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Abstract

The tradeoffs between consistency, performance, and
availability are well understood. Traditionally, how-
ever, designers of replicated systems have been forced
to choose from either strong consistency guarantees or
none at all. This paper explores the semantic space be-
tween traditional strong and optimistic consistency mod-
els for replicated services. We argue that an important
class of applications can tolerate relaxed consistency, but
benefit from bounding the maximum rate of inconsistent
access in an application-specific manner. Thus, we de-
velop a set of metrics,Numerical Error, Order Error,
andStaleness, to capture the consistency spectrum. We
then present the design and implementation of TACT,
a middleware layer that enforces arbitrary consistency
bounds among replicas using these metrics. Finally, we
show that three replicated applications demonstrate sig-
nificant semantic and performance benefits from using
our framework.

1 Introduction

Replicating distributed services for increased avail-
ability and performance has been a topic of considerable
interest for many years. Recently however, exponen-
tial increase in access to popular Web services provides
us with concrete examples of the types of services that
would benefit from replication, their requirements and
semantics. One of the primary challenges to replicating
network services is consistency across replicas. Provid-
ing strong consistency (e.g., one-copy serializability [4])
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imposes performance overheads and limits system avail-
ability. Thus, a variety of optimistic consistency mod-
els [14, 15, 18, 31, 34] have been proposed for applica-
tions that can tolerate relaxed consistency. Such models
require less communication, resulting in improved per-
formance and availability.

Unfortunately, optimistic models typically provide no
bounds on the inconsistency of the data exported to
client applications and end users. A fundamental ob-
servation behind this work is that there is a continuum
between strong and optimistic consistency that is seman-
tically meaningful for a broad range of network services.
This continuum is parameterized by the maximum dis-
tance between a replica’s local data image and some fi-
nal image “consistent” across all replicas after all writes
have been applied everywhere. For strong consistency,
this maximum distance is zero, while for optimistic con-
sistency it is infinite. We explore the semantic space in
between these two extremes. For a given workload, pro-
viding a per-replica consistency bound allows the system
to determine an expected probability, for example, that
a write operation will conflict with a concurrent write
submitted to a remote replica, or that a read operation
observes the results of writes that must later be rolled
back. No such analysis can be performed for optimistic
consistency systems because the maximum level of in-
consistency is unbounded.

The relationship between consistency, availability,
and performance is depicted in Figure 1(a). In moving
from strong consistency to optimistic consistency, ap-
plication performance and availability increases. This
benefit comes at the expense of an increasing probabil-
ity that individual accesses will return inconsistent re-
sults, e.g., stale/dirty reads, or conflicting writes. In
our work, we allow applications to bound the maxi-
mum probability/degree of inconsistent access in ex-
change for increased performance and availability. Fig-
ure 1(b) graphs different potential improvements in ap-
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Figure 1:a) The spectrum between strong and optimistic consistency as measured by a bound on the probability of
inconsistent access. b) The tradeoff between consistency, availability, and performance depends upon application
and network characteristics.

plication performance versus the probability of incon-
sistent access, depending on workload/network charac-
teristics. Moving to the right in the figure corresponds
to increased performance, while moving up in the figure
corresponds to increased inconsistency. To achieve in-
creased performance, applications must tolerate a corre-
sponding increase in inconsistent accesses. The tradeoff
between performance and consistency depends upon a
number of factors, including application workload, such
as read/write ratios, probability of simultaneous writes,
etc., and network characteristics such as latency, band-
width, and error rates. At the point labeled “1” in the
consistency spectrum in Figure 1(b), a modest increase
in performance corresponds to a relatively large increase
in inconsistency for application classes corresponding to
the top curve, perhaps making the tradeoff unattractive
for these applications. Conversely, at point “2,” large
performance increases are available in exchange for a
relatively small increase in inconsistency for applica-
tions represented by the bottom curve.

Thus, the goals of this work are: i) to explore the is-
sues associated with filling the semantic, performance,
and availability gap between optimistic and strong con-
sistency models, ii) to develop a set of metrics that allow
a broad range of replicated services to conveniently and
quantitatively express their consistency requirements,
iii) to quantify the tradeoff between performance and
consistency for a number of sample applications, and
iv) to show the benefits of dynamically adapting consis-
tency bounds in response to current network, replica, and
client-request characteristics. To this end, we present
the design, implementation, and evaluation of the TACT
toolkit. TACT is a middleware layer that accepts specifi-
cations of application consistency requirements and me-
diates read/write access to an underlying data store. If
an operation does not violate pre-specified consistency
requirements, it proceeds locally (without contacting re-

mote replicas). Otherwise, the operation blocks until
TACT is able to synchronize with one or more remote
replicas (i.e., push or pull some subset of local/remote
updates) as determined by system consistency require-
ments.

We propose three metrics,Numerical Error, Order
Error, andStaleness, to bound consistency. Numerical
error limits the total weight of writes that can be applied
across all replicas before being propagated to a given
replica. Order error limits the number of tentative writes
(subject to reordering) that can be outstanding at any one
replica, and staleness places a real-time bound on the de-
lay of write propagation among replicas. Algorithms are
then designed to bound each metric: Numerical error is
bounded using a push approach based solely on local
information; a write commitment algorithm combined
with compulsory write pull enforces order error bound;
and staleness is maintained using real-time vector. To
evaluate the effectiveness of our system, we implement
and deploy across the wide area three applications with
a broad range of dynamically changing consistency re-
quirements using the TACT toolkit: an airline reserva-
tion system, a distributed bulletin board service, and load
distribution front ends to a Web server. Relative to strong
consistency techniques, TACT improves the throughput
of these applications by up to a factor of 10. Relative
to weak consistency approaches, TACT provides strong
semantic guarantees regarding the maximum inconsis-
tency observed by individual read and write operations.

The rest of this paper is organized as follows. Sec-
tion 2 describes the three network services implemented
in the TACT framework to motivate our system archi-
tecture. Section 3 presents the system model and design
we adopt for our target services. Next, Section 4 details
the TACT architecture and Section 5 evaluates the per-
formance of our three applications in the TACT frame-
work. Finally, Section 6 places our work in the context



of related work and Section 7 presents our conclusions.

2 Applications

2.1 Airline Reservations

Our first application is a simple replicated airline
reservation system that is designed to be representative
of replicated E-commerce services that accept inquiries
(searches) and purchase orders on a catalog. In our im-
plementation, each server maintains a full replica of the
flight information database and accepts user reservations
and inquiries about seat availability. Consistency in this
application is measured by the percentage of requests
that access inconsistent results. For example, in the face
of divergent replica images, a user may observe an avail-
able seat, when in fact the seat has been booked at an-
other replica (false positive). Or a user may see a par-
ticular seat is booked when in fact, it is available (false
negative). Intuitively, the probability of such events is
proportional to the distance between the local replica im-
age and some consistent final image.

One interesting aspect of this application is that its
consistency requirements change dynamically based on
client, network, and application characteristics. For in-
stance, the system may wish to minimize the rate of
inquiries/updates that observe inconsistent intermediate
states for certain preferred clients. Requests from such
clients may require a replica to update its consistency
level (by synchronizing with other replicas) before pro-
cessing the request or may be directed to a replica that
maintains the requisite consistency by default. As an-
other example, if network capacity (latency, bandwidth,
error rate) among replicas is abundant, the absolute per-
formance/availability savings may not be sufficient to
outweigh the costs associated with weaker consistency
models. Finally, the desired consistency level depends
on individual application semantics. For airline reserva-
tions, the cost of a transaction that must be rolled back is
fairly small when a flight is empty (one can likely find an
alternate seat on the same flight), but grows as the flight
fills.

2.2 Bulletin Board

The bulletin board application is a replicated mes-
sage posting service modeled after more sophisticated
services such as USENET. Messages are posted to indi-
vidual replicas. Sets of updates are propagated among
replicas, ensuring that all messages are eventually dis-
tributed to all replicas. This application is intended to be
representative of interactive applications that often allow

concurrent read/write access under the assumption that
conflicts are rare or can be resolved automatically.

Desirable consistency requirements for the bulletin
board example include maintaining causal and/or total
order among messages posted at different replicas. With
causal order, a reply to a message will never appear be-
fore the original message at any replica. Total order en-
sures that all messages appear in the same order at all
replicas, allowing the service to assign globally unique
identifiers to each message. Another interesting consis-
tency requirement for interactive applications, including
the bulletin board, is to guarantee that at any timet, no
more thank messages posted beforet are missing from
the local replica.

2.3 QoS Load Distribution

The final application implemented in our framework
is a load distribution mechanism that provides Quality
of Service (QoS) guarantees to a set of preferred clients.
In this scenario, front-ends (as in LARD [27]) accept re-
quests on behalf of two classes of clients, standard and
preferred. The front ends forward requests to back end
servers with the goal of reserving some pre-determined
portion of server capacity for preferred clients. Thus,
front ends allow a maximum number of outstanding re-
quests (assuming homogeneous requests) at the back end
servers. To determine the maximum number of “stan-
dard” requests that should be forwarded, each front end
must communicate current access patterns to all other
front ends.

One goal of designing such a system is to minimize
the communication required to accurately distribute such
load information among front ends. This QoS applica-
tion is intended to be representative of services that in-
dependently track the same logical data value at multiple
sites, such as a distributed sensor array, a load balancing
system, or an aggregation query. Such services are often
able to tolerate some bounded inaccuracy in the under-
lying values they track (e.g., average temperature, server
load, or employee salary) in exchange for reduced com-
munication overhead or power consumption.

3 System Design

In this section, we first describe the basic replica-
tion system model we assume, and then elaborate on the
model and metrics we provide to allow applications to
continuously specify consistency level.

3.1 System Model

For simplicity, we refer to application data as a
data store, though the data can actually be stored in a



database, file system, persistent object, etc. The data
store is replicated in full at multiple sites. Each replica
accepts requests from users that can be made up of multi-
ple primitive read/write operations. TACT mediates ap-
plication read/write access to the data store. On a sin-
gle replica, a read or write is isolated from other reads
or writes during execution. Depending on the specified
consistency requirements, a replica may need to contact
other replicas before processing a particular request.

Replicas exchange updates by propagating writes.
This can take the form of gossip messages [22], anti-
entropy sessions [13, 28], group communication [5],
broadcast, etc. We chose anti-entropy exchange as our
write propagation method because of its flexibility in
operating under a variety of network scenarios. Each
write bears an accept stamp composed of a logical clock
time [23] and the identifier of the accepting replica.
Replicas deterministically order all writes based on this
accept stamp. As in Bayou [28, 34], updates are proce-
dures that check for conflicts with the underlying data
store before being applied in atentativestate. A write is
tentative until a replica is able to determine the write’s
final position in the serialization order, at which point it
becomescommittedthrough a write commitment algo-
rithm (described below).

Each replica maintains a logical time vector, similar
to that employed in Bayou and in Golding’s work [13,
28, 34]. Briefly, each entry in the vector corresponds
to the latest updates seen from a particular replica. The
coverage propertyensures that a replica has seen all up-
dates (remote and local) up to the logical time corre-
sponding to the minimum value in its logical time vector.
This means the serialization positions of all writes with
smaller logical time than that minimal value can be de-
termined and thus those writes can be committed. Anti-
entropy sessions update values in each replica’s logical
time vector based on the logical times/replicas of the
writes exchanged. Note that writes may have to be re-
ordered or rolled back before as dictated by serialization
order.

While TACT’s implementation of anti-entropy is not
particularly novel, a primary aspect of our work is de-
termining when and with whom to perform anti-entropy
in order to guarantee a minimum level of consistency.
Replicas may propagate writes to other replicas at any
time throughvoluntary anti-entropy. However, we are
more concerned with write propagation required for
maintaining a desired level of consistency, calledcom-
pulsory anti-entropy. Compulsory anti-entropy is neces-
sary for the correctness of the system, while voluntary
anti-entropy only affects performance.

3.2 A Continuous Consistency Model

In our consistency model, applications specify their
application-specific consistency semantics usingconits.
A conit is a physical or logical unit of consistency, de-
fined by the application. For example, in the airline
reservation example, individual flights or blocks of seats
on a flight may be defined as a conit. An interesting
issue beyond the scope of this paper is setting the granu-
larity of conits. The required per-conit accounting over-
head (described below) argues for coarse conit granu-
larity. Conversely, coarse-grained conits may introduce
issues of false sharing as updates to one data item in a
conit may reduce performance/availability for accesses
to logically unrelated data items in the same conit.

For each conit, we quantify consistency continuously
along a three-dimensional vector:

Consistency =

(Numerical Error; Order Error; Staleness)

Numerical Error bounds the discrepancy between the
value of the conit relative to its value in the “final image.”
For applications that maintain numerical records, the se-
mantics of this metric are straightforward. For other
applications, however, application-specific weights (de-
faulting to one) can be assigned to individual writes. The
weights are the relative importance of the writes, from
the application’s point of view. Numerical error then
becomes the total weighted unseen writes for a conit.
Based on application semantics, two different kinds of
numerical error, absolute numerical error and relative
numerical error, can be defined.Order Error measures
the difference between the order that updates are applied
to the local replica relative to their ordering in the even-
tual “final image.” Stalenessbounds the difference be-
tween the current time and the acceptance time of the
oldest write on a conit not seen locally.

Figure 2 illustrates the definition of order error and
numerical error in a simple example. Two replicas,A

andB, accept updates on a conit containing two data
items,x andy. The logical time vector forA is (24; 5).
The coverage property implies that all writes in its log
with logical time less than or equal to five are commit-
ted (indicated by the shaded box), leaving three tenta-
tive writes. Similarly, the logical time vector forB is
(0; 17), meaning that both writes in its log are tentative.
Order error bounds the maximum number of tentative
writes at a replica, i.e., the maximum number of writes
that may have to be reordered or rolled back because of
activity at other replicas. In general, a lower bound on
order error implies a lower probability that a read will
observe an inconsistent intermediate state. In this exam-
ple, ifA0s order error is bounded to three,Amust invoke
the write commitment algorithm—performing compul-



Replica A Replica B

(23, A): y+= 3

(14, A): x += 1

(10, A): y += 1

(5, B): x += 2

(16, B): y += 1

(5, B): x += 2

Conit:
x = 2
y = 1

Conit:
x = 3
y = 4

“Push” to bound
Numerical Error

“Pull” to bound
Order Error

Logical Time Vector: (0, 17)
Order Error: 2
Numerical Error: 3 (5)

Logical Time Vector: (24, 5)
Order Error: 3
Numerical Error: 1 (1)

Figure 2: Example scenario for bounding order error and numerical error with two replicas.

sory anti-entropy to pull any necessary updates fromB

to reduce its number of tentative writes—before accept-
ing any new writes.

Figure 2 also depicts the role of numerical error. Nu-
merical error is the weight of all updates applied to a
conit atall replicas not seen by the local replica. In the
example, the weight of a write is set to be the update
amount to eitherx or y, so that a “major” update is more
important than a “minor” update. The replicaA has not
seen one update (with a weight of one) in this example,
while B has not seen three updates (with a total weight
of five). Note that order error can be relaxed or tightened
using only local information. Bounding numerical er-
ror, on the other hand, relies upon the cooperation of all
replicas. Thus, dynamically changing numerical error
bounds requires the execution of a consensus algorithm.

One benefit of our model is that conit consistency can
be bounded on a per-replica basis. Instead of enforcing a
system-wide uniform consistency level, each replica can
have its own independent consistency level for a conit.
A simple analysis can show that as a replica relaxes
its consistency while other replicas’ consistency levels
remain unchanged, the total communication amount of
that replica is reduced. For relaxed numerical error, it
means other replicas can push writes to that replica less
frequently, resulting in fewer incoming messages. Out-
going communication amount remains unchanged since
that is determined by the consistency levels of other
replicas. However, since numerical error is bounded us-
ing a push approach, if the replica is too busy to han-
dle the outgoing communication, writes submitted to it
will be delayed. Similar, if the replica relaxes order er-
ror and staleness, incoming communication amount will
be decreased. Thus, one site may have poor network
connectivity and limited processing power, making more
relaxed consistency bounds appropriate for that replica.

Conversely, it may be cheap (from a performance and
availability standpoint) to enforce stronger consistency
at a replica with faster links and higher processing ca-
pacity. One interesting aspect of this model is that it
potentially allows the system to route client requests to
replicas with appropriate consistency bounds on a per-
request basis. For instance, in the airline reservation sys-
tem, requests from “preferred” clients may be directed to
a replica that maintains higher consistency levels (reduc-
ing the probability of an inconsistent access).

When all three metrics are bounded to zero, our con-
tinuous consistency model reaches the strong consis-
tency extreme of the spectrum, which is serializabil-
ity [4] and external consistency [1, 12]. If no bounds are
set for any of the metrics, there will be no consistency
guarantees, similar to optimistic consistency systems. In
moving from strong to optimistic consistency, applica-
tions bound the maximum logical “distance” between
the local replica image and the (unknown) consistent im-
age that contains all writes in serial order. This distance
corresponds directly to the percentage chance that a read
will observe inconsistent results or that a write will in-
troduce a conflict. In the next section, we will demon-
strate how our three applications employ these metrics
to capture their consistency requirements. Based on our
experience with TACT, we believe that the above metrics
allow a broad range of applications to conveniently ex-
press their consistency requirements. Of course, the ex-
act set of metrics is orthogonal to our goal of exporting a
flexible, continuous, and dynamically tunable spectrum
of consistency models to replicated services.



Application Consistency Semantics Conit Definition Weight Definition Metrics Capturing the Semantics

Bulletin A. Message Ordering A Newsgroup (Subjective) A. Order Error
Board B. Unseen Messages Importance of B. Absolute Numerical Error

C. Message Delay a News Message C. Staleness
Airline A. Reservation Conflict Seats on a Flight Reservation: 1 A. Relative Numerical Error
Reservation RateR Rmax = 1� 1=(1 + 
)

B. Inconsistent Query Ravg = (1� 1=(1 + 
))=2

Results B. Order Error and Staleness
QoS Load A. Accuracy of Resource Resource Request Forward: 1 A. Relative Numerical Error
Distribution Consumption Info Consumption Info Request Return : -1

Table 1: Expressing high-level application-specific consistency semantics using the TACT continuous consistency
model.

3.3 Expressing Application-specific Consis-
tency Semantics through Conits

One important criteria for the evaluation of any con-
sistency model is whether it captures the semantic re-
quirements of a broad range of applications. Thus, in
this section we describe the ways different consistency
levels affect the semantics of the three representative ap-
plications described in Section 2 and explain how these
semantics are captured by our model. Table 1 sum-
marizes these application-specific consistency semantics
and their expression using TACT, as detailed in the dis-
cussion below.

For the distributed bulletin board, one consistency re-
quirement is the ordering of messages, which is captured
by the order error metric. More specifically, for this ap-
plication order error is the number of messages that may
appear out of order at any replica. However, it is possible
that such a bound is overly restrictive for unrelated mes-
sages, e.g., for two messages posted to different news-
groups. In this case, a conit can be defined for each
newsgroup to more precisely specify ordering require-
ments. Another possible consistency requirement is the
maximum number of remotely posted messages that are
unseen by the local replica at a particular time. Our nu-
merical error metric serves to express this type of seman-
tics. Our model allows application-specific weights to be
assigned to each write, allowing users to (subjectively)
force the propagation of certain writes. A third consis-
tency requirement for this application is message delay,
that is, the delay between the time a message is posted
and the time it is seen by all replicas. This requirement
can be translated to staleness in a straight-forward man-
ner.

Moving to the airline reservation example, one im-
portant manifestation of system consistency is the per-
centage of conflicting reservations. An interesting as-
pect of this application is TACT’s ability to limit reser-
vation conflict rate by bounding relative numerical error
based on the application’s estimate of available seats. To

simplify the discussion, we assume single seat reserva-
tions (though our model and implementation are more
general) and define a conit over all seats on a flight
with each reservation carrying a numerical weight of -
1. Initially, the value of the conit is the total number of
seats on the flight. As reservations come in, the value
of the conit is the number of available seats in each
replica’s data store. Suppose reservations are randomly
distributed among all available seats. For a reservation
accepted by one replica, the probability that it conflicts
with another remote (unseen) reservation isU=V , where
U is the number of unseen reservations, andV is the
number of available seats as seen by the local replica.
SupposeVfinal is the accurate count of available seats,
such thatVfinal = V � U . Thus, the rate of conflicting
reservations,R, equals1 � Vfinal=V . If 
 bounds the
maximum relative numerical error of the conit then, by
definition, we have�
 � 1 � V=Vfinal ) Vfinal �

1=(1 + 
) � V . Thus, the upper bound onR, Rmax =
1� Vfinal=V = 1� 1=(1 + 
). Since in this example,
Vfinal is always smaller than or equal toV , the average
value ofVfinal should then be(1 + 1=(1 + 
))=2� Vi
Thus, the average rate of conflicting reservations,Ravg ,
equals to1 � Vfinal=V = 1 � (1 + 1=(1 + 
))=2 =
(1� 1=(1+ 
))=2. In Section 5, we present experimen-
tal results to verify this analysis. Non-random reserva-
tion behavior will result in a higher conflict rate than the
above formula. However, applications can still reduce
the expected/maximum conflict rate by specifying mul-
tiple conits per flight, e.g., multiple conits for first class
versus coach seats or aisle versus window seats.

Other consistency semantics for the airline reservation
example can be expressed using order error or staleness.
For example, the system may wish to limit the percent-
age of queries that access an inconsistent image, i.e., see
a multi-seat reservation that must later be rolled back be-
cause of a conflicting single-seat reservation at another
replica. Such consistency semantics can be enforced by
properly bounding the limit on order error (an analysis



is omitted for brevity).
In our third application, QoS load distribution, front

ends estimate the total resource consumption for stan-
dard clients as the total number of outstanding standard
requests on the back ends. This value also serves as the
definition of a conit for this application. Front ends in-
crease this value by 1 upon forwarding a request from
a standard client and decrease it by 1 when the request
returns. If this value exceeds a pre-determined resource
consumption limit, front ends will not forward new stan-
dard client requests until resource consumption drops
below this limit. The relative numerical error of each
front end’s estimate of resource consumption captures
this application’s consistency semantics — each front
end is guaranteed that its estimate of resource consump-
tion is accurate within a fixed bound. Note that this load
balancing application is not concerned with order error
(writes are interchangeable) or staleness (no need to syn-
chronize if the mix of requests does not change).

3.4 Bounding Consistency Metrics

Given the assumed system model, we now describe in
turn our algorithms for bounding numerical error, order
error, and staleness. Note that the details and correct-
ness proofs for our numerical error algorithms available
separately [38].

The first algorithm, Split-weight AE, employs a
“push” approach to bound absolute numerical error. It
“allocates” the allowed positive and negative error for a
server evenly to other servers. Eachserveri maintains
two local variablesx andy for serverj ; j 6= i. Intu-
itively, the variablex is the total weight of negatively-
weighted writes thatserveri accepts but has not been
seen byserverj . serveri has only conservative knowl-
edge (called itsview) of what writesserverj has seen.
The variablex is updated whenserveri accepts a new
write with a negative weight or whenserveri’s view
is advanced. Similarly, the variabley records the total
weight of positively-weighted writes. Suppose the abso-
lute error bound onserverj is �j . In other words, we
want to ensure thatjVfinal � Vj j � �j , whereVfinal
is the consistent value andVj is the value onserverj .
To achieve this,serveri makes sure that at all times,
x � ��j=(n � 1) andy � �j=(n � 1), wheren is
the total number of servers in the system. This may re-
quireserveri to push writes toserverj before accepting
a new write.

Split-Weight AE is pessimistic in the sense that
serveri may propagate writes toserverj when not
actually necessary. For example, the algorithm does
not consider the case where negative weights and pos-
itive weights may offset each other. We developed an-
other optimal algorithm,Compound-Weight AE, to ad-

dress this limitation at the cost of increased space over-
head. However, simulations indicate that potential per-
formance improvements do not justify the additional
computational complexity and space overhead [38].

A third algorithm, Inductive RE, provides an effi-
cient mechanism for bounding the relative error in nu-
merical records. The algorithm transforms relative er-
ror into absolute error. Suppose the relative error
bound for serverj is 
j , that is, we want to ensure
j1 � Vj=Vfinalj � 
j , equivalent tojVfinal � Vj j �


j � Vfinal. A naive transforming approach would use

j � Vfinal as the corresponding absolute error bound,
requiring a consensus algorithm to be run to determine a
new absolute error bound each timeVfinal changes.

Our approach avoids this cost by conservatively re-
lying upon local information as follows. We observe
that the current valueVi on anyserveri was properly
bounded before the invocation of the algorithm and is
an approximation ofVfinal. Soserveri may useVi as
an approximate norm to bound relative error for other
servers. More specifically, forserveri, we know that
Vfinal � Vi � �
i � Vfinal, where
i is the relative er-
ror bound forserveri, which transforms toVfinal �
Vi=(1 + 
i). Using this information to substitute for
Vfinal on the right-hand side in the inequality in the last
paragraph produces:

jVfinal � Vj j � 
j �
Vi

1 + 
i

Thus, to bound relative error,serveri only needs to
recursively apply Split-Weight AE, using
j � Vi=(1 +

i) as �j . Note that while this approach greatly in-
creases performance by eliminating the need to run a
consensus algorithm among replicas, it uses local in-
formation (Vi=(1 + 
i)) to approximate potentially un-
known global information (Vfinal) in bounding relative
error. Thus it behaves conservatively (bounding values
more than strictly necessary) when relative error is high
as will be shown in our evaluation of these algorithms in
Section 5.

To bound order error on a per-conit basis, a replica
first checks the number of tentative writes on a conit
in its write log. If this number exceeds the order error
limit, the replica invokes a write commitment algorithm
to reduce the number of tentative writes in its write log.
This algorithm operates as follows. The replica pulls
writes from other replicas by performing compulsory
anti-entropy sessions to advance its logical time vector,
allowing it to commit some set of its tentative writes.
In doing so, the replica ensures that it remains within a
specified order error bound before accepting new tenta-
tive writes.

To bound the staleness of a replica, each server main-
tains areal time vector. This vector is similar to the log-



ical time vector, except that real time instead of logical
time is used. A similar coverage property is preserved
between the writes a server has seen and the real time
vector. If A’s real time vector entry corresponding to
B is t, then A has seen all writes accepted by B before
real timet. To bound staleness withinl, a server checks
whethercurrent time � t < l holds for each entry in
the real time vector.1 If the inequality does not hold
for some entries, the server performs compulsory anti-
entropy session with the corresponding servers, pulling
writes from them, and advances the real time vector.
This pull approach may appear to be less efficient than a
push approach because of unnecessary polling when no
updates are available. However, a push approach can-
not bound staleness if there is no upper limit on network
delay or processing time.

4 System Architecture

The current prototype of TACT is implemented in
Java 1.2 using RMI for communication (e.g., for ac-
cepting read/write requests and for write propagation).
TACT replicas are multi-threaded, thus if one write in-
curs compulsory write propagation, it will not block
writes on other conits. We implemented a simple custom
database for storing and retrieving data values, though
our design and implementation is compatible with a va-
riety of storage mechanisms.

Each TACT replica maintains a write log, and allows
redo and undo on the write log. It is also responsi-
ble for all anti-entropy sessions with remote replicas.
The system supports parallel anti-entropy sessions with
multiple replicas, which can improve performance sig-
nificantly for compulsory anti-entropy across the wide
area. For increased efficiency, we also implement a one-
round anti-entropy push. With standard anti-entropy, be-
fore a replica pushes writes to another replica, it first
obtains the target replica’s logical time vector to deter-
mine which writes to propagate. However, we found that
this two-round protocol can add considerable overhead
across the wide area, especially at stronger consistency
levels (where the pushing replica has a fairly good notion
of the writes seen by the target replica). Thus, we allow
replicas to push writes using their local view as a hint, re-
ducing two rounds of communication to one round at the
cost of possibly propagating unnecessary writes. While
the current implementation uses this one round protocol
by default, dynamically switching between the variants
based on the consistency level would be ideal.

TACT replicas also implement a consistency manager
responsible for bounding numerical error, order error

1We assume that server clocks are loosely synchronized.

and staleness. The variables needed by the Split-Weight
AE and Inductive RE algorithms are maintained in hash
tables to reduce space overhead and enable the system to
potentially scale to thousands of conits.

In bounding numerical error, a replica may need to
push a write to other replicas before the write can re-
turn, e.g., if a write has a weight that is larger than an-
other replica’s absolute error bound. There are two pos-
sible approaches for addressing this. One approach is a
one-round protocol where the local site applies the write,
propagates it to the necessary remote replicas, awaits ac-
knowledgments, and finally returns. This one-round pro-
tocol is appropriate for applications where writes are in-
terchangeable such as resource accounting/load balanc-
ing. For other applications, such as the airline reserva-
tion example, a reservation itself observes a consistency
level (the probability it conflicts with another reserva-
tion submitted elsewhere). In such a case, a stronger
two-round protocol is required where the replica first
acquires remote data locks, pushes the write to remote
replicas, and then returns after receiving all acknowledg-
ments. Such a two-round protocol ensures the numerical
error observed by a write is within bound at the time the
update is submitted. In our prototype, both protocols are
implemented and the application is allowed to choose
based on its own requirements.

5 Experience and Evaluation

Given the description of our system architecture, we
now discuss our experience in building the three appli-
cations described in Section 2 using the TACT infras-
tructure. We define conits and weights in these applica-
tions according to the analysis in Section 3.3. The exper-
iments below focus on TACT’s ability to bound numeri-
cal error and order error. While implemented in our pro-
totype, we do not present experiments addressing stale-
ness for brevity and because bounding staleness is well-
studied, e.g., in the context of Web proxy caching [10].

5.1 Bulletin Board

For our evaluation of the bulletin board application,
we deployed replicas at three sites across the wide area:
Duke University (733 Mhz Pentium III/Solaris 2.8), Uni-
versity of Utah (350 Mhz Pentium II/FreeBSD 3.4)
and University of California, Berkeley (167 Mhz Ultra
I/Solaris 2.7). All data is collected on otherwise un-
loaded systems. Each submitted message is assigned a
numerical weight of one (all messages are considered
equally important).

We conduct a number of experiments to explore the
behavior of the system at different points in the con-
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Figure 3: Average latency for posting messages to a
replicated bulletin board as a function of consistency
guarantees.
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Figure 4: Breakdown of the overhead of posting a mes-
sage under a number of scenarios.

sistency spectrum. Figure 3 plots the average latency
for a client at Duke to post 200 messages as a function
of the numerical error bound on the x-axis. For com-
parison, we also plot the average latency for a conven-
tional implementation using a two-phase update proto-
col. For each write, this protocol first acquires necessary
remote data locks, then propagates the update to all re-
mote replicas. The figure shows how applications are
able to continuously trade performance for consistency
using TACT. As the numerical error bound increases, av-
erage latency decreases. Increasing allowable order er-
ror similarly produces a corresponding decrease in av-
erage latency. Relative to the conventional implementa-
tion, allowing each replica to have up to 20 unseen mes-
sages and leaving order error unbounded reduces aver-
age latency by a factor of 10.

One interesting aspect of Figure 3 is that TACT per-
forms worse than the standard two-phase update proto-
col at the strong consistency end of the spectrum. To

investigate this overhead, Figure 4 summarizes the per-
formance overheads associated with message posts us-
ing TACT at four points in the consistency spectrum
(varying order error with numerical error set to zero) in
comparison to the conventional two-phase update proto-
col. All five configurations incur approximately 130ms
to sequentially (required to avoid deadlock) acquire data
locks from two remote replicas and 80ms to push writes
to these replicas in parallel. Since the cost of remote pro-
cessing is negligible, this overhead comes largely from
wide-area latency. Compared to the conventional imple-
mentation, TACT with zero numerical error and zero or-
der error (i.e., same consistency level) incurs about 83%
more overhead. This additional overhead stems from the
additional 140ms to bound order error. This is an in-
teresting side effect associated with our implementation.
Our design decomposes consistency into two orthogo-
nal components (numerical error and order error) that
are bounded using two separate operations, doubling the
number of wide-area round trip times. When order error
and numerical error are both zero, TACT should com-
bine the push and pull of write operations into a single
step as a performance optimization, as is logically done
by the conventional implementation. This idea is espe-
cially applicable if we use the recently proposed quo-
rum approach[16, 17] to commit writes. A preliminary
implementation of this optimization shows that TACT’s
overhead (at strong consistency) drops from 367ms to
about 217ms, within 8% of the conventional approach.

5.2 Airline Reservation System

We now evaluate our implementation of the simple
airline reservation system using TACT. Once again, we
deployed three reservation replicas at Duke, Utah and
Berkeley. We considered reservation requests for a sin-
gle flight with 400 seats. Each client reservation request
is for a randomly chosen seat on the flight. If a tentative
reservation conflicts with a request at another replica, a
merge procedure attempts to reserve a second seat on the
same flight. If no seats are available, the reservation is
discarded. A conit is defined over all seats on the flight,
with an initial value of 400. Each reservation carries a
numerical weight of -1.

In Section 3.3, we derived a relationship between the
reservation conflict rateR and the relative error bound
:
Rmax = 1� 1=(1+ 
) andRavg = (1� 1=(1+ 
))=2.
We conduct the following experiment to verify that an
application can limit the reservation conflict rate by sim-
ply bounding the relative numerical error. Figure 5 plots
the measured conflicting reservation rateR, the com-
puted upper boundRmax and the computed average rate
Ravg as a function of relative numerical error. Order er-
ror and staleness are not bounded in these experiments.
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Figure 6: Average latency for making a reservation as a
function of consistency guarantees.

The experiments are performed with two replicas on a
LAN at Duke, each attempting to make 250 (random)
reservations with the results averaged across four runs.

The measured conflict rate roughly matches the com-
puted average rate and is always below the computed
upper bound, demonstrating that numerical error can be
used to bound conflicting accesses as shown by our anal-
ysis. Note that as the bound on relative error is relaxed,
the discrepancy between the measured rate and the com-
puted average rate gradually increases because of con-
servativeness inherent in the design of our Inductive RE
algorithm (i.e., at relaxed consistency, our algorithm per-
forms more write propagation than necessary). As de-
scribed in Section 3, this conservative behavior greatly
improves performance by allowing each replica to bound
relative error using only local information.

The latency and throughput measurements, summa-
rized in Figures 6 and 7 for airline reservations are sim-
ilar to the bulletin board application described above.
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Figure 7: Update throughput for airline reservations as a
function of consistency guarantees.

The latency experiments are run on the same wide-area
configuration as the bulletin board. The plotted latency
is the average observed by a single Duke client mak-
ing 400 reservations. For throughput, we run two client
threads at each of the replica sites, with each thread re-
questing400=(2 � 3) = 67 (random) seats in a tight
loop. We also plot the application’s performance using
a two-phase update protocol, showing the same trends
as the results for the bulletin board application. As con-
sistency is gradually relaxed, TACT achieves increasing
performance by reducing the amount of required wide-
area communication.

5.3 Quality of Service for Web Servers

For our final application, we demonstrate how
TACT’s numerical error bound can be used to accurately
enforce quality of service (QoS) guarantees among Web
servers distributed across the wide area. Recall that a
number of front-end machines forward requests on be-
half of both standard and preferred clients to back end
servers. In our implementation, we use TACT to dy-
namically trade communication overhead in exchange
for accuracy in measuring total resources consumed by
standard clients. The front ends estimate the standard
client resource consumption as the total number of out-
standing standard requests on the back ends. If this re-
source consumption exceeds a pre-determined resource
consumption limit, front ends will not forward new stan-
dard client requests until resource consumption drops
below this limit. For simplicity, all our experiments are
run on a local-area network at Duke on seven 733 Mhz
Pentium III’s running Solaris 2.8. Three front ends (each
running on a separate machine) generate requests in a
round robin fashion to three back end servers running
Apache 1.3.12.
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Figure 8: The average latency seen by a preferred client
as a function of time.

Configuration Consistency
Messages

Relative Error=0 300
Relative Error=0.3 46
Relative Error=0.5 30
Relative Error=1 16
No QoS Guarantee 0

Table 2: The tradeoff between TACT-enforced numeri-
cal error and communication overhead.

For our experiments, the three front end machines
generate an increasing number of requests from standard
clients. As a whole, the system desires to bound the
number of outstanding standard client requests to 150.
A fourth machine, representing a preferred client, peri-
odically polls a random back end to determine system
latency. Each of the three front ends starts a new stan-
dard client every two seconds which then continuously
requests the same dynamically generated Web page re-
quiring 10ms of computation time. If all front ends had
global knowledge of system state, each front end would
start a total of 50 standard clients. However, depending
on the bound placed on numerical error, front ends may
in fact start more than this number (up to 130 in the ex-
periment described below). For simplicity, no standard
clients are torn down even if the system learns that too
many (i.e., more than 150) are present in aggregate. Ide-
ally, this aggregate number would oscillate around 150
with the amplitude of the oscillation being determined
by the relative numerical bound.

Figure 8 depicts latency observed by the preferred
client as a function of elapsed time (corresponding to
the total number of standard clients making requests).
At time 260, each front end has tried to spawn up to 130
standard clients. The curves show the average latency

observed by the preferred client for different bounds on
numerical error. For comparison purposes, we also show
the latency (1745ms) of a preferred client when there are
exactly 150 outstanding standard client requests. In the
first curve, labeled “Relative Error=0,” the system main-
tains strong consistency. Therefore, the front ends are
able to enforce the resource limit strictly. The curve cor-
responding to a relative error of 0 flattens at 100 sec-
onds (when three front ends have created a total of 150
standard clients) with latency very close to the ideal of
1745ms. As the bound on relative error is relaxed to 0.3,
0.5, and 1, the resource consumption limit for standard
clients is more loosely enforced. The curve “NoQoS”
plots the latency where no resource policy is enforced.
Similar to the airline reservation application, the discrep-
ancy between the relative error upper bound of 1 and the
“No Qos” curve stems from the conservativeness of the
Inductive RE algorithm.

Table 2 quantifies the tradeoff between numerical er-
ror and communication overhead. Clearly, front ends
can maintain near-perfect information about the load
generated from other replicas at the cost of sending one
message to all peers for each event that takes place. This
is the case when zero numerical error is enforced by
TACT: Each replica sends 50 messages to each of two
remote replicas (for a total of 300) corresponding to the
number of logical events that take place during the ex-
periment. Once each front end starts 50 standard clients,
strong consistency ensures that no further messages are
necessary. Of course, such accuracy is typically not re-
quired by this application. Table 2 shows that commu-
nication overhead drops rapidly in exchange for some
loss of accuracy. Note that this drop off will be more
dramatic as the number of replicas is increased as a re-
sult of the all-to-all communication required to maintain
strong consistency.

6 Related Work

The tradeoff between consistency and perfor-
mance/availability is well understood [7, 8]. Many
systems have been built at the two extremes of the
consistency spectrum. Traditional replicated trans-
actional databases use strong consistency (one-copy
serializability [4]) as a correctness criterion. At the
other end of the spectrum are optimistic systems such as
Bayou [28, 34], Ficus [14], Rumor [15] and Coda [18].
In these systems, higher availability/performance is
explicitly favored over strong consistency. Besides
Bayou, none of the above systems provide support for
different consistency levels. Bayou provides session
guarantees [9, 33] to ensure that clients switching from
one replica to another view a self-consistent version of



the underlying database. However, session guarantees
do not provide any guarantees regarding the consistency
level of a particular replica.

In [37], we present a position paper describing an
earlier iteration of our consistency model, using dif-
ferent consistency metrics and concentrating on con-
sistency/availability tradeoffs. A number of other ef-
forts also attempt to numerically capture applications’
consistency requirements. These techniques can be
vaguely categorized into two classes: Relaxing consis-
tency among replicas to reduce required communica-
tion (replica control) [3, 6, 19, 26, 32, 35] and relax-
ing consistency for transactions on a single site to allow
increased concurrency on that site (concurrency con-
trol) [2, 20, 21, 29, 30, 36]. TACT is more closely related
to replica control techniques. However, previous con-
sistency models for replica control typically exploit the
consistency semantics of a particular application class,
abstracting its consistency requirements along a single
dimension. Most of the proposed consistency metrics
can be expressed within our model by constraining a
subset of numerical error, order error, and staleness. Kr-
ishnakumar and Bernstein [19] propose the concept of
an “N-ignorant” system, where a transaction runs in par-
allel with at mostN conflicting transactions. By set-
ting absolute numerical error bound toN and by assign-
ing unit weights to writes, TACT demonstrates behav-
ior similar to an “N-ignorant” system. Timed consis-
tency [35] and delta consistency [32] address the lack
of timing in traditional consistency models such as se-
quential consistency. These timed models can be read-
ily expressed using our staleness metric. Quasi-copy
caching [3] proposes four “coherency conditions,” de-
lay condition, frequency condition, arithmetic condition
and version condition appropriate for read-only caching.
TACT, on the other hand, is designed for more gen-
eral read/write replication. Two recent efforts [6, 26]
use metrics related to numerical error and staleness to
measure database freshness. However, these systems do
not provide mechanisms to bound data consistency us-
ing the proposed metrics. Relative to these efforts, our
conit-based three-dimensional consistency model allows
a wide range of services to dynamically express their
consistency semantics based on application, network,
and client-specific characteristics.

Concurrency control techniques using relaxed consis-
tency models [2, 20, 21, 29, 30, 36] are related to replica
control and TACT, in that consistency also needs to be
quantified there. However, enforcing user-defined con-
sistency levels is inherently easier in concurrency con-
trol than in replica control because in the former case
most information needed to compute the amount of in-
consistency is available on a single site. In other words,
the consistency models do not need to consider “final

image,” which might be unknown to all replicas. Since
all our three metrics are related to “final image,” none of
them can be expressed using relaxed consistency models
for concurrency control.

In fluid replication [24], clients are allowed to dynam-
ically create service replicas to improve performance.
Their study on when and where to create a service
replica is complementary to our study on tunable con-
sistency issues among replicas. Similar to Ladin’s sys-
tem [22], fluid replication supports three consistency
levels: last-writer, optimistic and pessimistic. Our work
focuses on capturing the spectrum between optimistic
and pessimistic consistency models. Varying the fre-
quency of reconciliation in fluid replication allows ap-
plications to adjust the “strength” of the last-writer and
optimistic models. Bounding staleness in TACT has
similar effects. However, as motivated earlier, staleness
alone does not fully capture application-specific consis-
tency requirements.

Fox and Brewer [11] argue that strong consistency and
one-copy availability cannot be achieved simultaneously
in the presence of network partitions. In the context
of the Inktomi search engine, they show how to trade
harvest for yield. Harvest measures the fraction of the
data reflected in the response, while yield is the prob-
ability of completing a request. In TACT, we concen-
trate on consistency among service replicas, but a similar
“harvest” concept can also be defined using our consis-
tency metrics. For example, bounding numerical error
has similar effects as guaranteeing a particular harvest.
Finally, Olston and Widom [25] address tunable perfor-
mance/precision tradeoffs in the context of aggregation
queries over numerical database records.

7 Conclusions and Future Work

Traditionally, designers of replicated systems have
been forced to choose between strong consistency, with
its associated performance overheads, and optimistic
consistency, with no guarantees regarding the probabil-
ity of conflicting writes or stale reads. In this paper,
we explore the space in between these two extremes.
We present a continuous consistency model where ap-
plication designers can bound the maximum distance
between the local data image and some final consistent
state. This space is parameterized by three metrics,Nu-
merical Error, Order Error, andStaleness. We show
how TACT, a middleware layer that enforces consistency
bounds among replicas, allows applications to dynami-
cally trade consistency for performance based on current
service, network, and request characteristics. A perfor-
mance evaluation of three replicated applications, an air-
line reservation system, a bulletin board, and a QoS Web



service, implemented using TACT demonstrates signifi-
cant semantic and performance benefits relative to tradi-
tional approaches.

We are investigating a number of interesting questions
posed by the TACT consistency model. We are currently
working on both theoretical and practical issues asso-
ciated with trading system consistency for availability.
Theoretically, is there an upper bound on availability
given a consistency level with particular numerical er-
ror, order error and staleness? Practically, how close to
this upper bound can the TACT prototype provide dy-
namically tunable consistency and availability? Simi-
larly, can TACT adaptively set application consistency
levels in response to changing wide-area network per-
formance characteristics using application-specified tar-
gets for minimum performance, availability, and consis-
tency?
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