_entry, LogEnhancemext ana-
lyzes its callerremove_cwd_entries in the same manner: a linear
scan to compute the CE for each memory location and control-
flow constraint for each program point. At line 25, it finds dlca
site to a function with a summarydmove_entry), indicating that
reaching this point might eventually lead to log point 1, stakes

the control-flow constraint{. = (readdir(dirp)!=NULL)), and

replaces every variable with its CE (in this case the CHifep).
Besides., for context sensitivity. ogEnhancerlso takes the

C.. from remove_entry and substitutes it to produce the following:

C] = (readdir(dirp) && readdir(dirp)->d_type!=DT_DIR ||
'readdir(dirp)) && f==Sym

Here, readdir(dirp) is the substitution fordp in C,; S_ISDIR
(sbuf.st_mode) iS pruned since it is not visible in the caller’s
context;f==Sym is the substitution fofnlink (filename). Sym iS

a symbolic value and is the substitution ofilename in caller.
£==Sym indicates we should plug-in the CE ofto track the inter-
procedural data-flow, while not enforcing any constraint fom
value. Finally,C]. A C. is stored as the summary foemove_cwd
_entries to reach log point 1.

Such bottom-up analysis traverses upward along each cifi ch
from the log point. It ignores functions that are not in th# chains
for the log point—we refer them as “sibling functions”. Siig
functions may also be causally-related to the log pointr&toee, if
a sibling function’s return value appears in the constrfginthe log
point, LogEnhanceralso analyzes the function and identifies the
control- and data flow dependencies for its return values &hal-
ysis is implemented as a separate analysis pass after tioenbop
analysis. Currently we limit the analysis to descend onlg tavel
into such functions due to scalability concerns. If a cdygalated
sibling function is a library call with no source code (euglink ()
in therm example), we simply plug in its parameter into our con-
straint so we may choose to record the parameter.

Handling Loops Loops are modeled as tail-recursive functions so
that each function is cycle-free, which is a key requirenaiov-
ing us to statically enumerate all the paths and memory ilmtst
accessed by each function. Each loop is handled similanydn
nary functions except that it is traverswdce, to explore both loop
entering and exiting directions. A variabiemodified within the
loop body is propagated to its caller &s=Sym to relax the value
constraint, since we are not following the multiple iteoas as in
run-time. In this way, constraint from the loop body can besay-
vatively captured.

Efficiency and Scalability Uncertainty ldentification scans the
program linearly, a key to our scalability to large applioas. We
further usepre-selectiorandlazy SAT solvindpr optimization. The
former pre-selects only those functions that on the caltisbf any
log point to analyze, and the latter queries the SAT solveifyla
only at the time when function summaries are generated.
Pointer Aliasing: Intra-procedural pointer aliasing is precisely
modeled by Saturn’s constrained expression model [5].rinte
procedural pointer aliasing analysis is only performed ancf
tion pointers to ensure thatogEnhancercan traverse deep along
the call-chain. The other types of pointers are assumed to be
non-aliased, which might cause us to miss some causalyert|
variable values. Note that for Value Selection we enablerint
procedural alias analysis for all types of pointers ¢onservative
liveness checking.

3.2 Value Selection

Value Selection selects, from all constraints identifiedthoy pre-
vious step, what key variable values to record at each logtplwi
this section, we refer an expression without any Booleamatpe
(i.e.,&&, |1, ') as auni-condition For example, dp!=NULL" is a
uni-condition (note!= is not one of the three Boolean operators).
A constraint is thus a formula of uni-conditions combinegdther
using Boolean operators.

(1) Pruning Determinable ValueSome variable values can be
inferred knowing that a given log point is executed. We dadinh
determinable valued-or example, in constraint==0 && b!=0, it

can be determined thas" must equal zero, whilg’s value is still

uncertain. A determinable valueis identified if: (i) v is involved

in a necessaryni-conditionuc of constraintC, i.e., ~uc A C'is

unsatisfiable; (iic is in the form ofv==CONSTANT. A determinable
value can be pruned out since it need not be recorded.

(2) Identifying the condition for a value to be meaningffter
the above step, all remaining values are uncertain. Howeeeev-
ery value is meaningful under all circumstancesrindp->d_type
is meaningful only ifdp!=NULL. Recording a non-meaningful value
could result in an invalid pointer dereference or readingpgus
value. Therefore, for each un-pruned value, we also idemtif-
der what condition this value would be meaningful, writitstas
[c]:v, indicating valuer is meaningful under condition. Our run-
time recording will first check before recording.

(3) Liveness Checking and Equivalent Value ldentification
(EVI): A value can also belead (overwritten or gone altogether
along with its stack frame) prior to a given log point and waruat
delay the recording until the log point. To identify such dealues,
we performconservativdiveness analysis, i.e., if a variable value
might be modified before the log point, we conservatively mark it
as “dead"”. To be conservative, we run Saturn’s global poialias
analysis [30] before the liveness checking. Any pointesspd into
a library call where source code is unavailable are consigela
treated as “dead” after the call (we manually exclude sonm-co
mon C libraries such astrlen). Any extern values not defined
inside the program are also conservatively treated as dead.

However, we do not give up on recording dead values so easily.
For each dead value, we try to find some equivalent variabieesa
which live until the log point and can be used to infer the dead
value. More specifically, a valugr is equivalento another valug
if and only if: (i) it is defined asv=v op UV, whereuv are other
live values, and (ii) both have the same control flow constrai
Therefore, if a dead valuehas an equivalergv, we simply record
EV anduv.

3.3 Run-time Value Collection

LE_KeyValues(LogID)

Call Stack ¥ LoglD
0x00001fc9 |Lemove_entry
remove_cwd global address
_entries Uncertainty| .
local offset
0x00001fb5 Value Table

...... local
‘ 'é\j > adtécr:ss

Figure 4. Run-time recording for Delayed Collection.

Delayed Collection: We instrument the source code of the target
application right before each log point by adding a functead

LE KeyValues() to record the values of identified live variables.
The addresses of these variables are obtained from the mmpi
binary by parsing the DWARF debugging information [22]. Lo-
cal variables’ addresses are the offsets from the stackeflaase
pointer. Heap values’ addresses are represented the saynaswa
they are in the original code. Each live value is represebteds
address and the condition for it to be meaningful is storéaol &m
Uncertain Value Table (UVT) that corresponds to the log poih
the end of our analysis, each UVT is output to a separate files&
files are released together with the target application.

Figure 4 shows the run-time processi@fKeyValues(). It is
triggered only at the log point, i.e., when a log message isghe
printed. When triggered, it first uses the LogID of the logmnioi
to load the corresponding UVT into memory. It then obtains th
current call stack, using it to index into the UVT to find whatwes
to record. For each value, the condition for it to be meanihgf
is first tested. A local variable’s dynamic address is coraguty
reading the offset from UVT and then adding this offset to the

dynamic stack frame base pointer obtained by walking theksta
Note that the UVT is only loaded into memory during the exixut

of LE KeyValues(), SO the delayed recording does not add any
overhead during normal execution, i.e., when no log mesisaig
printed. We also record the dynamic call stack.

By default, LogEnhancerecords only basic type values. For
example, for a pointer value, we only record the addresedtor
this pointer. To further provide meaningful diagnosticarhation,
we add two extensions. First, if the variable is of typarx and
is not NULL, then we record the string with a maximum of 50
characters (of course, if the string is shorter than 50, wenegonly
the string). Second, if the variable is a field within a stanet in
addition to that field, we also record the values of other §ielthis
is because structures are often used to represent multigbegies
of a single entity, such as a request in apache httpd.

Although we are already very cautious in our design to record
only meaningful and valid values to ensure memory safetg, tdu
the limitation of static analysis, we might still access awmaiid
memory location (e.g., caused by multi-threading). To beseo-
vative, we further ensure memory safety by interceptingSHEGV
signals without crashing the running application. For aaions
such as apache which also intercept SIGSEGYV signals, we add a
wrapper to filter out those caused by our log recording. Ineaur
periments, we have never encountered such a signal.

In-time Collection: In addition to instrumentation at log points,
the in-time collection method further saves a shadow comvefy
dead valug that has no equivalent value by instrumenting the code
in the following way:

- if (XD

+ if (LE_InTime(&X, Lint32) && X)

LE_ InTime() always returns 1. It simply copi@snt32 number of
bytes starting fronzx. Note thatLE_InTime () can recordk directly
without checking any condition since it is within the sameteat

as the use af.

All recorded values fromE_KeyValues() andLE_InTime() are
first stored into buffers in memory (both currently 40 KB) re-
spectively. Aterror messages, both buffers are flushed to disk.
LE KeyValues()'s buffer is also flushed when it becomes full,
whereasg.E_InTime () simply recycles the shadow buffer from the
beginning. Each thread has its own private buffer.

We also implement a variation of the delayed method as a core
dump analyzer (referred as@ore Dump Digger) that automat-
ically identifies the key values (or equivalent values) fransore
dump at a log point (if there is such core dump). When a core
dump is generated, our Core Dump Digger derives equivatent i
formation to delayed collection from the core dump. Notéd tiat
every log point has a core dump, especially those for boapikgy
or warning messages.

4. Evaluation

We useLogEnhanceto enhanceall 9,125log messages in 8 dif-
ferent real-world applications as shown in Table 1. Fivehana
are server applications, including 2 web servers (apachm ht
lighttpd), a database server (postgresql), a concurrestorecon-
trol server (cvs), and a web cache (squid). For server aqipdics
where there are multiple log files, we enhance all messages pr
ing into the error log file. Currently we do not enhance otlypes
of log files such as access logs. In the default verbosity maltie
applications only print error messages (some of them alsdspr
warning messages). Therefore, during normal executioh tii¢
default verbosity mode, there are few log message printsities
a few messages indicating system start/stop.

For any diagnostic tools liké ogEnhancerthe most effective
evaluation method is of course user study: having it usedeay r
programmers for a period of time who then report their experi

300

B Manual & wio ahy log var
20 | EA Overlap 250 + & existing log var
LE. Additional Stack
15 | 200 LE Delayed
150 +
100 |
X X N
2 N 5 50 N '
; BN EN
rm tar apache cvs In rm tar apache cvs

(A) Variables Recording at each log point

(B) Number of Uncertain Branches

Figure 5. Overall Result of LogEnhancer. In (A), we compare the number

of variables per message loggetially by developers with the ones inferred

automatically byl ogEnhancer‘Overlap” shows the number of variable values that arecseteby both programmers ahdgEnhancerThe percentages of
overlap are marked beside each bar. “LE-additional” shdwesaidditional variable values only identified hpgEnhancerin (B), we compare the amount
of uncertain branches that are causally related to eachdirg given different types of information recorded: with@ny variables (the original uncertainty
space); existing variables included by developers; caltksin addition to existing variables; variables inferred logEnhancerand call stack using the

delayed collection method.

Log Points
Application | Version | LOC All Default
In 451 20K 26 14 (ERR)
m 454 18K 28 25 (ERR)
tar 1.22 86K 210 176 (ERR)
apache 222 317K 1,654 | 1,093 (WARN)
cvs 1.11.23 | 148K 1,088 | 762 (ERR)
squid 2.3.54 | 69K 1,116 | 402 (ERR)
postgresql | 8.4.1 1,029K | 4,876 | 4,403 (WARN)
lighttpd 1.4.26 | 56K 127 127 (ERR)

Table 1. Evaluated applications. LOC is lines of code of the entire ap
plication. “All” shows the total number of log points for theost verbose
level. “Default” shows the default verbose-level of log reage printed (in
bracket) and the number of log points at this level.

ences. Unfortunately, this would be a time-consuming meend

it is hard to select samples to be representative. Giveretbes-
straints, we try to evaluattogEnhancemoth quantitatively and
qualitatively using three sets of experiments, all conddabn a
Linux machine with eight 2.33GHz Xeon processors and 16GB of
memory. Since the analysis is done off-lib@gEnhancecurrently
runs as single process, single thread (even though thesss\agn
potentially be parallelized to reduce the analysis time).

(1) Value selectiorfirst, we investigate how well our algorithm
captures the variable whose values are useful for failuagrasis
by comparing against manual selection (variable valuestiee
already been recorded in existing logging statements bgrpro-
mers). Then, we also evaluate how many new variables aretsdle
for logging in addition to those manually added by programmers
over time (i.e., how many new variable values would be logged
LogEnhancerand how effective these additional logged values can
help reducing the number of code paths to be considered iA pos
mortem diagnosis.

(2) Diagnostic effectivenest the second set of experiments
we select 15 real world failure cases caused by 13 bugs and-2 mi
configurations to show the usefulness of the informatiotectdd
by LogEnhanceiin failure diagnosis. In particular, we also show
how automatic log inference tools like SherLog can be impcov
given the information added kyogEnhanceimto log messages.

(3) Logging overheadrhe third set of experiments evaluate the
overhead introduced bkogEnhances run-time logging for both
in-time and delayed collection methods.

4.1 Effectiveness in Variable Recording

Figure 5 (A) showd.ogEnhances comparison with existing log
variables included manually by programmers into log messag

LogEnhancerin all the applications excepiquid, LogEnhancer
achieves a coverage over 9%94This high coverage is an evi-
dence that our design matches with the intuition of programnsin
recording key values to help diagnosis. It implies thayEnhancer
can do at least as well as manual effort.

The small fraction (4.9% on average) of existing log vargsbl
that are not automatically selected hpgEnhancerare mainly
book-keeping information that is not very useful for infag the
execution path to the log point. For example, when CVS dstect
an invalid configuration entry, it outputs the line numbertioht
entry in the configuration file. Since this line number is needi
in any branches to determine the control flow, it is thus nudse
LogEnhancerNote that the invalid configuration entry string it-
self is identified byLogEnhancerSo even without the line num-
ber, recording the configuration entry string itself is eglouor
users/developers to locate the error in the configuratien fil

There are four main categories of manually-identified \@ea
that are missed byogEnhancertogether contributing to 97% of
the few missed casefl) Book-keeping values logged immediately
after initialization (37%) For example, immediately after receiving
a request, the length of the request is logged before it isatgt
used. All these log messages are verbose mode messages that d
not indicate any error(2) The line number of invalid entry in
configuration file (28%). (3) General configuration (hostmes,
PID, program names, etc.) (24%jat are not causally-related to the
log point. Note causally-related configuration informatiwould
be identified LogEnhancer(4) Redundant multi-variables (8%)
that are always updated together while only one used in branc
LogEnhancenpnly identifies the one used in branch and the missed
values can be inferred from the identified one.

In addition to automatically selecting most of existing \agi-
ables manually included by programmetfigEnhanceralso se-
lects an average of 14.6 additionaw variable values for each
log message. Recording these values (including the cak)stan
eliminate an average of 108 uncertain branches for eachdod p
as shown in Figure 5 (B). From the 108 original uncertain bes
per log point, existing log variables can reduce it to 97, rehs
LogEnhances delayed recording scheme can reduce this number
to 3, meaning that, on average for each log point, there ae on
3 unresolved branches for programmers to consider to fully u
derstand why the log point was reached. The remaining usioert
branches are caused by uncertain values that are dead atifdg, p

3Many variable values are converted to human readable stvitgn print-
ing to log message. For example “ineoa” converts an IP address into

over the years. On average, 95.1% (with minimum 89% and max- string. We count the value as coveredlhygEnhancepnly if by recording

imum 98%) of these log variables are selectedomaticallyby

the non-text value we cagteterministicallyinfer the text string.

uncert. br. (avg/med/max/min) # of Var
Apps. | w/oanyvar | L.E.(delay) | all Tive Togge
In 41/43/78]7 2.9/1/8/0 [11.3 9.8 10.1
m 28/27/57/6 1.4/1/9/0 |10.2 9.3 95
tar | 114/35/1419/2 2.2/1/20/0 |22.6 19.5 21.6
apache| 115/78/626/1| 3.5/2/35/0 |(17.2 14.7 15.9
cvs | 139/62/3836/1 6.5/3/38/0 |12.2 8.7 10.6
squid | 67/19/4409/1| 1.3/0/17/0 |13.0 11.6 12.5
postgre|270/61/22070/1 1.2/0/48/0 |20.9 14.7 18.1
lighttpd | 86/88/222/5 6.4/6/40/0 |20.7 15.2 18.8

Table 2. Detailed result showing the number of uncertain branches an
uncertain variable values per log point. The large diffeeebetween aver-
age and median in “w/o any var” is caused by small number optmgts in-
side some library functions, that have a large number of iaicebranches
accumulated from many possible call stacks. Once we diffexie call
stacks in “Stack” approach, this difference between averagd median
significantly reduces.

which can be recorded by our in-time collection if overhesdat
a concern. If we record only the stack frames in addition ® th
original log messages, the number of uncertain brancheslisced

Fail.
rm

cp

Description
reports a directory cycle by mistake for a healthy FS.
fails to replace hardlinks given “—preserve=links”.

In |In —target-directory failed by missing a condition ch
apacheldenies connection after unsuccessful login attemp.
apachePOS checking procedure failed causing server to fail|
apacheBServer mistakenly refuses SSL connections.
apachefA structure field wasn't initialized properly causing
unpredictable failure symptoms.
wrong checking function caused access control failg
login with OS account failed due to misconfiguratiory.
failed since archivestat.stmode improperly set.
tar failed to update non-existing tar-ball.

Proxy fails when connecting to multiple backends.

ck.

B

squid
cvs
tar 1
tar 2

lighttpd

Table 4. Real-world failures evaluated.

Case 1: rm.For thern failure described in Figure Z,ogEnhancer
recorded the call stack being:
...remove_cwd_entries:25 -> remove_entry.

from 97 to 40 on average. Table 2 shows the detailed number of In addition,LogEnhancerecords the following variable values at

uncertain branches.

Table 2 also shows the number of variable values identified by
LogEnhancent different analysis stages. On average, 16.0 uncer-
tain values are identified for each log point (“all”). 14.6tbése can
be recorded at log points (“logged”) without introducingrmal-
run overhead. Among these 14.6 variables, 12.9 are not oitmw
before log point (i.e., they are “live”), and the remaining hre
recovered from Equivalent Value Identification (EVI). Oresage

log point 1: dp=0x100120, filename="dir1l/dir2", dp->d_type

= DT_UNKNOWN. Programmers can infer that the failed execution
took the path at line 5 and came from callemove_cwd_entries.
They can also tell thateaddir returns a non-NULL valuap, but
dp->d_type's value iSDT_UNKNOWN in the failed execution, which is
exactly the root cause: the programmers did not expect styjea
for dp->d_type. In this case, just as dp is NULL, the program
should uselstat to determine the directory type. So the fix is

49% of the dead values can be recovered by EVI. The remaining straightforward as shown below:

51% of dead values can be collected only via in-time coltectat
the cost of some overhead to normal execution.

Analysis Time Table 3 shows the analysis time bbgEnhancer
on each application. For all applications except postdrdsog-
Enhanceffinishes the entire analysis within 2 minutes to 4 hours.
For postgresq|, it takes 11 hours since there are 4,876 ngggi
points in 1M lines of code. Since we expdabgEnhancero be
used off-line prior to software release, the analysis timédess
critical. Additionally, the summary-based design allowsa be
parallel or incrementally applied [5]. The memory usagdlin@ses

is below 2.3GB.

Analysis Time and Memory Usage
In 3m 579MB rm 2m 172MH tar 1.5h263MH
apache 2.1h 1.3GB cvs 3.0h 1.7GBsquid 3.8h 2.3GH
postgre 10.7h 1.5GHighttpd 19.5m 532M

Table 3. Analysis performance.

4.2 Real World Failures

We evaluated.ogEnhancerby analyzing 15 real-world failures,
including 13 software bugs and 2 configuration errors, totsme
our enhanced log messages would help failure diagnosisll In a
these cases, the original log messages were insufficieiagoase
the failure due to many remaining uncertainties, while withg-
Enhances log enhancement these uncertainties were significantly
reduced and almost entirely eliminated. Due to space ltinita,
in this section we will show 3 cases in detail to demonstrhee t
effectiveness of. ogEnhancerThe other 12 cases are summarized
in Table 4.

We also compared the inference results of SherLog [57] befor
and afterLogEnhancés enhancement.

4: - if (dp)
4: + if (dp && dp->d_type!=DT_UNKNOWN)

Without LogEnhancés enhancement, SherLog inferred a to-
tal of 13 possible call paths (not even complete executichspa
only function call sequences) that might have been takenitt p
the error message. Developers need to further manuallyrdiete
among these which one actually lead to the failure. Sherlleg a
failed to infer the value ofip anddp->d_type, leaving no clues for
developers to infer branch direction at line 4. WithgEnhancés
result, SherLog can pinpoint the only possible call patld, devel-
opers can easily examine the valueipfanddp->d_type.

Case 2: Apache bug.

Figure 6 shows a bug report in apache. With only the error log
message at line 2, the developer could not diagnose thedago
he asked the user for all kinds of run-time information in tatof
95message exchanges. Actually only two pieces of informatien
key to identifying the root cause: One is the valuezedpalives
and the other is the request typeoxyreq, both of which are unfor-
tunately buried deep in large and mostly irrelevant datacstires.

LogEnhanceautomatically identifies -> keepalive andr->
proxyreq to be collected for this log messageepalive is iden-
tified since it is used at line 12 as the constraint for the etien
to reach the log pointproxyreq is identified in similar manner.
So if the developers had uséadgEnhanceito enhance their log
messages automaticallypgEnhancervould have helped them by
saving a lot of time in discussions back and forth with the.use
terestingly, after such painful experience, the programsnaelded
a patch whose sole purpose was to log the value@falives in
this function.

Without LogEnhancés enhancement, SherLog inferred 63
possible call paths and not be able to infer the valugeepalive
or proxyreq. With LogEnhancés enhancement, SherLog can nar-
row down to only one possible call path, and infer the value of
keepalive andproxyreq.

Bug Report for Apache

U: Apache httpd configured
with mod_proxy and virtual
hosting. Client browsers got
error messages and status
code 502. The problem
occurs only under load tests,
no problem if single client.

: Ask for back trace.
: Ask for debug level log.
: Ask partial heap image.

D

D

D

D: Work around posted.
U: Problem still occurs.

D: Configuration file posted.
D

: Patch issued.

Total 95 discussion
messages before
correct diagnosis!!!

Patched Code
proxy_process_response(..){
1 if (ap_getline(...)<=0) {
2 ap_log_rerror(
3 "error reading status line from"
3 "remote server");
4+ if (c->keepalives &&
5+ r->proxyreq==PROXY_REVERSE) {
6+ return 0K;
7+ }
8 return aperror(HTTP_BAD_GATEWAY,
9 "Error reading remote server");
10 }

11 determine_connection(..) {

12 if (c->keepalives ..) constraintfor
13 gw = p L%eturn value
14 if (err!=SUCCESS) return ERROR;
15 }

16 proxy_http_handler (...) {
17 if(determine_connection(..)!=0K)

18 goto cleanup; control-

19 o dependent
20 if(proxy_process_response(.)!=0K)
21 goto cleanup;

21 3}

Figure 6. Apache bug example. “U” stands for apache user while “D” for
developer. Patched code is highlighted.

1 ap_mpm_run (...) {
if (v = mutex_method(nmutex,
return rv;
rv = nmutex->meth->create(...);
if (v 1= APR_SUCCESS)
ap_log_error (

9 mutex_method(nmutex, mech) {
mech)) 10 switch (mech) {

11 case APR_LOCK_DEFAU I}?

12 nmutex->meth =

13 &apr_mutex_unix_sysv_methods;

14
“Couldn't create cross-process lock’); 15 }

ONOODAWN

}

Error Log:

[emerg] No space left on device: Couldn't create cross-process lock

Figure 7. Apache configuration error. The dependencies to identifit va
ablemech are marked as arrows.

Case 3: Apache configuration error.

A misconfiguration failure in Apache occurs with the log mes-
sage shown in Figure 7. It warns of no space on disk, whilesuser
file system and disk are perfectly healthy with plenty of fspace
available. From the source code, it is certain that the ngesaas
printed at line 6, as a result of an unsuccessful callrate () at
line 4. However, developers had no other clues why this adéd.

LogEnhanceidentifiesmech as a key value to collect at line 6,

since it is used at line 10

in functiofutex_method, WhoSenmutex

is causally related to the log point at line 6. If apache hashten-
hanced byLogEnhancerthe log message would record the value
of mech beingaPR_LOCK_DEFAULT and the value afmutex->meth be-
ing apr_mutex_unix_sysv_methods. This indicates that apache was
using the default lock setting which caused the failure. muati-
threaded mode, apache should use fnctl-based lockingahsie
fix this, users should explicitly add “AcceptMutex fcntl"tathe

configuration file.

Note that, without_ogEnhancées enhancement, SherLog can-
not infer the value ofiech from the original log message and would
not be able to narrow down to the lock setting configuratiothas

root cause.

4.3 Overhead

Execution Time: Table 5 shows thd.ogEnhances recording
overhead during applications’ normal execution under tbfault

verbosity mode. Few log

messages are printed in the defauit v

bosity mode during normal execution. Thus there is no owathe
for LogEnhancemith the delayed collection method. The in-time
collection incurs small (1.5-8.2%) overhead due to shadopy<

ing. This number can be reduced by eliminating those shadow
recording in frequently invoked code paths (e.g., insideop). For
example in postgresqgl, by disabling two instrumentatiamghie
hash_seq_search library function, the slow-down can be reduced
to 1%.

Applications andSlow-down
tar 0.0%, 1.5% [apache 0.0%, 3.9% postgre 0.0%, 7.6%)
cvs 0.0%, 1.7%| squid 0.0%, 8.2% |lighttpd 0.0%, 3.4%

Table 5. Overhead ofLogEnhancer in normal execution (de-
fault verbosity mode). The first number is the overhead for the
delayed collection, and the second is for the in-time ctibec rm
and1in’s results are not reported since the execution times are too
short.Tar is measured in response time, while the servers are mea-
sured in throughput degradation when fully loaded.

Figure 8 showd.ogEnhanceés performance during normal exe-
cution with other verbosity modes. Turning on debug levgbing
degrades the throughput by 13% eweithout LogEnhancerWith
LogEnhancerthere is an additional 3-7% overhead (measured in
throughput degradation) on top of the original.

0 Original &8
150 % L.E. Delayed only &

L.E. All
gls

0 msg/s
100 % g 120

Throughput

50 %

0%

Figure 8. Normal execution throughput on fully loaded Apache for dif-
ferent verbosity modes. All numbers are normalized ovetliheughput of
unmodified apache under default verbosity level (WARN).

Memory Overhead: As mentioned in Section 3.3, delayed collec-
tion does not introduce any memory overhead during normal ex
ecution (i.e., no log message printed). For in-time coitectthe
only memory overhead is the size of the buffer, which is set to
40KB in our experiment. If a log point is executed at run-time
LE KeyValues () introduces additional memory overhead by load-
ing the UVT into the memory. In all the 8 applications, the maed
and average sizes of UVT are 395 bytes and 354 KB respectively
Comparison with Core Dump Table 6 comparesogEnhances
recording time and data size with core dump at a failure. Gar-av
age,LogEnhancennly needs 0.43 millisecond. The recorded data
has only 66 bytes on average. In comparison, core dumpsreequi
1000 times recording time, and 55MB in size. The large owtdhe
of core dumps makes it impractical to collect the entire mgmo
image with each log message.

Table 6 showd.ogEnhances average log size is 66 bytes per
message, which is in the same magnitude as original log messa

Failure Time andSize (B)

LogEnhancer Core dump
In 0.45ms| 41 (original 45) | 630ms| 55M
rm 0.45ms | 113 (original 51) | 610ms | 55M

tar 2 0.39ms | 39 (original 96) | 630ms | 55M
cvs 0.44ms | 54 (original 52) | 60ms | 772K
apache 1|| 0.41ms| 82 (original 196) | 670ms | 3.2M

Table 6. Comparison betweehogEnhancerand core dump. We repro-
duced 5 failures in table 4 and forced a core dump to be getkaiteach
log point usinggcore [25] library call. The log size ot ogEnhancedoes
not include the size of the original log. The size of origitay (without
LogEnhanceyis shown in the parenthesis.

A large portion of this log is the call stack encode in cleat.tgVe
can further compress this portion since calling contexéslikely

to remain the same for a log point. Other variable values may
are encoded in binary format and are converted to human béada
form post-mortemly.

5. Related Work

Log analysis for failure diagnosis Existing log analysis work
focuses on post-mortem diagnosis using logs, learningssita
signatures [3, 8, 16, 29, 56] or inferring partial executjmaths
and run-time states [57]. Xu et al. [56] use statistical teghes to
efficiently learn a decision tree based signature from largaber
of console logs. This signature can be used to effectiveiyai@and
diagnose anomalies.

In particular, the closest related work, SherLog [57], ustesic
analysis to infer the partial execution paths that can ccirthe run-
time log messages. It infers both control and data valuernmdtion
post-mortemly, providing a similar user-experience asrdarac-
tive debugger without dynamically re-executing the progra

LogEnhanceis different from but complementary to log anal-
ysis work like SherLog [57] in several aspects:

(1) LogEnhancehas a completely different focus: it aims to im-
prove software’s diagnose-ability by adding more causadigted
information in log messages to make failure diagnosis es8ieh
information benefits not only manual diagnosis but also rmatic
log analysis engines like SherLog.

(2) LogEnhancenogs only those variables thaannotbe in-
ferred (manually or automatically with SherLog) from whatail-
ready available in log messages.

(3) Although LogEnhancerleverages summary-based static
analysis similar to SherLog, the different objectives leadsev-
eral major new design and implementation issues. For exampl
LogEnhancemeeds to perform uncertain control/data identifica-
tion, value selection, liveness analysis, equivalentide identifi-
cation, and finally instrument the source code to log thokectsl
variables at run-time. None of this would be needed in a Iégrin
ence engine like SherLog.

(4) As the real world case studies in Section 4.2 have shown, au-
tomatic log inference engines like SherLog can signifigalpénefit
from LogEnhancés log enhancement information. For example,
in our second case study, the additional information adgelddg-
Enhanceran help SherLog pinpoint the execution path from a total
of 63 possibilities before the enhancement.

Logging design Existing guidelines for logging design are purely
empirical [32, 51]. Kernighan and Pike [32] argued the imaoce
of well-designed log messages in failure diagnosis. Scheuith-
marized some empirical logging practices [51]. To the béstup
knowledge,LogEnhanceris one of the first to automatically en-
hance log messages.

Use of core dump for failure diagnosis Several systems collect
partial memory image [6, 26, 27, 46] when a system crashes.
Windows Error Reporting [26] monitors the system for crashe
or hangs, and records a “mini-dump”. Crash Reporter [6] Apet
Savecore [46] and Google Breakpad [27] also collect conspis
memory dumps.

Some core dump analyzers infer diagnostic information from
the core dump. Their techniques are applicabld.ogEnhancées
recording result as well. PSE [39] and ESD [58] perform off-
line diagnosis of program crashes from core dump. Weeratung
et al. [54] diagnose Heisenbugs by diff-ing the core dumpmfa
failing run and passing run.

As discussed early in Introduction, our work is complemgnta
to core dumpsLogEnhancercan collect historic, intermediate in-
formation prior to failures and also provide diagnosticimhation

when no core dump is available. It also significantly redumess-
head and data size by recording only causally-related iméition.
Profiling for diagnosis Many of diagnostic tools collect run-time
profiling such as low-level performance counters [10, 16¢xe-
cution traces [7, 13, 15, 29, 37, 52, 60]. Liblit et al. [37hgae
profiling information from many users to offload the monitayi
overhead, and isolate the most correlated informationgustiatisti-
cal techniques. Chen et al. [13] propose hardware solutiactel-
erate instruction-level monitoring. Rather than collegttailored,
causally-related information for each log messageag=nhancer
these profiling tools collect general information. Our wéslcom-
plementary to these work in that we collect causally-relatdor-
mation specific t@achlog messages.

DCop [59] records the acquisition of each lock involved in a
deadlock to speed up the debugging process of deadlockefgilu
Our work is also complementary to DCop in that we can help the
diagnosis of other kinds of failures that print log messages
Logging for deterministic replay Other work [20, 34, 35, 40, 44,
49, 53, 55] attempts to deterministically replay failed extéon,
which generally requires high run-time logging overhegukesally
for multiprocessor systems. To reduce the overhead, rgcghtP-
Revirt [21] made clever use of page protection. Our work is1€o
plementary and mainly targets to the cases when failuredepr
tion is difficult due to privacy concerns, unavailability @fecution
environments, etc.

Other Static Analysis Work Compiler techniques similar tbog-
Enhancerare also used to address some other software reliability
problems [11, 17, 31, 58]. KLEE [11] and ESD [58] use full
symbolic execution engine to expose bugs in testing or ipédhs
from core dump. Carburizer [31] uses data-flow analysis tate
dependencies on data read from hardware. AlthduggiEnhancer
also uses symbolic execution, due to the very differentaibijes,

it starts from each log message and walks backward alongathe ¢
chain to conduct “inference”, instead of walking forwardestglore
every execution path. In addition, our work also has to usayma
other techniques and analysis such as control/data flowsisal
variable liveness analysis, equivalent variable analysis-time
value collection, etc.

6. Conclusions

In this paper we presented a tobbgEnhancemerhaps as the first
work to systematically enhance every log message in softiar
collect causally-related diagnostic information. We #mpblLog-
Enhancemuniformly on 9,125 different log messages in 8 applica-
tions including 5 server applications. Interestingly, werrid 95%

of the variables included in the log messages by developas o
time can be automatically identified lhypgEnhancemore impor-
tantly, LogEnhancerdds on average 14.6 additional values per log
message, which can reduce the amount of uncertainty (nuaiber
uncertain branches) from 108 to 3 with negligible overhéeks
information not only benefits manual diagnosis but also rmatic
log inference engines.

Acknowledgments

We thank the anonymous reviewers and our paper shepherd Todd
C. Mowry for their insightful feedback, the UCSD Opera reska
group and Michael Vrable for useful discussions and papeofpr
reading. This research is supported by NSF CNS-0720743,gran
NSF CCF-0325603 grant, NSF CNS-0615372 grant, NSF CNS-
0347854 (career award), NSF CSR Small 1017784 grant and Ne-
tApp Gift grant.

References

[1] Cisco system log management.

[2] EMC seen collecting and managing log as key driver for &cpnt of
customers.

[3] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, aidMuthi-
tacharoen. Performance debugging for distributed systadack
boxes. INSOSP’03

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.Compilers:
Principles, Techniques, and Tools (2nd Edition), Page. 528

[5] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, P. Hawkins, ahB. Hackett.
An overview of the Saturn project. IRASTE'07

[6] Apple Inc., CrashReport. Technical Report TN2123, 2004

[7] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee,dan
E. Witchel. Traceback: First fault diagnosis by recondtarcof dis-
tributed control flow. INPLDI'05.

[8] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Usinagpie for
request extraction and workload modelling.$DI'04.

[9] E. D. Berger and B. G. Zorn. Diehard: probabilistic memasafety
for unsafe languages. PLDI'06.

[10] S. Bhatia, A. Kumar, M. Fiuczynski, and L. Peterson. Htigeight,
high-resolution monitoring for troubleshooting productisystems. In
OsDI'o8

[11] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted au-
tomatic generation of high-coverage tests for complexesgstpro-
grams. InOSDI'08

[12] M. Castro, M. Costa, and J.-P. Martin. Better bug reipgrtvith better
privacy. INnASPLOS’'08

[13] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. GibhohsC.

Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos.

Flexible hardware acceleration for instruction-graingram monitor-
ing. InISCA'08

[14] L. Chew and D. Lie. Kivati: fast detection and preventiaf atomicity
violations. InEuroSys’10

[15] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vawani.
HOLMES: Effective statistical debugging via efficient pgttofiling.
In ICSE’09

[16] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kellyd &. Fox.
Capturing, indexing, clustering, and retrieving systeratdry. In
SOSP’05

[17] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.uBeer:
securing software by blocking bad input. 80SP’07

[18] Dell. Streamlined Troubleshooting with the Dell synté&-Support
tool. Dell Power Solutions2008.

[19] D. L. Detlefs, K. R. M. Leino, K. Rustan, M. Leino, G. Nels, and
J. B. Saxe. Extended static checking. TR SRC-159, COMPAQ SRC
1998.

[20] J. Devietti, B. Lucia, M. Oskin, and L. Ceze. Dmp: Detanistic
shared-memory multiprocessing. ASPLOS’09

[21] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. EXea replay
of multiprocessor virtual machines. WEE, 2008.

[22] The DWARF Debugging Formahttp://dwarfstd.org.

[23] D. Engler and K. Ashcraft. Racerx: effective, staticed®ion of race
conditions and deadlocks. BOSP'03

[24] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, B. Saxe,
and R. Stata. Extended static checking for javaPLiDI'02.

[25] Man page for gcore (Linux section 1).

[26] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgoy
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in hery)
large: ten years of implementation and experienceSQSP '09

[27] Google Inc., Breakpad.

[28] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoand
Z. Zhang. R2: An application-level kernel for record andlagp In
OSsDI'08

[29] J. Ha, C. J. Rossbach, J. V. Davis, |. Roy, H. E. Ramadak, Borter,
D. L. Chen, and E. Witchel. Improved error reporting for safte that
uses black-box components. RLDI'07.

[30] B. Hackett and A. Aiken. How is aliasing used in systeroffveare?
In FSE’'06

[31] A. Kadav, M. J. Renzelmann, and M. M. Swift. Toleratingréiware
device failures in software. IBOSP’09

[32] B.W. Kernighan and R. Pik&he Practice of Programmind\ddison-
Wesley, 1999.

[33] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging opeeat
systems with time-traveling virtual machines. USENIX ATC'05

[34] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging plaapro-
grams with instant replayEEE Trans. Comput36(4), 1987.

[35] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasaniy. Ehen,
and J. Flinn. Respec: efficient online multiprocessor repla specu-
lation and external determinism. ASPLOS'10

[36] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Havertgs
changed now? An empirical study of bug characteristics irleno
open source software. ISID '06: Proceedings of the 1st workshop
on Architectural and system support for improving softwdepend-
ability, October 2006.

[37] B. Liblit, A. Aiken, A. X. Zheng, and M. |. Jordan. Bug ifaion via
remote program sampling. RLDI'03.

[38] B. Lucia, L. Ceze, and K. Strauss. Colorsafe: architedtsupport for
debugging and dynamically avoiding multi-variable atoityiziola-
tions. InISCA’1Q

[39] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. YaR$E:
Explaining program failures via postmortem static analySIGSOFT
Softw. Eng. Note®9(6):63—-72, 2004.

[40] P. Montesinos, L. Ceze, and J. Torrellas. Delorean:oRog and
deterministically replaying shared-memory multiprocgsexecution
efficiently. InISCA’'08

[41] Mozilla Quality Feedback Agenhttp://support.mozilla.com/
en-US/kb/quality+feedback+agent.

[42] M. Naik and A. Aiken. Conditional must not aliasing faatic race
detection. IlPOPL'07.

[43] M. Naik, A. Aiken, and J. Whaley. Effective static racetection for
java. InPLDI'06.

[44] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Qamiisly
recording program execution for deterministic replay dgbng. In
ISCA'05

[45] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. @iérimedi-
ate language and tools for analysis and transformation obgrams.
In CC’02

[46] NetApp Inc., Savecore. ONTAP 7.3 Manual Page Refereviceime
1, Pages 471-472.

[47] NetApp. Proactive health management with auto-suppdetApp
White Paper2007.

[48] G. Novark, E. D. Berger, and B. G. Zorn. Exterminatortamatically
correcting memory errors with high probability. RLDI'07.

[49] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: EffitDeter-
ministic Multithreading in software. IASPLOS’09

[50] S. Park, W. Xiong, Z. Yin, R. Kaushik, K. H.Lee, S. Lu, a¥idZhou.
Pres:probabilistic replay with execution sketching ontipubcessors.
In SOSPR 2009.

[51] S. Schmidt. 7 more good tips on loggirigttp: //codemonkeyism.
com/7-more-good-tips-on-logging/.

[52] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B.g&di, P. B.
Gibbons, and T. C. Mowry. Paralog: enabling and accelegatimine
parallel monitoring of multithreaded applications. ASPLOS’10

[53] VMware. Using the integrated virtual debugger for \asstudio.
http://www.vmware.com/pdf/ws6Bnanual.pdf.

[54] D. Weeratunge, X. Zhang, and S. Jagannathan. Analyzioigicore
dumps to facilitate concurrency bug reproducti@®GARCH Comput.
Archit. News 38(1):155-166, 2010.

[55] M. Xu, R. Bodik, and M. Hill. A “flight data recorder” for mabling
full-system multiprocessor deterministic replay.|I8CA'03

[56] W. Xu, L. Huang, M. Jordan, D. Patterson, and A. Fox. Maconsole
logs for large-scale system problem detectionS®SP’'09

[57] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupath
SherLog: Error diagnosis by connecting clues from run-tiogs. In
ASPLOS'10

[58] C. Zamfir and G. Candea. Execution synthesis: a tecleniquauto-
mated software debugging. EuroSys’10

[59] C. Zamfir and G. Candea. Low-overhead bug fingerprinfiongfast
debugging. IrRuntime Verificationvolume 6418 oLecture Notes in
Computer Sciencgages 460-468. 2010.

[60] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and \Wéng.
How to do a million watchpoints: efficient debugging usingudsnic
instrumentation. ICC’08.

