
We present a new vola-
tility estimator based
on multiple periods of
high, low, open, and
close prices in a histori-
cal time series. The
new estimator has the
following nice proper-
ties: it is (a) unbiased
in the continuous limit,
(b) independent of the
drift, (c) consistent in
dealing with opening
price jumps. Further-
more, it has the small-
est variance among all
estimators with similar
properties. The im-
provement of accuracy
over the classical
close-to-close estimator
is dramatic for real-life
time series.
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I. Introduction

Estimation of the volatility of a security is an im-
portant and practical issue in pricing options and
measuring portfolio risks (Merton 1990). The
classical estimator is based on the close-to-close
prices only. More sophisticated estimators in lit-
erature use additional information such as high,
low, and open prices to achieve better accuracy.
However, in constructing these estimators, some
assumed that the security price has no ‘‘drift’’
motion (such estimators tend to overestimate the
volatility), while others assumed no opening
price jumps (i.e., the opening price is the same
as the previous closing price; such estimators
tend to underestimate the volatility). In this arti-
cle, we present a new unbiased estimator based
on multiple periods of open, close, high, and low
prices. Our estimator is independent of both the
drift motion and opening jumps. The variance of
our estimator is smallest among all estimators
with similar properties.
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There is a large amount of literature on the modeling issue of the
price movements of a security. We will not address such an issue in
this article; rather, we simply assume that price movements can be
modeled as a geometric Brownian motion, which means that the loga-
rithm of the security price is a Brownian motion with two undetermined
parameters, volatility σ and drift µ. The objective is to estimate the
volatility based on the available price information (open, close, high,
and low prices). It turns out that it is convenient to estimate the vari-
ance, which is defined to be volatility squared. We will deal with vari-
ance estimators in the rest of the article.

Following the work of Garman and Klass (1980), the price in each
period of length T starts at the closing price of the previous period.
Furthermore, each period is divided into two intervals with fractions f
and 1 2 f. The trading is closed during the first interval of length fT;
thus the price movement in this interval (before opening) is unobserv-
able. The high and low prices in a data set are those observed from
the second interval of length (1 2 f )T (trading interval). We mention
that fT here is not the physical time interval during which markets are
closed; rather, it is an effective time period that models the opening
jump as an unobservable continuous price movement. The fraction f
measures the relative size of the opening jump (compared with the price
range of the continuous trading interval). The case f 5 0 means that
there is no opening jump, and the case f → 1 implies that the price
movement in the period is dominated by the opening jump. It should
be pointed out that in general the value of f depends on the period
length T. For example, the f that corresponds to the daily data will be
greater than the one of the weekly data. We comment that the current
model by Garman and Klass (1980) can be viewed as a special case
of the jump diffusion model proposed in chapter 9 of Merton (1990).
Here the drift and variance parameters corresponding to the continuous
diffusion part are µT(1 2 f ) and σ2T(1 2 f ), respectively, the fre-
quency parameter of the Poisson-driven jumping process is one, and
the jump is assumed to be a Gaussian random variable with mean µTf
and variance σ2Tf.

The notation adopted in the current article is similar to that used by
Garman and Klass (1980):

T 5 time interval of each period, which is set to one without the
loss of generality;

f 5 fraction of the period (between [0, 1]) that trading is
closed;

V 5 unknown variance, which is the unknown volatility squared
(σ2);

C0 5 closing price of the previous period (at time 0);
O1 5 opening price of the current period (at time f );
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H1 5 the current period’s high during the trading interval
(between [ f, 1]);

L1 5 the current period’s low during the trading interval
(between [ f, 1]);

C1 5 closing price of the current period (at time 1);
o 5 ln O1 2 ln C0, the normalized open;
u 5 ln H1 2 ln O1, the normalized high;
d 5 ln L1 2 ln O1, the normalized low;
c 5 ln C1 2 ln O1, the normalized close.

Using the aforementioned notation, the classical variance estimator
based on the close-to-close prices of an n-period historical data set can
be written as

VCC 5
1

n 2 1 ^
n

i51

[(oi 1 ci) 2 (o 1 c)]2, (1)

where the subscript i denotes the quantity of the ith period, and (o 1 c)
5 (1/n)∑n

i51 (oi 1 ci). This estimator is independent of the drift µ and
the opening jump f and is unbiased, which means E[VCC] 5 σ2, where
E[ ] denotes taking the expectation. The classical variance estimator
VCC serves as a benchmark for all other variance estimators. We will
later demonstrate that our new variance estimator preserves all the
aforementioned properties of the classical estimator VCC with the addi-
tional feature that the variance of our new estimator is much smaller.

The variance of an estimator measures the uncertainty of the estima-
tion. The smaller the variance, the more accurate is the estimation. We
say that an unbiased estimator A is more accurate than B if its variance
is smaller than that of B, that is, Var(A) , Var(B). Among a set of
unbiased estimators, the estimator with the smallest variance will mini-
mize the uncertainty of the estimation. Therefore, from the points of
view of both theoretical consideration and practical application, it is
desirable to find the minimum-variance unbiased estimator. In the sem-
inal paper by Garman and Klass (1980), they found the minimum-
variance unbiased quadratic variance estimator for a Brownian motion
with zero drift. In this article we present a new minimum-variance unbi-
ased quadratic variance estimator for Brownian motions with nonzero
drifts.

One can reduce the variance of the classical close-to-close variance
estimator by increasing the number of periods n. However, this is not
a very viable option in practice, since a time series is rarely stationary
over a long period of time; that is, its volatility could change slowly
with respect to time. Thus, old information is of little relevance to the
current situation. The alternative to improve accuracy other than in-
creasing n is to use the other available information such as high, low,
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and open prices. Several works have been done along this line that we
now review.

Parkinson (1980) found a variance estimator using the high and low
prices only. It is

VP 5
1
n ^

n

i51

1
4 ln 2

(ui 2 di)2. (2)

This estimator is only valid when there are no opening jumps ( f 5 0)
and there is no drift (µ 5 0). Some empirical studies of VCC and VP

on actual market data were given by Beckers (1983). A better variance
estimator using the high, low, and close prices was found by Rogers
and Satchell (1991) and Rogers, Satchell, and Yoon (1994). It is

VRS 5
1
n ^

n

i51

[ui(ui 2 ci) 1 di(di 2 ci)]. (3)

VRS is better than VP in two different ways. First, the variance of VRS

is smaller than that of VP—that is, Var(VRS) , Var(VP); second, unlike
VP, VRS is independent of the drift. Another important feature of VRS is
that VRS equals zero when the security price makes a one-direction
move, either u 5 c and d 5 0 for a straight-up move or d 5 c and u
5 0 for a straight-down move. This is because the price movements in
such situations can be explained by the drift term alone (zero variance).
However, VRS still assumes no opening jumps ( f 5 0). Kunitomo (1992)
also considered the case of nonzero drift and derived a variance estima-
tor, but his formula is based on the extremes of a constructed Brownian
bridge motion. Since the extremes of a Brownian bridge motion are
unknown unless one has tick-by-tick trading data, Kunitomo’s formula
is of little use in practice. However, having tick-by-tick trading data
is equivalent to having the full Brownian path (a discrete one); there
is no need to use variance estimators based on extreme values in such
a situation. Under the assumption of no drift (µ 5 0), Ball and Torous
(1984) developed a numerical maximum likelihood variance estimator.
Under the same restriction (µ 5 0), Garman and Klass (1980) derived
analytically that the minimum-variance unbiased variance estimator is
of the following combination:

VGK 5 V ′O 2 0.383V ′C 1 1.364VP 1 0.019VRS, (4)

where the definitions for V ′O and V ′C are

V ′O 5
1
n ^

n

i51

o 2
i , (5)

V ′C 5
1
n ^

n

i51

c 2
i . (6)
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We comment that the expression for VGK shown in equation (4) was
not explicitly given in Garman and Klass (1980). The closest formula
in Garman and Klass to equation (4) is their formula 20, which depends
explicitly on f. Although f may be inferred from the historical data set,
it is not a direct market observable. Therefore, it is much preferable
to have an estimator that is independent of f. A closer examination
shows that the f dependency of formula 20 in Garman and Klass is
spurious. Setting the weight coefficient a in their formula 20 to f leads
to the expression given by equation (4), which is f independent. Notice
that all three estimators VP, VRS, and VGK are only valid under various
assumptions (either no drift or no opening jumps). We now examine
the biases caused by the no drift and no opening jumps assumptions.

The no drift assumption is a good approximation when the di-
mensionless parameter µ√T/σ is small. Time series for daily data usu-
ally satisfy this condition. However, it happens quite often in practice
that the price of a security goes through a ‘‘trendy’’ phase, in which
the drift could be large compared with the volatility. The trendy nature
of a strong bull market and price movements of certain high-technology
stocks in recent years are good examples of large drifts (at least during
certain periods). Therefore, estimators VP and VGK will overestimate
volatility during these periods. It is also clear that the no drift assump-
tion may not be valid if the time period T is not small—for example,
weekly or monthly time series. We now focus on the no opening jumps
( f 5 0) assumption. It is clear that the volatility caused by opening
jumps is not reflected in the estimators VP and VRS, whereas it is in-
cluded in the close-to-close variance estimator VCC. Therefore, ignoring
opening jumps will underestimate the volatility. We comment that one
could remedy VP and VRS with regard to opening jumps by adding
V ′O given by equation (5) to VP and adding a similar term (VO given
by eq. [8] in the next section) to VRS. Notice that the improved VRS is
still independent of the drift. However, the improved estimators do not
have the property of minimum variance in their respective situations,
namely, the improved VP has a larger variance than that of VGK given
by equation (4) under the zero drift assumption, and the improved VRS

has a larger variance than that of the new estimator derived in the next
section (V given by eq. [7]).

Drifts and opening jumps do occur in reality, and furthermore, since
neither f nor µ is a market observable, it is desirable to construct an
unbiased variance estimator that is independent of both f and µ. Notice
that the estimators VP, VRS, and VGK are all arithmetic averages of their
corresponding single-period (n 5 1) estimators. Therefore, they are
single-period-based estimators, whereas VCC is a multiperiod-based es-
timator. We now show that it is impossible to have a single-period-
based variance estimator that is independent of both the drift µ and the
opening jump f. We prove this result by contradiction. If such an esti-
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mator were to exist, we examine its behavior in the limit of f → 1
(bearing in mind that the estimator is f independent). Under such a
limit, we only have one nontrivial number o, namely the opening jump,
whereas u 5 d 5 c 5 0, since there is almost no time for the continuous
random walk to take place. Clearly, the variance estimator based on
one number o cannot have its expectation independent of the drift µ.
Therefore, such a single-period-based estimator does not exist. An un-
biased variance estimator independent of both the drift and the opening
jump must be multiperiod based. We construct an estimator that pos-
sesses such properties and has minimum variance in the next section.

II. A Minimum-Variance Unbiased Variance Estimator Based on
Multiple-Period Data

We now present our new variance estimator based on data of multiple
periods (n . 1). We prove in appendix A that the minimum-variance
unbiased variance estimator that is independent of the drift µ and the
opening jump f must have the following form:

V 5 VO 1 kVC 1 (1 2 k)VRS, (7)

where VRS is given by equation (3) and VO and VC are defined as follows:

VO 5
1

n 2 1 ^
n

i51

(oi 2 o)2, (8)

VC 5
1

n 2 1 ^
n

i51

(ci 2 c)2, (9)

with o 5 (1/n)∑n
i51oi, and c 5 (1/n)∑n

i51c i. The constant k will be
chosen to minimize the variance of the estimator V. Before determining
k, we verify that V is indeed unbiased and independent of both the drift
µ and the opening jump f. For each component, we have E[VO] 5 σ2f
and E[VC] 5 E[VRS] 5 σ2(1 2 f ). Therefore, E[V] equals σ2, which
means that the estimator V is unbiased. Since all three components VO,
VC, and VRS are independent of the drift µ, so is V. The fact that f
does not appear in equation (7) shows that V is f independent. The f
independency means that the new variance estimator is also valid when
the quantity f is an independent random number (between zero and
one) instead of a constant. Notice that all the aforementioned properties
are satisfied for any given k.

We now determine the constant k to minimize the variance of V
(which is equivalent to minimize E[V 2]). It is easy to find the solution
for this quadratic minimization problem. The result is k 5 k0 ; E[(VO

1 VRS)(VRS 2 VC)]/E[(VRS 2 VC)2]. An explicit expression for k0 can
be obtained by using the following results: (a) VO is independent of
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VC and VRS, since quantities from different intervals of a random walk
are independent; (b) VC and VRS are uncorrelated, that is, E[VCVRS] 5
E[VC]E[VRS], the proof of which is given in appendix B; (c) E [V 2

C] 5
[(n 1 1)/(n 2 1)]σ4(1 2 f )2, which is a result of the classical statistics;
(d) E[V 2

RS] 5 [(α 1 n 2 1)/n]σ4(1 2 f )2, where α ; E[(u(u 2 c) 1
d(d 2 c))2]/σ 4(1 2 f )2. We comment that since E[(u(u 2 c) 1 d(d 2
c))2] is proportional to (1 2 f )2, α is independent of f; also α is al-
ways greater than one; otherwise the variance of the random variable
u(u 2 c) 1 d(d 2 c) would have been negative. The final expression
for k0 is

k0 5
α 2 1

α 1
n 1 1
n 2 1

. (10)

For this value k 5 k0, the variance of the estimator given by equation
(7) reaches the minimum.

Although the expectation of u(u 2 c) 1 d(d 2 c) is independent
of the drift, the expectation of its square (α) does depend on the drift.
Therefore, strictly speaking, the variance of the estimator given by
equation (7) can only be minimized at a given drift, although V itself
is independent of the drift. However, the effect of a nonzero drift on
α is minor, as we now demonstrate. Rogers and Satchell (1991) showed
that α # 2 by using the triangle inequality. Our numerical calculation
suggests that α , 1.5 for all drifts. The quantity α reaches the minimum
when the drift is zero. Using the formulae of moments provided by
Garman and Klass, the value of α when the drift is zero is calculated
to be 1.331. Thus, the maximum of α is only about 15% larger than
its minimum, which means that the effects of the drift on α is minor.
Since usually the drift is small for practical historical daily data, the
estimator given by equation (7) should be optimized under the small
drift situation. We suggest that α be set to the value 1.34 in practice.

Notice that k0 is independent of f, but it does depend on α and the
number of periods n. It reaches the minimum (α 2 1)/(α 1 3) when
n 5 2, with the minimum numerical value being 0.076 (achieved with
the minimum value of α 1.33), and it increases monotonically to the
maximum (α 2 1)/(α 1 1) when n → ∞, with the maximum numerical
value being 0.2 (achieved with the maximum value of α 1.5).

Assuming for the moment that there are no opening jumps (VO 5
0), then the estimators VC and VCC are equivalent. The two components
VCC and VRS in equation (7) themselves are unbiased and drift indepen-
dent variance estimators. The fact that k0 can never reach zero or one
shows that neither the classical close-to-close estimator VCC nor the
estimator VRS alone has the property of minimum variance. The estima-
tor with minimum variance is a linear combination of both VCC and VRS
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with positive weights. Notice that the weight 1 2 k0 on VRS is always
greater than that on VCC (k0), which reflects the fact that the variance
of VRS is smaller than that of VCC.

Garman and Klass defined the efficiency of a variance estimator to
be the ratio of the variance of the classical estimator VCC to that of the
current estimator. Thus, the higher the efficiency, the more accurate
the estimator is for a given number of periods. By this definition, the
efficiency of our new variance estimator given by equation (7) is

Eff 5
Var(VCC)
Var(V)

5
1

f 2 1 (1 2 f )2k0

, (11)

where k0 is given by equation (10). We see that the efficiency depends
on the values of both f and k0. The efficiency increases as the number
of periods n decreases, while f remains fixed, since k0 decreases as
n decreases. Thus, the smaller the number of periods, the higher the
efficiency. We examine the maximum and minimum efficiencies of our
new estimator. At a critical value of f, that is,

fc 5
k0

k0 1 1
, (12)

the efficiency reaches its maximum, which is (from eqq. [11] and
[12])

Effc 5 1 1
1
k0

. (13)

The highest efficiency is reached when f 5 fc and k0 is at its minimum
value 0.076 (n 5 2, α 5 1.331). Under these conditions, the efficiency
has the peak value of 14. This means that for these values of k0 and
fc, the new estimator V using only 2-days’ data (assuming that a period
corresponds to a day) will have the same accuracy as that of the classi-
cal estimator VCC using 3-week’s data (only 5 trading days in a week).
However, it is obvious that if the volatility is dominated by opening
jumps ( f → 1), then according to equation (11) the efficiency will re-
duce to almost one, which means no improvement over the classical
estimator VCC. This is the case of the minimum efficiency. We comment
that the situation of minimum efficiency usually does not occur in prac-
tice.

Having discussed the two extremes of the efficiency, it is natural to
ask what the typical efficiency is when applied to real historical data,
the answer of which relies on the quantity f when the number of periods
n is fixed. From the classical statistics we know that the random vari-
able (1/f 2 1)VO/VC has an F distribution with both degrees being
n 2 1. This fact provides a method to estimate f from real historical
data. The authors have tested about 2 dozen diverse U.S. equity histori-
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cal daily data sets and found the average value of f over a long period
to be between 0.18 and 0.30, depending on the underlying security.
Thus, a typical value of f is about 0.25. Assuming we are interested
in a biweekly variance estimation (n 5 10), then the value of k0 is 0.13
(from eq. [10] with α 5 1.34). Therefore, the typical efficiency for a
biweekly variance estimation based on equation (7) is about 7.3, which
means that in practice the variance of the new variance estimator is
much smaller than the variance of the classical one based on closing
prices only. Notice that the typical efficiency 7.3 is not too far from
the maximum value 8.5 given by equation (13) when n 5 10.

We know that in the case of zero drift, VGK is the variance estimator
with the minimum variance. Since the drift is usually small for daily
stock price data, we investigate whether we have given up too much
accuracy in exchange for drift independency by using V instead of VGK.
Let us compare the accuracy of our new variance estimator V with that
of VGK under the zero drift assumption. The variance of VGK is (2/n)[ f 2

1 0.135(1 2 f )2], and the variance of V is [2/(n 2 1)][ f 2 1 k0(1 2
f )2], where k0 is given by equation (10) with α 5 1.331. Their ratio
can be easily computed to be Var(VGK)/Var(V ) 5 0.97[1 2 0.52/n 1
O(1/n2)], where we have assumed f to be its typical value 0.25. For a
10-period estimate (assuming a 2-week daily data), using VGK instead
of V will only gain about 8% more accuracy. As the number of period
n increases, the gain will gradually drop to only 3%. Therefore, we
have shown that the drift independency of the variance estimator V is
not gained at the expense of losing much accuracy.

When the drift is nonzero, VGK has an upward bias, which depends
on the parameters µ, σ, and T. The percentage of the bias is measured
by the relative error B 5 E[(VGK 2 σ2)/σ2], where σ2 is the true vari-
ance (B 5 0 for our new estimator V, since it is unbiased for all drifts).
VGK has four components, namely V ′O, V ′C, VP, and VRS (see eq. [4]).
Analytical expressions for the expectations of V ′O and V ′C can be deter-
mined easily for nonzero drifts (see app. A), and VRS is independent
of the drift. However, the expectation of VP under nonzero drifts con-
tains quite complicated expressions that involve multifold integrations
and a summation. This complication is rooted from the complication
in the joint probability density function of u and d. Although the final
expression of the bias is quite complicated and difficult to evaluate
numerically, the following qualitative properties still can be deter-
mined from our analysis: (i) the bias error B is a function of the dimen-
sionless drift parameter µ√T/σ only; (ii) the percentage bias B is a
monotonic function of the dimensionless drift parameter µ√T/σ; (iii)
the asymptotic behavior of the function is quadratic for large value of
µ√T/σ.

When we applied both VGK and our drift independent estimator to
daily stock price data, we found that the difference between the two
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estimations is usually negligible. This is due to the fact that the dimen-
sionless drift parameter µσ/√T is usually small (assuming using daily
data). However, we do find periods in stock prices of some high-tech
companies where the 10-day VGK is approximately 20% larger than V
when the stock undergoes a steady upward motion. This phenomenon
of overestimation is commonly observed in the option markets, namely,
the implied volatility drops dramatically (10%–20%) when the under-
lying stock is in a steady upward movement (downward movement in
real life tends to be more violent). Our new variance estimator V cor-
rectly reflects this volatility drop, since a large component of V—VRS

is zero for a one-direction price movement, as we mentioned in the
introduction.

We now suggest an extension of the variance estimator given by
equation (7) to the situation where opening jumps exist but opening
prices are not available. The situation arises in practice, since opening
prices were not recorded for some U.S. equity historical data files dat-
ing back a few years. There is insufficient information to construct a
highly efficient and mathematically consistent variance estimator in
this case. However, a simple approximation can be made, in which we
set the current period’s opening price O1 to the previous period’s clos-
ing price C0 (i.e., assuming no opening jumps). The key of the modifi-
cation is to set u 5 0 if u , 0, which is equivalent to set the current
period’s high to the larger of the current period’s trading high and the
previous period’s closing price and similarly to set d 5 0 if d . 0.
The variance estimator given by equation (7) is then used after these
modifications (the VO component is always zero by construction). The
result of this approximation tends to underestimate the true variance;
that is, the estimator V will have a downward bias against the estimator
VCC, because the extremes of a single period obtained by this approxi-
mation underestimate the corresponding true extremes of the underly-
ing continuous random walk.

III. Discussions on Discretization Error

The unbiasedness of variance estimators that use high and low informa-
tion is only true under the continuous random walk limit. If one per-
forms numerical simulations (finite step-size random walk), these esti-
mators will have a downward bias. As the number of steps n within a
single period approaches infinity (or the step size h ; 1/N approaches
zero), the downward bias disappears.

The fact that a variance estimator based on high and low prices will
have a downward bias when step size is finite was noticed by both
Garman and Klass (1980) and Rogers and Satchell (1991). The root
of the bias is that the discretized maximum/minimum is always
smaller/larger than the corresponding continuous one. If we denote ∆
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as the absolute value of the discrepancy between the discretized and
corresponding continuous extremes, then Rogers and Satchell (1991)
showed that E[∆] 5 aσ√h and E[∆2] 5 bσ2h, where h is the step size
and the constants a and b are given as a 5 √2π[1/4 2 (√2 2 1)/6]
and b 5 (1 1 3π/4)/12. Furthermore, a correction formula was derived
by them, which for a single period is

σ2
RS 5 u(u 2 c) 1 d(d 2 c) 1 2(u 2 d)aσRS√h 1 2bσ2h, (14)

where u, d, and c are high, low, and closing values, respectively, from
a discretized simulation. The quadratic equation (14) is then solved
to obtain the corrected volatility σRS, which agrees well with the true
(continuous) volatility value for simulations of different step sizes.
However, in practice the step size h (or the number of transactions) is
in general not known; neither can h be inferred from other available
data-like volume information. Therefore, the correction formula given
by equation (14) cannot be applied directly in practice. It is desirable
to have an estimator that uses high, low, and closing prices and is less
sensitive to the step size h—namely, removing the leading order error
term, which is proportional to √h. We now develop such an estimator.

The symmetry argument presented in appendix A is still valid for
discretized data. Thus, the only quantities involving extremes that can
be used to construct a variance estimator are combinations of VP given
by equation (2) and VRS given by equation (3). The following combina-
tion,

V 5
1

2 ln 2 2 1
(2 ln 2 VP 2 VRS), (15)

produces a variance estimator that is insensitive to h. In order to see
this we perform an analysis similar to that of Rogers and Satchell and
derive a single-period correction formula for this combined estimator

σ2 5 [(u 2 d )2 2 2u(u 2 c) 2 2d(d 2 c)
(16)

2 2(b 2 a2)σ2h]/(4 ln 2 2 2).

It is clear that the leading order correction term in equation (14), which
is proportional to √h, is absent from equation (16). Using the values
of a and b given above, the coefficient of σ2 in the correction term can
be computed to be 0.2h, which is very small since h ; 1/N ,, 1.
Therefore, the variance estimator equation (15) is indeed insensitive
to the finite step size h. Notice that the variance estimator V is only
valid when there is no drift (µ 5 0), since VP is only valid under the
zero drift condition. The V itself as a variance estimator is very in-
accurate (assuming no opening jumps). It is not difficult to show that
Var(V) . Var(V ′C), where V ′C given by equation (6) is equivalent to
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the close-to-close variance estimator under the assumption of no open-
ing jumps and zero drift.

The minimum-variance estimator under the restrictions of zero drift
and finite step-size insensitivity is of the following linear combination:

V ′ 5 V ′O 1 k ′V ′C 1 (1 2 k ′)V, (17)

where V ′O and V ′C are defined by equations (5) and (6), respectively.
The value of k ′ can be computed to be k ′O < 2.6. The variance of V ′
under this k ′ is (2/n)[ f 2 1 0.41(1 2 f )2]. The variance ratio of V ′ in
equation (17) to V in equation (7) under the typical value f 5 0.25 is
Var(V ′)/Var(V) 5 2.06[1 2 0.52/n 1 O(1/n2)]. Therefore, the vari-
ance of V ′ is about twice the variance of V for a moderate n. Thus, in
gaining finite step-size insensitivity, we have given up the drift inde-
pendency and a lot of accuracy.

IV. Conclusion

Given a historical data set containing n (n . 1) periods of high, low,
open, and close prices, one should use the formula in equation (7) to
compute the variance (volatility squared) of the underlying security
during these periods, where the constant k is set to

k0 5
0.34

1.34 1
n 1 1
n 2 1

. (18)

It is shown that the new estimator V given by equation (7) is the mini-
mum-variance unbiased variance estimator, which is independent of
both the drift and opening jumps of the underlying price movement.
In practice, the result of V given by equation (7) in general will be
much more accurate than the one given by the classical estimator VCC

given by equation (1), based on closing prices only.

Appendix A

Symmetries of a Variance Estimator

We now provide details of how the new variance estimator displayed in equation
(7) is constructed. The key concept used here for a parameter estimator construc-
tion is from the work of Garman and Klass (1980; app. A), which stated that, if
the joint probability density distribution of the observed data has certain measure-
preserving symmetries, then the formula of the minimum-variance estimator for
a parameter that remains unchanged under the symmetry transformations should
be invariant under the same symmetry transformations. They proved that other-
wise one could always symmetrize an estimator that does not have the full sym-
metry and obtain an improved estimator. We emphasize that it is not required
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for the symmetry transformations to leave all parameters unchanged—only the
parameter being estimated needs to remain the same under the transformations.

A variance estimator should be a quadratic expression on the high, low, open,
and close prices, which is due to the scale-invariant property of the joint density
distribution and the analytic requirement in the neighborhood of the origin. The
reason for the analytic requirement is that an estimator should be applicable to
a constant time series (i.e., u 5 d 5 c 5 o 5 0). In a quadratic expression, each
term can only involve quantities from at most two different periods. Thus, we
now look for a variance estimator for two data periods only. All the key steps
in a multiperiod variance estimator construction are illustrated in the two-period
one.

Let Θ(o1, u1, d1, c1, o2, u2, d2, c2) be any quadratic variance estimator based
on the eight observables of the two periods. There will be a total of 36 coefficients
for a general quadratic expression of eight variables. The symmetry of relabeling
period 1 and period 2 immediately reduces the number of independent coefficients
to 20. Using the following symmetries of the Brownian motion, the number of
independent coefficients can be reduced much further. We refer readers to Gar-
man and Klass (1980) for detailed discussions on Brownian motion symmetry
transformations applied to single-period quantities. The symmetry transforma-
tions for quantities of two different periods are listed below. The first symmetry
is the spatial reflection on both periods, under which Θ is transformed into Θ(2o1,
2d1, 2u1, 2c1, 2o2, 2d2, 2u2, 2c2); the second symmetry is the time reversal
on both periods, under which Θ is transformed into Θ(2o1, u1 2 c1, d1 2 c1,
2c1, 2o2, u2 2 c2, d2 2 c2, 2c2); the third symmetry is the combination of the
aforementioned two symmetries, that is, applying the spatial reflection to one
period and the time reversal to the other period, under which Θ is transformed
into Θ(2o1, 2d1, 2u1, 2c1, 2o2, u2 2 c2, d2 2 c2, 2c2); the fourth symmetry
is the exchanging of opening jumps, under which Θ is transformed into Θ(o2,
u1, d1, c1, o1, u2, d2, c2). Notice that all four symmetry transformations leave
the parameter σ unchanged, whereas µ is changed to 2µ under the first three
transformations. The requirement that the quadratic expression Θ be invariant
under these four symmetry transformations reduces the number of independent
coefficients from 20 to seven. After reparameterization, the quadratic expression
Θ can be written as

Θ(o1, u1, d1, c1, o2, u2, d2, c2) 5^
2

i51

[a1(ui 2 di)2 1 a2(u2
i 2 uici 1 d 2

i 2 dici)

1 a3c2
i 1 a4o2

i ] 1 a5(o1 1 o2)(c1 1 c2) (A1)

1 a6c1c2 1 a7o1o2,

where a1, . . . , a7 are the independent coefficients.
We now require that Θ be an unbiased variance estimator, which means

E[Θ] 5 σ2. (A2)

Notice that we require that equation (A2) be truly independent of the drift µ and
the opening jump f. The joint probability density of u and d for a nonzero drift
Brownian motion is given in Borodin and Salminen (1996); thus the quantity
E[(u 2 d)2] can be computed by performing proper integrations. The result is a
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summation of a series of terms containing integrals. Further simplification of this
result has not been found. A simple numerical calculation shows that the depen-
dence of E[(u 2 d )2] on µ is more complicated than a quadratic function, hence
a1 must be set to zero. The other terms in equation (A1) have the following
expectations: E[u2 2 uc 1 d2 2 dc] 5 σ2(1 2 f ), E[c2] 5 σ2(1 2 f ) 1 µ2(1
2 f)2, E[o2] 5 σ2f 1 µ2f 2, E[(o1 1 o2)(c1 1 c2)] 5 4µ2f(1 2 f ), E[c1c2] 5 µ2(1
2 f )2 and E[o1o2] 5 µ2f 2. Substituting all these expectations into equation (A2)
and equating the corresponding coefficients produces the following one-parame-
ter expression (k ; 1 2 a2)

Θ 5
1
2

(o1 2 o2)2 1 k
1
2

(c1 2 c2)2

(A3)

1 (1 2 k)
1
2 ^

2

i51

[ui(ui 2 ci) 1 di(di 2 ci)],

which is a special case of equation (7) when n 5 2.
The generalization of the two-period variance estimator construction to that of

the n period is straightforward. The resulting expression for the variance estimator
is given in equation (7).

Appendix B

Zero Correlation between VC and VRS

In this appendix we prove that there is no correlation between VC and VRS. The
proof consists of two steps. The first is to prove that within a single period of
length t (equal to [1 2 f ]T ) the quantities (c 2 µt)2 and u(u 2 c) 1 d(d 2 c)
are uncorrelated; that is, E[(c 2 µt)2 (u(u 2 c) 1 d(d 2 c))] 5 E[(c 2 µt)2]
E[u(u 2 c) 1 d(d 2 c)] 5 σ4t2. The proof relies on the probability density of
the joint distribution of u and c (Borodin and Salminen 1996), which is

ρ(u, c) 5
2(2u 2 c)
√2πt 3σ3

exp3(2u 2 c)2

2σ2t
1

µ
σ2

c 2
µ2t

2σ24. (B1)

Given the joint distribution of equation (B1), one can then compute E[(c 2 µt)2

u(u 2 c)], which gives the result 1/2σ4t2 (after some cumbersome algebra). The
double integration is first carried out on the variable c with limits from 2∞ to
u; it is then carried out on the variable u with limits from 0 to ∞. Similarly, we
have E[(c 2µt)2 d(d 2 c)] 5 1/2σ4t2. Combining the two parts completes our first
step of the proof. We comment here that the same brutal force method can be
used to prove E[u(u 2 c) 1 d(d 2 c)] 5 σ2t, but the proof given by Rogers
and Satchell (1991) using the Laplace transformation method is simpler.

The second step of our proof is to extend the single-period result to multiple
periods. We first ‘‘detrend’’ all the c i in VC by defining a new c̃ i to be ci 2 µt,
then expand the sums involved in the product VCVRS. The result E[VCVRS] 5 E[VC]
E[VRS] is then easily obtained, since the quantities involved in the cross terms
from two different periods are uncorrelated, and the result given in the first step
shows that the corresponding cross terms in the same period (c̃ 2

i and VRSi) are
also uncorrelated.
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Garman, M. B., and Klass, M. J. 1980. On the estimation of security price volatilities from
historical data. Journal of Business 53:67–78.

Kunitomo, N. 1992. Improving the Parkinson method of estimating security price volatili-
ties. Journal of Business 65:295–302.

Merton, R. C. 1990. Continuous-Time Finance. Cambridge, Mass.: Blackwell.
Parkinson, M. 1980. The extreme value method for estimating the variance of the rate of

return. Journal of Business 53:61–65.
Rogers, L. C. G., and Satchell, S. E. 1991. Estimating variance from high, low and closing

prices. Annals of Applied Probability 1:504–12.
Rogers, L. C. G.; Satchell, S. E.; and Yoon, Y. 1994. Estimating the volatility of stock

prices: A comparison of methods that use high and low prices. Applied Financial Eco-
nomics 4:241–47.




