
Toward Principled Browser Security

Edward Z. Yang1 Deian Stefan1 John Mitchell1 David Mazières1 Petr Marchenko2 Brad Karp2

1Stanford University 2University College London

ABSTRACT

To ensure the confidentiality and integrity of web con-

tent, modern web browsers enforce isolation between

content and scripts from different domains with the

same-origin policy (SOP). However, many web applica-

tions require cross-origin sharing of code and data. This

conflict between isolation and sharing has led to an ad

hoc implementation of the SOP that has proven vulner-

able to such attacks as cross-site scripting, cross-site re-

quest forgery, and browser privacy leaks. In this paper,

we argue that information flow control (IFC) not only

subsumes the same-origin policy but is also more flexi-

ble and sound. IFC not only provides stronger confiden-

tiality and integrity for today’s web sites, but also better

supports complex sites such as mashups, which are noto-

riously difficult to implement securely under the SOP.

1 INTRODUCTION

Web applications are deceptively simple to build: easy to

get working, but challenging to secure. When written the

“straightforward” way, they are at risk of being vulnera-

ble to a wide range of attacks. Cross-site scripting (XSS)

and cross-site request forgery (CSRF) are widely known

problems, but there are far more subtle menaces: image

resources may leak whether or not a user is logged in [9];

a third-party script may go rogue and steal users’ creden-

tials; or, given HTML5 support for smartphone sensors,

a malicious script may surveil a user through their mi-

crophone or camera. The web browser is the common

enabler of all these attacks.

The same-origin policy (SOP) was meant to provide

confidentiality and integrity by isolating web pages of

distinct origins [3]. A browser that perfectly enforced a

strict SOP would be invulnerable to the aforementioned

attacks: XSS would no longer be able to exfiltrate cook-

ies to third-party websites, CSRF would no longer be

able to initiate cross-site requests, and third-party im-

ages and style sheets would be disallowed. Alas, no one

would want to use such a browser: cross-origin com-

munication is vital to rich web applications. Indeed, ad

hoc security policies helped the web succeed: they al-

lowed a simple mechanism for serving marked-up static

content to evolve into a full-blown distributed applica-

tion platform, with downloadable code and dynamic con-

tent from multiple parties. The vulnerabilities that arose

as browsers grew in functionality, however, have only

been addressed piecemeal, e.g., with Cross-Origin Re-

source Sharing (CORS) [42] and Content Security Pol-

icy (CSP) [40]. It is time to re-examine browser security

with the benefit of hindsight.

What would a more principled design for isolation be-

tween origins look like—one that precludes behavior that

leads to vulnerabilities, but provides enough flexibility to

allow desirable cross-origin behavior? We begin with the

observation that the SOP is an information flow control

(IFC) policy. An IFC mechanism labels data, tracks its

flow through a system, and enforces policies that allow

or deny flows on the basis of their labels. While its cre-

ators may not have thought of it in such terms, the SOP

is merely a highly restrictive IFC policy in which flows

between origins are denied. But IFC is far more gen-

eral than the SOP, as it is capable of expressing policies

that precisely constrain inter-origin flows. Such policies

may be constructed to be more restrictive than today’s ad

hoc, permeable SOP; or, in some cases, they may be even

more permissive—today’s SOP may disallow flows that

are safe in certain circumstances and stand in the way

of useful web application functionality. Our thesis is that

IFC is a good fit for whole-browser security: it captures

the SOP nicely while supporting more perfect isolation

than today’s SOP. It not only helps eliminate existing vul-

nerabilities but also enables applications that today might

be considered impossible to implement securely.

In this paper, we offer a brief overview of IFC and

show how to use it to express today’s browser secu-

rity policies—any deployable browser security primitive

must at least meet that bar. We then use concrete ex-

amples to highlight how IFC supports rich functional-

ity with strong security guarantees impossible in today’s

browsers, including thwarting a malicious browser ex-

tension (§3.4), whose elevated privilege today permits

it to leak all browser tabs’ content to a third-party site;

an untrusted, extensible JavaScript image editor (§4.2),

which today risks exfiltrating an image edited on the

client to a third-party site; and a third-party mashup

(§4.3), which today risks leaking content from any site

that contributes to the mashup to a third party.

2 A SHORT INTRODUCTION TO IFC

IFC systems track and control the propagation of infor-

mation by associating a label with every object. A label

encodes a security policy as a pair of positive boolean

formulas over principals (e.g., origins) specifying who

may read or write data [37]. For example, an object la-

beled 〈canRead: a.com ∨ b.com, canWrite: a.com〉
can only be read by a.com or b.com and modified by



a.com.1

In general, labels are partially ordered according to

a can flow to relation ⊑; for any labels LA and LB, if

LA ⊑ LB then the policy encoded by LA is upheld by that

of LB. For example, data labeled LA = 〈canRead: a.com

∨ b.com, canWrite: a.com〉 can be written to an ob-

ject LB = 〈canRead:a.com, canWrite: a.com〉 since LB

preserves the secrecy of LA. (In fact, LB is more restric-

tive, as only a.com—not both a.com and b.com—

can read.) Conversely, LB 6⊑ LA, and thus data labeled LB

cannot be written to an object labeled LA (data secret to

a.com cannot be leaked to b.com).

To keep track of communication restrictions, every ex-

ecution context (e.g., window, frame, etc.) is associated

with a label, called the current label. The current label

reflects the sensitivity of all data read by the code (by ac-

cumulating taint when performing reads [29, 32, 39, 45])

and is used to restrict communication rights. Code can

read an object only if the object’s label can flow to the

current label; code can write to an object only when the

current label can flow to the object’s label.

Within the confines of the browser, code can also act

on behalf of principals by exercising privileges. A privi-

lege is an unforgeable object which asserts authority over

a principal and can be used to allow flows otherwise not

permitted by the⊑-relation. For example, code executing

on behalf of a.comwith a current label of 〈canRead: a.

com〉 cannot inspect the result of an aggregate, mashup

computation labeled 〈canRead: a.com ∧ b.com〉 (note

the conjunction!), since the object may contain informa-

tion sensitive to b.com. However, a.com and b.com

can independently exercise their privileges to declassify

the data. For example, a.com can downgrade the ob-

ject’s label to 〈canRead: b.com〉, after which b.com

can declassify it to 〈canRead: anybody〉, i.e., make it

publicly readable. Code can further endorse data by exer-

cising a privilege—e.g., b.com may copy an object and

add itself to the copy’s integrity label, thus indicating that

it vouches for the content of the object.

3 CORE BROWSER-LEVEL IFC

We propose using IFC in the browser core as well as ex-

posing an LIO-like [38] API in JavaScript.2 In this sec-

tion we argue for the applicability and benefits of LIO-

style IFC to the browser core; in §4 we detail the benefits

of exposing these IFC abstractions in JavaScript.

1For brevity we use hostnames in place of origin URIs (e.g., a.com

in place of http://a.com:80). When only secrecy or integrity is of

interest we simplify notation by excluding the other component, which

is implicitly anybody. ∨ is logical disjunction; ∧ indicates conjunction.

2Previous work either only implements IFC for JavaScript (omit-

ting the C++ browser core) [12, 16] or implements IFC throughout

the browser, but does not expose IFC to JavaScript code [7], and thus

doesn’t support fine-grained labeling or declassification—both vital to

mashups.

For IFC to be applicable in the browser core, an impor-

tant prerequisite is that existing websites operate with-

out modification. Hence, current browser policies must

be expressible in and enforceable with IFC. Below we

consider how to express several representative policies.

3.1 Same-Origin Policy

The same-origin policy specifies that resources of an ori-

gin should only be readable by content from the same

origin [3, 42, 46]; we refer to this definition as the strict

SOP. However, many exceptions to the SOP allow cross-

origin communication. For instance, the SOP does not re-

strict the embedding of images, scripts, styles and frames

from arbitrary domains: an origin can read cross-origin

data by inspecting image properties (e.g., size), execut-

ing scripts that call back with data (e.g., JSON-P [35]),

etc. Furthermore, the SOP does not forbid performing

cross-origin requests: thus, it is trivial to write data to

a third-party website. In the browser, cross-origin win-

dows and frames can communicate bidirectionally by

setting a common document.domain, by modifying

the window.name property, using fragment-id messag-

ing [8], or using the postMessage API [19].

Expressing the Strict SOP with IFC As described in

§2, IFC restricts the flow of information according to the

labels associated with data and endpoints. Hence, the first

step toward expressing the SOP with IFC is to properly

label browser entities. Below we show the labeling of

several representative components.

• User-credentials stored by the browser, such as

cookies, HTML5 local storage, and HTTP authenti-

cation information, are labeled according to their ori-

gins and attributes. For instance, a cookie set by a.

com with attributes Domain=a.com; HttpOnly

is labeled 〈canRead: a.com ∧ core://, canWrite:

a.com ∧ core://〉 to indicate that it can be read

and modified by the browser core running on behalf

of a.com. The core:// term ensures that only the

core, which runs with the core:// privilege (and

not JavaScript), can read and modify the cookie.

• Contexts, e.g., windows and frames, have a current

label and privileges corresponding to their content’s

origin. For example, a frame loaded from a.com is

labeled 〈canRead: a.com〉 and owns the privilege

a.com. As mentioned previously, the browser addi-

tionally owns the special core:// privilege, giving

it access to certain objects “hidden” from JavaScript.

• Messages sent using postMessage from a.com’s

context to b.com’s context are labeled 〈canRead:

a.com ∨ b.com, canWrite: a.com〉. This allows

both origins to inspect the message and verify that

a.com sent the message. Importantly, the message

label always indicates the intended recipient and thus



follows the safe postMessage API [6].

• Content, including images and scripts, is labeled us-

ing the content’s origin and type (e.g., images from

a.com have the label 〈canRead: a.com ∨ #img〉).3

Recall that information is permitted to flow from an

entity labeled LA to an entity labeled LB only if LA ⊑ LB.

Under our labeling scheme, code typically runs with a

current label of the form 〈canRead: A-origin〉 while a re-

source’s label has the form 〈canRead: R-origin〉. Hence,

to read the resource it must be that 〈canRead: R-origin〉⊑
〈canRead: A-origin〉, which holds only if R = A. In other

words, our labeling scheme restricts code to reading and

writing to the same origin, as per the strict SOP.

Extending the Strict SOP with Declassification Al-

though the above scheme captures the strict SOP, the

full SOP allows reading resources from different ori-

gins, sending messages (with postMessage) without

intended recipients, etc. Such cross-origin communica-

tion violates non-interference [33]: information from an

origin influences the execution of code in some other ori-

gin. Hence, to encode the full SOP we must explicitly

encode such exceptions using declassification.

Consider an img element on a page in a.com with

the src property set to http://b.com/lena.png.

Without declassification, our system would not allow

this image to be fetched and loaded, since the la-

bel of the resource does not flow to the label of the

context (〈canRead: b.com〉 6⊑ 〈canRead: a.com〉). Be-

cause browsers’ implementations of the SOP allow this

flow, we must declassify the resource by downgrad-

ing the label of the image from 〈canRead: b.com〉 to

〈canRead: anybody〉, which now flows to the context

label. The full SOP combines labels and declassifiers,

which specify circumstances when labels can be down-

graded without exercising a privilege.

Discussion As detailed above, IFC can be used to spec-

ify and enforce real-world security policies. Policies like

the strict SOP that enforce non-interference map natu-

rally to IFC, while policies that may leak information

must employ declassifiers. New browser features ex-

plicitly opt out of the strict same-origin policy with a

declassifier—and these declassifiers force one to analyze

a feature’s implications for users’ security and privacy.

As an example, consider the design of the

postMessage API. When using the labeling

scheme described above, our IFC system enforces

both integrity and confidentiality for messages ex-

changed between components. Recall that when a.com

sends b.com a message, its label will be 〈canRead:

a.com ∨ b.com, canWrite: a.com〉. The label

indicates the intended recipients and message creator.

3For brevity, we henceforth omit the element types from labels.

a.com

evil.com

b.com

evil.com

1

2

postMessage

navigate

Figure 1: Message hijacking,

where a.com sends a message to

b.com, but evil.com hijacks

the frame and replaces b.com.

Hence, even if a mes-

sage is sent to the

wrong origin, such as

evil.com in Fig-

ure 1, the origin will

not be able to read

the message because

〈canRead: a.com ∨
b.com, canWrite: a.

com〉 6⊑ 〈canRead:

evil.com〉.

Unfortunately,postMessage allows messages to be

sent without specifying the intended recipient. In order

to implement this behavior, we must downgrade the la-

bel of every message with a declassifier before send-

ing it to another frame. In the above example, the mes-

sage label 〈canRead: a.com ∨ b.com, canWrite: a.

com〉 is downgraded to 〈canRead: anybody, canWrite:

a.com〉. Since 〈canRead: anybody, canWrite: a.com〉
⊑ 〈canRead: evil.com〉, a hijacked frame can now

read the message—an unintended leak. Discovering such

leaks is typically non-trivial [6], however, with IFC, leaks

are accompanied by explicit declassification.

Declassification can also serve as a warning signal in

more subtle cases. Consider the previous scenario, where

a.com loads http://b.com/lena.png. When re-

questing the image, the browser sends cookies to b.

com’s server. Suppose that the image is private, and de-

pending on the cookies, the server may respond with the

image or redirect to the login page. Since the SOP does

not restrict a script from determining if an image load

succeeds, the label of this response is downgraded to

〈canRead: anybody, canWrite: anybody〉. However, this

flow leaks information about the user’s credentials (la-

beled 〈canRead: b.com, canWrite: b.com〉) to a.com:

the website can tell whether or not the user is logged in!

In general, declassification of non-opaque objects is

unsafe. Sensitive information can be retrieved by inspect-

ing object properties (e.g., height and width in the

case of images) or attaching event handlers [9]. Impor-

tantly, declassifiers are added as explicit exceptions to the

strict SOP—this places the burden of validating safety on

the declassifier author. In the case of existing features, fo-

cusing attention on declassifiers may reveal yet unknown

leaks. For new features, IFC forces developers to reason

about and justify violations of the strict SOP.

3.2 Cross-Origin Resource Sharing

CORS [42] defines a protocol on top of HTTP intended

to enable client-side cross-origin requests that the SOP

prohibits. Specifically, an origin b.com can permit a

cross-origin request (e.g., from a.com) by including the

allowed origins in a dedicated header.

Expressing CORS with IFC is straightforward. To en-



force the SOP we label a resource solely with the sin-

gle principal corresponding to the origin of the server

it lives on (e.g., 〈canRead: b.com〉); for CORS, we

simply include all the allowed origins in the label.

For example, a resource on b.com with the header

Access-Control-Allow-Origin: a.com is la-

beled 〈canRead: a.com ∨ b.com〉, allowing both ori-

gins to access the resource.

3.3 Content Security Policy

CSP [40] addresses some of the shortcomings of the

SOP that have led to attacks such as XSS by al-

lowing web apps to specify where different resources

(scripts, images, etc.) may be loaded from. For ex-

ample, if a page from a.com supplies the CSP

header with the directives default-src: ’self’;

img-src: b.com, the page is restricted to loading

images from a.com and b.com.

Interestingly, most policies in CSP are information

flow policies—i.e., they specify the origins from where

the page may fetch resources or load scripts (and thus

to which it may potentially leak information). We can

implement CSP atop our IFC system by modifying the

implementation of the declassification method of §3.1.

Specifically, instead of fully downgrading the label of a

resource before retrieving it, CSP directives can be used

to control the level of declassification. For instance, if

content from a.comwished to fetch http://b.com/

lena.png, the SOP would fully downgrade the label of

the resource from 〈canRead: b.com〉 to 〈canRead: any-

body〉. Conversely, with CSP, the declassifier must take

into consideration the img-src directive. If the direc-

tive contains the origin b.com, the label will again be

downgraded to 〈canRead: anybody〉 and the request to

b.com will be performed. On the other hand, if the di-

rective contains only origin c.com, the downgrade is a

no-op and the image will not be fetched—this ensures

that a.com’s data cannot be leaked to b.com through

the request parameters.

3.4 New Policies

Browser-based IFC enables novel security policies, as

well, three of which we now briefly consider.

Preventing Exfiltration by Browser Extensions

Chrome and Firefox browser extensions are JavaScript

code that executes with elevated privilege—e.g.,

they typically enjoy read access to tabs of all ori-

gins [1, 14, 29]. Many need network access as well.

AdBlock, for example, which prevents the display of ads

in pages, requests updated ad identification information

from a remote server. A maliciously written extension

can thus exfiltrate information from a user’s tab to a

remote server [29]. The Hails system [15] applies IFC to

prevent untrusted code executing on a web server from

disclosing sensitive information to unauthorized parties.

We expect IFC to be similarly useful to block such exfil-

tration by extensions, whether malicious or vulnerable

to script injection by malicious pages [24, 25, 34].

Protecting the User’s Browser History Numerous at-

tacks exfiltrate a user’s browsing history [2, 9, 21]. To

address them, most of today’s browsers disallow scripts

from reading the CSS :visited selector value with

getComputedStyle. In our IFC framework, we need

not take so ad hoc a measure—we can simply label his-

tory data with a distinguishable label (e.g.,user://).

Under this IFC-based policy, the renderer must declas-

sify the history data (labeled 〈canRead: user://〉) be-

fore incorporating it into layout. The declassifier high-

lights possible leaks and suggests that browser history

data must only cause local changes to layout, as is also

implemented in current browsers.

Preventing Self-Exfiltration Attacks In a self-

exfiltration attack [10], an attacker leaks data to the

same “trusted” origin where the user is logged in, for

example, by posting a public comment. As in Hails [15],

our IFC approach allows server-side code to label

a response—and thus set the current label—using a

dedicated header, X-LIO-Label, to indicate that it

contains user-sensitive data. Since subsequent client-side

requests will be at least as sensitive (the current label

cannot be arbitrarily lowered), the server can inspect

the request label and disallow publicly observable

modifications.

4 EXPOSING IFC IN JAVASCRIPT

The benefits of IFC go beyond the browser core; expos-

ing the strong underlying IFC protection mechanism in

JavaScript allows developers to build more secure appli-

cations, libraries and mashups. Developers can take ad-

vantage of this functionality using the LIO API [38, 39].

At its core, LIO exposes three functions: (i) label,

used to explicitly wrap objects with labels; (ii)

unlabel, used to unwrap labeled objects and taint the

execution context; and, (iii) toLabeled, which is used

to execute arbitrary code in a disjoint (“sandboxed”)

compartment without tainting the current context. This

“IFC as a library” approach differs from prior work on

JavaScript IFC (e.g., [16, 18, 36, 44]) in several ways.

First, the approach is coarse-grained in the common case

(e.g., we only associate a label with each global), while

still allowing developers to protect individual objects

(with label). Second, it does not impose IFC on pages

that do not use the API, ensuring that existing websites

do not break. Third, it allows code to exercise privileges

(e.g., to declassify data): this is useful when building

practical IFC-based applications [22, 31, 45]. Below we

consider several use cases that illustrate the benefits an

LIO-style IFC system would offer JavaScript.



4.1 Preventing CSRF Attacks

The SOP does not prevent websites from making POST

requests to other websites; thus, CSRF attacks arise when

a website fails to check the authenticity of received

POST requests. The usual way to protect against CSRF

attacks is to include a special token in every form and

rely on the SOP to prevent other origins from forging a

request with it [4]. Unfortunately, the SOP cannot pre-

vent such a token from being leaked by accident (as

in [43]) or malice (if the website is vulnerable to XSS

attacks). IFC can be used both to protect the token’s se-

crecy (by labeling it with the form’s origin) and to pre-

vent forged requests by associating a “high-integrity” la-

bel with each form. Browser-core IFC can guarantee that

that the POST request will propagate the form label (e.g.,

using a special header), which, on the server side, can be

verified by the victim website.

4.2 Executing Untrusted Code on User Data

Most web applications rely on third-party JavaScript li-

braries. Developers typically place complete trust in this

code, since it is not generally possible to guarantee that

arbitrary code will not exfiltrate private data. Systems

such as Caja [30], ADSafe [11], and FBJS [13] offer

sandboxing by defining safe subsets of JavaScript; these

subsets tend not to support JavaScript’s full functionality,

and as retrofits atop existing browser interfaces, they are

also vulnerable to various attacks [26, 27, 41].

Consider an in-browser photo editor that allows users

to integrate third-party code (e.g., as bookmarklets) that

extends its core functionality. Systems like Caja can pro-

hibit these third-party libraries from communicating over

the network and guarantee that potentially sensitive user

data (photo) are not exfiltrated. But this approach lim-

its functionality: it also prevents libraries from fetching

clip-art, stock photographs, fonts, etc. from remote web-

sites. By contrast, IFC is a natural fit for securing such

applications: we can prevent the leaking of a user’s sensi-

tive data while still allowing code the flexibility to fetch

resources from remote hosts. Specifically, the core edi-

tor, which we assume to be trusted, can label the photo

(with label) such that its label does not flow to ar-

bitrary origins. Third-party library functions can then

safely be called with the labeled photo (e.g., by using

toLabeled). These library functions do not have the

privilege corresponding to the label the core editor allo-

cated and thus must respect it: while they may initiate

network requests to fetch resources prior to inspecting

the photo, once they have unlabeled the photo, their

communication rights will be revoked [38].

4.3 Safe Mashups

Mashups compose content from different websites. In

many cases, a third-party developer independent of the

content provider offers a mashup. Privacy is a concern

when running such services on sensitive data, and de-

spite much effort to make mashups safe, there remains a

tradeoff between privacy and functionality [5, 20, 28].

Consider, for instance, a mashup that matches Ama-

zon purchases with bank statements.When one party (the

bank or Amazon) provides the mashup, the solution is

generally to bypass the SOP, whether by iframe and

cross-origin communication with postMessage, or by

using CORS to grant one provider access to the user’s

data on the other. Unfortunately, these approaches re-

quire the user to trust the mashup provider not to exfil-

trate the user’s data from the other site. Moreover, users

must give up their privacy in order to use mashups writ-

ten by third-party developers. Even authorization ser-

vices such as OAuth 2.0 [17] do not prevent applications

from arbitrarily leaking data post-authorization [15, 23].

IFC, however, supports client-side mashups well. Ex-

posing an LIO-like IFC system in JavaScript allows us

to extend the XMLHttpRequest object so that code

can safely perform arbitrary cross-domain requests, la-

beling responses by their origins (as described in §3.2).

Untrusted third-party code can thus fetch data from

Amazon, which the browser labels 〈canRead: amazon.

com〉, and if it does not unlabel the result, such as

to inspect purchases, it can subsequently perform a re-

quest to the bank website. Once the responses are un-

labeled, however, the current label will be 〈canRead:

amazon.com ∧ bank.ch〉. At this point, the script

will not be able to initiate further requests (to any origin),

but can still match the purchases with bank statements.

5 CONCLUSION

We believe that information flow control is a promising

replacement for existing browser security mechanisms.

It is not only expressive enough to support existing poli-

cies and reveal latent vulnerabilities, but also enables

rich applications with strong security properties that are

unachievable today. IFC is both a mechanism that sup-

ports novel applications and a conceptual tool for un-

derstanding core browser security. The rapid expansion

of browser functionality has begotten a wide range of

threats to users’ privacy and a patchwork of browser se-

curity mechanisms that do not robustly ensure privacy.

Drawing upon these lessons, we have made the case for

IFC as a principled and flexible browser security primi-

tive.

Acknowledgments We thank Amit Levy, Patrick

Mutchler, and the anonymous reviewers for their helpful

comments. This work was funded by DARPA CRASH

under contract #N66001-10-2-4088, by the EPSRC un-

der grant EP/K032542/1, and by multiple gifts from

Google (to Stanford and UCL). Deian Stefan is sup-

ported through the NDSEG Fellowship Program.



REFERENCES

[1] S. Bandhakavi, S. King, P. Madhusudan, and

M. Winslett. VEX: Vetting browser extensions for

security vulnerabilities. In Usenix Security, 2010.

[2] L. D. Baron. Preventing attacks on a user’s

history through CSS :visited selectors. http:/

/dbaron.org/mozilla/visited-

privacy, 2010. Visited January 7, 2012.

[3] A. Barth. The web origin concept. Technical

report, IETF, 2011. URL https://tools.

ietf.org/html/rfc6454.

[4] A. Barth, C. Jackson, and J. Mitchell. Robust de-

fenses for cross-site request forgery. In Proceed-

ings of the 15th ACM conference on Computer and

communications security, pages 75–88, 2008.

[5] A. Barth, C. Jackson, and W. Li. Attacks on

javascript mashup communication. In Proceedings

of the Web, volume 2, 2009.

[6] A. Barth, C. Jackson, and J. Mitchell. Securing

frame communication in browsers. Communica-

tions of the ACM, 52(6):83–91, 2009.

[7] N. Bielova, D. Devriese, F. Massacci, and

F. Piessens. Reactive non-interference for a browser

model. In Network and System Security (NSS),

2011 5th International Conference on, pages 97–

104. IEEE, 2011.

[8] J. Burke. Browser and Dojo updates on frag-

ment ID messaging. http://tagneto.

blogspot.com/2008/01/browser-and-

dojo-updates-on-fragment-id.html,

2008. Visited January 31, 2008.

[9] M. Cardwell. Abusing HTTP status codes to ex-

pose private information. https://grepular.

com/Abusing_HTTP_Status_Codes_to_

Expose_Private_Information, 2011.

Visited January 10, 2013.

[10] E. Y. Chen, S. Gorbaty, A. Singhal, and C. Jackson.

Self-exfiltration: The dangers of browser-enforced

information flow control. Web 2.0 Security and Pri-

vacy, 2012.

[11] D. Crockford. ADsafe. http://www.adsafe.

org/, 2012. Visited January 8, 2013.

[12] V. Djeric and A. Goel. Securing script-based exten-

sibility in web browsers. In Proceedings of the 19th

USENIX Security Symposium, 2010.

[13] Facebook. FBJS: Facebook JavaScript. https:/

/developers.facebook.com/docs/

fbjs/, 2012. Visited January 8, 2012.

[14] A. Felt, K. Greenwood, and D. Wagner. The effec-

tiveness of application permissions. In Proc. of the

USENIX Conference on Web Application Develop-

ment, 2011.

[15] D. B. Giffin, A. Levy, D. Stefan, D. Terei,

D. Mazières, J. Mitchell, and A. Russo. Hails:

Protecting data privacy in untrusted web applica-

tions. In 10th Symposium on Operating Systems

Design and Implementation (OSDI), pages 47–60.

USENIX, 2012.

[16] W. D. Groef and D. Devriese. FlowFox: a web

browser with flexible and precise information flow

control. In Proceedings of the 19th ACM Confer-

ence on Computer and Communications Security

(CCS), 2012.

[17] D. Hardt. The OAuth 2.0 Authorization Frame-

work. Technical report, IETF, 2012. URL https:

//tools.ietf.org/html/rfc6749.

[18] D. Hedin and A. Sabelfeld. Information-flow se-

curity for a core of javascript. In Computer Se-

curity Foundations Symposium (CSF), 2012 IEEE

25th, pages 3–18. IEEE, 2012.

[19] I. Hickson. HTML5 web messaging. http:/

/www.w3.org/TR/webmessaging/, 2012.

Visited January 5, 2012.

[20] J. Howell, C. Jackson, H. Wang, and X. Fan.

Mashupos: Operating system abstractions for client

mashups. In Proceedings of the Workshop on Hot

Topics in Operating Systems, pages 32–42, 2007.

[21] A. Janc and L. Olejnik. Feasibility and real-

world implications of Web browser history detec-

tion. Proceedings of W2SP, 2010.

[22] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.

Kaashoek, E. Kohler, and R. Morris. Information

flow control for standard OS abstractions. In Proc.

of the 21st Symp. on Operating Systems Principles,

October 2007.

[23] M. Krohn, A. Yip, M. Brodsky, R. Morris, and

M. Walfish. A world wide web without walls. In

6th ACM Workshop on Hot Topics in Networking

(HotNets), Atlanta, GA, November 2007.

[24] Lostmon. Gmail checker plus Chrome extension

XSS. http://lostmon.blogspot.co.uk/

2010/06/gmail-checker-plus-chrome-

extension-xss.html, 2010. Visited January

10, 2013.



[25] Lostmon. Notifier for Google Wave Chrome

extension XSS/CSRF. http://lostmon.

blogspot.co.uk/2010/06/notifier-

for-google-wave-chrome.html, 2010.

Visited January 10, 2013.

[26] S. Maffeis and A. Taly. Language-based isola-

tion of untrusted javascript. In Computer Secu-

rity Foundations Symposium, 2009. CSF’09. 22nd

IEEE, pages 77–91, 2009.

[27] S. Maffeis, J. C. Mitchell, and A. Taly. Object capa-

bilities and isolation of untrusted web applications.

In Security and Privacy (SP), 2010 IEEE Sympo-

sium on, pages 125–140. IEEE, 2010.

[28] J. Magazinius, A. Askarov, and A. Sabelfeld. A

lattice-based approach to mashup security. In Pro-

ceedings of the 5th ACM symposium on informa-

tion, computer and communications security, pages

15–23. ACM, 2010.

[29] P. Marchenko, U. Erlingsson, and B. Karp. Keeping

sensitive data in browsers safe with ScriptPolice.

Technical Report RN/13/02, UCL, January 2013.

[30] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and

M. Stay. Caja: Safe active content in sanitized

JavaScript, 2008. Technical report, Google, 2009.

[31] A. C. Myers and B. Liskov. Protecting privacy us-

ing the decentralized label model. ACM Trans. on

Computer Systems, 9(4):410–442, October 2000.

[32] J. Newsome and D. Song. Dynamic taint analy-

sis for automatic detection, analysis, and signature

generation of exploits on commodity software. In

Network and Distributed System Security (NDSS)

Symp., 2005.

[33] A. Sabelfeld and A. Myers. Language-based

information-flow security. Selected Areas in Com-

munications, IEEE Journal on, 21(1):5–19, 2003.

[34] Secunia Advisory. Dokodemo Rikunabi 2013

unspecified cross-site scripting vulnerability.

https://secunia.com/advisories/

48813, 2010. Visited January 10, 2013.

[35] K. Simpson. Defining safer JSON-P. http:/

/json-p.org/, 2011. Visited November 16,

2011.

[36] K. Singh, S. Bhola, and W. Lee. xbook: Redesign-

ing privacy control in social networking platforms.

In USENIX Security, 2009.

[37] D. Stefan, A. Russo, D. Mazières, and J. C.

Mitchell. Disjunction category labels. In 16th

Nordic Conference on Security IT Systems, Nord-

Sec, volume 7161 of LNCS, pages 223–239.

Springer, October 2011.

[38] D. Stefan, A. Russo, J. C. Mitchell, and

D. Mazières. Flexible dynamic information

flow control in Haskell. In Haskell Symposium,

pages 95–106. ACM SIGPLAN, September 2011.

[39] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C.

Mitchell, and D. Mazières. Addressing covert ter-

mination and timing channels in concurrent infor-

mation flow systems. In Proc. of the 17th ACM

SIGPLAN International Conference on Functional

Programming (ICFP), September 2012.

[40] B. Sterne and A. Barth. Content Security Policy

1.0. http://www.w3.org/TR/CSP/, 2012.

Visited January 5, 2013.

[41] A. Taly, J. C. Mitchell, M. S. Miller, J. Nagra, et al.

Automated analysis of security-critical javascript

apis. In Security and Privacy (SP), 2011 IEEE Sym-

posium on, pages 363–378. IEEE, 2011.

[42] A. Van Kesteren. Cross-Origin Resource Sharing.

http://www.w3.org/TR/cors/, 2012.

[43] B. Vibber. CSRF token-stealing at-

tack (user.tokens). https://

bugzilla.wikimedia.org/show bug.

cgi?id=34907, 2012. Visited January 9,

2012.

[44] A. Yip, N. Narula, M. Krohn, and R. Mor-

ris. Privacy-preserving browser-side scripting with

bflow. In Proceedings of the 4th ACM European

conference on Computer systems, pages 233–246.

ACM, 2009.

[45] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and

D. Mazières. Making information flow explicit in

HiStar. In Proc. of the 7th Symp. on Operating Sys-

tems Design and Implementation, pages 263–278,

Seattle, WA, November 2006.

[46] M. Zelwski. Browser security handbook,

part 2. HTtp://code.google.com/p/

browsersec/wiki/Part2, 2011. Visited

March 30, 2011.


