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Abstract imposes performance overheads and limits system avail-
ability. Thus, a variety of optimistic consistency mod-
The tradeoffs between consistency, performance, andls [14, 15, 18, 31, 34] have been proposed for applica-
availability are well understood. Traditionally, how- tions that can tolerate relaxed consistency. Such models
ever, designers of replicated systems have been forcegquire less communication, resulting in improved per-
to choose from either strong consistency guarantees dormance and availability.
none at all. This paper explores the semantic space be- Unfortunately, optimistic models typically provide no
tween traditional strong and optimistic consistency mod-bounds on the inconsistency of the data exported to
els for replicated services. We argue that an importantlient applications and end users. A fundamental ob-
class of applications can tolerate relaxed consistency, bigervation behind this work is that there is a continuum
benefit from bounding the maximum rate of inconsistentbetween strong and optimistic consistency that is seman-
access in an application-specific manner. Thus, we detically meaningful for a broad range of network services.
velop a set of metricdNumerical Error Order Error, This continuum is parameterized by the maximum dis-
andStalenessto capture the consistency spectrum. Wetance between a replica’s local data image and some fi-
then present the design and implementation of TACThal image “consistent” across all replicas after all writes
a middleware layer that enforces arbitrary consistencyhave been applied everywhere. For strong consistency,
bounds among replicas using these metrics. Finally, wehis maximum distance is zero, while for optimistic con-
show that three replicated applications demonstrate sigsistency it is infinite. We explore the semantic space in
nificant semantic and performance benefits from usindetween these two extremes. For a given workload, pro-
our framework. viding a per-replica consistency bound allows the system
to determine an expected probability, for example, that
a write operation will conflict with a concurrent write
submitted to a remote replica, or that a read operation
observes the results of writes that must later be rolled

Replicating distributed services for increased avail-P2ck: No such analysis can be performed for optimistic

ability and performance has been a topic of considerabl§onsistency systems because the maximum level of in-
interest for many years. Recently however, exponenSonsistency is unbounded.

tial increase in access to popular Web services provides The relationship between consistency, availability,
us with concrete examples of the types of services thagnd performance is depicted in Figure 1(a). In moving
would benefit from replication, their requirements andfrom strong consistency to optimistic consistency, ap-
semantics. One of the primary challenges to replicatini“ca“_or‘ performance and availability increases. This
network services is consistency across replicas. Provide€nefit comes at the expense of an increasing probabil-

ing strong consistency (e.g., one-copy serializability [4])1y that individual accesses will return inconsistent re-
sults, e.g., stale/dirty reads, or conflicting writes. In
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Figure 1:a) The spectrum between strong and optimistic consistency as measured by a bound on the probability of
inconsistent access. b) The tradeoff between consistency, availability, and performance depends upon application
and network characteristics.

plication performance versus the probability of incon-mote replicas). Otherwise, the operation blocks until
sistent access, depending on workload/network characrACT is able to synchronize with one or more remote
teristics. Moving to the right in the figure correspondsreplicas (i.e., push or pull some subset of local/remote
to increased performance, while moving up in the figureupdates) as determined by system consistency require-
corresponds to increased inconsistency. To achieve imments.
creased performance, applications must tolerate a corre- We propose three metric®jumerical Error, Order
sponding increase in inconsistent accesses. The tradedffror, andStalenessto bound consistency. Numerical
between performance and consistency depends uponearor limits the total weight of writes that can be applied
number of factors, including application workload, suchacross all replicas before being propagated to a given
as read/write ratios, probability of simultaneous writes,replica. Order error limits the number of tentative writes
etc., and network characteristics such as latency, bandsubject to reordering) that can be outstanding at any one
width, and error rates. At the point labeled “1” in the replica, and staleness places a real-time bound on the de-
consistency spectrum in Figure 1(b), a modest increasky of write propagation among replicas. Algorithms are
in performance corresponds to a relatively large increasthen designed to bound each metric: Numerical error is
in inconsistency for application classes corresponding tdoounded using a push approach based solely on local
the top curve, perhaps making the tradeoff unattractivénformation; a write commitment algorithm combined
for these applications. Conversely, at point “2,” large with compulsory write pull enforces order error bound;
performance increases are available in exchange for and staleness is maintained using real-time vector. To
relatively small increase in inconsistency for applica-evaluate the effectiveness of our system, we implement
tions represented by the bottom curve. and deploy across the wide area three applications with
Thus, the goals of this work are: i) to explore the is- a broad range of dynamically changing consistency re-
sues associated with filling the semantic, performancequirements using the TACT toolkit: an airline reserva-
and availability gap between optimistic and strong con-tion system, a distributed bulletin board service, and load
sistency models, ii) to develop a set of metrics that allowdistribution front ends to a Web server. Relative to strong
a broad range of replicated services to conveniently andonsistency techniques, TACT improves the throughput
guantitatively express their consistency requirementsof these applications by up to a factor of 10. Relative
iii) to quantify the tradeoff between performance andto weak consistency approaches, TACT provides strong
consistency for a number of sample applications, andemantic guarantees regarding the maximum inconsis-
iv) to show the benefits of dynamically adapting consis-tency observed by individual read and write operations.
tency bounds in response to current network, replica, and The rest of this paper is organized as follows. Sec-
client-request characteristics. To this end, we presention 2 describes the three network services implemented
the design, implementation, and evaluation of the TACTin the TACT framework to motivate our system archi-
toolkit. TACT is a middleware layer that accepts specifi- tecture. Section 3 presents the system model and design
cations of application consistency requirements and mewe adopt for our target services. Next, Section 4 details
diates read/write access to an underlying data store. lthe TACT architecture and Section 5 evaluates the per-
an operation does not violate pre-specified consistencformance of our three applications in the TACT frame-
requirements, it proceeds locally (without contacting re-work. Finally, Section 6 places our work in the context



of related work and Section 7 presents our conclusionsconcurrent read/write access under the assumption that
conflicts are rare or can be resolved automatically.
Desirable consistency requirements for the bulletin
board example include maintaining causal and/or total
order among messages posted at different replicas. With
causal order, a reply to a message will never appear be-
fore the original message at any replica. Total order en-
sures that all messages appear in the same order at all
Our first application is a simple replicated airline replicas, allowing the service to assign globally unique
reservation system that is designed to be representativgentifiers to each message. Another interesting consis-
of replicated E-commerce services that accept inquiriegency requirement for interactive applications, including
(searches) and purchase orders on a catalog. In our imhe bulletin board, is to guarantee that at any timeo
plementation, each server maintains a full replica of themore thank messages posted befdrare missing from
flightinformation database and accepts user reservationfe local replica.
and inquiries about seat availability. Consistency in this
application is measured by the percentage of reques®.3 QoS Load Distribution
that access inconsistent results. For example, in the face
of divergent replicaimages, a user may observe an avail- The final application implemented in our framework
able seat, when in fact the seat has been booked at ai$ a load distribution mechanism that provides Quality
other replica (false positive). Or a user may see a parof Service (QoS) guarantees to a set of preferred clients.
ticular seat is booked when in fact, it is available (falseln this scenario, front-ends (as in LARD [27]) accept re-
negative). Intuitively, the probability of such events is quests on behalf of two classes of clients, standard and
proportional to the distance between the local replica imreferred. The front ends forward requests to back end
age and some consistent final image. servers with the goal of reserving some pre-determined
One interesting aspect of this application is that itsportion of server capacity for preferred clients. Thus,
consistency requirements change dynamically based ofiont ends allow a maximum number of outstanding re-
client, network, and application characteristics. For in-quests (assuming homogeneous requests) at the back end
stance, the system may wish to minimize the rate ofservers. To determine the maximum number of “stan-
inquiries/updates that observe inconsistent intermediatéard” requests that should be forwarded, each front end
states for certain preferred clients. Requests from sucAUSt communicate current access patterns to all other
clients may require a replica to update its consistencyont ends.
level (by synchronizing with other replicas) before pro- One goal of designing such a system is to minimize
cessing the request or may be directed to a replica thdfie communication required to accurately distribute such
maintains the requisite consistency by default. As anload information among front ends. This QoS applica-
other example, if network capacity (latency, bandwidth,tion is intended to be representative of services that in-
error rate) among replicas is abundant, the absolute peflependently track the same logical data value at multiple
formance/availability savings may not be sufficient to Sites, such as a distributed sensor array, a load balancing
outweigh the costs associated with weaker consistenc§ystem, or an aggregation query. Such services are often
models. Finally, the desired consistency level dependgble to tolerate some bounded inaccuracy in the under-
on individual application semantics. For airline reserva-lying values they track (e.g., average temperature, server
tions, the cost of a transaction that must be rolled back i¢0ad, or employee salary) in exchange for reduced com-
fairly small when a flight is empty (one can likely find an munication overhead or power consumption.
alternate seat on the same flight), but grows as the flight
fills.

2 Applications

2.1 Airline Reservations

3 System Design

2.2 Bulletin Board In this section, we first describe the basic replica-

] o ) tion system model we assume, and then elaborate on the
The bulletin board application is a replicated mes-mode| and metrics we provide to allow applications to
sage posting service modeled after more sophisticateghntinuously specify consistency level.
services such as USENET. Messages are posted to indi-

vidual replicas. Sets of updates are propagated amorg.1 System Model

replicas, ensuring that all messages are eventually dis-

tributed to all replicas. This application is intended to be For simplicity, we refer to application data as a
representative of interactive applications that often allowdata store, though the data can actually be stored in a



database, file system, persistent object, etc. The dafd.2 A Continuous Consistency Model
store is replicated in full at multiple sites. Each replica
accepts requests from users that can be made up of multi- In our consistency model, applications specify their
ple primitive read/write operations. TACT mediates ap-application-specific consistency semantics usiogits
plication read/write access to the data store. On a sinA conit is a physical or logical unit of consistency, de-
gle replica, a read or write is isolated from other readsfined by the application. For example, in the airline
or writes during execution. Depending on the specifiedreservation example, individual flights or blocks of seats
consistency requirements, a replica may need to contacn a flight may be defined as a conit. An interesting
other replicas before processing a particular request. issue beyond the scope of this paper is setting the granu-
larity of conits. The required per-conit accounting over-

Replicas exchange updates by propagating writedhead (described below) argues for coarse conit granu-
This can take the form of gossip messages [22], antilarity. Conversely, coarse-grained conits may introduce
entropy sessions [13, 28], group communication [5],issues of false sharing as updates to one data item in a
broadcast, etc. We chose anti-entropy exchange as ogenit may reduce performance/availability for accesses
write propagation method because of its flexibility in to logically unrelated data items in the same conit.
operating under a variety of network scenarios. Each For each conit, we quantify consistency continuously
write bears an accept stamp composed of a logical clocRlong a three-dimensional vector:
time [23] and the identifier of the accepting replica.Consistenc _

. L . ) y =

Replicas deterministically order all writes based on this
accept stamp. As in Bayou [28, 34], updates are proce-

dures that check for conflicts with the underlying datanymerical Error bounds the discrepancy between the
store before being applied intentativestate. Awrite is  yajye of the conit relative to its value in the “final image.”
tentative until a replica is able to determine the write’s gy applications that maintain numerical records, the se-
final position in the serialization order, at which pointit mantics of this metric are straightforward. For other
becomesommittedthrough a write commitment algo- appjications, however, application-specific weights (de-
rithm (described below). faulting to one) can be assigned to individual writes. The
weights are the relative importance of the writes, from
Each replica maintains a logical time vector, similar the application’s point of view. Numerical error then
to that employed in Bayou and in Golding’s work [13, becomes the total weighted unseen writes for a conit.
28, 34]. Briefly, each entry in the vector correspondsBased on application semantics, two different kinds of
to the latest updates seen from a particular replica. Th@umerical error, absolute numerical error and relative
coverage propertgnsures that a replica has seen all up-numerical error, can be define@rder Error measures
dates (remote and local) up to the logical time corre-the difference between the order that updates are applied
sponding to the minimum value in its logical time vector. to the local replica relative to their ordering in the even-
This means the serialization positions of all writes with tual “final image.” Stalenes$®ounds the difference be-
smaller logical time than that minimal value can be de-tween the current time and the acceptance time of the
termined and thus those writes can be committed. Antioldest write on a conit not seen locally.
entropy sessions update values in each replica’s logical Figure 2 illustrates the definition of order error and
time vector based on the logical times/replicas of thenumerical error in a simple example. Two replicals,
writes exchanged. Note that writes may have to be reand B, accept updates on a conit containing two data
ordered or rolled back before as dictated by serializationtems,2 andy. The logical time vector for is (24, 5).
order. The coverage property implies that all writes in its log
with logical time less than or equal to five are commit-
While TACT's implementation of anti-entropy is not ted (indicated by the shaded box), leaving three tenta-
particularly novel, a primary aspect of our work is de- tive writes. Similarly, the logical time vector faB is
termining when and with whom to perform anti-entropy (0, 17), meaning that both writes in its log are tentative.
in order to guarantee a minimum level of consistency.Order error bounds the maximum number of tentative
Replicas may propagate writes to other replicas at anyvrites at a replica, i.e., the maximum number of writes
time throughvoluntary anti-entropy However, we are that may have to be reordered or rolled back because of
more concerned with write propagation required foractivity at other replicas. In general, a lower bound on
maintaining a desired level of consistency, caltein-  order error implies a lower probability that a read will
pulsory anti-entropyCompulsory anti-entropy is neces- observe an inconsistent intermediate state. In this exam-
sary for the correctness of the system, while voluntaryple, if A’s order error is bounded to threé¢,must invoke
anti-entropy only affects performance. the write commitment algorithm—performing compul-

(Numerical Error, Order Error, Staleness)



Replica A Replica B

“Push”to bound - N\
Conit:

Numerical Error

»

(5, B): x += 2 "Pull”to bound ™ (5 B): y += 2

Order Error
(10, A):y += 1 p (16,B):y += 1
(14, A): x+=1
(23, A): y+=3
Logical Time Vector: (24, 5) Logical Time Vector: (0, 17)
Order Error: 3 Order Error: 2
Numerical Error: 1 (1) Numerical Error: 3 (5)

Figure 2: Example scenario for bounding order error and numerical error with two replicas.

sory anti-entropy to pull any necessary updates fidm Conversely, it may be cheap (from a performance and

to reduce its number of tentative writes—before acceptavailability standpoint) to enforce stronger consistency

ing any new writes. at a replica with faster links and higher processing ca-
Figure 2 also depicts the role of numerical error. Nu-Pacity. One interesting aspect of this model is that it

merical error is the weight of all updates applied to apotgntlally.allows the'system tg route client requests to

conit atall replicas not seen by the local replica. In the 'ePlicas with appropriate consistency bounds on a per-

example, the weight of a write is set to be the updatd€duest basis. Forinstance, in the airline reseryatlon sys-

amount to eithes or y, so that a “major” update is more tem, rgquests frqm “prefgrred" cllenFs may be directed to

important than a “minor” update. The replicahas not grepllca that mgmtams r_ugher gonS|stency levels (reduc-

seen one update (with a weight of one) in this exampleind the probability of an inconsistent access).

while B has not seen three updates (with a total weight

of five). Note that order error can be relaxed or tightened

using only local information. Bounding numerical er-

ror, on the other hand, relies upon the cooperation of all

replicas. Thus, dynamically changing numerical error

bounds requires the execution of a consensus algorithm. \nhen all three metrics are bounded to Zero, our con-

One benefit of our model is that conit consistency cartinuous consistency model reaches the strong consis-
be bounded on a per-replica basis. Instead of enforcingtency extreme of the spectrum, which is serializabil-
system-wide uniform consistency level, each replica carnty [4] and external consistency [1, 12]. If no bounds are
have its own independent consistency level for a conitset for any of the metrics, there will be no consistency
A simple analysis can show that as a replica relaxeguarantees, similar to optimistic consistency systems. In
its consistency while other replicas’ consistency levelsmoving from strong to optimistic consistency, applica-
remain unchanged, the total communication amount ofions bound the maximum logical “distance” between
that replica is reduced. For relaxed numerical error, itthe local replica image and the (unknown) consistent im-
means other replicas can push writes to that replica lesage that contains all writes in serial order. This distance
frequently, resulting in fewer incoming messages. Out-corresponds directly to the percentage chance that a read
going communication amount remains unchanged sincwill observe inconsistent results or that a write will in-
that is determined by the consistency levels of othetroduce a conflict. In the next section, we will demon-
replicas. However, since numerical error is bounded usstrate how our three applications employ these metrics
ing a push approach, if the replica is too busy to han-to capture their consistency requirements. Based on our
dle the outgoing communication, writes submitted to it experience with TACT, we believe that the above metrics
will be delayed. Similar, if the replica relaxes order er- allow a broad range of applications to conveniently ex-
ror and staleness, incoming communication amount willpress their consistency requirements. Of course, the ex-
be decreased. Thus, one site may have poor networkct set of metrics is orthogonal to our goal of exporting a
connectivity and limited processing power, making moreflexible, continuous, and dynamically tunable spectrum
relaxed consistency bounds appropriate for that replicaof consistency models to replicated services.



Application | Consistency Semantics | Conit Definition | Weight Definition | Metrics Capturing the Semantids

Bulletin A. Message Ordering A Newsgroup (Subjective) A. Order Error
Board B. Unseen Messages Importance of B. Absolute Numerical Error
C. Message Delay a News Message | C. Staleness
Airline A. Reservation Conflict | Seats on a Flight | Reservation: 1 A. Relative Numerical Error
Reservation RateR Rimae =1—-1/(1+7)
B. Inconsistent Query Ravg =(1-1/(14+7))/2
Results B. Order Error and Staleness
QoS Load | A. Accuracy of Resource Resource Request Forward: 1 A. Relative Numerical Error
Distribution Consumption Info Consumption Info| Request Return : -1

Table 1: Expressing high-level application-specific consistency semantics using the TACT continuous consistency
model.

3.3 Expressing Application-specific Consis- simplify the discussion, we assume single seat reserva-
tency Semantics through Conits tions (though our model and implementation are more
general) and define a conit over all seats on a flight
One important criteria for the evaluation of any con- with each reservation carrying a numerical weight of -
sistency model is whether it captures the semantic req. Initially, the value of the conit is the total number of
quirements of a broad range of applications. Thus, irseats on the flight. As reservations come in, the value
this section we describe the ways different consistencyf the conit is the number of available seats in each
levels affect the semantics of the three representative apeplica’s data store. Suppose reservations are randomly
plications described in Section 2 and explain how thesgjistributed among all available seats. For a reservation
semantics are captured by our model. Table 1 sumaccepted by one replica, the probability that it conflicts
marizes these application-specific consistency semantiagith another remote (unseen) reservatioti j§, where
and their expression using TACT, as detailed in the dis{/ is the number of unseen reservations, ahds the
cussion below. number of available seats as seen by the local replica.
For the distributed bulletin board, one consistency re-Supposé/;;,,; is the accurate count of available seats,
quirementis the ordering of messages, which is captureduch thaf/;;,.; = V' — U. Thus, the rate of conflicting
by the order error metric. More specifically, for this ap- reservationsR, equalsl — Vinat/V. If v bounds the
plication order error is the number of messages that mayhaximum relative numerical error of the conit then, by
appear out of order at any replica. However, itis possiblejefinition, we have-y < 1 — V/Viinat = Viinar >
that such a bound is overly restrictive for unrelated mes4 /(1 + ) x V. Thus, the upper bound AR, R,,,.. =
sages, e.g., for two messages posted to different news-— v;,..,/V =1 — 1/(1 + 7). Since in this example,
groups. In this case, a conit can be defined for eacly;,, ,; is always smaller than or equal 1§, the average
newsgroup to more precisely specify ordering require-value ofV};,,; should then bl + 1/(1 + 7))/2 x V;
ments. Another possible consistency requirement is thehus, the average rate of conflicting reservatiais,,,
maximum number of remotely posted messages that argquals tol — Vi /V = 1 — (1 + 1/(1 +7))/2 =
unseen by the local replica at a particular time. Our nu{1 — 1/(1 +v))/2. In Section 5, we present experimen-
merical error metric serves to express this type of semanal results to verify this analysis. Non-random reserva-
tics. Our model allows application-specific weights to betion behavior will result in a higher conflict rate than the
assigned to each write, allowing users to (subjectivelylabove formula. However, applications can still reduce
force the propagation of certain writes. A third consis-the expected/maximum conflict rate by specifying mul-
tency requirement for this application is message delayiple conits per flight, e.g., multiple conits for first class

that is, the delay between the time a message is postegrsus coach seats or aisle versus window seats.
and the time it is seen by all replicas. This requirement

can be translated to staleness in a straight-forward man- Other consistency semantics for the airline reservation
ner. example can be expressed using order error or staleness.
Moving to the airline reservation example, one im- For example, the system may wish to limit the percent-
portant manifestation of system consistency is the perage of queries that access an inconsistentimage, i.e., see
centage of conflicting reservations. An interesting as-a multi-seat reservation that must later be rolled back be-
pect of this application is TACT's ability to limit reser- cause of a conflicting single-seat reservation at another
vation conflict rate by bounding relative numerical errorreplica. Such consistency semantics can be enforced by
based on the application’s estimate of available seats. Tproperly bounding the limit on order error (an analysis



is omitted for brevity). dress this limitation at the cost of increased space over-
In our third application, QoS load distribution, front head. However, simulations indicate that potential per-
ends estimate the total resource consumption for starformance improvements do not justify the additional
dard clients as the total number of outstanding standardomputational complexity and space overhead [38].
requests on the back ends. This value also serves as theA third algorithm, Inductive RE provides an effi-
definition of a conit for this application. Front ends in- cient mechanism for bounding the relative error in nu-
crease this value by 1 upon forwarding a request fronmerical records. The algorithm transforms relative er-
a standard client and decrease it by 1 when the requestr into absolute error. Suppose the relative error
returns. If this value exceeds a pre-determined resourceound for server; is v;, that is, we want to ensure
consumption limit, front ends will not forward new stan- |1 — V; /Viinai| < 75, equivalent to|Vina — Vj| <
dard client requests until resource consumption drops; x Vyina. A naive transforming approach would use
below this limit. The relative numerical error of each v; x Vyina as the corresponding absolute error bound,
front end’s estimate of resource consumption capturesequiring a consensus algorithm to be run to determine a
this application’s consistency semantics — each fronhew absolute error bound each tifvig,,,; changes.
end is guaranteed that its estimate of resource consump- Our approach avoids this cost by conservatively re-
tion is accurate within a fixed bound. Note that this loadlying upon local information as follows. We observe
balancing application is not concerned with order errorthat the current valu&; on anyserver; was properly
(writes are interchangeable) or staleness (no need to sybounded before the invocation of the algorithm and is

chronize if the mix of requests does not change). an approximation o¥;,q;. S0 server; may useV; as
an approximate norm to bound relative error for other
3.4 Bounding Consistency Metrics servers. More specifically, foferver;, we know that

Viinat — Vi > =i X Vyinar, Wherey; is the relative er-

Given the assumed system model, we now describe ifo" Pound forserver;, which transforms t0/yina >
turn our algorithms for bounding numerical error, order Vi/ (1 + 7:). Using this information to substitute for
error, and staleness. Note that the details and correctfinat ON the right-hand side in the inequality in the last
ness proofs for our numerical error algorithms availableParagraph produces:
separately [38]. Vi

The first algorithm, Split-weight AE employs a Viina = Vil < 75 x —
“push” approach to bound absolute numerical error. It
“allocates” the allowed positive and negative error fora Thus, to bound relative erroserver; only needs to
server evenly to other servers. Eaghrver; maintains  recursively apply Split-Weight AE, using; x V;/(1 +
two local variablesr andy for server;,j # i. Intu- ;) asa;. Note that while this approach greatly in-
itively, the variablez is the total weight of negatively- creases performance by eliminating the need to run a
weighted writes thaterver; accepts but has not been consensus algorithm among replicas, it uses local in-
seen byserver;. server; has only conservative knowl- formation (/;/(1 + ~;)) to approximate potentially un-
edge (called itwiew) of what writesserver; has seen. known global information(yi,.:) in bounding relative
The variabler is updated whererver; accepts a new error. Thus it behaves conservatively (bounding values
write with a negative weight or wheserver;'s view  more than strictly necessary) when relative error is high
is advanced. Similarly, the variablerecords the total as will be shown in our evaluation of these algorithms in
weight of positively-weighted writes. Suppose the abso-Section 5.
lute error bound omerver; is a;. In other words, we To bound order error on a per-conit basis, a replica
want to ensure thglsina — Vj| < «;, whereVy;,a  first checks the number of tentative writes on a conit
is the consistent value arid is the value orserver;.  in its write log. If this number exceeds the order error
To achieve thisserver; makes sure that at all times, limit, the replica invokes a write commitment algorithm
z > —aj/(n—1)andy < a;/(n — 1), wheren is  to reduce the number of tentative writes in its write log.
the total number of servers in the system. This may reThis algorithm operates as follows. The replica pulls
quireserver; to push writes taerver; before accepting writes from other replicas by performing compulsory
a new write. anti-entropy sessions to advance its logical time vector,

Split-Weight AE is pessimistic in the sense thatallowing it to commit some set of its tentative writes.
server; may propagate writes teerver; when not In doing so, the replica ensures that it remains within a
actually necessary. For example, the algorithm doespecified order error bound before accepting new tenta-
not consider the case where negative weights and pogive writes.
itive weights may offset each other. We developed an- To bound the staleness of a replica, each server main-
other optimal algorithmCompound-Weight ABo ad- tains areal time vector This vector is similar to the log-

1+



ical time vector, except that real time instead of logicaland staleness. The variables needed by the Split-Weight
time is used. A similar coverage property is preservedAE and Inductive RE algorithms are maintained in hash
between the writes a server has seen and the real tintables to reduce space overhead and enable the system to
vector. If As real time vector entry corresponding to potentially scale to thousands of conits.
B is t, then A has seen all writes accepted by B before In bounding numerical error, a replica may need to
real timet. To bound staleness withina server checks push a write to other replicas before the write can re-
whethercurrent time — t < 1 holds for each entry in  turn, e.g., if a write has a weight that is larger than an-
the real time vectot. If the inequality does not hold other replica’s absolute error bound. There are two pos-
for some entries, the server performs compulsory antisible approaches for addressing this. One approach is a
entropy session with the corresponding servers, pullingne-round protocol where the local site applies the write,
writes from them, and advances the real time vectorpropagates it to the necessary remote replicas, awaits ac-
This pull approach may appear to be less efficient than &nowledgments, and finally returns. This one-round pro-
push approach because of unnecessary polling when rtocol is appropriate for applications where writes are in-
updates are available. However, a push approach carerchangeable such as resource accounting/load balanc-
not bound staleness if there is no upper limit on networking. For other applications, such as the airline reserva-
delay or processing time. tion example, a reservation itself observes a consistency
level (the probability it conflicts with another reserva-
tion submitted elsewhere). In such a case, a stronger
4 System Architecture two-round protocol is required where the replica first
acquires remote data locks, pushes the write to remote
replicas, and then returns after receiving all acknowledg-
ments. Such a two-round protocol ensures the numerical

Java 1.2 using RMI for communication (e.g., for ac- ite is withi he ti h
cepting read/write requests and for write propagation)error opserved by a write is within bound at the time the
update is submitted. In our prototype, both protocols are

Iﬁgl;ﬁgﬁﬁﬁf&;ﬂ“ ;:‘ég:ggg&):?uif lfvicl)lnr?ovtwgli (':T( implemenFed and the_application is allowed to choose
writes on other conits. We implemented a simple custombased on its own requirements.
database for storing and retrieving data values, though
our design and implementation is compatible with a va- . )
riety of storage mechanisms. 5 Experience and Evaluation

Each TACT replica maintains a write log, and allows . o ]
redo and undo on the write log. It is also responsi- Civen the description of our system architecture, we
ble for all anti-entropy sessions with remote replicas."OW discuss our experience in building the three appli-
The system supports parallel anti-entropy sessions witlf@tions described in Section 2 using the TACT infras-
multiple replicas, which can improve performance Sig_t.ructure. We. define conits alfnd.welght_s in these applica-
nificantly for compulsory anti-entropy across the wideF'OnS according to the analysis in S”eCtIOI’] 3.3. The exper-
area. For increased efficiency, we also implement a ondMents below focus on TACT's ability to bound numeri-
round anti-entropy push. With standard anti-entropy, pecal error and order error. While wpplemented in our pro-
fore a replica pushes writes to another replica, it firsttOlyPe, we do not present experiments addressing stale-
obtains the target replica’s logical time vector to deter-N€sS for brevity and because bounding staleness is well-
mine which writes to propagate. However, we found thatStudied, €.g., in the context of Web proxy caching [10].
this two-round protocol can add considerable overhead ]
across the wide area, especially at stronger consisten&d1  Bulletin Board
levels (where the pushing replica has a fairly good notion
of the writes seen by the target replica). Thus, we allow For our evaluation of the bulletin board application,
replicas to push writes using their local view as a hint, re-we deployed replicas at three sites across the wide area:
ducing two rounds of communication to one round at thePuke University (733 Mhz Pentium lll/Solaris 2.8), Uni-
cost of possibly propagating unnecessary writes. While/rsity of Utah (350 Mhz Pentium Il/FreeBSD 3.4)
the current implementation uses this one round protocond University of California, Berkeley (167 Mhz Ultra
by default, dynamically switching between the variants!/Solaris 2.7). All data is collected on otherwise un-
based on the consistency level would be ideal. loaded systems. Each submitted message is assigned a

TACT replicas also implement a consistency manage||r1umerical weight of one (all messages are considered

responsible for bounding numerical error, order errorédually important). .
We conduct a number of experiments to explore the

Iwe assume that server clocks are loosely synchronized. behavior of the system at different points in the con-

The current prototype of TACT is implemented in




400 : : : investigate this overhead, Figure 4 summarizes the per-

& 350 Conventional Implementation | formance overheads associated with message posts us-
E mg §8{3§ E;:g[zgg - ing TACT at four points in the consistency spectrum
g 300 TACT (Order Error=10) - | (varying order error with numerical error set to zero) in
® 250 b TACT (Order Brror=Infinity) = - comparison to the conventional two-phase update proto-
& 200 ‘ col. All five configurations incur approximately 130ms
§ 150 F X m to sequentially (required to avoid deadlock) acquire data
2 10l é:XX | locks from two remote repllcqs and 80ms to push writes
G e e S to these replicas in parallel. Since the cost of remote pro-
£ sop e s cessing is negligible, this overhead comes largely from
0 ‘ ‘ ‘ wide-area latency. Compared to the conventional imple-
0 5 10 15 20

mentation, TACT with zero numerical error and zero or-
der error (i.e., same consistency level) incurs about 83%
more overhead. This additional overhead stems from the
Figure 3: Average latency for posting messages to d@\ddltlonal 140ms to bound order error. This is an in-

replicated bulletin board as a function of consistencyteresnng, side effect assouated.wnh ourlmplementatlon.
Our design decomposes consistency into two orthogo-

Inconsistency (Absolute Error Bound)

guarantees. X
nal components (numerical error and order error) that
400+ are bounded using two separate operations, doubling the
a50| e number of wide-area round trip times. When order error
B Acauire Datalockd and numerical error are both zero, TACT should com-
3001 B Push Wites bine the push and pull of write operations into a single

N

3

o
!

step as a performance optimization, as is logically done
by the conventional implementation. This idea is espe-
cially applicable if we use the recently proposed quo-
rum approach[16, 17] to commit writes. A preliminary
implementation of this optimization shows that TACT'’s
overhead (at strong consistency) drops from 367ms to
about 217ms, within 8% of the conventional approach.

Overhead (ms)
= = N
o (42 o
o o o
N .

a
o
!

o

Conventional TACT (OE=0) TACT (OE=2)  TACT TACT

(OF=10) (OF=nfniy) 5.2 Airline Reservation System

Figure 4: Breakdown of the overhead of posting a mes-
sage under a number of scenarios. We now evaluate our implementation of the simple
airline reservation system using TACT. Once again, we
deployed three reservation replicas at Duke, Utah and
sistency spectrum. Figure 3 plots the average latencBerkeley. We considered reservation requests for a sin-
for a client at Duke to post 200 messages as a functiogle flight with 400 seats. Each client reservation request
of the numerical error bound on the x-axis. For com-is for a randomly chosen seat on the flight. If a tentative
parison, we also plot the average latency for a convenreservation conflicts with a request at another replica, a
tional implementation using a two-phase update protomerge procedure attempts to reserve a second seat on the
col. For each write, this protocol first acquires necessargame flight. If no seats are available, the reservation is
remote data locks, then propagates the update to all rediscarded. A conit is defined over all seats on the flight,
mote replicas. The figure shows how applications arewith an initial value of 400. Each reservation carries a
able to continuously trade performance for consistencynumerical weight of -1.
using TACT. As the numerical error bound increases, av- In Section 3.3, we derived a relationship between the
erage latency decreases. Increasing allowable order efeservation conflict rat® and the relative error bound
ror similarly produces a corresponding decrease in avR,,,, = 1 —1/(1+7) andRa,, = (1 —1/(1+7))/2.
erage latency. Relative to the conventional implementawe conduct the following experiment to verify that an
tion, allowing each replica to have up to 20 unseen mesapplication can limit the reservation conflict rate by sim-
sages and leaving order error unbounded reduces avesty bounding the relative numerical error. Figure 5 plots
age latency by a factor of 10. the measured conflicting reservation rdte the com-
One interesting aspect of Figure 3 is that TACT per-puted upper boung,,,.. and the computed average rate
forms worse than the standard two-phase update protd?,,, as a function of relative numerical error. Order er-
col at the strong consistency end of the spectrum. Taor and staleness are not bounded in these experiments.
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Figure 5: Percentage of conflicting reservations as d@igure 7: Update throughput for airline reservations as a
function of the bound on numerical error.
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function of consistency guarantees.

The latency experiments are run on the same wide-area
configuration as the bulletin board. The plotted latency
is the average observed by a single Duke client mak-

250 f | TACT (Order Error=Infinity) o 1 ing 400 reservations. For throughput, we run two client

Reservation Latency(ms)

200 1‘\' = threads at each of the replica sites, with each thread re-
150 \\\*\*N questing400/(2 x 3) = 67 (random) seats in a tight
- loop. We also plot the application’s performance using
100 | ’S*;f S S ] a two-phase update protocol, showing the same trends
B0 | gy T : as the results for the bulletin board application. As con-
0 L L L w sistency is gradually relaxed, TACT achieves increasing
0 0.2 0.4 0.6 0.8 1

performance by reducing the amount of required wide-

Inconsistency (Relative Error Bound) area communication.

Figure 6: Average latency for making a reservation as a5'3 Quality of Service for Web Servers

function of consistency guarantees. _ o
For our final application, we demonstrate how

TACT's numerical error bound can be used to accurately

The experiments are performed with two replicas on aenforce quality of service (QoS) guarantees among Web
LAN at Duke, each attempting to make 250 (random)servers distributed across the wide area. Recall that a
reservations with the results averaged across four runsnumber of front-end machines forward requests on be-

The measured conflict rate roughly matches the comhalf of both standard and preferred clients to back end
puted average rate and is always below the computegervers. In our implementation, we use TACT to dy-
upper bound, demonstrating that numerical error can beamically trade communication overhead in exchange
used to bound conflicting accesses as shown by our andler accuracy in measuring total resources consumed by
ysis. Note that as the bound on relative error is relaxedstandard clients. The front ends estimate the standard
the discrepancy between the measured rate and the corlient resource consumption as the total number of out-
puted average rate gradually increases because of costanding standard requests on the back ends. If this re-
servativeness inherent in the design of our Inductive REsource consumption exceeds a pre-determined resource
algorithm (i.e., at relaxed consistency, our algorithm per-consumption limit, front ends will not forward new stan-
forms more write propagation than necessary). As dedard client requests until resource consumption drops
scribed in Section 3, this conservative behavior greatlybelow this limit. For simplicity, all our experiments are
improves performance by allowing each replica to boundrun on a local-area network at Duke on seven 733 Mhz
relative error using only local information. Pentium IlI's running Solaris 2.8. Three front ends (each

The latency and throughput measurements, summaunning on a separate machine) generate requests in a
rized in Figures 6 and 7 for airline reservations are sim+ound robin fashion to three back end servers running
ilar to the bulletin board application described above.Apache 1.3.12.



T 4500 : : - observed by the preferred client for different bounds on
£ 4000 | QoS Target ——— . numerical error. For comparison purposes, we also show
S 3500 *Rggt%ggr%:go:.g . o 1 the latency (1745ms) of a preferred client when there are
g 3000 | ROtV ETOr=05 - @g@DD _— exactly 150 outstanding standard client requests. In the
2 2500 ,Nsecl)?:nsvgugrrgé et @@%/gﬂﬂ ) | ﬂrfs,t curve, Iabeleq “Relative Error=0,” the system main-
= (oen 00 200050 0us 0000 tains strong consistency. Therefore, the front ends are
P AN able to enforce the resource limit strictly. The curve cor-
g i responding to a relative error of O flattens at 100 sec-
§ i onds (when three front ends have created a total of 150
5 7 standard clients) with latency very close to the ideal of
8 : : 1745ms. As the bound on relative error is relaxed to 0.3,

50 100 150 200 250

0.5, and 1, the resource consumption limit for standard
Experiment Time (seconds)

clients is more loosely enforced. The curve “IQwS”
plots the latency where no resource policy is enforced.
Figure 8: The average latency seen by a preferred cliepimilar to the airline re;ervation application, the discrep-
as a function of time. ancy between the relative error upper bound of 1 and the
“No_Qos” curve stems from the conservativeness of the

Configuration | Consistency Inductive RE algorithm.
Messages Table 2 quantifies the tradeoff between numerical er-
Relative Error=0 300 ror and communication overhead. Clearly, front ends
Relative Error=0.3 46 can maintain near-perfect information about the load
Relative Error=0.5 30 generated from other replicas at the cost of sending one
Relative Error=1 16 message to all peers for each event that takes place. This
No QoS Guaranteg 0 is the case when zero numerical error is enforced by

TACT: Each replica sends 50 messages to each of two
Table 2: The tradeoff between TACT-enforced numeri-remote replicas (for a total of 300) corresponding to the
cal error and communication overhead. number of logical events that take place during the ex-
periment. Once each front end starts 50 standard clients,
strong consistency ensures that no further messages are

For our experiments, the three front end machined!€cessary. Of course, such accuracy is typically not re-

generate an increasing number of requests from standafiiréd by this application. Table 2 shows that commu-
clients. As a whole, the system desires to bound thé'ication overhead drops rapidly in exchange for some

number of outstanding standard client requests to 15d0SS of accuracy. Note that this drop off will be more
A fourth machine, representing a preferred client, peri-dramatic as the number of replicas is increased as a re-
odically polls a random back end to determine Systemsult of the aI.I—to-aII communication required to maintain
latency. Each of the three front ends starts a new startrong consistency.
dard client every two seconds which then continuously
requests the same dynamically generated Web page re-
quiring 10ms of computation time. If all front ends had 6 Related Work
global knowledge of system state, each front end would
start a total of 50 standard clients. However, depending The tradeoff between consistency and perfor-
on the bound placed on numerical error, front ends maynance/availability is well understood [7, 8]. Many
in fact start more than this number (up to 130 in the ex-systems have been built at the two extremes of the
periment described below). For simplicity, no standardconsistency spectrum. Traditional replicated trans-
clients are torn down even if the system learns that toactional databases use strong consistency (one-copy
many (i.e., more than 150) are present in aggregate. Ideserializability [4]) as a correctness criterion. At the
ally, this aggregate number would oscillate around 150ther end of the spectrum are optimistic systems such as
with the amplitude of the oscillation being determined Bayou [28, 34], Ficus [14], Rumor [15] and Coda [18].
by the relative numerical bound. In these systems, higher availability/performance is
Figure 8 depicts latency observed by the preferrecexplicitly favored over strong consistency. Besides
client as a function of elapsed time (corresponding toBayou, none of the above systems provide support for
the total number of standard clients making requests)different consistency levels. Bayou provides session
At time 260, each front end has tried to spawn up to 13Qyuarantees [9, 33] to ensure that clients switching from
standard clients. The curves show the average latenayne replica to another view a self-consistent version of



the underlying database. However, session guarante@mage,” which might be unknown to all replicas. Since
do not provide any guarantees regarding the consistencsil our three metrics are related to “final image,” none of
level of a particular replica. them can be expressed using relaxed consistency models

In [37], we present a position paper describing anfor concurrency control.
earlier iteration of our consistency model, using dif- Influid replication [24], clients are allowed to dynam-
ferent consistency metrics and concentrating on conically create service replicas to improve performance.
sistency/availability tradeoffs. A number of other ef- Their study on when and where to create a service
forts also attempt to numerically capture applications’replica is complementary to our study on tunable con-
consistency requirements. These techniques can b@stency issues among replicas. Similar to Ladin’s sys-
vaguely categorized into two classes: Relaxing consisteém [22], fluid replication supports three consistency
tency among replicas to reduce required communical€Vvels: last-writer, optimistic and pessimistic. Our work
tion (replica control) [3, 6, 19, 26, 32, 35] and relax- focuses on capturing the spectrum between optimistic
ing consistency for transactions on a single site to allowand pessimistic consistency models. Varying the fre-
increased concurrency on that site (concurrency conduency of reconciliation in fluid replication allows ap-
trol) [2, 20, 21, 29, 30, 36]. TACT is more closely related plications to adjust the “strength” of the last-writer and
to replica control techniques. However, previous con-Optimistic models. Bounding staleness in TACT has
sistency models for replica control typically exploit the similar effects. However, as motivated earlier, staleness
consistency semantics of a particular application classalone does not fully capture application-specific consis-
abstracting its consistency requirements along a singléncy requirements.
dimension. Most of the proposed consistency metrics Foxand Brewer [11] argue that strong consistency and
can be expressed within our model by constraining @ne-copy availability cannot be achieved simultaneously
subset of numerical error, order error, and staleness. Kin the presence of network partitions. In the context
ishnakumar and Bernstein [19] propose the concept off the Inktomi search engine, they show how to trade
an “N-ignorant” system, where a transaction runs in par.hal‘veSt for yield. Harvest measures the fraction of the
allel with at mostN conflicting transactions. By set- data reflected in the response, while yield is the prob-
ting absolute numerical error boundadand by assign-  ability of completing a request. In TACT, we concen-
ing unit weights to writes, TACT demonstrates behav-trate on consistency among service replicas, but a similar
ior similar to an “N-ignorant” system. Timed consis- “harvest” concept can also be defined using our consis-
tency [35] and delta consistency [32] address the lackency metrics. For example, bounding numerical error
of timing in traditional consistency models such as se-has similar effects as guaranteeing a particular harvest.
quential consistency. These timed models can be readrinally, Olston and Widom [25] address tunable perfor-
ily expressed using our staleness metric. Quasi-copynance/precision tradeoffs in the context of aggregation
caching [3] proposes four “coherency conditions,” de-queries over numerical database records.
lay condition, frequency condition, arithmetic condition
and version condition appropriate for read-only caching.
TACT, on the other hand, is designed for more gen-7 Conclusions and Future Work
eral read/write replication. Two recent efforts [6, 26]
use metrics related to numerical error and staleness to Traditionally, designers of replicated systems have
measure database freshness. However, these SyStemegén forced to choose between Strong Consistency, with
not provide mechanisms to bound data consistency Usts associated performance overheads, and optimistic
ing the proposed metrics. Relative to these efforts, ougonsistency, with no guarantees regarding the probabil-
conit-based three-dimensional consistency model allowsty of conflicting writes or stale reads. In this paper,
a wide range of services to dynamically express theifye explore the space in between these two extremes.
consistency semantics based on application, networkye present a continuous consistency model where ap-
and client-specific characteristics. plication designers can bound the maximum distance

Concurrency control techniques using relaxed consisbetween the local data image and some final consistent
tency models [2, 20, 21, 29, 30, 36] are related to replicastate. This space is parameterized by three mefxias,
control and TACT, in that consistency also needs to banerical Error, Order Error, and Staleness We show
guantified there. However, enforcing user-defined conhow TACT, a middleware layer that enforces consistency
sistency levels is inherently easier in concurrency conbounds among replicas, allows applications to dynami-
trol than in replica control because in the former casecally trade consistency for performance based on current
most information needed to compute the amount of inservice, network, and request characteristics. A perfor-
consistency is available on a single site. In other wordsmance evaluation of three replicated applications, an air-
the consistency models do not need to consider “finaline reservation system, a bulletin board, and a QoS Web



service, implemented using TACT demonstrates signifi- [5] Ken P. Birman. The Proecss Group Appraoch to Reliable

cant semantic and performance benefits relative to tradi-

tional approaches.

We are investigating a number of interesting questions [6]
posed by the TACT consistency model. We are currently
working on both theoretical and practical issues asso-

ciated with trading system consistency for availability.

Theoretically, is there an upper bound on availability [7]

given a consistency level with particular numerical er-

ror, order error and staleness? Practically, how close to

this upper bound can the TACT prototype provide dy-

namically tunable consistency and availability? Simi- (8]

larly, can TACT adaptively set application consistency

levels in response to changing wide-area network per-
formance characteristics using application-specified tar-!

gets for minimum performance, availability, and consis-
tency?

Acknowledgments

We would like to thank David Becker for maintain-

ing the experimental infrastructure at Duke. Jay Lepreatﬁ11

and Stephen Clawson were very helpful in providing ac-

cess to the Utah computing resources available at the
University of Utah Network Testbed (supported by NSF [1

grant ANI-00-82493, DARPA/AFRL grant F30602-99-

1-0503, and Cisco). Jeff Chase and Doug Terry provided
a number of insightful comments on the TACT design.

Finally, the comments of David Culler, Robert Grimm,

Brian Noble, and the anonymous referees greatly im-
proved the presentation of this paper.

References

(1]

(2]

(3]

(4]

Atul Adya, Robert Gruber, Barbara Liskov, and Umesh
Maheshwari. Efficient Optimistic Concurrency Control
Using Loosely Synchronized Clocks. Rroceedings of

the ACM SIGMOD Conference on Management of Data [16]

May 1995.

D. Agrawal, A. E. Abbadi, and A. K. Singh. Consistency
and Orderability: Semantics-Based Correctness Criteria
for DatabasesACM Transactions on Database Systems
September 1993.

Rafael Alonso, Daniel Barbara, and Hector Garcia-
Molina.
trieval SystemACM Transactions on Database Systems
September 1990.

Phil Bernstein and Nathan Goodman. The Failure and[19]

Recovery Problem for Replicated Distributed Databases.
ACM Transactions on Database Systeni¥ecember
1984,

[10]

[13]

[14]

[15]

[17]

Data Caching Issues in an Information Re- [18

Distributed Computing. Communications of the ACM
36(12):36-53, 1993.

Junghoo Cho and Hector Garcia-Molina. Synchroniz-
ing a Database to Improve FreshnessPtaceedings of
the ACM SIGMOD Conference on Management of Data
May 2000.

Brian Coan, Brian Oki, and Elliot Kolodner. Limitations
on Database Availability When Networks Partition. In
Proceedings of the 5th ACM Symposium on Principle of
Distributed Computingpages 187-194, August 1986.
Susan Davidson, Hector Garcia-Molina, and Dale Skeen.

Consistency in Partitioned NetworkS8omputing Survey
17(3), 1985.

9] W. Keith Edwards, Elizabeth Mynatt, Karin Petersen,

Mike Spreitzer, Douglas Terry, and Marvin Theimer.
Designing and implementing asynchronous collaborative
applications with bayou. IfProceedings of 10th ACM
Symposium on User Interface Software and Technoplogy
October 1997.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1.
RFC 2068, January 1997.

Armando Fox and Eric Brewer. Harvest, Yield, and Scal-
able Tolerant Systems. IRroceedings of HOTOS-VII
March 1999.

2] D. K. Gifford. Information Storage in a Decentralized

Computer System. Technical Report CSL-81-8, Xerox
PARC, 1983.

Richard GoldingWeak-Consistency Group Communica-
tion and MembershipPhD thesis, University of Califor-
nia, Santa Cruz, December 1992.

R. Guy, J. Heidemann, W. Mak, T. Page Jr., G. Popek,
and D. Rothmeier. Implementation of the Ficus Repli-
cated File System. IiProceedings Summer USENIX

ConferenceJune 1990.

R. G. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and
G. J. Popek. Rumor: Mobile Data Access Through Op-
timistic Peer-to-Peer Replication. Rroceedings of the
17th International Conference on Conceptual Modeling
(ER’98), November 1998.

J. Holliday, R. Steinke, D. Agrawal, and A. El Ab-
badi. Epidemic Quorums for Managing Replicated Data.
In Proceedings of the 19th IEEE International Perfor-
mance, Computing, and Communications Conference
February 2000.

Peter Keleher. Decentralized Replicated-Object Proto-
cols. InProceedings of the 18th Annual ACM Symposium
on Principles of Distributed Computingpril 1999.

] James J. Kistler and M. Satyanarayanan. Disconnected

Operation in the Coda File SysteACM Transactions
on Computer System0(1):3—25, February 1992.

Narayanan Krishnakumar and Arthur Bernstein.
Bounded Ignorance: A Technique for Increasing Con-
currency in a Replicated SystelACM Transactions on
Database System$9(4), December 1994.



[20]

[21]

[22]

[23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

Tei-Wei Kuo and Aloysius K. Mok. Application Se-
mantics and Concurrency Control of Real-Time Data-
Intensive Applications. IProceedings of the IEEE Real-
Time Systems Symposiut892.

Tei-Wei Kuo and Aloysius K. Mok. SSP: A Semantics-
Based Protocol for Real-Time Data Access Phoceed-
ings of the IEEE Real-Time Systems Sympash@®3.

R. Ladin, B. Liskov, L. Shirira, and S. Ghemawat. Pro-
viding Availability Using Lazy ReplicationACM Trans-
actions on Computer Systemi€(4):360-391, 1992.

Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed Systen€Communications of the
ACM, 21(7):558-565, July 1978.

Brian Noble, Ben Fleis, and Minkyong Kim. A Case for
Fluid Replication. InProceedings of the 1999 Network
Storage Symposium (Netstqréctober 1999.

Chris Olston and Jennifer Widom. Bounded Aggre-
gation: Offering a Precision-Performance Tradeoff
in Replicated Systems. Technical report, Com-
puter Science Department,
1999.  http://www-db.stanford.edu/pub/
papers/trapp-ag.ps

Esther Pacitti, Eric Simon, and Rubens Melo. Improving
Data Freshness in Lazy Master Scheme®rbrceedings

of the 18th IEEE International Conference on Distributed
Computing Systemblay 1998.

Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael
Svendsen, Peter Druschel, Willy Zwaenepoel, and Erich
Nahum. Locality-Aware Request Distribution in Cluster-
based Network Servers. IBighth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systemxtober 1998.

Karin Petersen, Mike Spreitzer, Douglas Terry, Marvin
Theimer, and Alan Demers. Flexible Update Propagation
for Weakly Consistent Replication. Proceedings of the
16th ACM Symposium on Operating Systems Principles
(SOSP-16)pages 288-301, October 1997.

Calton Pu, Wenwey Hseush, Gail E. Kaiser, Kun-Lung
Wu, and Philip S. Yu. Distributed Divergence Control
for Epsilon Serializability. InProceedings of the Inter-
national Conference on Distributed Computing Systems
1993.

Calton Pu and Avraham Leff. Replication Control in Dis-
tributed System: An Asynchronous Approach. Rro-
ceedings of the ACM SIGMOD Conference on Manage-
ment of DataMay 1991.

Yasushi Saito, Brian Bershad, and Hank Levy. Man-
ageability, Availability and Performance in Porcupine: A
Highly Scalable Internet Mail Service. Proceedings of
the 17th ACM Symposium on Operating Systems Princi-
ples December 1999.

Aman Singla, Umakishore Ramachandran, and Jessica
Hodgins. Temporal Notions of Synchronization and Con-
sistency in Beehive. IRroceedings of the 9th ACM Sym-
posium on Parallel Algorithms and Architecturetune
1997.

[33] D. Terry, A. Demers,

(34]

(35]

(36]

Stanford  University, [37]

(38]

K. Petersen, M. Spreitzer,
M. Theimer, and B. Welch. Session Guarantees for
Weekly Consistent Replicated Data. Pmoceedings 3rd
International Conference on Parallel and Distributed In-
formation SystenSeptember 1994.

Douglas B. Terry, Marvin M. Theimer, Karin Petersen,
Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser.
Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage SystemPhceedings of the
Fifteenth ACM Symposium on Operating Systems Princi-
ples pages 172-183, December 1995.

Francisco Torres-Rojas, Mustaque Ahamad, and Michel
Raynal. Timed Consistency for Shared Distributed Ob-
jects. InProceedings of the 18th ACM Symposium on
Principle of Distributed Computingviay 1999.

M. H. Wong and D. Agrawal. Tolerating Bounded In-
consistency for Increasing Concurrency in Database Sys-
tems. InProceedings of the 11th Symposium on Princi-
ples of Database Systendsine 1992.

Haifeng Yu and Amin Vahdat. Building Replicated Inter-
net Services Using TACT: A Toolkit for Tunable Avail-
ability and Consistency Tradeoffs. Rroceedings of the
Second International Workshop on Advanced Issues of
E-Commerce and Web-based Information Systdunse
2000.

Haifeng Yu and Amin Vahdat. Efficient Numerical Error
Bounding for Replicated Network Services. Pmoceed-
ings of the 26th International Conference on Very Large
Databases (VLDB)September 2000.



