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Abstract

Decentralized distributed systems such as peer-to-peer

systems are particularly vulnerable to sybil attacks, where

a malicious user pretends to have multiple identities (called

sybil nodes). Without a trusted central authority, defending

against sybil attacks is quite challenging. Among the small

number of decentralized approaches, our recent SybilGuard

protocol [43] leverages a key insight on social networks to

bound the number of sybil nodes accepted. Although its di-

rection is promising, SybilGuard can allow a large number

of sybil nodes to be accepted. Furthermore, SybilGuard as-

sumes that social networks are fast mixing, which has never

been confirmed in the real world.

This paper presents the novel SybilLimit protocol that

leverages the same insight as SybilGuard but offers dramat-

ically improved and near-optimal guarantees. The number

of sybil nodes accepted is reduced by a factor of Θ(
√

n),
or around 200 times in our experiments for a million-node

system. We further prove that SybilLimit’s guarantee is at

most a log n factor away from optimal, when considering

approaches based on fast-mixing social networks. Finally,

based on three large-scale real-world social networks, we

provide the first evidence that real-world social networks

are indeed fast mixing. This validates the fundamental as-

sumption behind SybilLimit’s and SybilGuard’s approach.

1. Introduction

Decentralized distributed systems (such as peer-to-peer

systems) are particularly vulnerable to sybil attacks [11],

where a malicious user pretends to have multiple identities

(called sybil identities or sybil nodes). In fact, such sybil at-

tacks have already been observed in the real world [19, 40]

in the Maze peer-to-peer system. Researchers have also

demonstrated [35] that it is surprisingly easy to launch sybil

attacks in the widely-used eMule system [12].

When a malicious user’s sybil nodes comprise a large

fraction of the nodes in the system, that one user is able

to “out vote” the honest users in a wide scope of collabora-

tive tasks. Examples of such collaborative tasks range from

Byzantine consensus [18] and voting schemes for email

spam [31] to implicit collaboration in redundant routing and

data replication in Distributed Hash Tables (DHTs) [7]. The

exact form of such collaboration and the exact fraction of

sybil nodes these collaborative tasks can tolerate may dif-

fer from case to case. However, a generic requirement is

that the number of sybil nodes (compared to the number of

honest users) needs to be properly bounded.

To defend against sybil attacks, simply monitoring each

node’s historical behavior is often insufficient because sybil

nodes can behave nicely initially, and then launch an attack.

Although a trusted central authority can thwart such attacks

by issuing credentials to actual human beings or requiring

payment [22], finding such a single entity that every user

worldwide is willing to trust can be difficult or impossible

(especially if that entity requires users to provide sensitive

information).

Without a trusted central authority, defending against

sybil attacks is much harder. Among the small number

of approaches, the simplest one perhaps is to bind identi-

ties to IP addresses or IP prefixes. Another approach is

to require every identity to solve puzzles that require hu-

man effort, such as CAPTCHAs [36]. Both approaches can

provide only limited protection—the adversary can readily

steal IP addresses with different prefixes in today’s Inter-

net [32], while CAPTCHAs can be re-posted on an adver-

sary’s website to be solved by users seeking access to that

site.

The SybilGuard approach. Recently, we proposed Sybil-

Guard [43], a new protocol for defending against sybil at-

tacks without relying on a trusted central authority. Sybil-

Guard leverages a key insight regarding social networks

(Figure 1). In a social network, the vertices (nodes) are iden-
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Figure 1. The social network.

tities in the distributed system and the (undirected) edges

correspond to human-established trust relations in the real

world. The edges connecting the honest region (i.e., the re-

gion containing all the honest nodes) and the sybil region

(i.e., the region containing all the sybil identities created

by malicious users) are called attack edges. SybilGuard

ensures that the number of attack edges is independent of

the number of sybil identities, and is limited by the number

of trust relation pairs between malicious users and honest

users. SybilGuard observes that if malicious users create

too many sybil identities, the graph will have a small quo-

tient cut—i.e., a small set of edges (the attack edges) whose

removal disconnects a large number of nodes (all the sybil

identities). On the other hand, “fast mixing” [26] social net-

works do not tend to have such cuts. SybilGuard leverages

the small quotient cut to limit the size of sybil attacks.

SybilGuard is a completely decentralized protocol and

enables any honest node V (called the verifier) to decide

whether or not to accept another node S (called the sus-

pect). “Accepting” means that V is willing to do collabo-

rative tasks with S. SybilGuard’s provable (probabilistic)

guarantees hold for (1 − ǫ)n verifiers out of the n honest

nodes, where ǫ is some small constant close to 0. (The re-

maining nodes get degraded, not provable, protection.) As-

suming fast-mixing social networks and assuming the num-

ber of attack edges is o(
√

n/ logn), SybilGuard guarantees

that any such verifier, with probability at least 1−δ (δ being

a small constant close to 0), will accept at most O(
√

n log n)
sybil nodes per attack edge and at least (1 − ǫ)n honest

nodes.

While its direction is promising, SybilGuard suffers from

two major limitations. First, although the end guarantees

of SybilGuard are stronger than previous decentralized ap-

proaches, they are still rather weak in the absolute sense:

Each attack edge allows O(
√

n log n) sybil nodes to be

accepted. In a million-node synthetic social network, the

number of sybil nodes accepted per attack edge is nearly

2000 [43]. The situation can get worse: When the number

of attack edges g = Ω(
√

n/ logn) (or g > 15, 000 in the

million-node synthetic social network), SybilGuard can no

longer bound the number of accepted sybil nodes at all. Sec-

ond, SybilGuard critically relies on the assumption that so-

Number of attack edges g SybilGuard SybilLimit

(unknown to protocol) accepts accepts

o(
√

n/ logn) O(
√

n log n) O(log n)

Ω(
√

n/ log n) to

o(n/ log n)
unlimited O(log n)

below ∼ 15, 000 ∼ 2000 ∼ 10

above ∼ 15, 000 and

below ∼ 100, 000
unlimited ∼ 10

Table 1. Number of sybil nodes accepted per

attack edge (out of an unlimited number of

sybil nodes), both asymptotically for n hon-
est nodes and experimentally for a million

honest nodes. Smaller is better.

cial networks are fast mixing, an assumption that had never

not been validated in the real world.

SybilLimit: A near-optimal protocol for real-world so-

cial networks. In this paper, we present a new protocol that

leverages the same insight as SybilGuard but offers dramat-

ically improved and near-optimal guarantees. We call the

protocol SybilLimit, because i) it limits the number of sybil

nodes accepted and ii) it is near-optimal and thus pushes

the approach to the limit. For any g = o(n/ logn), Sybil-

Limit can bound the number of accepted sybil nodes per

attack edge within O(log n) (see Table 1). This is a Θ(
√

n)
factor reduction from SybilGuard’s O(

√
n log n) guarantee.

In our experiments on the million-node synthetic social net-

work used in [43], SybilLimit accepts on average around 10

sybil nodes per attack edge, yielding nearly 200 times im-

provement over SybilGuard. Putting it another way, with

SybilLimit, the adversary needs to establish nearly 100,000

real-world social trust relations with honest users in order

for the sybil nodes to out-number honest nodes, as com-

pared to 500 trust relations in SybilGuard. We further prove

that SybilLimit is at most a log n factor from optimal in

the following sense: for any protocol based on the mixing

time of a social network, there is a lower bound of Ω(1)
on the number of sybil nodes accepted per attack edge. Fi-

nally, SybilLimit continues to provide the same guarantee

even when g grows to o(n/ log n), while SybilGuard’s guar-

antee is voided once g = Ω(
√

n/ logn). Achieving these

near-optimal improvements in SybilLimit is far from trivial

and requires the combination of multiple novel techniques.

SybilLimit achieves these improvements without compro-

mising on other properties as compared to SybilGuard (e.g.,

guarantees on the fraction of honest nodes accepted).

Next, we consider whether real-world social networks

are sufficiently fast mixing for protocols like SybilGuard

and SybilLimit. Even though some simple synthetic social

network models [17] have been shown [6, 14] to be fast

mixing under specific parameters, whether real-world so-
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cial networks are indeed fast mixing is controversial [2].

In fact, social networks are well-known [3, 15, 24, 38]

to have groups or communities where intra-group edges

are much denser than inter-group edges. Such character-

istics, on the surface, could very well prevent fast mixing.

To resolve this question, we experiment with three large-

scale (up to nearly a million nodes) real-world social net-

work datasets crawled from www.friendster.com, www.

livejournal.com, and dblp.uni-trier.de. We

find that despite the existence of social communities, even

social networks of such large scales tend to mix well within

a rather small number of hops (10 to 20 hops), and Sybil-

Limit is quite effective at defending against sybil attacks

based on such networks. These results provide the first evi-

dence that real-world social networks are indeed fast mix-

ing. As such, they validate the fundamental assumption

behind the direction of leveraging social networks to limit

sybil attacks.

2. Related work

The negative results in Douceur’s initial paper on sybil

attacks [11] showed that sybil attacks cannot be prevented

unless special assumptions are made. Some researchers [9]

proposed exploiting the bootstrap graph of DHTs. Here,

the insight is that the large number of sybil nodes will all be

introduced (directly or indirectly) into the DHT by a small

number of malicious users. Bootstrap graphs may appear

similar to our approach, but they have the drawback that an

honest user may also indirectly introduce a large number of

other honest users. Such possibility makes it difficult to dis-

tinguish malicious users from honest users. Instead of sim-

ply counting the number of nodes introduced directly and

indirectly, SybilLimit distinguishes sybil nodes from hon-

est nodes based on graph mixing time. It was shown [9]

that the effectiveness of the bootstrap graph approach dete-

riorates as the adversary creates more and more sybil nodes,

whereas SybilLimit’s guarantees hold no matter how many

sybil nodes are created. Some researchers [5] assume that

the attacker has only one or small number of network posi-

tions in the Internet. If such assumption holds, then all sybil

nodes created by the attacker will have similar network co-

ordinates [29]. Unfortunately, once the attacker has more

than a handful of network positions, the attacker can fabri-

cate arbitrary network coordinates.

In reputation systems, colluding sybil nodes may artifi-

cially increase a (malicious) user’s rating (e.g., in Ebay).

Some systems such as Credence [37] rely on a trusted cen-

tral authority to prevent this. There are existing distributed

defenses [8, 13, 33] to prevent such artificial rating in-

creases. These defenses, however, cannot bound the num-

ber of sybil nodes accepted, and in fact, all the sybil nodes

can obtain the same rating as the malicious user. Sybil at-

tacks and related problems have also been studied in sensor

networks [28, 30], but the approaches and solutions usually

rely on the unique properties of sensor networks (e.g., key

predistribution). Margolin et al. [23] proposed using cash re-

wards to motivate one sybil node to reveal other sybil nodes,

which is complimentary to bounding the number of sybil

nodes accepted in the first place.

Social networks are one type of trust networks. There

are other types of trust networks, e.g., based on historical

interactions/transactions between users [8, 13, 37]. As in

LOCKSS [21], Ostra [25], and SybilGuard [43], SybilLimit

assumes a social network with a much stronger associated

trust than these other types of trust networks [8, 13, 37].

LOCKSS uses social networks for digital library mainte-

nance, and not as a general defense against sybil attacks. Os-

tra leverages social networks to prevent the adversary from

sending excessive unwanted communication. In compari-

son, SybilLimit’s functionality is more general: Because

SybilLimit already bounds the number of sybil nodes, it

can readily provide functionality equivalent to Ostra by al-

locating each node a communication quota. Furthermore,

different from Ostra, SybilLimit has strong, provable end

guarantees and has a complete design that is decentralized.

The relationship between SybilGuard and SybilLimit is dis-

cussed in more detail in Sections 4 and 5.3. Unlike many

other works [8, 13, 33, 37] on trust networks, SybilLimit

does not use trust propagation in the social network.

Mislove et al. [24] also studied the graph properties of

several online real-world social networks. But Mislove et

al. did not focus on mixing time properties or their appro-

priateness for defending against sybil attacks. Finally, a pre-

liminary version of this work appeared as [41].

3. System model and attack model

SybilLimit adopts a similar system model and attack

model as SybilGuard [43]. The system has n honest human

beings as honest users, each with one honest identity/node.

Honest nodes obey the protocol. The system also has one

or more malicious human beings as malicious users, each

with one or more identities/nodes. To unify terminology, we

call all identities created by malicious users as sybil identi-

ties/nodes. Sybil nodes are byzantine and may behave arbi-

trarily. All sybil nodes are colluding and are controlled by

an adversary. A compromised honest node is completely

controlled by the adversary and hence is considered as a

sybil node and not as an honest node.

There is an undirected social network among all the

nodes, where each undirected edge corresponds to human-

established trust relations in the real world. The adversary

may create arbitrary edges among sybil nodes in the social

network. Each honest user knows her neighbors in the so-

cial network, while the adversary has full knowledge of the
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entire social network. The honest nodes have m undirected

edges among themselves in the social network. For exposi-

tory purposes, we sometimes also consider the m undirected

edges as 2m directed edges. The adversary may eavesdrop

on any messages sent in the protocol.

Every node is simultaneously a suspect and a verifier.

As in SybilGuard, we assume that each suspect S has a

locally generated public/private key pair, which serves to

prevent the adversary from “stealing” S’s identity after S
is accepted. When a verifier V accepts a suspect S, V ac-

tually accepts S’s public key, which can be used later to

authenticate S. We do not assume a public key infrastruc-

ture, and the protocol does not need to solve the public key

distribution problem since the system is not concerned with

binding public keys to human beings or computers. A ma-

licious user may create multiple different key pairs for her

different sybil nodes.

4. Background: SybilGuard

To better understand the improvements of SybilLimit

over SybilGuard and the challenges involved, this section

provides a concise review of SybilGuard.

Random walks and random routes. SybilGuard uses a

special kind of random walk, called random routes, in the

social network. In a random walk, at each hop, the current

node flips a coin on-the-fly to select a uniformly random

edge to direct the walk (the walk is allowed to turn back).

For random routes, each node uses a pre-computed random

permutation, “x1x2...xd” where d is the degree of the node,

as a one-to-one mapping from incoming edges to outgoing

edges. A random route entering via edge i will always

exit via edge xi. This pre-computed permutation, or rout-

ing table, serves to introduce external correlation across

multiple random routes. Namely, once two random routes

traverse the same directed edge, they will merge and stay

merged (i.e., they converge). Furthermore, the outgoing

edge uniquely determines the incoming edge as well; thus

the random routes can be back-traced. These two properties

are key to SybilGuard’s guarantees. As a side effect, such

routing tables also introduce internal correlation within a

single random route. Namely, if a random route visits the

same node more than once, the exiting edges will be corre-

lated. We showed [43] that such correlation tends to be neg-

ligible, and moreover, in theory it can be removed entirely

using a more complex design. Thus, we ignore internal cor-

relation from now on.

Without internal correlation, the behavior of a single

random route is exactly the same as a random walk. In

connected and non-bipartite graphs, as the length of a ran-

dom walk goes toward infinity, the distribution of the last

node (or edge) traversed becomes independent of the start-

ing node of the walk. Intuitively, this means when the walk

is sufficiently long, it “forgets” where it started. This fi-

nal distribution of the last node (or edge) traversed is called

the node (or edge) stationary distribution [26] of the graph.

The edge stationary distribution (of any graph) is always a

uniform distribution, while the node stationary distribution

may not be. Mixing time [26] describes how fast we ap-

proach the stationary distribution as the length of the walk

increases. More precisely, mixing time is the walk length

needed to achieve a certain variation distance [26], ∆, to the

stationary distribution. Variation distance is a value in [0, 1]
that describes the “distance” between two distributions—

see [26] for the precise definition. A small variation dis-

tance means that the two distributions are similar. For a

graph (family) with n nodes, we say that it is fast mixing

if its mixing time is O(log n + log 1
∆). In this paper, we

only care about ∆ = Θ( 1
n ), and we will simply say that a

fast mixing graph has O(log n) mixing time. The following

known result follows directly from the definition of mixing

time and a useful interpretation of variation distance (The-

orem 5.2 in [20]). This result is all we need in this paper

about mixing time:

Theorem 1 Consider any fast mixing graph with n nodes.

A random walk of length Θ(log n) is sufficiently long such

that with probability at least 1 − 1
n , the last node/edge tra-

versed is drawn from the node/edge stationary distribution

of the graph.

In SybilGuard, a random walk starting from an hon-

est node in the social network is called escaping if it ever

crosses any attack edge.

Theorem 2 (from [43]) In any connected social network

with n nodes and g attack edges, the probability of a length-

l random walk starting from a uniformly random honest

node being escaping is at most gl/n.

Accepting honest nodes. In SybilGuard, each node per-

forms a random route of length l = Θ(
√

n log n). A ver-

ifier V only accepts a suspect S if S’s random route in-

tersects with V ’s. Theorem 2 tells us that V ’s random

route will stay in the honest region with probability at least

1 − gl/n = 1 − o(1) for g = o(
√

n/ log n). Theorem 1

further implies that with high probability, a random route

Θ(
√

n log n) long will include Θ(
√

n) independent random

nodes drawn from the node stationary distribution. It then

follows from the generalized Birthday Paradox [1, 27] that

an honest suspect S will have a random route that intersects

with V ’s random route with probability 1 − δ for any given

(small) constant δ > 0.

Bounding the number of sybil nodes accepted. To inter-

sect with V ’s non-escaping random route, a sybil suspect’s

random route must traverse one of the attack edges. Con-

sider Figure 2 where there is only a single attack edge. Be-

cause of the convergence property, all the random routes
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Figure 2. Routes over the same edge merge.

from all sybil suspects must merge completely once they

traverse the attack edge. All these routes differ only in how

many hops of the route remain after crossing the attack edge

(between 1 and l− 1 hops for a length-l route). Because the

remaining parts of these routes are entirely in the honest re-

gion, they are controlled by honest nodes. Thus, there will

be fewer than l = O(
√

n log n) random routes that emerge

from the sybil region. In general, the number of such routes

will be O(g
√

n log n) for g attack edges. SybilGuard is de-

signed such that only one public key can be registered at the

nodes on each random route. This means that the adversary

can register only O(g
√

n log n) public keys for all the sybil

nodes combined. In order to accept a suspect S, V must find

an intersection between its random route and S’s random

route and then confirm that S is properly registered at the in-

tersecting node. As a result, only O(
√

n log n) sybil nodes

will be accepted per attack edge. For g = o(
√

n/ logn), the

total number of sybil nodes accepted is o(n).

Estimating the needed length of random routes. While

the length of the random routes is Θ(
√

n log n), the value

of n is unknown. In SybilGuard, nodes locally determine

the needed length of the random routes via sampling. Each

node is assumed to know a rough upper bound Z on the

mixing time. To obtain a sample, a node A first performs a

random walk of length Z , ending at some node B. Next A
and B each perform random routes to determine how long

the routes need to be to intersect. A sample is bad (i.e.,

potentially influenced by the adversary) if any of the three

random walks/routes in the process is escaping. Applying

Theorem 2 shows that the probability of a sample being bad

is at most 3gl/n = o(1) for g = o(
√

n/ logn).

5. SybilLimit protocol

As summarized in Table 1, SybilGuard accepts

O(
√

n log n) sybil nodes per attack edge and further re-

quires g to be o(
√

n/ logn). SybilLimit, in contrast, aims

to reduce the number of sybil nodes accepted per attack

edge to O(log n) and further to allow for g = o(n log n).
This is challenging, because SybilGuard’s requirement on

g = o(
√

n/ log n) is fundamental in its design and is simul-

taneously needed to ensure:

• Sybil nodes accepted by SybilGuard. The total num-

ber of sybil nodes accepted, O(g
√

n log n), is o(n).

• Escaping probability in SybilGuard. The es-

caping probability of the verifier’s random route,

O(g
√

n log n/n), is o(1).

• Bad sample probability in SybilGuard. When esti-

mating the random route length, the probability of a

bad sample, O(g
√

n log n/n), is o(1).

Thus to allow for larger g, SybilLimit needs to resolve all

three issues above. Being more “robust” in only one aspect

will not help.

SybilLimit has two component protocols, a secure ran-

dom route protocol (Section 5.1) and a verification protocol

(Section 5.2). The first protocol runs in the background and

maintains information used by the second protocol. Some

parts of these protocols are adopted from SybilGuard, and

we will indicate so when describing those parts. To high-

light the major novel ideas in SybilLimit (as compared to

SybilGuard), we will summarize these ideas in Section 5.3.

Later, Section 6 will present SybilLimit’s end-to-end guar-

antees.

5.1. Secure random route protocol

Protocol description. We first focus on all the suspects

in SybilLimit, i.e., nodes seeking to be accepted. Fig-

ure 3 presents the pseudo-code for how they perform ran-

dom routes—this protocol is adapted from SybilGuard with

little modification. In the protocol, each node has a pub-

lic/private key pair, and communicates only with its neigh-

bors in the social network. Every pair of neighbors share a

unique symmetric secret key (the edge key, established out-

of-band [43]) for authenticating each other. A sybil node

M1 may disclose its edge key with some honest node A to

another sybil node M2. But because all neighbors are au-

thenticated via the edge key, when M2 sends a message to

A, A will still route the message as if it comes from M1.

In the protocol, every node has a pre-computed random per-

mutation x1x2...xd (d being the node’s degree) as its rout-

ing table. The routing table never changes unless the node

adds new neighbors or deletes old neighbors. A random

route entering via edge i always exits via edge xi. A sus-

pect S starts a random route by propagating along the route

its public key KS together with a counter initialized to 1.

Every node along the route increments the counter and for-

wards the message until the counter reaches w, the length

of a random route. In SybilLimit, w is chosen to be the mix-

ing time of the social network; given a fast-mixing social

network, w = O(log n).
Let “A→B” be the last (directed) edge traversed by S’s

random route. We call this edge the tail of the random route.

Node B will see the counter having a value of w and thus

5



Executed by each suspect S:

1. S picks a uniformly random neighbor Y ;

2. S sends to Y : 〈1, S’s public key KS , MAC(1||KS)〉 with the MAC generated using the edge key between S and Y ;

Executed by each node B upon receiving a message 〈i, KS , MAC〉 from some neighbor A:

1. discard the message if the MAC does not verify or i < 1 or i > w;

2. if (i = w) { record KS under the edge name “KA→KB” where KA and KB are A’s and B’s public key, respectively;}
else {

3. look up the routing table and determine to which neighbor (C) the random route should be directed;

4. B sends to C: 〈i + 1, KS , MAC((i + 1)||KS)〉 with the MAC generated using the edge key between B and C;

}

Figure 3. Protocol for suspects to do random routes and register their public keys.

reversed routes

A

K B

A B

S

K D

K C
K S 1

2

DC

V

2
w 1

w

A

1

2

w

S

forward routes

B

reversed routes

K

Figure 4. (i) Suspect S propagates KS for w
hops in an s-instance. (ii) KA and KB propa-

gated back to suspect S in an s-instance. (iii)
KC and KD propagated back to a verifier V in

a v-instance.

record KS under the name of that tail (more specifically,

under the name of “KA→KB” where KA and KB are A’s

and B’s public key, respectively). Notice that B may poten-

tially overwrite any previously recorded key under the name

of that tail. When B records KS, we say that S registers

its public key with that tail. Our verification protocol, de-

scribed later, requires that S know A’s and B’s public keys

and IP addresses. To do so, similar to SybilGuard, Sybil-

Limit invokes the protocol in Figure 3 a second time, where

every node uses a “reversed” routing table (i.e., a random

route entering via edge xi will exit via edge i). This enables

A and B to propagate their public keys and IP addresses

backward along the route, so that S can learn about them

(Figure 4).

Different from SybilGuard, SybilLimit invokes r inde-

pendent instances (called s-instances) of the previous pro-

tocol for the suspects. The value of r should be Θ(
√

m),
and later we will explain how nodes can automatically pick

the appropriate r. In every s-instance, each suspect uses the

protocol in Figure 3 to perform one random route and to

register its public key with the tail. Across all s-instances, a

suspect will thus register its public key with r tails. Addi-

tionally in every s-instance, SybilLimit invokes the protocol

a second time for each suspect using reversed routing tables,

so that the suspects know their tails. The routing tables used

in different s-instances are completely independent. Note,

however, that all suspects share the same r s-instances—

this is critical to preserve the desirable convergence/back-

traceability property among their random routes in the same

s-instance.

Similarly, every verifier performs r random routes. To

avoid undesirable correlation between the verifiers’ random

routes and the suspects’ random routes, SybilLimit uses an-

other r independent instances (called v-instances) for all

verifiers. Verifiers do not need to register their public keys—

they only need to know their tails. Thus in each v-instance,

SybilLimit invokes the protocol in Figure 3 once for each

verifier, with reversed routing tables (Figure 4).

Performance overheads. While SybilLimit uses the same

technique as SybilGuard to do random routes, the overhead

incurred is different because SybilLimit uses multiple in-

stances of the protocol with a shorter route length. Inter-

estingly, using Θ(
√

m) instances of the random route pro-

tocol does not incur extra storage or communication over-

head by itself. First, a node does not need to store Θ(
√

m)
routing tables, since it can keep a single random seed and

then generate any routing table on the fly as needed. Sec-

ond, messages in different instances can be readily com-

bined to reduce the number of messages. Remember that

in all Θ(
√

m) instances, a node communicates only with its

neighbors. Given that the number of neighbors d is usually

quite small on average (e.g., 20), a node needs to send only

d messages instead of Θ(
√

m) messages. Finally, the total

number of bits a node needs to send in the protocol is linear

with the number of random routes times the length of the

routes. Thus, the total number of bits sent in the d messages

in SybilLimit is Θ(
√

m log n), as compared to Θ(
√

n log n)
in SybilGuard.

All these random routes need to be performed only one

time (until the social network changes) and the relevant in-

formation will be recorded. Further aggressive optimiza-

tions are possible (e.g., propagating hashes of public keys

instead of public keys themselves). We showed [43] that

in a million-node system with average node degree be-
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Figure 5. Escaping and non-escaping tails.

ing 10, an average node using SybilGuard needs to send

400KBs of data every few days. Under the same parame-

ters, an average node using SybilLimit would send around

400 ×
√

10 ≈ 1300KB of data every few days, which is

still quite acceptable. We refer the reader to [43] for further

details.

Basic security properties. The secure random route pro-

tocol provides some interesting basic security guarantees.

We first formalize some notions. An honest suspect S has

one tail in every s-instance, defined as the tail of its random

route in that s-instance. We similarly define the r tails of

a verifier. A random route starting from an honest node is

called escaping if it ever traverses any attack edge. The tail

of an escaping random route is called an escaping tail (Fig-

ure 5), even if the escaping random route eventually comes

back to the honest region. By directing the random route in

specific ways, the adversary can control/influence to which

directed edge an escaping tail corresponds. But the adver-

sary has no influence over non-escaping tails.

In any given s-instance, for every attack edge connecting

honest node A and sybil node M , imagine that we perform a

random route starting from the edge “M→A”, until either a

subsequent hop traverses an attack edge or the length of the

route reaches w. Because the adversary can fake a series of

routes that each end on one of the edges on this route, these

edges are called tainted tails. Intuitively, the adversary may

register arbitrary public keys with these tails. In a given s-

instance, one can easily see that the set of tainted tails is

disjoint from the set of non-escaping tails from honest sus-

pects. The reason is that random routes are back-traceable

and starting from a non-escaping tail, one can always trace

back to the starting node of the random route, encountering

only honest nodes. This means that an honest suspect will

never need to compete with the sybil nodes for a tail, as long

as its random route is non-escaping.

After the secure random route protocol stabilizes (i.e., all

propagations have completed), the following properties are

guaranteed to hold:

• In every s-instance, each directed edge in the honest

region allows only one public key to be registered.

• In every s-instance, an honest suspect S can always

register its public key with its non-escaping tail (if any)

in that s-instance.

• In every s-instance, among all the directed edges in

the honest region, sybil nodes can register their pub-

lic keys only with tainted tails. This is because nodes

communicate with only their neighbors (together with

proper authentication) and also because the counter in

the registration message is incremented at each hop.

• In every s-instance (v-instance), if an honest suspect S
(an honest verifier V ) has a non-escaping tail “A→B”,

then S (V ) knows A’s and B’s public keys.

User and node dynamics. Most of our discussion so far

assumes that the social network is static and all nodes are

online. All techniques in SybilGuard to efficiently deal with

user/node dynamics, as well as techniques to properly over-

write stale registration information for preventing certain at-

tacks [43], apply to SybilLimit without modification. We

do not elaborate on these due to space limitations.

5.2. Verification protocol

Protocol description. After the secure random route pro-

tocol stabilizes, a verifier V can invoke the verification pro-

tocol in Figure 6 to determine whether to accept a suspect

S. S must satisfy both the intersection condition (Step 2–

4 in Figure 6) and the balance condition (Step 5–7) to be

accepted.

The intersection condition requires that S’s tails and V ’s

tails must intersect (instance number is ignored when de-

termining intersection), with S being registered at the in-

tersecting tail. In contrast, SybilGuard has an intersection

condition on nodes (instead of on edges or tails). For the

balance condition, V maintains r counters corresponding to

its r tails (Figure 7). Every accepted suspect increments the

“load” of some tail. The balance condition requires that ac-

cepting S should not result in a large “load spike” and cause

the load on any tail to exceed h · max(log r, a). Here a is

the current average load across all V ’s tails and h > 1 is

some universal constant that is not too small (we use h = 4
in our experiments). In comparison, SybilGuard does not

have any balance condition.

Performance overheads. The verification protocol can be

made highly efficient. Except for Steps 1 and 3, all steps in

the protocol involve only local computation. Instead of di-

rectly sending Θ(r) public keys in Step 1, S can readily use

a Bloom Filter [26] to summarize the set of keys. In Step 3,

for every intersecting tail in X , V needs to contact one node.

On average, the number of intersections between a verifier

V and an honest suspect S in the honest region is O(1) with

r = Θ(
√

m), resulting in O(1) messages. The adversary

may intentionally introduce additional intersections in the

sybil region between V ’s and S’s escaping tails. However,

if those extra intersecting nodes (introduced by the adver-

sary) do not reply, V can blacklist them. If they do reply and
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1. S sends to V its public key KS and S’s set of tails {(j, KA, KB) | S’s tail in the jth s-instance is the edge “A→B”

and KA (KB) is A’s (B’s) public key};

// Apply the intersection condition (the instance number is ignored when determining intersection)

2. V computes the set of intersecting tails X = {(i, KA, KB) | (i, KA, KB) is V ’s tail and (j, KA, KB) is S’s tail};

3. For every (i, KA, KB) ∈ X , V authenticates B using KB and asks B whether S is registered under “KA→KB”

If not, remove (i, KA, KB) from X ;

4. If X is empty then reject S and return;

// Apply the balance condition (ci is the counter for V ’s tail in the ith v-instance)

5. Let a = (1 +
∑r

i=1 ci)/r and b = h · max(log r, a); // see text for description of h
6. Let cmin be the smallest counter among those ci’s corresponding to (i, KA, KB) that still remain in X

(with tie-breaking favoring smaller i);
7. If (cmin + 1 > b) then reject S; otherwise, increment cmin and accept S;

Figure 6. Protocol for V to verify S. V has r counters c1, ...cr initialized to zero at start-up time.
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Figure 7. Balance condition example.

if V is overwhelmed by the overhead of such replies, then

the adversary is effectively launching a DoS attack. Notice

that the adversary can launch such a DoS attack against V
even if V were not running SybilLimit. Thus such attacks

are orthogonal to SybilLimit.

5.3. Key ideas in SybilLimit, vis­à­vis SybilGuard

This section highlights the key novel ideas in SybilLimit

that eventually lead to the substantial end-to-end improve-

ments over SybilGuard.

Intersection condition. To help convey the intuition, we

will assume g = 1 in the following. In SybilLimit, each

node uses r = Θ(
√

m) random routes of length w =
Θ(log n) instead of a single random route of length l =
Θ(

√
n log n) as in SybilGuard.1 In SybilGuard, each node

along a random route corresponds to a “slot” for registering

the public key of some node. The adversary can fake l dis-

tinct random routes of length l that cross the attack edge and

enter the honest region. This means that the adversary will

have 1 + 2 + ... + l = Θ(l2) = Θ(n log2 n) slots for the

sybil nodes in SybilGuard.

In SybilLimit, the tail of each random route corresponds

to a “slot” for registration. In any given s-instance, the ad-

1As an engineering optimization, a degree-d node in SybilGuard can

perform d random routes of length Θ(
√

n log n), but this does not improve

SybilGuard’s asymptotic guarantees.

versary can fake w distinct random routes of length w that

cross the attack edge and enter the honest region. Notice

that here SybilLimit reduces the number of such routes by

using a w that is much smaller than l. Further, because we

are concerned only with tails now, in the given s-instance,

the adversary will have only w slots. With r s-instances,

the adversary will have r · w = Θ(
√

m log n) such slots to-

tal, for all the sybil nodes. This reduction from Θ(n log2 n)
slots to Θ(

√
m log n) slots is the first key step in SybilLimit.

But doing r random routes introduces two problems.

The first is that it is impossible for a degree-d node to

have more that d distinct random routes, if we directly use

SybilGuard’s approach. SybilLimit observes that one can

use many independent instances of the random route pro-

tocol, while still preserving the desired convergence/back-

traceability property. The second problem is more seri-

ous. SybilGuard relies on the simple fact that the number

of distinct routes from the adversary is l. All slots on the

same route must have the same public key registered. This

ensures that the total number of sybil nodes registered is

l. In SybilLimit, there are r · w distinct routes from the

adversary. Thus, a naive design may end up accepting

r · w = Θ(
√

m log n) sybil nodes, which is even worse

than SybilGuard. SybilLimit’s key idea here is to perform

intersections on edges instead of on nodes. Because the

stationary distribution on edges is always uniform in any

graph, it ensures that the flip-side of the Birthday Paradox

holds. Namely, Θ(
√

m) slots are both sufficient and nec-

essary for intersection to happen (with high probability).

Together with earlier arguments on the number of slots in

SybilLimit, this will eventually allow us to prove that the

number of sybil nodes with tails intersecting with V ’s non-

escaping tails (more precisely, V ’s uniform non-escaping

tails—see later) is O(log n) per attack edge.

Balance condition. In SybilGuard, the verifier’s random

route is either escaping or non-escaping, resulting in an “all-

or-nothing” effect. For SybilGuard to work, this single ran-

dom route must be non-escaping. Because of the large l of
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Θ(
√

n log n), the escaping probability will be Ω(1) once g
reaches Ω(

√
n/ log n). Using much shorter random routes

of length w in SybilLimit decreases such escaping proba-

bility. But on the other hand, because a verifier in Sybil-

Limit needs to do r such routes, it remains quite likely that

some of them are escaping. In fact, with r = Θ(
√

m) and

w = Θ(log n), the probability of at least one of the r routes

being escaping in SybilLimit is even larger than the prob-

ability of the single length-l random route being escaping

in SybilGuard. Thus, so far we have only made the “all-or-

nothing” effect in SybilGuard fractional.

SybilLimit relies on its (new) balance condition to ad-

dress this fraction of escaping routes. To obtain some intu-

ition, let us imagine the verifier V ’s tails as bins that can

accommodate up to a certain load. When V accepts a sus-

pect S, out of all of V ’s tails that intersect with S’s tails, S
conceptually increments the load of the least loaded tail/bin.

Because of the randomness in the system, one would conjec-

ture that all of V ’s tails should have similar load. If this is

indeed true, then we can enforce a quota on the load of each

tail, which will in turn bound the number of sybil nodes ac-

cepted by V ’s escaping tails. Later, we will show that the

balance condition bounds the number within O(g log n).

Benchmarking technique. The SybilLimit protocol in Fig-

ures 3 and 6 assumes that r = Θ(
√

m) is known. Obviously,

without global knowledge, every node in SybilLimit needs

to estimate r locally. Recall that SybilGuard also needs

to estimate some system parameter (more specifically, the

length of the walk). SybilGuard uses the sampling tech-

nique to do so, which only works for g = o(
√

n/ logn).
To allow any g = o(n/ logn), SybilLimit avoids sampling

completely. Instead, it use a novel and perhaps counter-

intuitive benchmarking technique that mixes the real sus-

pects with some random benchmark suspects that are al-

ready known to be mostly honest. The technique guaran-

tees that a node will never over-estimate r regardless of

the adversary’s behavior. If the adversary causes an under-

estimation for r, somewhat counter-intuitively, the tech-

nique can ensure that SybilLimit still achieves its end guar-

antees despite the under-estimated r. We will leave the de-

tailed discussion to Section 7.

6. Provable guarantees of SybilLimit

While the intersection and balance conditions are sim-

ple at the protocol/implementation level, it is far from ob-

vious why the designs provide the desired guarantees. We

adopt the philosophy that all guarantees of SybilLimit must

be proved mathematically, since experimental methods can

cover only a subset of the adversary’s strategies. Our

proofs pay special attention to the correlation among var-

ious events, which turns out to be a key challenge. We

cannot assume independence for simplicity because after

all, SybilLimit exactly leverages external correlation among

random routes. The following is the main theorem on Sybil-

Limit’s guarantee:

Theorem 3 Assume that the social network’s honest region

is fast mixing and g = o(n/ log n). For any given constants

(potentially close to zero) ǫ > 0 and δ > 0, there is a set of

(1− ǫ)n honest verifiers and universal constants w0 and r0,

such that using w = w0 log n and r = r0
√

m in SybilLimit

will guarantee that for any given verifier V in the set, with

probability at least 1 − δ, V accepts at most O(log n) sybil

nodes per attack edge and at least (1 − ǫ)n honest nodes.

For the remaining small fraction of ǫn honest verifiers,

SybilLimit provides a degraded guarantee that is not prov-

able. Because of space limitations, we will provide mostly

intuitions in the following and leave formal/complete proofs

to our technical report [42].

6.1. Intersection condition

Preliminaries: Classifying tails and nodes. As prepara-

tion, we first carefully classify tails and nodes. Table 2

summarizes the key definitions we will use. Consider a

given verifier V (or suspect S) and a given v-instance (or s-

instance). We classify its tail into 3 possibilities: i) the tail

is an escaping tail (recall Section 5.1), ii) the tail is not es-

caping and is drawn from the (uniform) edge stationary dis-

tribution (i.e., a uniform tail), or iii) the tail is not escaping

and is drawn from some unknown distribution on the edges

(i.e., a non-uniform tail).2 In a given v-instance, the routing

tables of all honest nodes will entirely determine whether

V ’s tail is escaping and in the case of a non-escaping tail,

which edge is the tail. Thus, the adversary has no influence

over non-escaping tails.

Because we do not know the distribution of the non-

uniform tails, few probabilistic properties can be derived

for them. Escaping tails are worse because their distribu-

tion is controlled by the adversary. Assuming that the hon-

est region of the social network is fast mixing, our technical

report [42] proves the following:

Lemma 4 Consider any given constant (potentially close

to zero) ǫ > 0. We can always find a universal constant

w0 > 0, such that there exists a set H of at least (1 − ǫ)n
honest nodes (called non-escaping nodes) satisfying the fol-

lowing property: If we perform a length-w random walk

starting from any non-escaping node with w = w0 log n,

then the tail is a uniform tail (i.e., a uniformly random di-

rected edge in the honest region) with probability at least

1 − O(g log n
n ).

2A finite-length random walk can only approach but never reach the

stationary distribution. Thus a small fraction of tails will be non-uniform

(also see Theorem 1).
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Table 2. Terminology used in proofs (see text for precise definitions)
escaping route random route from an honest node that traverses an attack edge

escaping tail tail of an escaping route

tainted tail any edge in the honest region on a length-w random route starting from an attack edge

uniform tail non-escaping tail from the uniform edge distribution

non-uniform tail non-escaping tail that is not a uniform tail

non-escaping node honest node such that a length-w random walk has a uniform tail with 1 − o(1) probability

escaping node honest node that is not a non-escaping node

uniform tail set the set of all uniform tails of a given honest node

tainted tail set set of all tainted tails

As a reminder, the probability in the above lemma is de-

fined over the domain of all possible routing table states—

obviously, if all routing tables are already determined, the

tail will be some fixed edge.

It is still possible for the tail of a non-escaping node to

be escaping or non-uniform—it is just that such probabil-

ity is O(g log n
n ) = o(1) for g = o(n/ log n). An honest

node that is not non-escaping is called an escaping node.

By Lemma 4, we have at most ǫn escaping nodes; such

nodes are usually near the attack edges. Notice that given

the topology of the honest region and the location of the

attack edges, we can fully determine the probability of the

tail of a length-w random walk starting from a given node V
being a uniform tail. In turn, this means whether a node V
is escaping is not affected by the adversary. In the remain-

der of this paper, unless specifically mentioned, when we

say “honest node/verifier/suspect”, we mean “non-escaping

(honest) node/verifier/suspect”. We will not, however, ig-

nore escaping nodes in the arguments since they may poten-

tially disrupt the guarantees for non-escaping nodes.

For each verifier V , define its tail set as:

{(i, e) | e is V ’s tail in the ith v-instance}. V ’s uniform

tail set U(V ) is defined as:

U(V ) = {(i, e) | e is V ’s tail in the ith v-instance and
e is a uniform tail}

Notice that the distribution of U(V ) is not affected by the

adversary’s strategy. We similarly define the tail set and

uniform tail set for every suspect S. We define the tainted

tail set ∇ as: ∇ = ∪r
i=1∇i, where

∇i = {(i, e) | e is a tainted tail in the ith s-instance}

Again, the definition of ∇ is not affected by the behavior

of the adversary, as all these tails are in the honest region.

Further notice that in a given s-instance for each attack edge,

we can have at most w tainted tails. Thus |∇i| ≤ g ×w and

|∇| ≤ rgw = O(rg log n).
With slight abuse of notation, we say that a tail set in-

tersects with a tail e as long as the tail set contains an ele-

ment (i, e) for some i. The number of intersections with e

is defined to be the number of elements of the form (i, e).
We double count e in different instances because for every

element (i, e), an arbitrary public key can be registered un-

der the name of e in the ith s-instance. For two tail sets T1

and T2, we define the number of intersections between them

as:
∑

(j,e)∈T2
(# intersections between e and T1). For ex-

ample, {(1, e1), (2, e1)} and {(2, e1), (3, e1)} have 4 inter-

sections. T1 and T2 intersect if and only if the number of

intersection between them is larger than 0.

Tail intersection between the verifier and honest sus-

pects. The intersection condition requires that for a veri-

fier V to accept a suspect S, V ’s tail set and S’s tail set

must intersect with S being registered at some intersecting

tail. We claim that for any given constant δ > 0, a ver-

ifier V and an honest suspect S will satisfy the intersec-

tion condition with probability 1 − δ when r = r0
√

m,

with r0 being an appropriately chosen constant. This is

true because with 1 − δ
2 probability, they will both have

(1 − O(g log n
n )) · r = (1 − o(1))r > 0.5r uniform tails

when g = o(n/ log n). A straight-forward application of

the Birthday Paradox will then complete the argument. No-

tice that we are not able to make arguments on the distri-

bution of non-uniform tails and escaping tails, but uniform

tails by themselves are sufficient for intersection to happen.

Tail intersection between the verifier and sybil suspects.

By definition, all uniform tails of V are in the honest region.

From the secure random route property, the tainted tail set ∇
contains all tails that the sybil nodes can possibly have in the

honest region. We would like to bound the number of sybil

nodes with (tainted) tails intersecting with V ’s uniform tails.

V ’s non-uniform tails and escaping tails will be taken care

of later by the balance condition.

Each tail in ∇ allows the adversary to potentially regis-

ter a public key for some sybil node. The adversary has

complete freedom on how to “allocate” these tails. For ex-

ample, in one extreme, it may create |∇| sybil nodes each

with one tainted tail. In such a case, most likely not all these

|∇| sybil nodes will be accepted because each has only one

tainted tail. In the other extreme, it can create one sybil

node and register its public key with all tails in ∇.
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We need to understand what is the adversary’s optimal

strategy for such an allocation. Interestingly, we can prove

that regardless of what U(V ) is, to maximize the number of

sybil nodes with tails intersecting with U(V ), the adversary

should always create |∇| sybil nodes and allocate one tail

for each sybil node. To understand why, let random variable

X be the number of intersections between∇ andU(V ). It is

obviously impossible for more than X sybil nodes to have

tails intersecting with U(V ). On the other hand, with the

previous strategy, the adversary can always create X sybil

nodes with tails intersecting with U(V ).

With this optimal strategy (of the adversary), we know

that it suffices to focus on the probabilistic property of X .

A tricky part in reasoning about X is that those tails in ∇
are neither uniformly random nor independent. For exam-

ple, they are more likely to concentrate in the region near

the attack edges. However, each tail in U(V ) is still uni-

formly random. From linearity of expectation, we know

that each tail in U(V ) has on expectation
|∇|
2m = O( rg log n

m )
intersections with ∇. This in turn means:

E[X ] ≤ r · O(
rg log n

m
) = O(g log n), for any r = O(

√
m)

A Markov inequality [26] can then show that for any given

constant δ > 0, with probability at least 1 − δ, X is

O(g log n).

6.2. Balance condition

In this section, for any verifier V , we treat all of its

non-uniform tails as escaping tails. Obviously, this only

increases the adversary’s power and makes our arguments

pessimistic. The goal of the balance condition is to bound

the number of sybil nodes accepted by V ’s escaping tails,

without significantly hurting honest suspects (who are sub-

ject to the same balance condition). While the condition is

simple, rigorously reasoning about it turns out to be quite

tricky due to the external correlation among random routes

and also adversarial disruption that may intentionally cause

load imbalance. This introduces challenges particularly for

proving why most honest suspects will satisfy the balance

condition despite all these disruptions.

Effects on sybil suspects. We first study how the bar of

b = h · max(log r, a) (Steps 5–7 in Figure 6) successfully

bounds the number of sybil nodes accepted by V ’s escaping

tails. The argument is complicated by the fact that when

a > log r, the bar b is a floating one. Namely, as more

suspects are accepted, a and thus b will increase, allowing

further suspects to be accepted. If all n honest suspects are

accepted, the bar may rise to Θ(n
r ). We use such a floating

bar because n is unknown (otherwise we could directly set

the bar to be Θ(n
r )).

But on the other hand, it may also appear that as the es-

caping tails accept sybil nodes, the rising bar will allow fur-

ther sybil nodes to be accepted. The key observation here

is that, as shown by the previous section, the number of

sybil nodes accepted by V ’s uniform tails is always prop-

erly bounded (by the intersection condition). The fraction

of escaping tails is o(1) < 1
h . Thus, if the load on all these

escaping tails increases by some value x while the load on

all uniform tails remain unchanged, the bar will only rise

o(1) · x. Following such argument, we will see that the

amount by which the bar rises each time is upper bounded

by a geometric sequence with a ratio of o(1). The sum of

this geometric sequence obviously converges, and in fact

is dominated by the very first term in the sequence. This

prevents undesirable cascading/unbounded rising of the bar.

Our technical report [42] formally proves that under any

constant h, V ’s escaping tails will accept only O(g log n)
sybil nodes despite the floating bar.

Effects on honest suspects. Next, we briefly sketch our

proof [42] that most non-escaping honest suspects will sat-

isfy the balance condition for a sufficiently large constant

h. We first consider the load on V ’s uniform tails. By def-

inition, these tails are in the honest region. The load of a

uniform tail may increase when it intersects with:

1. Uniform tails of non-escaping honest suspects.

2. Non-uniform tails of non-escaping honest suspects.

For g = o(n/ log n), a tail of a non-escaping node is

non-uniform with O(g log n
n ) = o(1) probability. Thus,

with r s-instances and at most n non-escaping nodes,

the expected number of such tails is o(rn). By ap-

plying a Markov’s inequality, we obtain that there are

o(rn) such tails with probability at least 1 − δ for any

given constant δ > 0.

3. Uniform or non-uniform tails of escaping honest

suspects. By Lemma 4, there are at most ǫrn such

tails, where ǫ is a constant that can be made close to 0.

4. Tainted tails. As explained in Section 6.1, there are

O(rg log n) = o(rn) such tails for g = o(n/ log n).

Considering first the load imposed by only the first type

of tails in this list, we are able to prove [42] that with 1 − δ
probability, most non-escaping suspects will satisfy both the

intersection condition and the balance condition and thus

will be accepted. This proof is fairly tricky/involved due to

the external correlation among random routes. Harder still

is taking into account the load imposed by the last 3 types of

tails. In particular, the adversary has many different strate-

gies for when to increase the load of which of V ’s tail, and

finding the optimal strategy of the adversary is challenging.

Fortunately, as argued above, the total number of tails from

suspects in the last 3 tail types is ǫ′rn for some small ǫ′.
We can apply a similar argument as in Section 6.1 to show
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that with probability of 1 − δ, the number of intersections

between these ǫ′rn tails and U(V ) is at most ǫ′′n for some

small ǫ′′. This means that the total load imposed in the last

3 tail types is at most ǫ′′n. Finally, we prove that after dou-

bling the constant h obtained earlier, even if the adversary

completely controls where and when to impose the ǫ′′n load,

the adversary can cause only ǫ′′n honest suspects to be re-

jected. Because ǫ′′ can be made small and close to 0, this

ensures that most non-escaping honest suspects will remain

accepted.

7. Estimating the number of routes needed

We have shown that in SybilLimit, a verifier V will ac-

cept (1 − ǫ)n honest suspects with probability 1 − δ if

r = r0
√

m. The constant r0 can be directly calculated

from the Birthday Paradox and the desired end probabilistic

guarantees. On the other hand, m is unknown to individual

nodes.3 Adapting the sampling approach from SybilGuard

(as reviewed in Section 4) is not possible, because that ap-

proach is fundamentally limited to g = o(
√

n/ logn).

Benchmarking technique. SybilLimit uses a novel and

perhaps counter-intuitive benchmarking technique to ad-

dress the previous problem, by mixing the real suspects with

some random benchmark nodes that are already known to

be mostly honest. Every verifier V maintains two sets of

suspects, the benchmark set K and the test set T . The

benchmark set K is constructed by repeatedly performing

random routes of length w and then adding the ending node

(called the benchmark node) to K . Let K+ and K− be the

set of honest and sybil suspects in K , respectively. Sybil-

Limit does not know which nodes in K belong to K+. But

a key property here is that because the escaping probability

of such random routes is o(1), even without invoking Sybil-

Limit, we are assured that |K−|/|K| = o(1). The test set T
contains the real suspects that V wants to verify, which may

or may not happen to belong to K . We similarly define T +

and T−. Our technique will hinge upon the adversary not

knowing K+ or T + (see later for how to ensure this), even

though it may know K+ ∪ T + and K− ∪ T−.

To estimate r, a verifier V starts from r = 1 and then

repeatedly doubles r. For every r value, V verifies all sus-

pects in K and T . It stops doubling r when most of the

nodes in K (e.g., 95%) are accepted, and then makes a final

determination for each suspect in T .

No over-estimation. Once r reaches r0
√

m, most of the

suspects in K+ will indeed be accepted, regardless of the

behavior of the adversary. Further, because |K+|/|K| =

3SybilLimit also requires that the random route length w be the mix-

ing time of the graph, which is also unknown. However, as in Sybil-

Guard [43], SybilLimit assumes that the nodes know a rough upper bound

on the graph’s mixing time. Such an assumption is reasonable because the

mixing time should be O(log n), which is rather insensitive to n.

1 − o(1), having an r of r0
√

m will enable us to reach the

threshold (e.g., 95%) and stop doubling r further. Thus, V
will never over-estimate r (within a factor of 2).

Under-estimation will not compromise SybilLimit’s

guarantees. It is possible for the adversary to cause an

under-estimation of r by introducing artificial intersections

between the escaping tails of V and the escaping tails of

suspects in K+. This may cause the threshold to be reached

before r reaches r0
√

m.

What if SybilLimit operates under an r < r0
√

m? Inter-

estingly, SybilLimit can bound the number of sybil nodes

accepted within O(log n) per attack edge not only when

r = r0
√

m, but also for r < r0
√

m (see [42] for proofs). To

obtain some intuition, first notice that the number of sybil

nodes with tails intersecting with V ’s uniform tails (Sec-

tion 6.1) can only decrease when r is smaller. Second, the

arguments regarding the number of sybil nodes accepted

by V ’s escaping tails and non-uniform tails (Section 6.2)

hinges only upon the fraction of those tails, and not the

value of r.

Using r < r0
√

m, however, will decrease the probabil-

ity of tail intersection between the verifier and an honest

suspect. Here, we leverage a second important property of

the benchmark set. Namely, conditioned upon the random

routes for picking benchmark nodes being non-escaping,

the adversary will not know which nodes are picked as

benchmark nodes. (If the adversary may eavesdrop mes-

sages, we can readily encrypt messages using edge keys.)

As a result, given an honest suspect, the adversary cannot

tell whether it belongs to K+ or T +. If most (e.g., 95%) of

the suspects in K are accepted, then most suspects in K+

must be accepted as well, since |K+|/|K| = 1 − o(1). If

most suspects in K+ are accepted under r < r0
√

m, the

adversary must have intentionally caused intersection be-

tween V and the suspects in K+. Because the adversary

cannot tell whether an honest suspect belongs to K+ or T +,

it cannot introduce intersections only for suspects in K+;

it must introduce intersections for suspects in T + as well.

Thus, most suspects in T + will be accepted as well under

the given r.

Further discussions. The benchmarking technique may ap-

pear counter-intuitive in two aspects. First, if SybilLimit

uses an under-estimated r, it will be the adversary that helps

it to accept most of the honest nodes. While this is true,

SybilLimit is still needed to bound the number of sybil

nodes accepted and also to prevent r from growing beyond

r0
√

m. Second, the benchmark set K is itself a set with

o(1) fraction of sybil nodes. Thus, it may appear that an

application can just as well use the nodes in K directly, and

avoid the full SybilLimit protocol. However, the set K is

constructed randomly and may not contain some specific

suspects that V wants to verify.

For a more rigorous understanding of the benchmarking
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1. V starts with two sets of suspects, K and T ;

2. Let set A = ∅ and r = 1;

3. While (|A ∩ K|/|K| < 95%) {
4. For every suspect S ∈ ((K ∪ T ) \ A), verify S

using the protocol in Figure 6;

5. If S is accepted, A = A ∪ {S};

6. Double r;

}
7. V accepts all suspects in A ∩ T , and

rejects all suspects in T \ A;

Figure 8. Pseudo-code for the benchmarking

technique.

technique, we can view the process as a sampling algorithm

for estimating the fraction of the suspects accepted in the set

T + ∪K+. We take |K+| samples from the set and observe

that fraction f of the samples are accepted. Classic estima-

tion theory [4] tells us that if |K+| = Θ( 1
ǫ2 log 1

δ ), then the

fraction of the accepted suspects in T + is within f ± ǫ with

probability of at least 1 − δ. It is important to see that the

needed size of K+ (and thus K) is independent of the size

of T . Simple simulation experiments show that |K| = 30
gives us an average ǫ of 0.0322.

Care must be taken when implementing the benchmark-

ing technique. The technique hinges on the fact that the

adversary cannot distinguish suspects in K+ from suspects

in T +. A naive implementation would gradually increase r
and invoke the verification protocol from Figure 6 multiple

times (under different r) for each suspect. This will leak

(probabilistic) information to the adversary. Namely, if the

adversary notices that V still increases r even after a certain

honest suspect S is accepted, then the conditional probabil-

ity that S belongs to T + increases. Under the increased r,

the adversary may then favor other suspects in K+∪T + and

cause S to be rejected. This will then violate the assumption

that K+ is a uniform sample of K+ ∪ T +.

To ensure that K+ is a uniform sample of K+ ∪ T +,

we automatically consider a suspect S that is accepted un-

der a certain r to be accepted under larger r values, with-

out re-verifying this. Figure 8 presents the pseudo-code,

which maintains a set A including all suspects accepted so

far. Now imagine that the adversary notices that V still in-

creases r despite those suspects in A being accepted. This

tells the adversary that the suspects in A are less likely to

belong to K+ than those suspects not in A. However, the

adversary can no longer reverse the determinations already

made for those suspects in A. The adversary can still influ-

ence future determinations on those suspects not in A. But

all these suspects have the same probability of being in K+.

So it does not help the adversary to favor some over others.

8. Lower bound

SybilLimit bounds the number of sybil nodes accepted

within O(log n) per attack edge. A natural question is

whether we can further improve the guarantees. For exam-

ple, it may appear that SybilLimit does not currently have

any mechanism to limit the routing behavior of sybil nodes.

One could imagine requiring nodes to commit (cryptograph-

ically) to their routing tables, so that sybil nodes could not

perform random routes in an inconsistent fashion. We will

show, however, that such techniques or similar techniques

can provide at most a log n factor of improvement, because

the total number of sybil nodes accepted is lower bounded

by Ω(1) per attack edge.

SybilLimit entirely relies on the observation that if the

adversary creates too many sybil nodes, then the resulting

social network will no longer have O(log n) mixing time.

Our technical report [42] proves that for any given constant

c, any g ∈ [1, n], and any graph G with n honest nodes and

O(log n) mixing time, it is always possible for the adversary

to introduce c · g sybil nodes via g attack edges so that the

augmented graph’s mixing time is O(log n′) where n′ =
n + c · g. There are actually many ways to create such an

augmented graph. One way (as in our proof) is to pick g
nodes arbitrarily from G and attach to each of them (using

a single attack edge) a group of c sybil nodes. It does not

matter how the c sybil nodes in a group are connected with

each other, as long as they are connected. Now because the

augmented graph has the same mixing time (i.e., O(log n′))
as a “normal” social network with n′ nodes, as long as the

protocol solely relies on mixing time, we cannot distinguish

these sybil nodes from honest nodes. In other words, all

protocols based on mixing time will end up accepting Ω(1)
sybil nodes per attack edge.

9. Experiments with online social networks

Goal of experiments. We have proved that SybilLimit can

bound the number of sybil nodes accepted within O(log n)
per attack edge, which improved upon SybilGuard’s guar-

antee of O(
√

n log n). However, these provable guarantees

of SybilLimit (and SybilGuard as well) critically rely on the

assumption that social networks have small (i.e., O(log n))
mixing time. Our experiments thus mainly serve to vali-

date such an assumption, based on real-world social net-

works. Such validation has a more general implication be-

yond SybilLimit—these results will tell us whether the ap-

proach of leveraging social networks to combat sybil attacks

is valid. A second goal of our experiments is to gain bet-

ter understanding of the hidden constant in SybilLimit’s

O(log n) guarantee. Finally, we will also provide some

example numerical comparisons between SybilGuard and
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SybilLimit. However, it is not our goal to perform a de-

tailed experimental comparison, because SybilLimit’s im-

provement over SybilGuard is already rigorously proved.

Social network data sets. We use three crawled online so-

cial network data sets in our experiments: Friendster, Live-

Journal, and DBLP (Table 3). They are crawls of http://

www.friendster.com, http://www.livejournal.

com, and http://dblp.uni-trier.de, respectively.

The DBLP data set is publicly available, but the other two

are not. We also experiment with Kleinberg’s synthetic so-

cial network [17], which we used [43] to evaluate Sybil-

Guard.

Strictly speaking, DBLP is a bibliography database and

not a social network. To derive the “social network” from

DBLP, we consider two people having an edge between

them if they have ever co-authored a paper. Because of

the closely clustered co-authoring relationships among re-

searchers, we expect such a social network to be more

slowly mixing than standard social networks. Thus, we use

DBLP as a bound on the worst-case scenario. Obviously,

DBLP is guaranteed to be free of sybil nodes. Although it

is theoretically possible for Friendster and LiveJournal to be

polluted with sybil nodes already, we expect such pollution

to be limited because of the lack of motivation to launch

large-scale sybil attacks in Friendster and LiveJournal.

Preprocessing of data sets. We preprocess Friendster, Live-

Journal, and DBLP in the following way before using them.

(Kleinberg does not need preprocessing.) First, the original

Friendster and LiveJournal data sets have directed edges be-

tween users instead of undirected edges, while SybilLimit

operates on an undirected graph. During the crawl to ob-

tain Friendster and LiveJournal, a directed edge A→B is

added to the graph if A lists B as its friend. For LiveJour-

nal, we consider that there is an undirected edge between

A and B if and only if there are two directed edges A→B
and B → A in the original data. For Friendster, we find

on www.friendster.com that if A lists B as A’s friend,

then B must also lists A as B’s friend. In other words, the

friendship relation is always mutual. This does not necessar-

ily mean that the original Friendster data set must contain

both A→B and B→A, since it is possible that the crawl

stops after crawling A’s friend list but before crawling B’s

friend list. Thus for Friendster, if there is a directed edge

A → B, or B → A, or both, we consider that there is an

undirected edge between A and B.

The second step of our preprocessing limits the degree

of all nodes in the graph to be 100 or fewer. SybilLimit in-

herits the idea from SybilGuard that an honest node should

not have an excessive number of neighbors. This restriction

helps bound the number of additional attack edges the ad-

versary gets when an honest node is compromised. We pick

the limit 100 because this appears to be reasonable in the

real world: a typical human being is likely to have strong

social relationships with fewer than 100 people. We limit

the degree of the nodes by removing random edges from a

node if its degree is above 100.

Next we remove all nodes in the graph with degree

smaller than 5. This decision reflects our expectation that

a new user of SybilLimit will establish a minimum num-

ber of edges (e.g., 5) with existing users. This requirement

ensures that the new user has at least some reasonable con-

nectivity to the social network. Before the user establishes

these edges, the user can still use other nodes as proxies to

verify suspects, except that it cannot be verified by other

nodes. The final preprocessing step is to select the largest

connected component in the resulting graph. This largest

connected component is what we use in our experiments.

Table 3 presents the basic statistics of the four social net-

works after preprocessing (if needed).

Experimental methodology. We choose to use simulation

in all of our experiments for two important reasons. First,

we are mainly concerned with how the graph properties of

these real-world social networks affect SybilLimit’s end se-

curity guarantees. Performance is not the focus of our eval-

uation; as explained earlier, it is unlikely for SybilLimit to

incur excessive performance overheads. Second, simulation

allows us to study large (i.e., million-node) social networks.

All results are obtained after the secure random route proto-

col in SybilLimit has stabilized.

Exactly as in [43], we place the g attack edges in the

social networks in two different ways. In rand, we re-

peatedly pick uniformly random nodes in the graph and

mark them. In cluster, we start from a uniformly ran-

dom node and then perform a breadth-first search from that

node. All nodes encountered are marked. In both rand

and cluster, those edges between marked nodes and un-

marked nodes are considered attack edges. We keep mark-

ing nodes until the total number of attack edges reaches our

target g. We find that the results using cluster placement

are usually slightly better than using rand, under the same

g. Thus, all results presented below are the pessimistic re-

sults using rand.

We do not explicitly simulate the sybil nodes and the

edges among them. The reason is that in order to do so,

one needs to use the optimal strategy of the adversary to

maximize the effectiveness of the attack. This optimal strat-

egy may involve infinite number of sybil nodes. Thus in-

stead, we design the experiments such that the experiments

are guaranteed to produce pessimistic results (i.e., no bet-

ter than the results under the optimal strategy). For exam-

ple, our experiments assume that the adversary always “sat-

urates” the balance condition (i.e., equivalent to creating in-

finite number of sybil nodes whose tails intersect with those

escaping tails of the verifier).

Results: Mixing time of real-world social networks. In

SybilLimit, the only parameter affected by mixing time is
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Data set Friendster LiveJournal DBLP Kleinberg

Data set source [34] [39] [10] [17]

Date crawled Nov-Dec 2005 May 2005 April 2006 not applicable

# nodes 932,512 900,822 106,002 1,000,000

# undirected edges 7,835,974 8,737,636 625,932 10,935,294

w used in SybilLimit 10 10 15 10

r used in SybilLimit 8,000 12,000 3,000 10,000

Table 3. Social network data sets.
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Figure 9. Friendster
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Figure 10. LiveJournal
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Figure 11. DBLP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100

#
 o

f 
s
y
b
il 

n
o
d
e
s
 a

c
c
e
p
te

d
/

n
u
m

b
e
r 

o
f 
h
o
n
e
s
t 
n
o
d
e
s

# of attack edges in thousands

by non-escaping tails
by escaping tails

total

Figure 12. Kleinberg

the length of the random routes (w). Namely, w should be

at least as large as the mixing time. It is not possible to

directly show that our data sets have O(log n) mixing time,

since O(log n) is asymptotic behavior. It is not necessary to

do so either, since all we need to confirm is that rather small

w values are already sufficient for SybilLimit to work well.

For Friendster and LiveJournal, we use w = 10 (see Ta-

ble 3). Random routes do not seem to reach good enough

mixing for SybilLimit with w values much smaller than 10
(e.g., 5) in these two social networks. We use w = 15
for DBLP. As expected, DBLP has a worse mixing property

than the other social networks. Our results will show that

these small w values are already sufficient to enable good

enough mixing in our large-scale social networks (with 105

to around 106 nodes) for SybilLimit to work well.

It is worth noting that social networks are well-known

to have groups or communities where intra-group edges are

much denser than inter-group edges [3, 15, 24, 38]. In fact,

there are explicitly-defined communities in LiveJournal for

users to join, while people in DBLP by definition form re-

search communities. Our results thus show that somewhat

counter-intuitively and despite such groups, the sparse inter-

group edges in these real-world social networks are suffi-

cient to provide good mixing properties.

Results: SybilLimit’s end guarantees. We use the w val-

ues from Table 3 to simulate SybilLimit and determine the

number of sybil nodes accepted. Our simulator does not im-

plement the estimation process for r. Rather, we directly

use the r values from Table 3, which are obtained based

on the value of m and the Birthday Paradox. We use 4 for

the universal constant h in all our experiments. We have

observed (results not included) that h = 2.5 is already suffi-

cient in most cases, while excessively large h (e.g., 10) can

unnecessarily weaken the guarantees (though not asymptot-

ically). We always simulate the adversary’s optimal strategy

(i.e., worst-case for SybilLimit).

Figures 9 to 12 present the number of sybil nodes ac-

cepted by a randomly chosen verifier V (as a fraction of the

number of honest nodes n), in each social network. We

present a fraction to allow comparison across social net-

works with different n. We have repeated the experiments

from a number of verifiers, yielding similar results. For all

cases, we experiment with g up to the point where the num-

ber of sybil nodes accepted reaches n. The figures further

break down the sybil nodes accepted into those accepted by

V ’s non-escaping tails versus those accepted by V ’s escap-

ing tails. The first component is bounded by the intersection

condition while the second is bounded by the balance con-

dition. In all figures, the number of sybil nodes accepted

grows roughly linearly with g. The asymptotic guarantee

of SybilLimit is O(log n) sybil nodes accepted per attack

edge. Figures 9 to 12 show that this O(log n) asymptotic

term translates to around between 10 (in Friendster, Live-

Journal, and Kleinberg) to 20 (in DBLP). As a concrete nu-

merical comparison with SybilGuard, SybilGuard [43] uses

random routes of length l = 1906 in the million-node Klein-

berg graph. Because SybilGuard accepts l sybil nodes per

attack edge, this translates to 1906 sybil nodes accepted per

15



attack edge for Kleinberg. Thus numerically in Kleinberg,

SybilLimit reduces the number of sybil nodes accepted by

nearly 200-fold over SybilGuard.

One can also view Figures 9 to 12 from another perspec-

tive. The three data sets Friendster, LiveJournal, and Klein-

berg all have roughly one million nodes. Therefore, in or-

der for the number of sybil nodes accepted to reach n, the

number of attack edges needs to be around 100,000. Put

it another way, the adversary needs to establish 100,000

social trust relationships with honest users in the system.

As a quick comparison under Kleinberg, SybilGuard will

accept n sybil nodes once g reaches around 500 (since

l = 1906). Some simple experiments further show that with

g ≥ 15, 000, the escaping probability of the random routes

in SybilGuard will be above 0.5 and SybilGuard can no

longer provide any guarantees at all. Finally, DBLP is much

smaller (with 100,000 nodes) and because of the slightly

larger w needed for DBLP, the number of sybil nodes ac-

cepted will reach n roughly when g is 5,000.

Finally, we have also performed experiments to inves-

tigate SybilLimit’s guarantees on much smaller social net-

works with only 100 nodes. To do so, we extract 100-node

subgraphs from our social network data sets. As a concise

summary, we observe that the number of sybil nodes ac-

cepted per attack edge is still around 10 to 20.

10. Conclusion

This paper presented SybilLimit, a near-optimal defense

against sybil attacks using social networks. Compared

to our previous SybilGuard protocol [43] that accepted

O(
√

n log n) sybil nodes per attack edge, SybilLimit ac-

cepts only O(log n) sybil nodes per attack edge. Fur-

thermore, SybilLimit provides this guarantee even when

the number of attack edges grows to o(n/ log n). Sybil-

Limit’s improvement derives from the combination of multi-

ple novel techniques: i) leveraging multiple independent in-

stances of the random route protocol to perform many short

random routes, ii) exploiting intersections on edges instead

of nodes, iii) using the novel balance condition to deal with

escaping tails of the verifier, and iv) using the novel bench-

marking technique to safely estimate r. Finally, our results

on real-world social networks confirmed their fast mixing

property, and thus validated the fundamental assumption be-

hind SybilLimit’s (and SybilGuard’s) approach. As future

work, we intend to implement SybilLimit within the context

of some real-world applications and demonstrate its utility.
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A. Proofs

The proofs in this appendix establish the asymptotic guarantees of SybilLimit. For all constants used or derived in the

proofs, we aim for simplicity instead of pursuing the optimal. All results are for n sufficiently large, and assuming that the

honest region of the social network has O(log n) mixing time.

A.1. Preliminaries: Classifying Tails and Nodes

Lemma 5 Consider any given constant ǫ > 0. We can always find a universal constant w0 > 0, such that there exists a set

H of at least (1 − ǫ)n honest nodes (called non-escaping nodes) where if we perform a length-w random walk starting from

any non-escaping node with w = w0 log n, then

• The tail is non-escaping with probability of at least 1 − O(g log n
n ).

• The tail is a uniformly random directed edge in the honest region of the social network with probability of at least

1 − O(g log n
n ).

Proof: We let G denote the entire social network with all honest nodes and sybil nodes. The sybil nodes in G may deviate

from the protocol in arbitrary way. We define G′ to be the social network with only honest nodes and edges between honest

nodes. G′ is not known by SybilLimit. According to our system model (Section 3), G′ has n nodes and m undirected edges.

We will later draw connections between random walks in G to random walks in G′.
To prove the lemma, it suffices to show that we can find two universal constants c1 > 0 and c2 > 0 such that the

probability of the tail being non-escaping is at least 1 − c1
g log n

n and the probability of the tail being uniformly random is at

least 1 − c2
g log n

n . According to our assumption, G′ is fast mixing with O(log n) mixing time. This means that we can find

a universal constant w0 such that random walks of length w = w0 log n in G′ is sufficient to achieve a variation distance of
1
n or lower. We let c1 = w0/ǫ1 and c2 = 2c1 + 1.

We first intend to find a set of (1 − ǫ1)n nodes such that starting from any of them, a length-w random walk in G is

non-escaping with probability of at least 1 − gw
ǫ1n . Let pi be the probability of a length-w random walk being escaping if we

start the random walk from honest node i, for 1 ≤ i ≤ n. It has been proved [43] that p1 + p2 + . . . + pn ≤ gw. Among

all these pi’s, We claim that there must be at least (1 − ǫ1)n of them that are at most gw
ǫ1n . This is true because otherwise

there must be ǫ1n values that are larger than gw
ǫ1n , which will make the summation larger than gw. Without loss of generality,

we can thus assume pi ≤ gw
ǫ1n for 1 ≤ i ≤ (1 − ǫ)n. The set H is then constructed as the set containing node 1 through

node (1 − ǫ)n. Obvious |H | ≥ (1 − ǫ1)n and the probability of a length-w random walk starting from any node in H being

escaping is at most gw
ǫ1n = c1

g log n
n .

Consider any node V ∈ H , and we will draw a connection between the random walk starting from V in G and the random

walk starting from V in G′. In G′, let a′
i be the probability of V ’s tail being directed edge i for 1 ≤ i ≤ 2m. Given how we

picked w0 earlier, we know that the distribution a′
i has a variation distance of at most 1

n from the stationary distribution (i.e.,

the uniform distribution on the directed edges).

Now consider the graph G. For now let us assume that the adversary never allows any escaping random walk to return

to the honest region. Let ai be the probability of the tail being directed edge i for 1 ≤ i ≤ 2m. Notice that we will have
∑

i=1 2mai < 1 by definition. It is not difficult to see that ai ≤ a′
i for all i and

∑2m
i=1(a

′
i − ai) ≤ c1g log n/n. Now if the

adversary does direct some escaping random walks back to the honest region, the probabilities may increase from ai to bi.

However, we must also have
∑2m

i=1(bi − ai) ≤ c1g log n/n. Notice that there can still be random walks that do not return to

the honest region. We use b2m+1 ≤ c1g log n/n to denote such probability—this will make
∑2m+1

i=1 bi = 1.

We would like to eventually reason about the variation distance between the distribution of bi and the uniform distribution.

To do so, we define a′
2m+1 = 0. The variation distance between a′

i and bi is:

0.5
2m+1
∑

i=1

|a′
i − bi| ≤ 0.5(c1

g log n

n
+

2m
∑

i=1

|a′
i − bi|)

≤ 0.5(c1
g log n

n
+

2m
∑

i=1

(|a′
i − ai| + |ai − bi|))

< 2c1
g log n

n
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Finally, because the distribution a′
i has a variation distance of at most 1

n from the uniform distribution, the variation distance

between bi and the uniform distribution is at most 2c1
g log n

n + 1
n < c2

g log n
n . From the property of variation distance [20],

we know that if we pick an edge from distribution bi, with at least probability of 1− c2
g log n

n , the edge is a uniformly random

directed edge in the honest region. 2

Comment. It is important to notice that the honest region of the social network, together with the location of the attack edges,

uniquely determine which nodes are escaping and non-escaping. In other words, this is not affected by the routing tables.

Lemma 6 Consider any given non-escaping verifier V (or suspect S) and its r tails in the r v-instances (or s-instances). For

any given constant δ > 0, with probability of at least 1 − δ:

• The number of escaping tails and non-uniform tails is O(g log n
n ) · r.

• The number of uniform tails is (1 − O(g log n
n )) · r.

Proof: The second claim directly follows from the first claim. Let X be the total number of escaping and non-uniform

tails in all r instances. To prove the first claim, it suffices to show that there exists some universal constant c1, Pr[X >
c1

g log n
n · r] ≤ δ. Lemma 5 tells us that in any given instance, the probability of V ’s tail being escaping or non-uniform is at

most O(g log n
n ) < c2

g log n
n for some universal constant c2. Let c1 = c2/δ. We thus have E[X ] < c2

g log n
n r = δc1

g log n
n r.

Invoking a Markov inequality on X will yield that Pr[X > c1
g log n

n r] ≤ δ. 2

Comment. We use Markov inequality instead of a Chernoff bound in the proof because we want the result to hold even for

small r values.

A.2. Why the Number of Accepted Sybil Nodes Is Properly Bounded

We would like to prove these result for any r ≤ r0
√

m, instead of only for r = r0
√

m. This will allow us to use the

benchmarking technique described in Section 7 to estimate r.

Lemma 7 Consider any given constant r0 > 0, δ > 0, and any given honest verifier V . Let w0 be from Lemma 5, w =
w0 log n, and r ≤ r0

√
m. Then with probability of at least 1− δ, the number of sybil nodes with tails intersecting with U(V )

is O(g log n).

Proof: Let X denote the number of intersections between U(V ) and the tainted tail set ∇. It suffices to show that there exists

some universal constant c1, such that Pr[X > c1g log n] ≤ δ.

Consider any tail in U(V ). In each s-instance, there are at most gw tainted tails. Because the tail from U(V ) is a uniformly

random edge, the probability of it intersecting with those tainted tails in the given s-instance is at most gw/(2m). With total

r s-instances, the expected number of intersections will be at most rgw/(2m). Finally, we trivially have |U(V )| ≤ r and

thus E[X ] ≤ r2gw/(2m) = r2
0w0g log n/2. Let c1 = r2

0w0/(2δ) and then invoke a Markov inequality on X . We will then

have Pr[X > c1g log n] ≤ δ. 2

Comment. Notice that Lemma 7 holds for both non-escaping verifiers and escaping verifiers.

Lemma 8 Consider any given constant r0 > 0, h > 0, δ > 0, and any given honest verifier V . Let w0 be from Lemma 5,

w = w0 log n, and r ≤ r0
√

m. Assume that g = o(log n/n). Then with probability of at least 1 − 2δ, the number of sybil

nodes accepted by V ’s non-uniform tails and escaping tails is O(g log n).

Proof: Define random variable Q to be the number of non-uniform tails and escaping tails that V has. From the balance

condition, we know that the number of sybil nodes accepted by V ’s non-uniform tails and escaping tails is at most Q · h ·
max(log r, a), where a is the average number of suspects accepted by all tails of the verifier. Lemma 6 tells us that with

probability of at least 1 − δ, Q is O(g log n
n ) · r. Conditioned upon that Q = O(g log n

n ) · r, we consider two cases:

• a ≤ log r: We have Q ·h ·max(log r, a) = Qh log r = O((g log n) r log r
n ) = O((g log n) r0

√
m log(r0

√
m)

n ) = O(g log n)
(assuming

√
m log m = O(n)).
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• a > log r: Let X be the number of suspects accepted by V ’s non-uniform tails and escaping tails. Let Y be the

number of suspects accepted by V ’s uniform tails. There are n honest suspects that can be accepted. Furthermore,

Lemma 7 tells us that with probability of at least 1 − δ, the number of sybil nodes accepted by these uniform tails is

O(g log n) = o(n) < n when g = o(n/ log n). Thus with probability of at least 1 − δ, Y ≤ 2n. The load on the

non-uniform tails and escaping tails must satisfy the balance condition, which implies:

X

Q
≤ h · X + Y

r
≤ h · X + 2n

r

⇒ X

O(g log n
n ) · r

≤ h · X + 2n

r

⇒ X ≤ (X + 2n) · O(
g log n

n
)

⇒ X ≤ O(g log n)/(1 − O(
g log n

n
)) = O(g log n)/(1 − o(1)) = O(g log n)

2

A.3. Why Honest Suspects will Satisfy the Intersection Condition

Lemma 9 Assume that g = o(log n/n) and consider any give constant δ > 0. We can always find a universal constant

r0 ≥ 1 such that if r = r0
√

m, then for any given non-escaping verifier V and any given non-escaping suspect S, U(V ) and

U(S) intersect with probability of at least 1 − δ.

Proof: Directly follows from Lemma 6 and the Birthday Paradox. 2

A.4. Why Honest Suspects Will Satisfy the Balance Condition

In this section, we prove why most honest suspects will satisfy the balance condition. Together with Lemma 9, this will

complete the proof for SybilLimit’s guarantee on the fraction of honest nodes accepted. The proof in this section turns out

to be the most tricky among all our proofs. For better explanation, we will construct our proofs based on connections among

the following 4 cases on how the load of the verifier’s tails are incremented. In all cases, we still require the load on every

tail to be no larger than h · max(log r, a).

A Every accepted non-escaping honest suspect S increments the load of every tail in U(V ) that intersects with S’s uniform

tails. The load of V ’s tails does not increase in other cases. In other words, i) no additional load is imposed on tails in

U(V ), and ii) those tails not in U(V ) (i.e., non-uniform tails and escaping tails) always have a load of 0.

B Every accepted non-escaping honest suspect S increments the load of one tail, out of all tails in U(V ) that intersect with

S’s uniform tails. We allow the adversary to determine the tail picked. The load of V ’s tails does not increase in other

cases.

C Every accepted non-escaping honest suspect S increments the load of the least loaded tail (with tie breaking based on

instance number), out of all tails in U(V ) that intersect with S’s uniform tails. The load of V ’s tails does not increase in

other cases.

D Every accepted non-escaping honest suspect S increments the load of the least loaded tail (with tie breaking based on

instance number), among all tails in U(V ) that intersect with S’s tails (notice that it is “S’s tails” instead of “S’s

uniform tails”). Additionally, for tails in U(V ), the adversary may increase their load arbitrarily at any point of time,

subject to the condition that the total increase load (for all tails in U(V ) combined) is ǫn for some small ǫ > 0. For tails

not in U(V ), the adversary may increase their load arbitrarily at any point of time with no restrictions.

The last case D captures SybilLimit’s behavior (pessimistically). The first three cases are not “implementable”, but they serve

as stepping stones in our proofs and arguments.
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A.4.1 Proofs for A, B, and C
Lemma 10 Suppose g = o(n/ log n). In A, consider any given set of k honest non-escaping suspects and any given directed

edge in the honest region of the social network. Let Z denote the number of intersections that edge has with all the uniform

tail sets of the k suspects. Then with probability of at least 1−2−r/2, Z is lower bounded by some binomial distribution with

mean of rk/(16m) and upper bounded by some other binomial distribution with mean of rk/(2m).

Proof: Consider the ith s-instance and let random variable Ti to be the number of uniform tails that the k suspects have in that

s-instance. Each of these Ti tails is a uniformly random edge, but they are potentially correlated. Despite such correlation,

let Xj (for 1 ≤ j ≤ Ti) be indicator random variable denoting th event that the (Xj)th tail intersect with the given directed

edge. Further define X to be the event that some tail from the Ti tails intersect with the given directed edge. Because of

the backtracability of the random routes within any given s-instance, at most one of all these Xi’s can be 1. Thus we have

X = X1 + X2 + ...XTi
. From linearity of expectation, we know that E[X ] = E[X1] + E[X2] + ... + E[XTi

] = Ti

2m . On

the other hand, because X is an indicator random variable, Pr[X ] = E[X ] = Ti

2m .

Next we would like to study the distribution of Ti. Define indicator random variable Yj to denote the event that the tail from

the jth suspect in the given s-instance is a uniform tail, for 1 ≤ j ≤ k. Obviously, we have Ti =
∑k

j=1 Yj = k −∑k
j=1 Ȳj .

Since all the k suspects are non-escaping, we know from Lemma 5 that Pr[Ȳj ] = o(1) < 1
8e when g = o(n/ log n).

Thus E[
∑k

j=1 Ȳj ] < k
8e . Invoking a Markov inequality and we have Pr[

∑k
j=1 Ȳj ≥ k

2 ] ≤ 1
4e . This in turn means that

Pr[Ti < k
2 ] ≤ 1

4e .

We obviously have 0 ≤ Ti ≤ k for 1 ≤ i ≤ r. Define indicator random variable Wi to denote the event that Ti < k
2

for 1 ≤ i ≤ r. Obviously, we have Pr[Wi] ≤ 1
4e for any i. Define W =

∑r
i=1 Wi, where E[W ] < r

4e . Because all r
s-instances are independent, we can invoke a strong Chernoff bound on W , which will show that Pr[W ≥ r

2 ] = Pr[W ≥
(2e) · E[W ]] < 2−r/2. This means that with probability of at least 1 − 2−r/2, there will be at least ( r

2 − 1) s-instances with

Ti ≥ k
2 . Thus the binomial distribution with mean of ( r

2 − 1) · k/2
2m > rk/(16m) (when n, and thus m and r, sufficiently

large) is a lower bound on Z .

To upper bound Z , notice that we have r s-instances and that Ti ≤ k for 1 ≤ i ≤ r. Thus the binomial distribution with

mean of r · k
2m = rk/(2m) upper bounds Z . 2

Comment. In the proofs below, we will invoke Chernoff bounds on the binomial distributions to bound the tail distribution

of Z . This is why we only care about the means of the binomial distributions.

Lemma 11 In B, assume g = o(n/ log n). For any given constant δ > 0, we can find a universal constant r0 such that

let r = r0 · √m will give us the following property. If we pick an arbitrary non-escaping verifier V and an arbitrary non-

escaping suspect S, construct a uniformly random permutation of all suspects (including honest and sybil suspects), and let

V verify the sequence one by one, then the probability of V accepting S is at least 1 − δ.

Proof: In B, only non-escaping honest suspects may affect the load on V ’s tails. Thus to simplify discussion in the following,

we delete all other nodes from the sequence. Based on Lemma 9, we can pick appropriate r0 such that for V and any non-

escaping suspect S′, U(V ) and U(S′) intersect with probability of at least 1 − δ2/64. We will prove that such r0 will satisfy

the requirement of the lemma.

Consider the set H of all non-escaping suspects. Let Y be the number of suspects in H whose uniform tail set does not

intersect with V ’s uniform tail set:

Y = |{S | S ∈ H and U(S) does not intersect with U(V )}|

Obviously we have E[Y ] ≤ δ2|H |/64. Invoke a Markov inequality and we have Pr[Y ≥ δ|H |/8] ≤ δ/8. This means that

probability at least 1 − δ/8, the total number of non-escaping suspects with their uniform tail sets intersecting with U(V ) is

at least (1 − δ/8)|H |. Consider a uniformly random permutation of the |H | suspects. Let the ith suspect in the sequence be

Si for 1 ≤ i ≤ |H |. Suppose that S is the kth suspect in the sequence, where 1 ≤ k ≤ |H |. Obviously, with probability

1 − δ/4, k ≤ (1 − δ/4)|H |.
For 1 ≤ i ≤ k, define indicator random variable Xi to be the event that the combined load imposed by the first i suspects

in the sequence satisfies the balance condition. Obviously, X1 means that the load imposed by the first suspect satisfies the

balance condition. If the first suspect also satisfy the intersection condition, it will be accepted. On the other hand, since

the verifier verifies the suspects sequentially, X2 by itself does not necessarily mean that the load imposed by the second
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suspect (after the first suspect) will satisfy the balance condition, since the first suspect could have been rejected if X1 is not

true. Thus X2 only means that the combined load of the first and the second suspect satisfies the balance condition. However,

X1X2...Xk do indeed imply that all k suspects, when verified sequentially, satisfy the balance condition.

Considered upon Y ≤ δ|H |/8 and k ≤ (1 − δ/4)|H |, Lemma 12 below will prove that Pr[X1X2...Xk] ≥ 1 − δ/2.

Notice that U(V ) and U(S) intersects with probability of at least 1 − δ2/64. A union bound then shows that S is accepted

with probability at least 1 − δ. 2

Lemma 12 In B, assume g = o(n/ log n). Let δ, r0, H , Si (for 1 ≤ i ≤ |H |), S, k, Y , and Xi (for 1 ≤ i ≤ k) be the same

as in the proof of Lemma 11. If Y ≤ δ|H |/8 and k ≤ (1 − δ/4)|H |, then using any constant h ≥ max(24, 4.8r2
0) in the

balance condition is sufficient to ensure Pr[X1X2...Xk] ≥ 1 − δ/2.

Proof: For 1 ≤ i ≤ k, we will prove that Pr[Xi] ≥ 1 − δ/(2n). Let µ = ri/(2m):

• µ ≤ 10 log r: Notice that the load of a tail in B will never be larger than in A. Since Xi is about the combined load

imposed by the first i suspects that are non-escaping, we can invoke Lemma 10 to reason about the distribution for the

load. Notice that we are not yet discussing whether individual suspect will be accepted. Lemma 10 shows that in A, the

load of a tail in U(V ) is upper bounded by a binomial distribution with mean of µ. A Chernoff bound on the binomial

distribution will show that the probability of the load being larger than 24 log r is at most e−(19.6 log r)/4 < 1/r4. The

load on different tails are correlated. But a union bound can still show that the probability that all tails in U(V ) have a

load smaller than 24 log r is at least 1−r ·1/r4 > 1−1/r3 = 1−1/(r3
0m

1.5) > 1−1/n1.5 = 1−o(1/n). On the other

hand, the bar is at least h log r > 24 log r which means that the balance condition must be satisfied with probability of

at least 1 − o(1/n) > 1 − δ/(2n).

• µ > 10 log r: Again the load of a tail in B will never be larger than in A. Lemma 10 shows that in A, the load of a tail

in U(V ) is upper bounded by a binomial distribution with mean of µ. A Chernoff bound will show that the probability

of the load being larger than 2.4µ is at most e−(1.96µ)/4 < e−(19.6 log r)/4 < 1/r4. A same union bound as before will

then show that the probability that all tails in U(V ) have a load smaller than 2.4µ is at least 1 − o(1/n).

On the other hand, define random variable Z to denote the number of non-escaping suspects before Si whose uniform

tail sets intersect with V ’s uniform tail set:

Z = |{Sj|1 ≤ j ≤ i and U(Sj) intersect with U(V )}|

Conditioned upon Y ≤ δ|H |/8 and 1 ≤ j ≤ i ≤ k ≤ δ|H |/4, Lemma 13 will prove:

Pr[Z ≥ i

4
] ≥ 1 − exp(− i

16
)

From the conditions µ > 10 log r and µ = ri
2m , we have i > 20m log r

r =
20

√
m log(r0

√
m)

r0

> 20 log r0

r0

√
n. Therefore:

Pr[Z ≥ i

4
] ≥ 1 − exp

(

− i

16

)

> 1 − exp

(

−20 log r0

16r0

√
n

)

= 1 − o(
1

n
)

Thus with at least 1 − o(1/n) probability, the total load across all tails is at least i/4, and the bar is at least:

h · a ≥ 4.8r2
0 · i

4r
=

4.8ir

4m
= 2.4µ

A union bound then shows Pr[Xi] ≥ 1 − δ/(2n).

Finally, k ≤ n and a simple union bound across all Xi’s finishes the proof. 2

Lemma 13 In B, assume g = o(n/ log n). Let δ, r0, H , Si (for 1 ≤ i ≤ |H |), S, k, Y , Xi (for 1 ≤ i ≤ k), and Z be the

same as in the proof of Lemma 12. Conditioned upon Y ≤ δ|H |/8 and 1 ≤ i ≤ k ≤ δ|H |/4, we have:

Pr[Z ≥ i

4
] ≥ 1 − exp(− i

16
)
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Proof: Assume that all routing table contents are already known. Conditioned upon Y ≤ δ|H |/8, define indicator random

variable Zj to denote the event that U(Sj) intersects with U(V ), for 1 ≤ j ≤ i. Notice that Zj is define over the domain

of all possible permutations (of the non-escaping suspects) instead of over the domain of all possible routing table contents.

Obviously, we have Z = Z1 + Z2 + ... + Zi. In the remainder of the proof for this lemma, when we say a suspect “intersect”

with the verifier, we mean the suspect’s uniform tail set intersects with the verifier’s uniform tail set.

We already know that out of the |H | non-escaping suspects, only δ/4 fraction of them do not intersect with the verifier.

A random permutation of the |H | suspects can be constructed in the following way: We first pick a (uniformly) random

suspect out of H (without replacement) as S1. Next we pick a (uniformly) random suspect out of the remaining nodes

(without replacement) as S2, and so on. Let Hj be the set of remaining suspects immediately before we pick Sj . For any

1 ≤ j ≤ i ≤ k ≤ δ|H |/4, the fraction of suspects in Hj that intersect with the verifier is at least:

(1 − δ/8) |H | − (j − 1)

|H | − (j − 1)
= 1 − δ|H |/8

|H | − j + 1
≥ 1 − δ|H |/8

|H | − (1 − δ/4) |H | + 1
= 1 − δ|H |/8

δ|H |/4 + 1
> 0.5

This means that the event Zj occurs with probability at least 0.5, regardless of whether events Z1, Z2, .... Zj−1 occur or not.

Define random variable Z ′ as the sum of i independent Bernoulli trials where each Bernoulli trial succeeds with probability

of 0.5. A Chernoff bound of Z ′ tells us that

Pr[Z ′ ≤ i/4] = Pr[Z ′ ≤ (1 − 0.5)E[Z ′]] ≤ exp (−E[Z ′]/8) = exp(−i/16)

Finally, it is obvious that Pr[Z ≥ i/4] ≥ Pr[Z ′ ≥ i/4] ≥ 1 − Pr[Z ′ ≤ i/4] ≥ 1 − exp(−i/16). 2

Comment. C is actually a special case of B, thus Lemma 11, 12 and 13 for B directly carry over to C.

A.4.2 Proofs for D
D has two differences from C. First, in D, every accepted non-escaping honest suspect picks the least loaded tail out of all

intersecting tails (instead of out of those intersecting tails in U(V )). We define σ(V ) to denote all of V ’s tails not in U(V ).
Namely, these are V ’s non-uniform tails and escaping tails. Second, the adversary may now interfere to cause honest nodes

to be rejected, by intentionally cause load imbalance.

We need to precisely model such interference from the adversary. To do so, we start from a sequence S1S2... of non-

escaping honest suspects that were all accepted under C. We consider this sequence of honest suspects as a sequence of white

balls, each of which goes into some bin (tail) in U(V ) in C. In D, the adversary may interfere in the following two ways, with

the goal of causing some of suspects previously accepted to be now rejected:

1. The adversary may introduce sybil nodes with tails intersecting with V ’s tails. If these sybil nodes are accepted, then

the load of V ’s tails will increase, potentially causing some previously accepted non-escaping honest suspects to be now

rejected. As a concrete example, imagine that previously in C, S5 only had a single intersection with all of V ’s tails

and the intersection is on V ’s uniform tail #12. So S5 conceptually placed a ball into bin 12. Now in D, before S5 is

verified, the adversary introduces a sybil node with tails intersecting with tail 12. Further assume that after the sybil

node is accepted, tail 12’s load happens to reach the bar. Next when S5 is verified in D, S5 will no longer satisfy the

balance condition and thus be rejected.

We model this kind of interference from the adversary by allowing the adversary in D to insert red balls at any place in

the sequence of white balls. Each red ball corresponds to an accepted sybil node, and will increment the load of some

tail of V ’s.

Our later proof will prove that the “damage” caused by each red ball is limited, leveraging the following key observation

in the above example: After S5 is rejected, the load on tail 12 go back to “normal”. More precisely, the sybil node

caused tail 12 to have one extra load than before. However, S5 should have incremented the load of tail 12. Now that

S5 is rejected, the load of tail 12 becomes the same as before (i.e., as in C). In other words, after S5 is rejected, the

influence of the adversary “disappears”. To cause the rejection of another honest suspect, the adversary has to introduce

another red ball. The scenario can get more complex. Nevertheless, our proof later is based on a generalization of the

above intuition.

2. The adversary may register with some of V ’s tails the public key of some honest suspect previously accepted under C.

This kind of interference is quite subtle and perhaps counter-intuitive. As a concrete example, imagine that previously
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in C, S5 only had a single intersection with all of V ’s tails and the intersection is on V ’s uniform tail #12. Now in D, the

adversary intentionally registers the public key of S5 with one of the tainted tails that intersect with V ’s tail #14. The

adversary can further fool S5 into believing that the tail is indeed one of S5’s tail, as long as S5 has at least one escaping

tail. After all such manipulation from the adversary, S5’s tails now have two intersections with V ’s tails. Assume that

when S5 is verified, tail 14 has a lower load than tail 12. As a result, S5 will increment the load of tail 14 instead of

tail 12. It may seem at this point that the adversary almost helped us to achieve better balancing. However, imagine that

later tail 14 gets overloaded, and because the adversary caused tail 14 to have one extra load, some honest suspect (e.g.,

S16) may be rejected.

We model this second kind of interference from the adversary by allowing the adversary in D to replace some white

balls in the sequence with green balls. A green ball (in D) will go into a different bin from the bin that the replaced

white ball went into in C. In our example above, the green ball (corresponding to S5) goes into bin 14 in D, while the

corresponding white ball went into bin 12 in C.

Later we intend to prove that the “damage” caused by each green ball is limited. The intuition here is trickier than the

earlier intuition for red balls. Namely, here even after S16 is rejected, the load of the tails do not go back to “normal”.

For example, tail 12 still has one less load than before. Because our bar is floating with the average (and thus total load),

this may cause the bar to be too low. The key insight here is that to cause the total load to drop by one, at least one

honest suspect is accepted (S5 in the example). Thus the total load in D can never drop below half of the total load in C.

This in turn means that doubling the constant h used in C is sufficient to prevent the bar from dropping and offset such

disruptive effect.

Finally, if some white balls in the sequence are now rejected in D (e.g., due to interference from the adversary), we say that

they are now black. By definition, it is impossible for a ball to be simultaneously black and green.

The total number of red balls and green balls that the adversary can use in bins (tails) in σ(V ) is potentially unlimited.

But for bins (tails) in U(V ), Section 6.2 explained that the total number of red balls and green balls the adversary can use is

within ǫ′′n for some small ǫ′′.

Lemma 14 Consider a sequence of honest non-escaping honest suspects that were all accepted under C (i.e., a sequence

of white balls). In D, we double the constant h in the balance condition from C. Suppose that in D by inserting red balls

and replacing some white balls with green balls, the adversary manages to prevent K of those suspects from being accepted

under D. Then the total number of red and green balls used in bins in U(V ) is at least K .

Proof: To avoid notation confusion, we let the bar in C be b = h ·max(log r, a) and the bar in D be b′ = h′ ·max(log r, a′),
where h′ = 2h. Let the K non-escaping honest suspected rejected in D be S1, S2, ..., SK . We use induction to prove the

following two claims for 1 ≤ k ≤ K:

Claim 1 When verifying Sk, b′ ≥ b.

Claim 2 In D, before Sk is verified, the total number of red balls and green balls used in bins in U(V ) is at least k.

Induction base. For k = 1, notice that when verifying S1, the total load of all the tails in D must be no smaller than in C.

This is because all white balls before S1 in the sequence are still accepted in D (since S1 is the very first black ball), and

thus contribute to the total load. The total load in D can be larger because the adversary may insert additional red balls. As a

result, we have a′ ≥ a and thus b′ = h′ · max(log r, a′) > h · max(log r, a) = b.

Next we prove Claim 2 by showing that when verifying S1, if the total number of red and green balls in bins in U(V ) is 0,

then S1 must be accepted. Let the number of white balls before S1 in C be z. We will prove via an induction on z that when

verifying S1, for any tail in U(V ), its load in D is no larger than in C. If this is indeed correct, then together with the fact that

b′ ≥ b, we know that S1 must be accepted in D.

The case for z = 0 is trivial. Now assume that the previous argument holds for z and we consider z + 1. Let R be the

(z + 1)th white ball in C. Suppose that R goes into bin (tail) i in C and bin (tail) j in D. By definition of C, bin i must be in

U(V ). Obviously, we only need to consider the case where i 6= j and where bin j is in U(V ) as well. We first consider the

case of i < j. Immediately before R is accepted, let the load of bin i be x and x′ in C and D, respectively. Similarly let the

load of bin j be y and y′. Because there are no green balls in bin i and bin j, it means that both bin i and bin j are intersecting

tails in both C and D. Because R chooses bin i (over bin j) in C and bin j (over bin i) in D, we know that x ≤ y and x′ > y′.
Induction hypothesis tells us that x′ ≤ x and y′ ≤ y. If y′ < y, then the claim still holds after R goes into bin j in D. If

y′ = y, we must have x′ > y′ = y ≥ x ≥ x′, which is impossible. Finally, the case for i > j is similar.
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Inductive step. Assume now that the previous two claims hold up to k. Namely,

1. For any 1 ≤ i ≤ k, when verifying Sk, b′ ≥ b.

2. In D, before Sk is verified, the total number of red balls and green balls used in tails in U(V ) is at least k.

To prove Claim 1 for k + 1, we compare the total load load in C immediately after Sk is accepted and the total load load′

in D immediately after Sk is rejected. Assume that the adversary has used x red balls and y green balls in tails in U(V ). We

know that:

• x + y ≥ k: From induction hypothesis.

• y ≤ load − k: Since each green ball corresponds to some distinct white ball in C and there are at most load − k white

balls so far.

• load′ = load + x − k: Each red ball increments the total load.

Given these relationships, Lemma 15 proves that load′/load ≥ 0.5. Now notice that by definition, all white balls between

Sk and Sk+1 are all accepted in both C and D. This means that when verifying Sk+1, we still have load′/load ≥ 0.5 and

thus a′ ≥ a/2. This in turn means that b′ = h′ · max(log r, a′) ≥ 2h · max(log r, a/2) ≥ h · max(log r, a) = b.

To prove Claim 2 for k + 1, it suffices to show that if the adversary only uses k red and green balls in bins in U(V ), it is

impossible for Sk+1 to be rejected. We define:

extra =
∑

bin i is in U(V )

max(0, bin i’s load in D− bin i’s load in C)

Obviously, if extra = 0 immediately before verifying Sk+1, then together with b′ ≥ b, we immediately know that Sk+1 will

be accepted. To prove extra = 0, we will show that:

extra ≤ number of red balls and green balls − number of black balls (1)

If the above inequality holds, then using only k red and green balls will leave us with extra ≤ 0, and Sk+1 will be accepted.

This will then complete the proof for the inductive step for Claim 2.

Consider the sequence of balls in D up to but not including Sk+1. We prove Inequality 1 via an induction on the length

z of the sequence. The induction base for z = 0 is trivial, since both sides of the inequality is 0. Now assume the inequality

holds for z and we will prove that it holds for z + 1. We consider the color of the last ball in the sequence:

Black This means that the ball is Sk. Suppose the ball goes to bin i in C and increments the load of bin i from x to x + 1.

From Claim 1, b′ ≥ b. Thus if Sk is rejected in D, it must be because that bin i has a load of at least x + 1 before

verifying Sk in D. Since Sk is accepted in C and is rejected in D, it must decrease extra by 1. Thus Inequality 1 still

holds.

Red Obvious because extra can increase by at most 1 while the right-hand side of Inequality 1 is guaranteed to increase by

1.

Green Obvious because extra can increase by at most 1 while the right-hand side of Inequality 1 is guaranteed to increase

by 1.

White Suppose the white ball goes into bin i in C and bin j in D. By definition of C, bin i must be in U(V ). Obviously, we

only need to consider the case of i 6= j. If bin j is in σ(V ), then this white ball will either decrement extra or leave it

unchanged. Thus Inequality 1 will continue to hold.

Next we consider the case where bin j is in U(V ) and where i < j. Immediately before the white ball is accepted, let the

load of bin i be x and x′ in C and D, respectively. Similarly let the load of bin j be y and y′. Because the ball is already

know to be white (instead of green), it means that both bin i and bin j are intersecting tails in both C and D. Because the

white ball chooses bin i (over bin j) in C and bin j (over bin i) in D, we know that x ≤ y and x′ > y′. If y′ < y, then

extra can never increase because of the white ball. On the other hand, if y′ ≥ y, we must have x′ > y′ ≥ y ≥ x. Thus

the white ball will decrement extra on the behalf of bin i and increment extra on the behalf of bin j, again leaving

extra unchanged. Finally, the case where bin j is in U(V ) and where i > j is similar.
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This finishes the proof for Inequality 1, which in turn, completes the inductive step for Claim 2. 2

Lemma 15 Consider arbitrary integers k ≥ 1, x ≥ 0, y ≥ 0, load ≥ 0, and load′ ≥ 0, where x + y ≥ k, y ≤ load − k,

and load′ = load + x − k. Then load′/load ≥ 0.5.

Proof:

load′/load ≥ 0.5

⇔ load ≥ 2k − 2x

⇐ y + k ≥ 2k − 2x

⇔ y + 2x ≥ k

⇐ y + x ≥ k

2

A.5. Proof for the main SybilLimit theorem—Theorem 3

Proof for Theorem 3:. To avoid notation collision, we will prove that “for any given constant ǫ′ > 0 and δ′ > 0, we can

always find a set of (1−ǫ′)n honest verifiers and universal constants w0 and r0, such that using w = w0 log n and r = r0
√

m
in SybilLimit will guarantee that for any given verifier V in the set, with probability of at least 1 − δ′, V accepts at most

O(g log n) sybil nodes and at least (1 − ǫ′)n honest nodes”.

Lemma 5 tells us that there exist at least (1 − ǫ)n non-escaping verifiers. We let w0 to be the w0 as determined in

Lemma 5 and r0 to be the r0 as determined in Lemma 11. For number of sybil nodes accepted, Lemma 7 and 8 tells us that

a non-escaping verifier V will accept at most O(log n) sybil nodes with probability of at least 1 − 3δ.

Next consider the number Q of honest nodes accepted. There are at most ǫn escaping honest suspects. Consider any

non-escaping honest suspects S and non-escaping verifier V . In C for any ǫ > 0, we know from Lemma 11 that V will accept

S with probability of at least 1− ǫ. Let X be the number of non-escaping honest suspects rejected by V (out of the n honest

suspects). We have E[X ] ≤ ǫn. Invoke a Markov inequality and we have Pr[X ≥ ǫ
δ n] ≤ δ.

Next we consider the interference from the adversary on the balance condition. As from Section 6.2, the load on a uniform

tail of V ’s may increase when it intersects with:

1. Uniform tails of non-escaping honest suspects.

2. Non-uniform tails of non-escaping honest suspect. In each s-instance, Lemma 5 tells us that there are on expectation

o(n) < ǫn such tails.

3. Uniform or non-uniform tails of escaping honest suspects. There are at most ǫn such tails in each s-instance.

4. Tainted Tails. There are O(g log n) = o(n) < ǫn such tails in each s-instance.

In each s-instance, the expected number of tails in the last three cases is thus at most 3ǫn. We would like to prove in the next

that the number of intersections (Y ) between U(V ) and these tails, in all s-instances, satisfies Pr[Y >
1.5r2

0
ǫ

δ n] < δ. The

proof is somewhat similar to the proof of Lemma 7. In a given s-instance, let random variable Z denote the number of tails in

the last three cases. Let pi = Pr[Z = i]. We obviously have
∑

pi · i = E[Z] ≤ 3ǫn. Consider any tail in U(V ), and because

the tail is a uniform tail, we know that the expected number of intersections it has with those tails in the given s-instance is:

∑

pi ·
i

2m
≤ 3ǫn

2m

With total r s-instances, the expected number of intersections will be at most 3ǫrn
2m . Finally, we trivially have |U(V )| ≤ r and

thus E[Y ] ≤ r2·3ǫn
2m = 1.5r2

0ǫn. Invoke a Markov inequality on Y and we have Pr[Y ≥ 1.5r2

0
ǫ

δ n] ≤ δ.
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Now from Lemma 14, we know that in D, Y is the maximum number of honest suspects that can be rejected due to

adversary’s interference. Thus with probability of at least 1 − 2δ, we have:

n − Q ≤ ǫn (escaping suspects) +
ǫ

δ
· n (non-escaping suspects rejected under C)

+
1.5r2

0ǫ

δ
n (additional non-escaping suspected rejected when going from C to D)

= (ǫ +
ǫ

δ
+

1.5r2
0ǫ

δ
) · n

To finish the proof, we only need to find constants ǫ > 0 and δ > 0 satisfying:

5δ ≤ δ′

ǫ ≤ ǫ′

ǫ +
ǫ

δ
+

1.5r2
0ǫ

δ
≤ ǫ′

One can easily verify the following constant ǫ and δ will satisfy the above inequalities:

δ = min(1,
δ′

5
)

ǫ = min(ǫ′,
ǫ′ · min(1, δ′

5 )

2 + 1.5r2
0

)

This then completes our proof. 2

A.6. Proof for the Ω(g) Lower Bound

Theorem 16 Consider any constant c > 0 and any g ∈ [1, n]. For any graph G with n nodes and O(log n) mixing time, we

can always find another graph G′ with n′ = (n+ c ·g) nodes where i) G is a subgraph of G′, ii) the number of edges between

nodes in G and nodes in G′ \ G is g, and iii) G′ has O(log n′) mixing time.

Proof: To prepare for the proof, we need to introduce the notion of conductance. Consider any given graph with vertex set

of V . For any S ⊆ V , we define S̄ = V \ S. For any X ⊆ V and Y ⊆ V , define function e(X, Y ) = |{(x, y) | x →
y is a directed edge of graph G and x ∈ X and y ∈ Y }|. The conductance Φ is defined as:

Φ =
min

S ⊆ V and e (S, S) + e
(

S, S̄
)

≤ |E|

(

e
(

S, S̄
)

e (S, S) + e
(

S, S̄
)

)

=
min

S ⊆ V and e (S, S) + e
(

S, S̄
)

≤ |E|





1
e(S,S)

e(S,S̄)
+ 1





Classic theory [16] on graph mixing time tells us that Φ being lower bounded by a positive constant is a both sufficient and

necessary condition for O(log n + 1
∆ ) mixing time under ∆ = 1

n .

We obtain G′ in the following way. We first pick an arbitrary connected graph F with c sybil nodes. Obviously, there are

many such F ’s. Next we pick arbitrary g nodes from G. For each node picked, we attach F to that node using a single edge.

We called that node as the introducer of all the nodes in F . It does not matter which node in F that edge is connected to.

Obviously, G′ has (n + c · g) nodes and G is a subgraph of G′. Also, the number of edges between nodes in G and nodes

in G′ \ G is exactly g. We only need to prove that G′ has O(log n) mixing time as well. Let E be G’s undirected edge set.

Similarly define V ′ and E′ for G′. Let Φ and Φ′ be the conductance of G and G′, respectively. We will prove that Φ′ is lower

bounded by a constant where

Φ′ =
min

S′ ⊆ V ′ and e (S′, S′) + e
(

S′, S̄′) ≤ |E′|





1
e(S′,S′)

e(S′,S̄′)
+ 1



 (2)
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Figure 13. Definition of sets in G′ in the proof for Theorem 16.

Consider any S′ ⊆ V ′ (see Figure 13), from the definition of conductance, we have the condition that e (S′, S′) +
e
(

S′, S̄′) ≤ |E′| = 1
2

(

e (S′, S′) + e
(

S′, S̄′)+ e
(

S̄′, S′)+ e
(

S̄′, S̄′)), and since e
(

S′, S̄′) = e
(

S̄′, S′), we get

e (S′, S′) ≤ e
(

S̄′, S̄′). If we want to prove that Φ′ is lower bounded by a positive constant, we only need to argue that
e(S′,S′)
e(S′,S̄′)

is upper bounded by a positive constant.

In S′, define the set S′
1 = {x | x ∈ S′ and x 6∈ V and x’s introducer is not in S′}, S′

2 = S′ \ S′
1. Define the set

S′
3 = {x|x ∈ S′

2 and x /∈ V }, S2 = S′
2 \S′

3 and S̄2 = V \S2. Similar to the definition of S′
1, S′

2, S′
3 and S2 in S′, define sets

Y ′
1 , Y ′

2 , Y ′
3 and Y2 respectively in S̄′. Define Y ′

1 = {x | x ∈ S̄′ and x /∈ V and x′s introducer is not in S̄′}, Y ′
2 = S̄′ \ Y1,

Y ′
3 = {x | x ∈ Y ′

2 and x /∈ V }, and Y2 = Y ′
2 \ Y ′

3 . It is apparent that Y2 is the same set as S̄2. Figure 13 shows the definition

of all these sets.

In order to prove that
e(S′,S′)
e(S′,S̄′)

is upper bounded by a positive constant, we can first consider the simple case that e(S̄′, S̄′)+

e(S̄′, S′) ≤ k(e(Y ′
1 , Y ′

1) + e(Y ′
1 , S′)), k is some positive constant which is larger than one. Lemma 17 has proved that in

this case
e(S′,S′)

e(S̄′,S′)
is upper bounded by a positive constant. Without loosing generality, we set k to be 2 and we also have that

e(S′,S′)
e(S′,S̄′)

is upper bounded by 2c2 + 1 which is a positive constant.

Next, consider the case that e(S̄′, S̄′) + e(S̄′, S′) ≥ 2(e(Y ′
1 , Y ′

1) + e(Y ′
1 , S′)). Lemma 19 can prove that in this case,

e(S′,S′)
e(S′,S̄′)

is also upper bounded by a positive constant.

Finally, we have that
e(S′,S′)

e(S′,S̄′)
is upper bounded by a positive constant in either case and Φ′ is lower bounded by a positive

constant. 2

Lemma 17 Let G, G′, Φ, Φ′, V , S′, S̄′, c, Y ′
1 ,e (X, Y ) and F be the same as in the proof of Theorem 16. Conditioned upon

that e(S̄′, S̄′)+ e(S̄′, S′) ≤ k(e(Y ′
1 , Y ′

1)+ e(Y ′
1 , S′)), k is a positive constant which is larger than one, we have that

e(S′,S′)

e(S̄′,S′)

is upper bounded by a positive constant.

Proof: Since e(S̄′, S̄′) + e(S̄′, S′) ≤ k(e(Y ′
1 , Y ′

1) + e(Y ′
1 , S′)), and it is shown in the proof of Theorem 16 that e(S′, S′) ≤
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e(S̄′, S′), we have:

e(S′, S′)

e(S̄′, S′)
≤ e(S̄′, S̄′)

e(S̄′, S′)
≤ k(e(Y ′

1 , Y ′
1) + e(Y ′

1 , S′))

e(S̄′, S′)
− 1

From the definition of Y ′
1 , we have Y ′

1 ⊆ S̄′. Therefore, e(Y ′
1 , S′) ≤ e(S̄′, S′) and we can get:

e(S′, S′)

e(S̄′, S′)
≤ k(e(Y ′

1 , Y ′
1) + e(Y ′

1 , S′))

e(S̄′, S′)
− 1

≤ k(e(Y ′
1 , Y ′

1) + e(Y ′
1 , S′))

e(Y ′
1 , S′)

− 1

=
k(e(Y ′

1 , Y ′
1)

e(Y ′
1 , S′)

+ k − 1

Lemma 18 has proved that
e(Y ′

1
,Y ′

1
)

e(Y ′

1
,S′) ≤ c2. Finally, we have

e(S′,S′)
e(S̄′,S′)

≤ kc2 +k−1. Since k > 1, it is obvious that kc2 +k−1

is a positive constant. 2

Lemma 18 Let G, G′, S′, S̄′, c, Y ′
1 , e (X, Y ) and F be the same as in the proof of Theorem 16. Then we have

e(Y ′

1
,Y ′

1)
e(Y ′

1
,S′)

≤ c2

Proof: Consider that Y ′
1 can be partitioned into l groups ω1, ω2, ω3,..., ωl, and all nodes in each group are in the same

connected graph F . Obviously, there is no edge between any two groups and |Y ′
1 | = |ω1| + |ω2| + |ω3| + ... + |ωl|. For any

1 ≤ i ≤ l , |ωi| ≤ c.

e (Y ′
1 , Y ′

1) < |ω1|2 + |ω2|2 + |ω3|2 + ...|ωl|2
≤ c · (|ω1| + |ω2| + |ω3| + ... + |ωl|)
= c · |Y ′

1 |

Because for each group in Y ′
1 , there is an edge connecting it to its nodes’ introducer in S′ or there are edges connecting

nodes in this group to those nodes not in this group but in the same F as this group, the number of edges between Y ′
1 and S′

is at least the number of groups l, so we have e (Y ′
1 , S′) ≥ l, and since each group contains at most c nodes, it is obvious that

l ≥ |Y ′

1
|

c . Then we have :

e (Y ′
1 , Y ′

1)

e (Y ′
1 , S′)

≤ c · |Y ′
1 |

l
≤ c · |Y ′

1 |
|Y ′

1
|

c

= c2

2

Lemma 19 Let G, G′, Φ, Φ′, V , S′, S̄′, c, S′
1, S′

2, S′
3, S2, Y ′

1 , Y ′
2 , Y ′

3 , Y2, e (X, Y ) and F be the same as in the proof of

Theorem 16. Conditioned upon that e(S̄′, S̄′) + e(S̄′, S′) ≥ 2(e(Y ′
1 , Y ′

1) + e(Y ′
1 , S′)), we have

e(S′,S′)
e(S′,S̄′)

is upper bounded by

a positive constant.

Proof: From the definition of S′
1 and S′

2, we can easily get the following equation:

e (S′, S′)

e
(

S′, S̄′) =
e (S′

1, S
′
1) + e (S′

2, S
′
2) + e (S′

1, S
′
2) + e (S′

2, S
′
1)

e
(

S′
1, S̄

′)+ e
(

S′
2, S̄

′)

Since nodes in S′
1 are not in V and their introducers are not in S′, there will be no edge in S′ connecting them to V or to

other nodes not in V but whose introducers are in S′, thus there is no edge between S′
1 and S′

2. So we have e (S′
2, S

′
1) =

e (S′
1, S

′
2) = 0. Then, the equation becomes:

e (S′, S′)

e
(

S′, S̄′) =
e (S′

1, S
′
1) + e (S′

2, S
′
2)

e
(

S′
1, S̄

′)+ e
(

S′
2, S̄

′) (3)
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In order to prove that
e(S′,S′)
e(S′,S̄′)

is upper bounded by a positive constant, we only need to argue that both
e(S′

1
,S′

1)
e(S′

1
,S̄′)

and

e(S′

2
,S′

2)
e(S′

2
,S̄′)

are upper bounded by some positive constant. Lemma 20 has proved that
e(S′

1
,S′

1)
e(S′

1
,S̄′)

is upper bounded by c2. Consider

e(S′

2
,S′

2)
e(S′

2
,S̄′)

. From the definition of S′
2, S2, S′

3 we get:

e (S′
2, S

′
2) = e (S′

3, S
′
3) + e (S2, S2) + e (S2, S

′
3) + e (S′

3, S2)

Using the similar argument in the proof of Lemma 20, we can consider that S′
3 can be partitioned into r groups ω1, ω2,

ω3,..., ωr and we have e (S′
3, S

′
3) ≤ c · |S′

3|. Since each group in S′
3 connects to some distinct node in S2 and each group

contains at most c nodes, we have |S′
3| ≤ c · |S2|. Because the edges between S2 and S′

3 are those connecting a group in

S′
3 and a corresponding node, the introducer of all the nodes in that group, in S2, we get e (S2, S

′
3) = e (S′

3, S2) ≤ |S2|.
Since S2 is a subset of S′

2, we have e
(

S2, S̄′) ≤ e
(

S′
2, S̄

′). And from the definition of S̄2, it is obvious that S̄2 ⊆ S̄′, thus

e
(

S2, S̄2

)

≤ e
(

S2, S̄′). Now we have:

e (S′
2, S

′
2)

e
(

S′
2, S̄

′) ≤ e (S′
2, S

′
2)

e
(

S2, S̄′) ≤ e (S′
2, S

′
2)

e
(

S2, S̄2

)

=
e (S′

3, S
′
3) + e (S2, S2) + e (S2, S

′
3) + e (S′

3, S2)

e
(

S2, S̄2

)

≤ c2|S2| + e (S2, S2) + |S2| + |S2|
e
(

S2, S̄2

)

=

(

c2 + 2
)

|S2|
e
(

S2, S̄2

) +
e (S2, S2)

e
(

S2, S̄2

)

Lemma 21 can prove
e(S2,S2)

e(S2,S̄2)
is upper bounded by some positive constant, say a1. Then, we have

e(S2,S2)

e(S2,S̄2)
≤ a1. Since

G is a connected graph and S2 ⊆ V , we have e
(

S2, S̄2

)

+ e (S2, S2) ≥ |S2|. Therefore, we can get:

e (S′
2, S

′
2)

e
(

S′
2, S̄

′
) ≤

(

c2 + 2
)

|S2|
e
(

S2, S̄2

) +
e (S2, S2)

e
(

S2, S̄2

)

≤
(

c2 + 2
)

(1 + a1) e
(

S2, S̄2

)

e
(

S2, S̄2

) + a1

=
(

c2 + 2
)

(1 + a1) + a1

Until now, we have that
e(S′

1
,S′

1)
e(S′

1
,S̄′)

≤ c2 and
e(S′

2
,S′

2)
e(S′

2
,S̄′)

≤
(

c2 + 2
)

(1 + a1) + a1. Then, we have:

e
(

S′, S̄′)

e (S′, S′)
=

e (S′
1, S

′
1) + e (S′

2, S
′
2)

e
(

S′
1, S̄

′)+ e
(

S′
2, S̄

′)

≤ max{e (S′
1, S

′
1)

e
(

S′
1, S̄

′) ,
e (S′

2, S
′
2)

e
(

S′
2, S̄

′)}

=
(

c2 + 2
)

(1 + a1) + a1

Finally, we have that Φ′ is lower bounded by 1
(c2+3)(1+a1) , which is a positive constant. 2

Lemma 20 Let G, G′, S′, S̄′, c, S′
1, e (X, Y ) and F be the same as in the proof of Theorem 16. Then we have

e(S′

1
,S′

1)
e(S′

1
,S̄′)

≤ c2

Proof: Using the similar argument in the proof of Lemma 18, we can easily get the conclusion that
e(S′

1
,S′

1)
e(S′

1
,S̄′)

≤ c2
2
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Lemma 21 Let G, G′, Φ, Φ′, V , S′, S̄′, c, S′
1, S′

2, S′
3, S2, Y ′

1 , Y ′
2 , Y ′

3 , Y2, e (X, Y ) and F be the same as in the proof of

Theorem 16. Conditioned upon that e(S̄′, S̄′)+ e(S̄′, S′) ≥ 2(e(Y ′
1 , Y ′

1)+ e(Y ′
1 , S′)), we have

e(S2,S2)

e(S2,S̄2)
is upper bounded by

some positive constant.

Proof: For convenience, we define the number of nodes in S̄2 to be β and define x1 = e
(

S̄2, S̄2

)

+ e
(

S̄2, S2

)

, x2 =

e (S2, S2) + e
(

S2, S̄2

)

, x′
1 = e

(

S̄′, S̄′
)

+ e
(

S̄′, S′), x′
2 = e (S′, S′) + e

(

S′, S̄′
)

, and x′
3 = e (Y ′

1 , Y ′
1) + e (Y ′

1 , S′). As

shown in the proof of Theorem 16, we have e(S′, S′) ≤ e(S̄′, S̄′). Then we can get x′
1 ≥ x′

2. And from the condition that

e(S̄′, S̄′) + e(S̄′, S′) ≥ 2(e(Y ′
1 , Y ′

1) + e(Y ′
1 , S′)), we have x′

3 ≤ 1
2x′

1. From the definition of x′
1 and all sets we have the

following equation:

x′
1 = e (Y ′

1 , Y ′
1) + e (Y ′

1 , S′) + e (Y ′
3 , Y ′

3) + e (Y ′
3 , S′) + e (Y2, Y2) + e (Y2, S

′)

+e (Y ′
1 , Y ′

3) + e (Y ′
3 , Y ′

1) + e (Y ′
1 , Y2) + e (Y2, Y

′
1) + e (Y ′

3 , Y2) + e (Y2, Y
′
3)

Using the similar argument in the proof of Lemma 19 for S′
1 and S′

2, we can get that there is no edge between Y ′
1 and Y ′

2 .

Then we have e (Y ′
1 , Y ′

3) = e (Y ′
3 , Y ′

1) = e (Y ′
1 , Y2) = e (Y2, Y

′
1) = 0. It is easy to get that e (Y2, S

′) = e
(

S̄2, S
′) =

e
(

S̄2, S2

)

+ e
(

S̄2, S
′
1

)

. And the number of edges between S̄2 and S′
1 should be less than the number of nodes in S̄2, thus

e
(

S̄2, S
′
1

)

≤ β. Using the similar reason mentioned above for S′
3 in the proof of Lemma 19 again, consider Y ′

3 can be

partitioned into p groups. It is obvious that p is less than β. For each group in Y ′
3 , there exists only one kind of edges between

this group and S′. They are the edges that connect a node in the group and a node in the same F as this group but belongs

to S′. Therefore, the sum of the number of the edges between this group and S′ and the number of edges in each group

is less than the number of edges in each corresponding F . And since there is no edge between any two groups, we have:

e (Y ′
3 , Y ′

3) + e (Y ′
3 , S′) ≤ p · c2 ≤ β · c2. The number of edges between Y ′

3 and Y2 is also at most the number of nodes

contained in Y2, so we have e (Y ′
3 , Y2) = e (Y2, Y

′
3) ≤ β. Combined with all conditions above, we get:

x′
1 = e (Y ′

3 , Y ′
3) + e (Y ′

3 , S′) + e (Y2, Y2) + e (Y2, S
′) + e (Y2, Y

′
3) + e (Y ′

3 , Y2) + x′
3

= e (Y ′
3 , Y ′

3) + e (Y ′
3 , S′) + e

(

S̄2, S̄2

)

+ e
(

S̄2, S2

)

+ e
(

S̄2, S
′
1

)

+ e (Y2, Y
′
3) + e (Y ′

3 , Y2) + x′
3

≤ e (Y ′
3 , Y ′

3) + e (Y ′
3 , S′) + x1 + β + e (Y2, Y

′
3) + e (Y ′

3 , Y2) + x′
3

≤
(

c2 + 3
)

β + x1 + x′
3

≤
(

c2 + 3
)

β + x1 + x′
1/2

From the definition of x′
2 and x2, we have x2 ≤ x′

2. Since G is a connected graph, we have β ≤ x1. Therefore,

x2 ≤ x′
2 ≤ x′

1 ≤ 2
(

c2 + 3
)

β + 2x1 ≤
(

2c2 + 8
)

x1.

Here, we need to use the condition that graph G has a O(log n) mixing time. Consider two different cases. In the first

case x2 ≤ x1, which means that e (S2, S2) + e
(

S2, S̄2

)

≤ |E|. Since the conductance being lower bounded by a positive

constant is a both sufficient and necessary condition for O(log n) mixing time and graph G has a O(log n) mixing time, we

can get that
e(S2,S2)

e(S2,S̄2)
is upper bounded by some positive constant directly. In the second case, x1 ≤ x2 ≤

(

2c2 + 8
)

x1. In

this case we have e
(

S̄2, S̄2

)

+ e
(

S̄2, S2

)

≤ |E|. Using the same reason mentioned in the first case, we have
e(S̄2,S̄2)
e(S2,S̄2)

is

upper bounded by some positive constant, say c1. Then x2/x1 =
e(S2,S2)+e(S2,S̄2)
e(S̄2,S̄2)+e(S̄2,S2)

≤ 2c2 + 8, and we get:

e (S2, S2)

e
(

S2, S̄2

) ≤
(

2c2 + 7
)

+
(

2c2 + 8
) e
(

S̄2, S̄2

)

e
(

S2, S̄2

)

≤
(

2c2 + 7
)

+
(

2c2 + 8
)

c1

Finally, we have that
e(S2,S2)

e(S2,S̄2)
is upper bounded by a positive constant in the second case. 2
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