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Abstract  
This paper presents a novel optimizing compiler for general pur-
pose computation on graphics processing units (GPGPU). It ad-
dresses two major challenges of developing high performance 
GPGPU programs: effective utilization of GPU memory hierarchy 
and judicious management of parallelism. 

The input to our compiler is a naïve GPU kernel function, 
which is functionally correct but without any consideration for 
performance optimization. The compiler analyzes the code, identi-
fies its memory access patterns, and generates both the optimized 
kernel and the kernel invocation parameters. Our optimization 
process includes vectorization and memory coalescing for memo-
ry bandwidth enhancement, tiling and unrolling for data reuse and 
parallelism management, and thread block remapping or address-
offset insertion for partition-camping elimination. The experi-
ments on a set of scientific and media processing algorithms show 
that our optimized code achieves very high performance, either 
superior or very close to the highly fine-tuned library, NVIDIA 
CUBLAS 2.2, and up to 128 times speedups over the naive ver-
sions. Another distinguishing feature of our compiler is the un-
derstandability of the optimized code, which is useful for 
performance analysis and algorithm refinement. 

Categories and Subject Descriptors D.3.4 [Programming 
Languages]: Processors – Compilers, Optimization  

General Terms Performance, Experimentation, Languages 

Keywords GPGPU; Compiler;   

1. Introduction 
The high computational power and affordability of state-of-art 
graphics processing units (GPU) have made them the first widely 
accessible parallel computers with teraflops capability. To fully 
realize the power of general purpose computation on graphics 
processing units (GPGPU), two key issues need to be considered 
carefully: (1) how to parallelize an application into concurrent 
work items and distribute the workloads in a hierarchy of thread 
blocks and threads; and (2) how to efficiently utilize the GPU 
memory hierarchy, given its dominant impact on performance. As 
these two issues usually coupled together and finding an optimal 

tradeoff between different levels of parallelism and memory opti-
mizations requires detailed understanding of GPU hardware, de-
veloping high performance GPGPU programs remains 
challenging for application developers. Furthermore, GPU hard-
ware architectures are evolving rapidly, which makes the code 
developed and tuned for one generation (e.g., NVIDIA GTX 
8800) less optimal for the next one (e.g., NVIDIA GTX280). Our 
envisioned solution to these problems is to let application devel-
opers identify fine-grain thread-level parallelism and/or data-level 
parallelism and to use an optimizing compiler to perform memory 
and parallelism optimizations. This way, we leverage the algo-
rithm-level expertise of application developers and at the same 
time relieve them of low-level hardware-specific performance 
optimizations. 

Our compiler works as follows. The input is a naïve GPU ker-
nel function, which is functionally correct but does not include 
any device-specific performance optimizations. Such a kernel 
function represents the user-identified fine-grain work item that 
can run concurrently. A typical example of a fine-grain work item 
is the computation of a single data element in the output domain. 
The compiler analyzes the naïve kernel, checks the off-chip mem-
ory access patterns, and optimizes the memory accesses through 
vectorization and coalescing to achieve high data access band-
width. Then the compiler analyzes data dependencies and identi-
fies possible data sharing across threads and thread blocks. Based 
on data sharing patterns, the compiler intelligently merges threads 
and/or thread-blocks to improve memory reuse through the regis-
ter file and the on-chip shared memory. These merges provide a 
novel way to achieve loop tiling and unrolling by aggregating 
fine-grain work items into threads and thread blocks. Additionally, 
the compiler schedules the code to enable data prefetching so as to 
overlap computation with memory access latencies. To avoid 
partition camping [12] (i.e., to distribute memory traffic evenly 
across memory partitions), thread blocks are checked for their 
memory accesses and depending on the thread block dimensions, 
either an address offset is inserted or the block identifiers (ids) are 
remapped, if necessary. The compiler also performs hardware-
specific tuning based on hardware parameters such as the register 
file size, the shared memory size, and the number of cores in the 
target GPU. 

Besides the aggressive compiler optimizations, another distin-
guishing feature of our compiler is that the optimized code is rea-
son-ably understandable compared to the code generated using 
algebraic frameworks such as polyhedral models [11]. As a result, 
it is relatively easy to reason about the optimized code generated 
by our compiler, which facilitates algorithm-level exploration. 

In our experiments, we used the compiler to optimize 10 scien-
tific and image processing functions. The experimental results on 
NVIDIA 8800 GTX and NVIDIA GTX 280 GPUs show that our 



 

 

optimized code can achieve very high performance, either supe-
rior or very close to the NVIDIA CUBLAS 2.2 library and up to 
128X over the naïve implementation. 

In summary, our work makes the following contributions. (1) 
We propose a compiler for GPGPU programming that enables the 
application developers to focus on algorithm-level issues rather 
than low-level hardware-specific performance optimizations. (2) 
We propose a set of new compiler optimization techniques to 
improve memory access bandwidth, to effectively leverage on-
chip memory resource (register file and shared memory) for data 
sharing, and to eliminate partition conflicts. (3) We show that the 
proposed optimizing compiler is highly effective and the pro-
grams optimized by our compiler achieve very high performance, 
often superior to manually optimized codes. 

The remainder of the paper is organized as follows. In Section 
2, we present a brief background on the NVIDIA CUDA pro-
gramming model [19] and highlight key requirements for high 
performance GPU computation. In Section 3, we present our pro-
posed optimizing compiler in detail. Section 4 explores the design 
space of our propose optimizations. A case study of matrix mul-
tiplication is presented in the Section 5 to illustrate the compila-
tion process. The experimental methodology and results are 
presented in the Section 6. In Section 7, we highlight the limita-
tions of the proposed compiler. Related work is discussed in Sec-
tion 8. Finally, Section 9 concludes our paper and discusses future 
work. 

2. Background 
State-of-the-art GPUs employ many-core architectures. The on-
chip processors cores are organized in a hierarchical manner. In 
the NVIDIA G80/GT200 architecture, a GPU has a number of 
streaming multiprocessors (SMs) (16 SMs in an NVIDIA GTX 
8800 and 30 SMs in an NVIDIA GTX 280) and each SM contains 
8 streaming processors (SPs). The on-chip memory resource in-
cludes register files (32kB per SM in GTX 8800 and 64kB per SM 
in GTX 280), shared memory (16kB per SM), and caches with 
undisclosed sizes for different memory regions. To hide the long 
off-chip memory access latency, a high number of threads are 
supported to run concurrently. These threads follow the single-
program multiple-data (SPMD) program execution model. They 
are grouped in 32-thread warps with each warp being executed in 
the single-instruction multiple-data (SIMD) manner. According to 
the CUDA programming guide [19], each warp contains threads 
of consecutive, increasing thread ids. In a typical 2D/3D execu-
tion domain, the threads in a warp (if not at the boundary) have 
increasing thread ids along the X direction, and the same thread 
ids along the Y and Z directions. 

In the CUDA programming model, the code to be executed by 
GPUs is the kernel functions. All the threads will run the same 
kernel code with different thread ids to determine their workloads. 
The software architecture also defines the concept of a thread 
block as an aggregation of threads which must be executed in the 
same SM and the threads in the same thread block can communi-
cate with each other through the shared memory on the SM. 

Next, we summarize the key aspects for high performance 
GPGPU code as they are the main focus of our proposed compiler 
optimizations.  
a) Off-chip memory access bandwidth. To utilize the off-chip 

memory bandwidth efficiently, memory accesses need to be 
coalesced and each data item may need to be a vector type, 
depending on specific GPU hardware. Memory coalescing re-
fers to the requirement that the accesses from 16 consecutive 
threads in a warp (i.e., a half warp) can be coalesced into a 
single contiguous, aligned memory access [19]. In this paper, 

we refer to such a coalesced contiguous, aligned region as a 
coalesced segment. If each memory access is of the type 
‘float’, each segment starts from an address which is a mul-
tiple of 64 bytes, and has the size of 64 bytes. The memory 
bandwidth utilization may be significantly improved when 
each of coalesced memory accesses is of a vector data type, 
such as float2 (a vector of two float numbers) and float4 (a 
vector of four float numbers). For ATI/AMD HD 5870, the 
sustained bandwidth reaches 71GB/s, 98GB/s, and 101GB/s 
when accessing 128MB data using the float, float2, and float4 
data types, respectively. In comparison, for the same data 
transmission on NVIDIA GTX 280, the sustained bandwidth 
is 98GB/s, 101GB/s, and 79GB/s using the float, float2, and 
float4 data types, respectively.  

b) Shared memory. The common usage of shared memory is a 
software-managed cache for memory reuse. Although it has 
low access latencies, shared memory is slower than register 
files and has certain overheads beyond access latency. First it 
needs to be synchronized to ensure proper access order among 
the threads in a thread block. Second, the shared memory in 
NVIDIA GPUs has 16 banks, and bank conflicts can impair 
the performance.  

c) Balanced resource usage. As multiple threads in the same 
thread block and multiple thread blocks compete for limited 
resources in an SM, including the register file, the shared 
memory, and the number of the thread contexts being sup-
ported in hardware, we need to carefully balance parallelism 
and memory optimizations.  

d) Off-chip memory partitions. In current GPUs, off-chip memo-
ry is divided into multiple partitions. There are 6 and 8 parti-
tions in GTX8800 and GTX280, respectively, and the partition 
width is 256 bytes. To use the partitions effectively, the mem-
ory traffic should be evenly distributed among all the parti-
tions. Otherwise, the requests may be queued up at some 
partitions while others are idle. This is referred to as partition 
camping [12] or partition conflicts, which are similar to bank 
conflicts at shared memory but incur much higher perfor-
mance penalties. Since concurrent memory requests are issued 
on a per half-warp basis from all active thread blocks, partition 
conflicts happen across different thread blocks. 
Note that the key performance issues listed above are not 

unique to current GPUs. Future many-core architectures will 
probably use similar approaches to achieve high memory band-
width (i.e., coalescing, multiple memory partitions) and to reduce 
memory access latency (i.e., on-chip software managed cache or 
shared memory). So, the proposed compiler optimizations are 
expected to be relevant beyond the scope of GPGPU. 

3. An Optimizing GPGPU Compiler 
Our proposed compiler framework is shown in Figure 1. The in-
put to our compiler is a naïve GPU kernel function, which is func-
tionally correct, but does not include any device-specific 
performance optimizations. For many scientific computing and 
media processing functions, the naïve version is simply the code 
to compute one element/pixel in the output matrix/image. Typical-
ly such code is straightforward to extract from the sequential CPU 
code. One common example is the loop body from a heavily ex-
ecuted loop. In Figures 2a and 2b, we show the sample naïve ker-
nel functions for the matrix multiplication (mm) and matrix-vector 
multiplication (mv) algorithms, respectively. Each computes one 
element at the position (idx, idy). 

In Figure 2, ‘idx’ and ‘idy’ are the position/coordinate of the 
element in the output matrix. In the CUDA programming model, 
‘idy’ can be viewed as the absolute thread id along the Y direction, 



 

 

which is equal to (blockIdx.y*blockDimy + threadIdx.y) in the 
CUDA code. Correspondingly, ‘idx’ is the absolute thread id 
along the X direction, which equal to (blockIdx.x*blockDimx + 
threadIdx.x). In comparison, the CUDA predefined ‘threadIdx.x’ 
and ‘threadIdx.y’ are the relative thread position/coordinate within 
a thread block and we refer to them as ‘tidx’ and ‘tidy’ for short. 
Both tidx and tidy are independent of the thread block ids. 

As can be seen from the two examples, the naïve kernel func-
tions don't have any shared memory usage and do not require 
thread block partition. In other words, we may simply assume 
every block only has one thread. All the arrays are initially in the 
off-chip global memory. 

For applications which require synchronization among compu-
ting different output pixels, e.g., reduction operations, a global 
sync function is supported in the naïve kernel.  

 
 

 
 

 
To facilitate compiler optimizations, the following (optional) 

information can be conveyed using the ‘#pragma’ interface: the 
size of the input and output dimensions, and the output variable 
names. The latter can be used to eliminate global memory writes 
to temporary variables when they are moved to shared memory.    

Given the naïve kernel function, the compiler takes the follow-
ing steps to generate the optimized kernel code. First, depending 
on the targeted GPUs, the compiler attempts to group memory 
accesses into vector data accesses. Second, the off-chip memory 
accesses are checked to see whether they satisfy the requirements 
for memory coalescing. If not, the code will be converted to coa-
lesced memory accesses using shared memory as temporary sto-
rage. Third, the compiler analyzes data dependencies and sharing 
patterns to determine how the data are shared among the neigh-
boring thread blocks. Based on data sharing patterns, the compiler 
merges both threads (i.e., combining several threads in different 
thread blocks into one) to enable the data reuse through registers 
and thread blocks (i.e., combining several blocks into one) to 
increase data reuse through shared memory. The data reuse infor-

mation is also used to disable certain memory coalescing trans-
formations when there is little or no data reuse. After 
thread/thread-block merge, the compiler schedules the code to 
perform data prefetching. Then, the compiler checks the memory 
accesses from different thread blocks for partition camping and 
either inserts address offsets or remaps thread block ids, if neces-
sary. Finally, the compiler generates the optimized kernel and the 
parameters (i.e., the thread grid & block dimensions) to invoke the 
kernel function. 

The optimization process described above can also be used as 
a generic methodology to guide manual optimizations of GPGPU 
programs. As a result, our optimized code is reasonably unders-
tandable, as will be seen in the remainder of Section 3. 

3.1 Vectorization of Memory Accesses 

As discussed in Section 2, the data type of memory accesses may 
have significant impact on bandwidth utilization. Therefore, the 
compiler first checks data accesses inside the kernel function to 
see whether they can be grouped in a vector type data access. 
Since different GPUs feature significantly different requirements 
on vector types for bandwidth utilization, the compiler follows 
different rules to adjust the aggressiveness of vectorization. In this 
paper, we focus on CUDA and NVIDIA GPUs, in which a vector 
of two floats (i.e. float2) is the preferred data type but the band-
width improvement over the float type is less than 3%. Therefore, 
we use the following strict rule: if there is a pair of accesses to the 
same array with the indices: 2*idx+N and 2*idx+N+1, where N is 
an even number, the compiler generates a float2 variable f2 with 
array offset as idx+N/2 and replaces the original array accesses 
with f2.x and f2.y. This rule is essentially designed for applica-
tions using complex numbers when the real part is stored next to 
the imaginary part of each data element. Note that this vectoriza-
tion of data accesses is simpler than classical vectorization.  

For AMD/ATI GPUs, due to the much more profound impact 
on bandwidth, the compiler is more aggressive and also groups 
data accesses from neighboring threads along the X direction into 
float2/float4 data types. The tradeoff of vectorization of data ac-
cesses is that if the vector data accesses are not coalesced (Section 
3.2) and the compiler converts them into coalesced ones (Section 
3.3) through shared memory, there may be bank conflicts. For 
AMD/ATI GPUs, the benefits of vectorization far overweigh the 
penalties of shared memory bank conflicts. For NVIDIA GPUs, 
however, the benefits from vectorization are limited. Therefore, 
the compiler skips these additional steps to vectorize data ac-
cesses. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 Figure 2.  Examples of naive kernel functions. 

(b) A naïve kernel for matrix-vector multiplication 
 

  
 

(a) A naïve kernel for matrix multiplication 
 

 

float sum = 0; 
for (int i=0; i<w; i++)  
 sum+=a[idy][i]*b[i][idx]; 
c[idy][idx] = sum; 
 

float sum = 0; 
for (int i=0; i<w; i++)  
       sum+=a[idx][i]*b[i];  
c[idx] = sum; 
 

 

Figure 1.  The framework of the proposed compiler. 

Input: Naive kernel functions 

Checking memory coalescing (3.2) 

Converting non-coalesced accesses into coalesced ones (3.3) 
 

Checking data dependencies and sharing patterns (3.4) 

Thread & thread-block merge (3.5) 

Data prefetching (3.6) 

Output: Optimized kernel functions & 
invocation parameters 

Vectorization for memory access bandwidth (Section 3.1) 

Removing memory partition camping (3.7) 

 



 

 

3.2 Checking Memory Coalescing 

As discussed in Section 2, GPGPU employs the SPMD model and 
the threads in a single warp execute the kernel function in the 
SIMD mode. Therefore, in order to determine whether off-chip 
memory accesses can be coalesced, we need to compute the ad-
dresses of each memory access in the kernel function for different 
threads. As arrays are the most common data structure in scientif-
ic and media processing, we consider four types of array indices 
and affine transformations of these indices: 
1. Constant index: the constant value is used in an array index, 

for example, the constant integer ‘5’ in ‘a[idy][i+5]’. 
2. Predefined index: the predefined numbers, such as absolute 

thread ids, idx, idy, and relative thread ids, tidx (i.e., threa-
dIdx.x), tidy (i.e., threadIdx.y), are used as an array index. For 
example, ‘idy’ in ‘a[idy][i+5]’. 

3. Loop index: a loop iterator variable is used as an array index, 
for example, ‘i’ in ‘b[i][idx]’ in Figure 2a. 

4. Unresolved index: an array index is used, which is not one of 
the first three types. For example, an indirect access ‘a[x]’ 
where ‘x’ is a value loaded from memory. As our compiler 
cannot determine the addresses of such indices, we simply 
skip them without checking whether they can be coalesced. 
Among the four types of indices, the addresses corresponding 

to the first two are fixed for a given thread. For the third, however, 
we need to check different values of the loop iterator. Assuming 
that a loop index starts from S with increment Incr, then we need 
to check the index addresses from the first 16 iterations: S, S+Incr, 
S+2*Incr, to S+15*Incr. The reason is that the same behavior 
repeats for remaining iterations in terms of whether the access can 
be coalesced as the difference in addresses is a multiple of 16. 

After determining the types of array indices in the kernel func-
tion, for each memory access instruction, the compiler computes 
the addresses from the 16 consecutive threads in the same warp 
(i.e., a half warp) to see whether they can be coalesced. As dis-
cussed in Section 2, if we assume the array type of ‘float’, the 
coalesced accesses will form a coalesced segment, which starts 
from an address, whose value is a multiple of 64, and has the size 
of 64 bytes. Among the addresses from the 16 threads, we refer to 
the smallest one as the ‘base address’. The differences between 
the base address and the addresses from the subsequent 15 threads 
are referred to as ‘offsets’. To satisfy the coalescing requirement, 
the base address needs to be a multiple of 64 and offsets need to 
be 1 to 15 words. The following two rules are used to handle 
common array accesses. 

For an index to a multi-dimensional array, e.g., ‘A[z][y][x]’, 
the index to the higher-order dimensions, e.g., the ‘y’ and ‘z’ di-
mensions, should remain the same for all the 16 threads in the half 
warp.  Otherwise, for example, if the predefined index ‘idx’ (the 
thread id along the ‘x’ direction) is used in an index to the ‘y’ 
dimension in a multi-dimension array ‘A[][idx][0]’, the accesses 
from the 16 threads will be ‘A[][0][0]’, ‘A[][1][0]’, ‘A[][2][0]’, 
etc., and are not coalesced. 

When a loop index is used in the kernel function, the compiler 
computes the base address and the offsets for each possible value 
of the loop iterator. For example, for the address ‘a[idy][i]’ in 
Figure 2a, the base address is ‘&a[idy][0]’ when the iterator ‘i’ is 
0; ‘&a[idy][1]’ when ‘i’ is 1, etc. The offsets are all zeros as the 
addresses do not change for different threads in the same half 
warp. As both the base addresses and the offsets do not meet the 
condition, the array access ‘a[idy][i]’ is not coalesced. For the 
array access ‘b[i][idx]’ in Figure 2a, the base address is ‘&b[0][0]’ 
when ‘i’ is 0; ‘&b[1][0]’ when ‘i’ is 1, etc.. The offsets are from 1 
word to 15 words. Thus, the array access ‘b[i][idx]’ is coalesced 

as long as each row of array b is aligned to the multiple of 16 
words. For the array access ‘b[idx+i]’, although the offsets satisfy 
the condition for every possible ‘i’, it is not a coalesced access 
since the base address is not always a multiple of 16 words, e.g., 
‘b[1]’ when ‘i’ is 1. 

3.3 Converting Non-Coalesced Accesses into Coalesced Ones 

After the compiler analyzes every array access in the kernel code, 
the compiler converts the non-coalesced accesses into coalesced 
ones through shared memory. The observation here is that for 
each non-coalesced memory access instruction, the compiler can 
determine the coalesced segments that contain the data required 
by the non-coalesced memory accesses from the half warp. The 
compiler then introduces shared-memory array variables, inserts 
statements (coalesced memory accesses) to initialize the shared 
memory variables, and replaces the original global memory ac-
cesses with shared memory accesses. The thread block size is also 
set to 16 so that each thread block contains one half warp. The 
‘syncthreads’ function is also inserted to ensure the proper access 
order. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

For array accesses using constant or predefined indices, the 
process is typically straightforward. For example, the non-
coalesced access, ‘A[idy][0]’, the coalesced segment is 
‘A[idy][0:15]’. The compiler inserts a shared-memory array vari-
able ‘sA[0:15]’ and initializes the ‘sA[0:15]’ with ‘A[idy][tidx]’, 
where tidx is relative thread id within the warp. In the case when 
‘idx’ is used in an index to a multi-dimensional array, the compi-
ler may introduce a loop to load the required data for a half warp. 
For example, for an array access ‘A[idx][0]’, the required data for 
a half warp is ‘A[(idx-tidx)+(0:15)][0]’, where ‘(idx-tidx)’ pro-
vides the start address of each thread block, which is the same as 
the start address of the half warp as each thread block only con-

Figure 3. Coalesced kernels generated by the compiler. 

(b) The coalesced mv kernel 
  
  

 

(a) The coalesced mm kernel 

(S0)for (i=0; i<w; i=(i+16)) { 
(S1)  __shared__ float shared0[16]; 
(S2)  shared0[(0+tidx)]=a[idy][((i+tidx)+0)]; 
(S3)  __syncthreads(); 
(S4)  for (int k=0; k<16; k=(k+1)) { 
(S5)    sum+=shared0[(0+k)]*b[(i+k)][idx]); 
(S6)  } 
(S7)  __syncthreads(); 
(S8)} 
(S9)c[idy][idx] = sum; 

(S0)  for (i=0; i<w; i=(i+16)) { 
(S1)    __shared__ float shared2[16]; 
(S2)    __shared__ float shared1[16][17]; 
(S3)    shared2[(0+tidx)]=b[i+tidx]; 
(S4)    for (l=0; l<16; l=(l+1)) 
(S5)      shared1[(0+l)][tidx]= 
              a[((idx-tidx)+l)][(i+tidx)]; 
(S6)    __syncthreads(); 
(S7)    for (int k=0; k<16; k=(k+1)){ 
(S8)      sum+=(shared1[tidx][k]*shared2[k]); 
(S9)    } 
(S10)   __syncthreads(); 
(S11) } 
(S12) c [idx] = sum; 

 



 

 

tains a half warp at this time. The coalesced segments that con-
tains the required data are ‘A[(idx-tidx)+(0:15)][0:15]’. In the 
introduced loop of 16 iterations, a shared memory array is initia-
lized with ‘A[(idx-tidx)+l][tidx]’, where l is the iterator of the 
newly introduced loop. From these examples, it can be seen that 
not all the data loaded in the shared memory are useful, the com-
piler will perform data reuse analysis (Section 3.4) to determine 
whether this transformation is beneficial or not. If it is not, the 
compiler will skip coalescing transformation on this access. In the 
special case where an array access involves both ‘idx’ and ‘idy’, 
such as ‘A[idx][idy]’, the compiler analyzes the feasibility to ex-
change ‘idx’ and ‘idy’ to make it coalesced. This transformation is 
equivalent to loop interchange on the CPU code. 

For array accesses using a loop index, ‘A[m*i+n]’, where ‘i’ is 
the loop iterator and m and n are constants, the compiler unrolls 
the loop for 16/(GCD(m,16)) times if m is less than or equal to 8. 
If m is greater than 8, the coalesced access has little benefit due to 
limited reuse across different iterations. Then, the compiler groups 
the accesses from unrolled loops into coalesced ones. For example, 
for the array access ‘A[idy][i]’ where ‘i’ is the loop iterator, the 
segment ‘A[idy][0:15]’ contains all the required data for the first 
16 iterations. The compiler unrolls the loop for 16 times, intro-
duces shared memory variable sA[0:15] which are initialized with 
A[idy][tidx+i] (coalesced as the increment of ‘i’ is 16 after unrol-
ling), and replaces ‘A[idy][i]’ with ‘sA[i]’.  

For the naïve kernels in Figure 2, the coalesced versions are 
shown in Figure 3. The inner loop with the iterator ‘k’ is a result 
of unrolling the outer loop with the iterator ‘i’. In the naïve kernel 
in Figure 2a, the access ‘a[idy][i]’ is not coalesced, which results 
in loop unrolling as described above. ‘b[i][idx]’ is coalesced and it 
transforms to ‘b[(i+k)][idx]’ due to unrolling for ‘a[idy][i]’. In the 
mv kernel in Figure 2b, both accesses ‘a[idx][i]’ and ‘b[i]’ are not 
coalesced. Converting the access ‘b[i]’ into coalesced accesses 
involves a loop unrolling of 16 (=16/GCD(1,16)) times and it 
becomes ‘b[i+tidx]’ in Figure 3b. For the access ‘a[idx][i]’ the 
loop with the iterator ‘l’ is introduced and the access is trans-
formed to ‘a[(idx-tidx)+l][i+tidx]’. In addition, the compiler may 
add padding to the shared memory arrays to avoid bank conflicts 
and padding to input data arrays to ensure that the row size of 
each array is a multiple of 16 words so as to meet the requirement 
of memory coalescing. 

After memory coalescing, the kernel code generated by our 
compiler has the following characteristics: 
1. Each thread block has 16 consecutive threads (i.e., only a half 

warp) along the X direction, because 16 threads are needed by 
hardware to coalesce memory accesses and they communicate 
with each other through shared memory. The number of 
threads in each thread block will be expanded during the next 
optimization phase (Section 3.5) to make sure there are 
enough threads in each thread block. 

2. There are two types of global memory load statements: (a) 
Global memory to shared memory (G2S): the statements read 
data from global memory and store them into the shared mem-
ory, such as (S2) in Figure 3a. (b) Global memory to register 
(G2R): the statements read data from global memory and save 
them to registers. For example, in (S5) in Figure 3a, the global 
memory access ‘b[(i+k)[idx]’ loads the data into registers. 

3.4 Data Dependencies and Data Sharing 

In this step, the compiler detects data dependency and data shar-
ing. Such analysis is similar to those used in analyzing affine ar-
ray accesses for locality optimization and parallelization [1]. As 
our compiler has already enforced memory coalescing by asso-

ciating coalesced segments with each global memory access, the 
compiler can detect data sharing by comparing whether the ad-
dress ranges of the segments have overlaps. In the applications 
that we studied, we found that data sharing happens most fre-
quently among neighboring blocks along the X or Y direction. 
Therefore, our current compiler implementation mainly focuses 
on checking data sharing among neighboring thread blocks and 
also the thread blocks with a fixed stride along the X or Y direc-
tion. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

The data sharing/reuse information is also used to determine 
whether the code conversion for memory coalescing is beneficial. 
As described in Section 3.3, shared memory is used as temporary 
storage to achieve memory coalescing. The data in the shared 
memory, however, may not be useful as they are simply loaded 
from off-chip memory to satisfy the coalescing requirement. For 
example, the compiler loads A[idy][0:15] in order to convert the 
access A[idy][0] into a coalesced one. Currently, our complier 
employs a simple rule to check whether an access needs to be 
converted: if the loaded data in shared memory have no reuse, it is 
not converted. A more crafted heuristic may further rank code 
conversions for different accesses by comparing their shared 
memory usage and number of data reuses, and then select the 
most beneficial ones if shared memory is used up. We left such 
investigation as our future work to refine our compiler framework. 

Figure 5. The kernel function for matrix multiplication, after 
merging blocks along the X direction. 

int i = 0;  
float sum = 0; 
for (i=0; i<w; i=(i+16)) { 
  __shared__ float shared0[16]; 
  if (tidx<16)  { /*inserted due to block 
merge to remove redundant loads */ 
      shared0[(0+tidx)]=a[idy][((i+tidx)+0)]; 
  } 
  __syncthreads(); 
  int k; 
  for (k=0; k<16; k=(k+1)) { 
      sum+=shared0[(0+k)]*b[(i+k)][idx]); 
  } 
  __syncthreads(); 
}  
c[idy][idx] = sum; 
  
 
 

 

Figure 4. Improve memory reuse by merging neighboring thread 
blocks. 

Shared 
Data 
Segment 

Thread 
Thread block after thread-block merge 

… 

… 

… 

… 

Thread block before merge  

 

Thread block before merge  



 

 

3.5 Thread/Thread-Block Merge to Enhance Memory Reuse 

After detecting that there exists data sharing among thread blocks 
(mainly neighboring blocks), we propose two new techniques to 
enhance data sharing so as to reduce the number of global memo-
ry accesses: merging thread blocks and merging threads. Thread-
block merge determines the workload for each thread block while 
thread merge decides the workload for each thread. These two 
techniques combined are essentially a way to achieve loop tiling 
and unrolling by aggregating the fine-grain work items into 
threads and thread blocks. We first present the two techniques and 
then discuss how compiler prioritizes one over the other. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

3.5.1 Thread-block merge 

When our compiler determines that multiple thread blocks share 
some common data, it may choose to merge them into one thread 
block, as shown in Figure 4. 

To illustrate the procedure to merge thread blocks, we show 
how our compiler combines two neighboring blocks along the X 
direction into one. First, the compiler re-computes the thread id 
information within the thread block (i.e., tid). As two thread 
blocks along the X direction are merged, idx, idy and tidy remain 
the same while tidx is re-computed as (idx%(N*blockDim.x)), 
where N is 2 for Figure 4. Second, for the statements that result in 
data sharing, we add control flow to ensure that the global memo-
ry data are loaded only once. For the matrix multiplication exam-
ple in Figure 3a, the statement S2 in threads from two neighboring 
thread blocks accesses the same segment. Therefore, we add an ‘if 
(tidx < blockDim.x)’ statement to eliminate redundant global 
memory accesses, as shown in Figure 5. Third, the thread block 
dimension is resized (blockDim.x = 2*blockDim.x).  

As thread-block merge determines the workload for each 
thread block and all threads in the same thread block reuse data in 
shared memory, it essentially achieves loop tiling for locality and 
parallelism optimizations.    

3.5.2 Thread merge 

The other approach to enhance data sharing is to merge threads 
from different thread blocks, which combines several threads’ 

workloads into one, as shown in Figure 6. Compared to thread-
block merge, after these threads are combined into one, they can 
share not only shared memory, but also the registers in the register 
file. Furthermore, some control flow statements and address com-
putation can be reused, thereby further reducing the overall in-
struction count. The limitation is that an increased workload 
typically requires a higher number of registers, which may reduce 
the number of active threads that can fit in the hardware. From the 
discussion, it can be seen that thread merge achieves the effects of 
loop unrolling. Note that thread merge also combines multiple 
thread blocks into one but it does not increase the number of 
threads in each thread block. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

To illustrate the procedure to merge threads, we show how our 
compiler combines N neighboring blocks along the Y direction 
into one. First, the compiler re-computes the thread id information. 
As we merge threads from two thread blocks along the Y direc-
tion, the absolute thread ID along the X direction ‘idx’ remains 
the same while the thread ID along the Y direction ‘idy’ will be 
changed to idy*N, idy*N+1, idy*N+2…, idy*N+(N-1) for the N 
replicated statements. The thread id information within a thread 
block remains the same. Second, for the statement that results in 
data sharing, we need only one copy. Third, for the control flow 
statement such as loops, we also only need one copy. Fourth, for 
the remaining statements including data declaration, ALU compu-
tation statement and other memory access statements, we replicate 
them for N times. For the matrix multiplication example in Figure 
5, the array access ‘b[(i+k)][idx]’ results in the shared data among 
the thread blocks along the Y direction (as the access address is 
not dependent on ‘idy’). The compiler merges 32 neighboring 
blocks along the Y direction using thread merge, as shown in 
Figure 7. 

Figure 7. The matrix multiplication kernel after merging 32 
threads in 32 adjacent blocks along the Y direction. 

int i = 0; 
float sum_0 = 0; 
…… 
float sum_31 = 0;   
for (i=0; i<w; i=(i+16)) { 
  __shared__ float shared0_0[16]; 
  …… 
  __shared__ float shared0_31[16]; 
  if (tidx<16)  { 

      /* 32 is the number of the threads to 
be merged */ 
        shared0_0[(0+tidx)]= 
                a[idy*32+0][((i+tidx)+0)]; 
        …… 
        shared0_31[(0+tidx)]= 

         a[idy*32+31][((i+tidx)+0)]; 
     } 
     syncthreads(); 
     int k; 
     for (k=0; k<16; k=(k+1)) { 
        float r0 = b[(i+k)][idx]) 
        sum_0+=shared0[(0+k)]*r0; 
        …… 
        sum_31+=shared0_31[0+k]*r0; 
     } 
     __syncthreads(); 
}  
c[idy*32+0][idx] = sum_0;  
…… 
c[idy*32+31][idx] = sum_31; 

 

Figure 6. Improve memory reuse by merging threads from 
neighboring thread blocks. 
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3.5.3 Selection between thread merge and thread-block 
merge 

As discussed in Section 3.3, the code generated by the compiler 
after memory coalescing has two types of global memory accesses: 
global to shared memory (G2S) and global to register (G2R). If 
data sharing among neighboring blocks is due to a G2S access, the 
compiler prefers thread-block merge to better utilize the shared 
memory. When data sharing is from a G2R access, the compiler 
prefers to merge threads from neighboring blocks due to the reuse 
of registers. If there are many G2R accesses, which lead to data 
sharing among different thread blocks, the register file is not large 
enough to hold all of the reused data. In this case, thread block 
merge is used and shared memory variables are introduced to hold 
the shared data. In addition, if a block does not have enough 
threads, thread-block merge instead of thread merge is also used 
to increase the number of threads in a block even if there is no 
data sharing. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

3.6 Data Prefetching 

Data prefetching is a well-known technique to overlap memory 
access latency with computation. To do so, the compiler analyzes 
the memory accesses in a loop and uses a temporary variable to 
prefetch data for the next iteration before the computation in the 
current loop. The process is illustrated in Figure 8. The code be-
fore insertion of prefetching is in Figure 8a and Figure 8b shows 
the code after insertion. Besides the temporary variable, additional 
checking is added to ensure that the prefetching access does not 
generate unnecessary memory accesses. 

The overhead of data prefetching code is the increased register 
usage due to the temporary variables. If the register can be used 
for data reuse (e.g., as a result of thread merge), the compiler 
skips this optimization. 

3.7 Eliminating Partition Camping 

In this step, the compiler reuses the address access patterns ob-
tained for thread/thread-block merge to see whether they lead to 
partition camping. As neighboring thread blocks along the X di-
rection are likely to be active at the same time, the compiler fo-
cuses on the addresses that involve blockIdx.x or bidx in short. 
Those accesses without involving bidx either access the same line 
in the same partition (e.g., A[0]) or access the same partition at 
different times (e.g., A[bidy][0] based on the assumption that 
thread blocks with different bidy will execute at different times). 
The following rules are followed by our compiler. 

Partition Camping Detection: If an array access involves bidx, 
the compiler checks the address stride between the two accesses 
from the two neighboring blocks (i.e., one with block id bidx and 
the other with bidx+1). The compiler detects partition camping if 
the stride is a multiple of (partition size * number of partitions). 
For example, for an array access A[idx], it is equivalent to 
A[bidx*blockDimx+tidx]. The stride between two neighboring 
blocks is blockDimx, whose value then decides whether there are 
partition conflicts (i.e., two concurrent accesses to the same parti-
tion).  

Partition Camping Elimination: If an access results in partition 
conflicts, depending on how thread blocks are organized, we use 
two ways to eliminate partition conflicts:  
1. If thread blocks are arranged in one dimension, we add a fixed 

offset, (the partition width * bidx), to the access and update 
the loop bounds to accommodate the change. For example, in 
mv, the output is a vector. So the thread blocks are organized 
in one dimension. The accesses A[idx][i] (or the coalesced 
version A[((idx-tidx)+l)][(i+tidx)]), from neighboring thread 
blocks result in partition camping if the width of A is a mul-
tiple of  (partition size * number of partitions), as shown in 
Figure 9a. With the added offset, the access pattern is changed 
to Figure 9b, eliminating partition camping.  

2. If thread blocks are organized in two or more dimensions, we 
apply the diagonal block reordering proposed in [12], which 
essentially changes the workload (or tile) that each thread 
block is assigned to. The diagonal mapping rule is newbidy = 
bidx and newbidx = (bidx+bidy)%gridDim.x.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 9. Eliminating partition camping. (a) Accesses to array A 
resulting in conflicts at partition 0. (b) Adding an offset as (parti-
tion size * bidx) eliminates the conflicts. The dark regions 
represent the memory footprint of A[idx][0] from different thread 
blocks. 
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Figure 8. A code example to illustrate data prefetching. 

(b) After inserting perfetching 
  
  

 

(a) Before inserting perfetching 

for (i=0; i<w; i=(i+16)){ 
   __shared__ float shared0[16]; 
   shared0[(0+tidx)]=a[idy][((i+tidx)+0)]; 
   __syncthreads(); 
   int k; 
   for (k=0; k<16; k=(k+1))   { 
 sum+=(shared0[(0+k)]*b[(i+k)][idx]); 
   } 
   __syncthreads(); 
} 
 
 
 
   
 /* temp variable */ 
float tmp = a[idy][((0+tidx)+0)]; 
for (i=0; i<w; i=(i+16)) { 
   __shared__ float shared0[16]; 
   shared0[(0+tidx)]=tmp; 
   __syncthreads(); 
   if (i+16<w) //bound check 
       tmp = a[idy][(((i+16)+tidx)+0)]; 
   int k; 
   for (k=0; k<16; k=(k+1))  { 
       sum+=(shared0[(0+k)]*b[(i+k)][idx]); 
   } 
    __syncthreads(); 
} 
 

 



 

 

4. Design Space Exploration 

4.1 The Number of Threads in A Thread Block 

In our compiler algorithm, the number of threads in a thread block 
is determined by thread/thread-block merge. The CUDA pro-
gramming guide suggests that one SM should have at least 192 
active threads to hide the latency of register read-after-write de-
pendencies. Because our compiler tries to use a number of re-
sources (the shared memory due to thread-block merge and the 
register file due to thread merge) for better memory reuse, it is 
possible that the code after thread/thread-block merge requires a 
large amount of shared memory and registers so that one SM can 
only support a limited number of thread blocks. To balance the 
thread-level parallelism and memory reuse, our compiler tries to 
put 128, 256, or 512 threads into one thread block (equivalent to 
merging of 8, 16, and 32 blocks), if possible. Also, the compiler 
varies the degrees of thread merge (i.e., how many threads to be 
merged into one) across 4, 8, 16, or 32 so as to balance register-
based data reuse and thread-level parallelism. As such, the combi-
nation of these design parameters creates a design space to ex-
plore. As discussed in Section 3.5, merging threads/thread blocks 
is one way to achieve loop tiling and unrolling. So, exploring such 
a design space is similar to finding the best tile size and unrolling 
factors for parallelization and locality enhancement. Due to the 
non-linear performance effect of those parameters on GPU per-
formance, the compiler generates multiple versions of code and 
resorts to an empirical search by test running each version to se-
lect the one with the best performance. Another way is to use an 
analytical performance model [7],[15] to predict the performance 
of each version, but this requires higher accuracy than current 
models. Moreover, based on our experiments, the optimal version 
may be dependent upon the size of the input arrays, which implies 
that unless the compiler knows detailed information of the in-
tended inputs, it is almost inevitable that the compiler must run 
multiple versions of code in order to find the optimal one. 
 

 

 
 
 
 
 

 

4.2 Hardware Specification 

GPU hardware is evolving rapidly. Although different generations 
of GPU hardware may share similar architecture, e.g., NVIDIA 
GTX8800 and GTX280, there are significant changes, e.g., the 
register file size, which may have a strong impact on performance. 
When there are more registers, more threads can be put into one 
block or one thread can use more registers for temporary data. As 

a result, an optimized code tuned for one GPU generation may not 
be optimal for the next. To solve this problem, our compiler gene-
rates different versions of optimized code based on different ma-
chine descriptions so that they can be deployed on different GPU 
platforms. 

5. Case Study: Matrix Multiplication  
Matrix multiplication (mm) is a commonly used algorithm and 
there has been continuing effort to improve its performance [18]. 
The fine tuned implementation in NVIDIA CUBLAS 1.0 has a 
throughput of 110 GFLOPS when computing the product of two 
2kx2k matrices on GTX 8800. In CUBLAS 2.2, a more optimized 
version is implemented based on the work of Vasily et. al. [18], 
which can reach 187 GFLOPS. In comparison, the CUDA SDK 
version has a throughput of 81 GFLOPS. In this section, we use 
matrix multiplication as an example to illustrate our compilation 
process.  

The naïve kernel, i.e., the input to our compiler, is shown in 
Figure 2a. In the kernel, there are two input arrays, a and b, from 
the global memory. The compiler converts the accesses to array a 
into coalesced ones, as shown in Figure 3a. Based on detected 
data sharing, the compiler determines that neighboring thread 
blocks along the X direction can be merged to improve reuse of 
array a and neighboring thread blocks along the Y direction can 
be merged to improve memory reuse of array b. As the access to 
array a is a R2S (read-to-shared memory), the compiler chooses to 
perform thread-block merge. As the access to array b is R2R 
(read-to-register), the compiler chooses thread merge as discussed 
in Section 3.5. The next question is then how many thread blocks 
should be merged along either direction? As discussed in Section 
4, the heuristic is to put at least 128 threads in each thread block 
and to generate different versions of kernel functions depending 
on the number of threads/thread blocks to be merged. Figure 10 
shows the performance effect on GTX 280 of the number of 
merged threads/thread blocks in either direction. It can be seen 
that the optimal performance for different sizes of input matrices 
is achieved with merging 16 thread blocks along the X direction 
and 16 threads along the Y direction.  
 

 

 
 
 

 

6. Experiments 

6.1 Experimental Methodology 

We implemented the proposed compiler framework in Cetus, a 
source-to-source compiler infrastructure for C programs [8]. The 
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Figure 10. The performance impact (GTX 280) of the number of 
merged threads/thread blocks. ‘xN_yM’ means that N thread 
blocks merged along the X direction and M threads merged along 
the Y direction. 
 

 



 

 

CUDA language support in Cetus is ported from MCUDA [16]. 
The compiler optimizes the naïve kernel functions of the algo-
rithms listed in Table 1, all of which compute a single element at 
the position (idx, idy). The numbers of lines of code (LOC) of 
these naïve kernel functions are included in Table 1 to illustrate 
their programming complexity/simplicity. Among the kernels, 
‘#pragma’ is used in the reduction kernel to convey the informa-
tion of input vector length and the actual output to the compiler. 
The output of our compiler, i.e., the optimized kernel, is compiled 
by the CUDA compiler, nvcc, to generate the GPU executable file. 
In our experiments, we used both NVIDIA GTX8800 and NVI-
DIA GTX280 GPUs with CUDA SDK 2.2 and a 32-bit CentOS 
5.2 operating system. Our compiler code, the naïve kernels, and 
the optimized kernels are available at [20]. 

 
Algorithm The size of input 

matrices/vectors  
Num. of LOC in 
the naïve kernel 

transpose matrix vector 
multiplication (tmv) 

1kx1k to 4kx4k 
(1k to 4k vec.) 

11 

matrix mul. (mm) 1kx1k to 4kx4k 10 
matrix-vector mul. (mv) 1kx1k to 4kx4k  11 
vector-vector mul. (vv) 1k to 4k 3 
reduction (rd)  1-16 million 9 
matrix equation solver 
(strsm) 

1kx1k to4kx4k 18 

convolution (conv) 4kx4k image, 
32x32 kernel 

12 

matrix transpose (tp) 1kx1k to 8kx8k 11 
Reconstruct image (de-
mosaicing)  

1kx1k to 4kx4k 27  

find the regional maxima 
(imregionmax) 

1kx1k to 4kx4k 26 

 
Table 1. A list of the algorithms optimized with our compiler. 

6.2 Experimental Results  

In our first experiment, we examine the effectiveness of our com-
piler optimizations. Figure 11 shows the kernel speedups of the 
optimized kernels over the naïve ones running on both GTX8800 
and GTX 280 GPUs. From the figure, it can be seen that the com-
piler significantly improves the performance using the proposed 
optimizations (15.1 times and 7.9 times on average using the 
geometric mean).  

To better understand the achieved performance, we dissect the 
effect of each step of our compilation process and the results are 
shown in Figure 12. The performance improvement achieved in 

each step is an average of all applications using the geometric 
mean. Since data vectorization is designed to handle complex 
numbers and all the inputs in this experiment are scalar numbers, 
this step has no effect. From Figure 12, it can be seen that 
thread/thread-block merge has the largest impact on performance, 
which is expected as tiling and unrolling achieved with this opti-
mization is critical for locality and parallelism optimizations. 
Between the two GPUs, GTX280 benefits less from the optimiza-
tions due to its improved baseline performance (i.e., naïve kernels) 
as the hardware features more cores and higher memory band-
width. Prefetching shows little impact in our results. The reason is 
that after thread/thread-block merge, the kernel consumes many 
registers. When allocating registers for prefetch, either the degree 
of thread merge must be reduced or the off-chip local memory 
may have to be used, resulting in degraded performance. There-
fore, when registers are used up before prefetching, the prefetch-
ing step is skipped by our compiler. Elimination of partition 
camping shows larger impact on GTX280 than GTX8800. One 
reason is due to the input data sizes used in our experiments. For 
example, there is significant partition camping on GTX280 when 
transposing a 4kx4k matrix as it has 8 partitions and the partition 
size is 256 bytes. For the same input on GTX8800 which has 6 
partitions, the accesses become more evenly distributed and eli-
minating partition camping has little effect. When transposing a 
3kx3k matrix on GTX8800, however, eliminating partition camp-
ing results in a 21.5% performance improvement.  
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Figure 13. Performance improvement of our optimized kernels over CUBLAS 2.2 implementations on GTX280. 
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Among the algorithms in Table 1, six are implemented in the 
CUDA CUBLAS library. In the next experiment, we compare our 
optimized kernel with the highly tuned CUBLAS v2.2 on GTX 
280. Figure 13 shows the performance comparison of the algo-
rithms with different input sizes. From Figure 13, we can see that 
the kernel optimized by our compiler achieves consistently better 
performance than CUBLAS 2.2 for transpose matrix vector mul-
tiplication (tmv), matrix vector multiplication (mv), vector vector 
multiplication (vv), and matrix equation solver (strsm) for differ-
ent input sizes. For matrix multiplication (mm) and reduction (rd), 
the performance of our optimized code is very close to CUBLAS 
2.2 (within 2% difference). On average (based on the geometric 
mean), our performance improvement over CUBLAS varies from 
26% to 33% for different input sizes. 

To study the effect of data vectorization, we chose the reduc-
tion (rd) algorithm since rd is the only algorithm in our study that 
has a corresponding version for complex numbers (CublasScasum) 
in CUBLAS. We changed the naïve kernel of rd to process com-
plex numbers by using two float-type variables to read the real 
(A[2*idx]) and imaginary (A[2*idx+1]) parts of a complex num-
ber instead of a single float2 variable. Then, we optimized this 
naïve kernel with and without the data vectorization step. For 
different input sizes, we compared the performance of the two 
optimized kernels (labeled ‘optimized_wo_vec’ and ‘optimized’, 
respectively) and the results are show in Figure 14.  

 
 

 
 
 

 
 

 

 

 
 

From Figure 14, we can see that data vectorization significant-
ly improves the performance. One reason is the improved memory 
bandwidth due to the use of float2 data types as discussed in Sec-

tion 2. Another reason is the side effect of memory coalescing. 
Without data vectorization, the compiler recognized that the array 
accesses to both real and imaginary parts (A[2*idx] and 
A[2*idx+1]) are not coalesced. So, it uses shared memory as tem-
porary storage to generate coalesced memory accesses as dis-
cussed in Section 3.3. In comparison, the accesses in the kernel 
after data vectorization, A[idx], is coalesced. As a result, the data 
are directly loaded into registers for computation. Although the 
compiler uses the shared memory to improve memory reuse for 
both vectorized and un-vectorized versions, there are more shared 
memory accesses in the un-vectorized kernel ‘optimized_wo_vec’ 
due to code transformation for coalescing. These extra shared 
memory accesses contribute to the performance differences be-
tween the ‘optimized_wo_vec’ and ‘optimized’ kernels.  

Among all the kernels, transpose (tp) and matrix-vector mul-
tiplications (mv) exhibit the partition camping problem. Ruetsch 
and Micikevicius [12] proposed diagonal block reordering to ad-
dress the issue with transpose and their implementation is in-
cluded in the latest CUDA SDK. In Figure 15, we compare the 
performance of our optimized kernel (labeled ‘optimized’) with 
theirs (labeled ‘SDK new’) and we also include the previous CU-
DA SDK version for reference (labeled ‘SDK prev’). Since tp 
does not have any floating point operations, the effective band-
width is used. From Figure 15, it can be seen that although our 
compiler uses the same approach to eliminate partition camping, 
the remaining optimizations taken by our compiler result in better 
performance than the version in the latest SDK.  

In mv, the thread blocks are in one dimension. Therefore, di-
agonal block reordering cannot be applied. Our compiler uses the 
address offset approach described in Section 3.7 and the results 
are shown in Figure 16. It can be seen that for different input sizes, 
even without partition camping elimination, our optimized kernel 
(labeled ‘Opti_PC’) already achieves better performance than 
CUBLAS and eliminating partition camping (labeled ‘optimized’) 
further improves the performance. 

In summary, our experimental results show that our optimizing 
compiler generates very high quality code and often achieves 
superior performance even compared to the manually optimized 
code in CUDA CUBLAS and SDK.  
 

 

 
 

 
 

 

7. Limitations 
Although the proposed compiler can dramatically improve the 
performance over naïve kernel functions, the fundamental limita-
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Figure 15. Performance comparison between CUDA SDK and 
our optimized kernel on matrix transpose. 

 

Figure 14. The effect of data vectorization on reduction with 
complex number inputs. 

 



 

 

tion is that it cannot change the algorithm structure. Instead, our 
compiler can be used to facilitate algorithm-level exploration. The 
reasons are two-fold. First, developers can leverage our aggressive 
compiler optimizations so that they do not need to optimize their 
implementations of each candidate algorithm. Second, the rela-
tively good understandability of our optimized code may give a 
hint of what algorithms are better suited. Taking 1D fast Fourier 
transform (FFT) as an example, when the naïve kernel (50 lines of 
code) simply uses 2-point FFT in each step of the Cooley–Tukey 
algorithm [4], the throughput is 24 GLOPS for computing the FFT 
of 220 complex numbers on GTX280. Our compiler optimizes the 
naïve kernel by merging threads and the resulting kernel computes 
8-point FFT in each step, which delivers a throughput of 41 
GFLOPS, significantly better than CUFFT 2.2 (26GFLOPS). The 
compiler generated 8-point FFT version, however, is not as good 
as a naïve implementation of 8-point FFT (113 lines of code with 
a throughput of 44 GFLOPS). The reason is that the compiler 
generated version uses multiple 2-point FFT calculations for an 8-
point FFT. On the other hand, as our compiler generated code is 
reasonably understandable, it serves as a good guideline for algo-
rithm exploration: changing the naïve kernel from 2-point FFT to 
8-point FFT, for which the compiler can further optimize the per-
formance to achieve 59 GFLOPS. More elaborate algorithm-level 
development by Govindaraju et. al. [6] as well as the one used in 
CUFFT2.3 achieves even higher performance (89 GFLOPS), 
indicating that our compiler facilitates but cannot replace intelli-
gent algorithm-level exploration.   

8. Related Work 
CUDA [19] provides a relatively simple programming model to 
application developers. However, many hardware details are ex-
posed since it is critical to utilize the hardware resources efficient-
ly in order to achieve high performance. Given the non-linear 
optimization space, optimizing GPGPU programs has been shown 
to be highly challenging [14]. To relieve this task from developers, 
there has been some recent work on compiler support for GPGPU 
optimization. Ryoo et. al. [13] defined performance metrics to 
prune the optimization spaces. G-ADAPT [10] is a compiler 
framework to search and predict the best configuration for differ-
ent input sizes for GPGPU programs. Compared to our proposed 
approach, this compiler takes the optimized code and aims to 
adapt the code to different input sizes, while ours optimizes the 
naïve kernel functions.  

One closely related work to ours is the optimizing compiler 
framework for affine loops by Baskaran et. al. [2][3]. Their com-
piler uses a polyhedral model to empirically search for best loop 
transformation parameters, including the loop tiling sizes and 
unrolling factors. It is reported that their compiler achieves similar 
performance to CUBLAS1.0 for matrix multiplication and better 
performance for other kernels. In comparison, our proposed com-
piler also uses empirical search to determine the best parameters 
to merge threads/thread blocks. The difference is that we propose 
a novel way to achieve the effect of loop tiling and loop unrolling. 
In our proposed approach, we start from the finest-grain work 
item and aggregate work items together to exploit data reuse 
through registers and share memory. This approach fits particular-
ly well with GPGPU programming models where work items are 
typically defined in a 2D/3D grid and aggregating work items 
usually bears a clear physical meaning in terms of the workload of 
each thread and each thread block. In addition, we propose expli-
cit rules to check memory coalescing and approaches to covert 
non-coalesced accesses into coalesced ones. For the applications 
that we studied, including matrix multiplication, our compiler 
achieves much better performance (superior or close to CUBLAS 

2.2, which is significantly improved over CUBLAS 1.0). In addi-
tion, the loop transformed code generated based on polyhedral 
models is often quite complex [11] while our optimized code has 
relatively good understandability. 

Our compiler shares a common goal with CUDA-lite [17]: the 
user provides a kernel function which only uses the global memo-
ry and the compiler optimizes its memory usage. In CUDA lite, 
the compiler uses the programmer provided annotation to improve 
memory coalescing. It also performs loop tiling to utilize shared 
memory. In comparison, our compiler does not require user anno-
tation. More importantly, our compiler does not only improve 
memory coalescing but also effectively achieves data sharing with 
the proposed thread/thread-block merge techniques. In addition, 
our compiler distinguishes memory reads based on their target, the 
register or the shared memory, to make best use of either type of 
resource for data reuse. 

One interesting way to automatically generate GPGPU pro-
grams is to translate OpenMP programs to CUDA programs [9]. 
Our proposed compiler is complementary to this work as it can be 
used to further optimize the CUDA kernel functions generated 
from OpenMP programs.  

9. Conclusions 
In this paper, we present a compiler framework to optimize 
GPGPU programs. A set of novel compiler techniques is proposed 
to improve GPU memory usage and distribute workload in threads 
and thread blocks. Our experimental results show that the opti-
mized code achieves very high performance, often superior to 
manually optimized programs.  

In our future work, we plan to extend our compiler to support 
OpenCL programs so that a single naïve kernel can be optimized 
for different GPUs from both NVIDIA and AMD/ATI. We are 
also investigating detailed analytical performance models to simp-
ly the effort in design space exploration. 
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