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  Abstract — Choosing the most effective word-mangling rules 
to use when performing a dictionary-based password cracking 
attack can be a difficult task. In this paper we discuss a new 
method that generates password structures in highest 
probability order. We first automatically create a probabilistic 
context-free grammar based upon a training set of previously 
disclosed passwords. This grammar then allows us to generate 
word-mangling rules, and from them, password guesses to be 
used in password cracking. We will also show that this 
approach seems to provide a more effective way to crack 
passwords as compared to traditional methods by testing our 
tools and techniques on real password sets.  In one series of 
experiments, training on a set of disclosed passwords, our 
approach was able to crack 28% to 129% more passwords than 
John the Ripper, a publicly available standard password 
cracking program. 

  Index Terms — Computer security, Data security, Computer 
crime 

1. INTRODUCTION 

    Human-memorable passwords remain a common form of 
access control to data and computational resources. This is 
largely driven by the fact that human memorable passwords 
do not require additional hardware, be it smartcards, key 
fobs, or storage to hold private/public key pairs. 
   Trends that increase password resilience, in particular 
against off-line attacks, include current or proposed 
password hashes that involve salting or similar techniques 
[1]. Additionally, users are often made to comply with 
stringent password creation policies. While user education 
efforts can improve the chances that users will choose safer 
and more memorable passwords [2], systems that allow 
users to choose their own passwords are typically vulnerable 
to space-reduction attacks that can break passwords 
considerably more easily than through a brute-force attack 
(for a survey, see [3]).  

   To estimate the risk of password-guessing attacks, it has 
been proposed that administrators pro-actively attempt to 
crack passwords in their systems [4]. Clearly, the accuracy 
of such estimates depends on being able to approximate the 
most efficient tools available to adversaries. Therefore, it is 
an established practice among security researchers to 
investigate and communicate advances in password-
breaking: If the most efficient attack is indeed publicly 
known, then at least legitimate system operators will not 
underestimate the risk of password compromise. Moreover, 
password breaking mechanisms may also be used for data 
recovery purposes. This often becomes necessary when 
important data is stored in encrypted form under a password-
wrapped key and the password is forgotten or otherwise 
unavailable. In this paper we describe novel advancements 
in password-breaking attacks. 
    Some improvements in password retrieval are achieved by 
increasing the speed with which the attacker can make 
guesses, often by utilizing specialty hardware or distributed 
computing [5, 6]. While increasing the speed at which you 
can make guesses is important, our focus is to try and reduce 
the number of guesses required to crack a password, and 
thus to optimize the time to find a password given whatever  
resources are available.  
   Our approach is probabilistic, and incorporates available 
information about the probability distribution of user 
passwords. This information is used to generate password 
patterns (which we call structures) in order of decreasing 
probability. These structures can be either password guesses 
themselves or, effectively, word-mangling templates that can 
later be filled in using dictionary words.  As far as we are 
aware, our work is the first that utilizes large lists of actual 
passwords as training data to automatically derive these 
structures. 
   We use probabilistic context-free grammars to model the 
derivation of these structures from a training set of 
passwords.  In one series of experiments, we first trained our 
password cracker on a training set of disclosed passwords.  
We then tested our approach on a different test set of 
disclosed passwords and compared our results with John the 
Ripper [11], a publicly available password cracking 
program. Using several different dictionaries, and allowing 
the same number of guesses, our approach was able to crack 
28% to 129% more passwords than John the Ripper.  Other 
experiments also showed similar results. 
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   By training our attacks on known passwords, this approach 
also provides us a great deal of flexibility in tailoring our 
attacks since we automatically generate probability-valued 
structures from training data. For instance, we can train our 
password cracker on known Finnish passwords if our target 
is a native Finnish speaker. 

2. BACKGROUND AND PREVIOUS WORK 

    In off-line password recovery, the attacker typically 
possesses only a hash of the original password. To crack it, 
the attacker makes a guess as to the value of the original 
password. The attacker then hashes that guess using the 
appropriate password-hashing algorithm and compares the 
two hashes. If the two hashes match, the attacker has 
discovered the original password, or in the case of a poor 
password hashing algorithm, they at least have a password 
that will grant them access.  
    The two most commonly used methods to make these 
guesses are brute-force and dictionary attacks. With brute-
force, the attacker attempts to try all possible password 
combinations. While this attack is guaranteed to recover the 
password if the attacker manages to brute-force the entire 
password space, it often is not feasible due to time and 
equipment constraints. If no salting is used, brute-force 
attacks can be dramatically improved through the use of pre-
computation and powerful time-memory trade-off techniques 
[7, 8]. 
    The second main technique is a dictionary attack. The 
dictionary itself may be a collection of word lists that are 
believed to be common sources for users to choose 
mnemonic passwords [9]. However, users rarely use 
unmodified elements from such lists (for instance, because 
password creation policies prevent it), and instead modify 
the words in such a way that they can still recall them easily. 
In a dictionary attack, the attacker tries to reproduce this 
frequent approach to password choice, processing words 
from an input dictionary and systematically producing 
variants through the application of pre-selected mangling 
rules. For example, a word-mangling rule that adds the 
number “9” at the end of a dictionary word would create the 
guess, “password9”, from the dictionary word “password”. 
For a dictionary attack to be successful, it requires the 
original word to be in the attacker’s input dictionary, and for 
the attacker to use the correct word-mangling rule. While a 
dictionary based attack is often faster than brute-force on 
average, attackers are still limited by the amount of word-
mangling rules they can take advantage of due to time 
constraints. Such constraints become more acute as the sizes 
of the input dictionaries grow. In this case, it becomes 
important to select rules that provide a high degree of 

success while limiting the number of guesses required per 
dictionary word. 
    Choosing the right word-mangling rules is crucial as the 
application of each rule results in a large number of guesses. 
This is especially true when the rules are used in 
combination. For example, adding a two-digit number to the 
end of a dictionary word for a dictionary size of 800,000 
words [9] would result in 80,000,000 guesses. Changing the 
first letter to be both uppercase and lowercase would double 
this figure. Furthermore, in a typical password retrieval 
attempt it is necessary to try many different mangling rules. 
The crucial question then becomes, which word-mangling 
rules should one try and in which order? 
    Narayanan and Shmatikov use Markov models to generate 
probable passwords that are phonetically similar to words 
and that thus may be candidates for guesses [10]. They 
further couple the Markov model with a finite state 
automaton to reduce the search space and eliminate low 
probability strings.  The goal of their work, however, is to 
support rainbow-based pre-computation (and, subsequently 
very fast hash inversion) by quickly finding passwords from 
dictionaries that only include linguistically likely passwords. 
They thus do not consider standard dictionary attacks.  
    Our approach can be viewed as an improvement to the 
standard dictionary-based attack by using existing corpuses 
of leaked passwords to automatically derive word-mangling 
rules and then using these rules and the corpus to further 
derive password guesses in probability order. We are also 
able to derive more complex word-mangling rules without 
being overwhelmed by large dictionaries due to the 
assignments of probabilities to the structures. 

3. PROBABILISTIC PASSWORD CRACKING 

    Our starting assumption is that not all guesses have the 
same probability of cracking a password. For example, the 
guess “password12” may be more probable than the guess 
“P@$$W0rd!23” depending on the password creation policy 
and user creativity. Our goal is thus to generate guesses in 
decreasing order of probability to maximize the likelihood 
of cracking the target passwords within a limited number of 
guesses. 
    The question then becomes, “How should we calculate 
these probabilities?” To this end, we have been analyzing 
disclosed password lists. These lists contain real user 
passwords that were accidentally disclosed to the public. 
Even though these passwords are publicly available, we 
realize they contain personal information and thus treat them 
as confidential.  
    For our experiments we needed to divide the password 
lists up into two parts, a training corpus and a test corpus. If 
a password appears in our training corpus, we will not use it 
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in the test corpus. In the case of password lists that were 
disclosed in plain-text format, (i.e. prior to any hashing), we 
can choose to use the passwords in either the training or the 
test corpuses. If a list of password hashes was instead 
disclosed, we used the entire list in the test corpus. This is 
because we have to crack the password hashes before we can 
know what the plain text words were that created them. By 
separating the training and test corpuses we can then 
compare the effectiveness of our probabilistic password 
cracking with other publicly available password cracking 
attacks, notably John the Ripper [11], by comparing their 
results on the test sets. 

3.1 PREPROCESSING 

    In the preprocessing phase, we measure the frequencies of 
certain patterns associated to the password strings. First we 
define some terminology that is used in the rest of the paper. 
    Let an alpha string be a sequence of alphabet symbols. 
Also let a digit string be a sequence of digits, and a special 
string be a sequence of non-alpha and non-digit symbols. 
When parsing the training set, we denote alpha strings as L, 
digit strings as D, and special strings as S. For example the 
password “$password123” would define the simple structure 
SLD. The base structure is defined similarly but also 
captures the length of the observed substrings. In the 
example this would be S1L8D3. See Table 3.1.1 and Table 
3.1.2.  Note that the character set for alpha strings can be 
language dependent and that we currently do not make a 
distinction between upper case and lower case. 
    The first preprocessing step is to automatically derive all 
the observed base structures of all the passwords in the 
training set and their associated probabilities of occurrence. 
 

TABLE 3.1.1 
Listing of different string types 

Data Type Symbols Examples 
Alpha String abcdefghijklmnopqrstuvwxyzäö cat 
Digit String 0123456789 432 
Special String !@#$%^&*()-_=+[]{};’:”,./<>? !! 
 

TABLE 3.1.2  
Listing of different grammar structures 

Structure Example 

Simple SLD 

Base S1L8D3 

Pre-Terminal $L8123 

Terminal (Guess) $wordpass123 
 

    For example, the base structure S1L8D3 might have 
occurred with probability 0.1 in the training set. We decided 
to use the base structure directly in our grammars rather than 
the simple structure since the derivation of the base structure 
from the simple structure was unlikely to be context-free.  
    The second type of information that we obtained from the 
training set was the probability of digit strings and of special 
strings appearing in the training set. To see an example of 
this please refer to Table 3.1.3 and Table 3.1.4. 
 

TABLE 3.1.3 
Probabilities of one-digit numbers 

1 Digit Number of Occurrences Percentage of Total 
1 12788 50.7803 
2 2789 11.0749 
3 2094 8.32308 
4 1708 6.78235 
7 1245 4.94381 
5 1039 4.1258 
0 1009 4.00667 
6 899 3.56987 
8 898 3.5659 
9 712 2.8273 
 

TABLE 3.1.4 
Probabilities of top 10 two-digit numbers 

2 Digits Number of Occurrences Percentage of Total 
12 1084 5.99425 
13 771 4.26344 
11 747 4.13072 
69 734 4.05884 
06 595 3.2902 
22 567 3.13537 
21 538 2.97501 
23 533 3.94736 
14 481 2.65981 
10 467 2.58239 
 

    We choose to calculate the probabilities only for digit 
strings and special strings since we knew that the corpus of 
words, (aka alpha strings), that users may use in password 
generation was much larger than what we could accurately 
learn from the training set. Note that the calculation of the 
digit string and special string probabilities is gathered 
independently from the base structures in which they appear. 
    Please also note that all the information that we capture of 
both types is done automatically from an input file of 
training passwords, using a program that we developed.  
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    Referring to Table 3.1.2 again, the pre-terminal structure 
fills in specific values for the D and S parts of the base 
structure. Finally, the terminal structure fills in a specific set 
of alphabet letters for the L parts of the pre-terminal 
structure. Deriving these structures is discussed next. 

3.2 USING PROBABILISTIC GRAMMARS 

    Context-free grammars have long been used in the study 
of natural languages [12, 13, 14], where they are used to 
generate (or parse) strings with particular structures. We 
show in the following that the same approach is useful in the 
automatic generation of password guesses that resemble 
human-created passwords.  
    A context-free grammar is a defined as G = (V, Σ, S, P), 
where: V is a finite set of variables (or non-terminals), Σ is a 
finite set of terminals, S is the start variable, and P is a 
finite set of productions of the form (1):  

α → β                                      (1) 
where α is a single variable and β is a string consisting of 
variables or terminals. The language of the grammar is the 
set of strings consisting of all terminals derivable from the 
start symbol. 
    Probabilistic context-free grammars simply have 
probabilities associated with each production such that for a 
specific left-hand side (LHS) variable all the associated 
productions add up to 1. From our training set, we first 
derive a set of productions that generate the base structures 
and another set of productions that derive terminals 
consisting of digits and special characters. In our grammars, 
in addition to the start symbol, we only use variables of the 
form Ln,Dn, and Sn, for specified values of n. We call these 
variables alpha variables, digit variables and special 
variables respectively. Note that rewriting of alpha variables 
is done using an input dictionary similar to that used in a 
traditional dictionary attack. 
    A string derived from the start symbol is called a 
sentential form (it may contain variables and terminals). The 
probability of a sentential form is simply the product of the 
probabilities of the productions used in its derivation. In our 
production rules, we do not have any rules that rewrite alpha 
variables; thus we can “maximally” derive sentential forms 
and their probabilities that consist of terminal digits, special 
characters and alpha variables. These sentential forms are 
the pre-terminal structures.  
    In our preprocessing phase, we automatically derive a 
probabilistic context-free grammar from the training set. An 
example of such a grammar is shown in Table 3.2.1. Given 
this grammar, we can furthermore derive, for example, the 
pre-terminal structure: 

S → L3D1S1 → L34S1 → L34!                    (2) 

with associated probability of 0.0975. The idea is that pre-
terminal structures define mangling rules that can be directly 
used in a distributed password cracking trial. For example, a 
control server could compute the pre-terminal structures in 
order of decreasing probability and pass them to a 
distributed system to fill in the dictionary words and hash 
the guesses. The ability to distribute the work is a major 
requirement if the proposed method is to be competitive 
with existing alternatives. Note that we only need to store 
the probabilistic context-free grammar and that we can 
derive the pre-terminal structures as needed. Furthermore, 
note that fairly complex base structures might occur in the 
training data and would eventually be used in guesses, but 
the number of base structures is unlikely to be 
overwhelming. 
 

TABLE 3.2.1 
Example probabilistic context-free grammar 

LHS RHS Probability 
S  → D1L3 S2D1 0.75 
S  → L3D1S1 0.25 
D1 → 4 0.60 
D1 → 5 0.20 
D1 → 6 0.20 
S1 → ! 0.65 
S1 → % 0.30 
S1 → # 0.05 
S2 → $$ 0.70 
S2 → ** 0.30 
 
    The order in which pre-terminal structures are derived is 
discussed in Section 3.3.  Given a pre-terminal structure, a 
dictionary is used to derive a terminal structure which is the  
password guess. Thus if you had a dictionary that contained 
{cat, hat, stuff, monkey} the previous pre-terminal structure 
L34! would generate the following two guesses (the terminal 
structures), {cat4!, hat4!}, since those are the only dictionary 
words of length three.  
    There are many approaches that could be followed when 
substituting the dictionary words in the pre-terminal 
structures.  Note that each pre-terminal structure has an 
associated probability. 
    One approach to generating the terminal structures is to 
simply fill in all relevant dictionary words for the highest 
probability pre-terminal structure, and then choose the next 
highest pre-terminal structure, etc.  This approach does not 
further assign probabilities to the dictionary words. The 
naturalness of considering this approach is that we are 
leaning only lengths of alpha strings but not specific 
replacements from the training set. This approach thus 
always uses pre-terminal structures in highest probability 
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order regardless of the input dictionary used. We call this 
approach pre-terminal probability order.   
     Another approach is to assign probabilities to alpha 
strings in various ways.  Without more information on the 
likelihood of individual words, the most obvious technique 
is to assign the alpha strings a probability based on how 
many words of that length appear in the dictionary.  If there 
are 10 words of length 3, then the probabilities of each of 
those words would be 0.10.  We call this approach terminal 
probability order. Note that in this case each terminal 
structure (password guess) has a well-defined probability. 
The probability however is based in part on the input 
dictionary which was not learned during the training phase. 
We also considered other approaches for assigning 
probabilities to alpha strings. For instance it is possible to 
assign probabilities to words in the dictionary based on other 
criteria such as observed use, frequency of appearance in the 
language, or knowledge about the target.  
    An approach related to pre-terminal probability order is to 
use the probability of the pre-terminals to sample a pre-
terminal structure and then fill in appropriate dictionary 
words for the alpha strings.  Notice that in this latter case, 
we would not use a pre-terminal necessarily in highest 
probability order, but the frequency of generating terminals 
over time would match this pre-terminal probability.  We 
call this approach pre-terminal sampled order. 
    In this paper, we will only consider results using pre-
terminal probability order and terminal probability order. 
We remark that the terminal order uses the joint probability 
determined by treating the probabilities of pre-terminal 
structures and of the dictionary words that are substituted in 
as independent. 
    It should be noted that we use probabilistic context-free 
grammars for modeling convenience only; since our 
production rules derived from the training set do not have 
any recursion, they could also be viewed as regular 
grammars. In fact, this allows us to develop an efficient 
algorithm to find an indexing function for the pre-terminal 
structures, as discussed in the next section.  The grammars 
that we currently automatically generate are unambiguous 
context-free grammars. 

3.3 EFFICIENTLY GENERATING A “NEXT” FUNCTION 

    In this section we consider the problem of generating 
guesses in order of decreasing (or equal) probability and 
describe the algorithm. For pre-terminal probability order, 
this means in decreasing order of the pre-terminal structures. 
For terminal probability order, this is the probability of the 
terminal structures. However, the “next” function algorithm 
is the same in both cases except that for the terminal 
probability order, the initial assignment of probabilities to 

the starting pre-terminal structures includes the probabilities 
of the alpha variables.  In Section 3.4, we outline the proof 
of correctness of the algorithm. 
    First note that it is trivial to generate the most probable 
guess.  One simply replaces all the base structures with their 
highest probability terminals and then selects the pre-
terminal structure with the highest probability. Note that for 
terminal probability order, the alpha strings in the base 
structure are also assigned a probability. For example, using 
the data in Table 3.2.1, the highest probable pre-terminal 
structure would be 4L3$$4. Since there are only 1589 base 
structures generated by our largest training set, this is not 
difficult. However, a more structured approach is needed to 
generate guesses of a rank other than the first.  
    To optimize the total running time of the algorithm, it is 
useful if it can operate in an online mode, i.e. it calculates 
the current best pre-terminal structure and outputs it to the 
underlying (also distributable) password cracker. On the 
other hand, also for performance reasons, at any particular 
stage the algorithm should only calculate those pre-terminal 
structures that might be the current most probable structure 
remaining, taking into consideration the last output value. 
Referring to Fig. 3.3.1, we would like to generate the pre-
terminal structures L35! and L34% (nodes 7 and 6) only after 
L34! (node 2) has been generated. 
 

 
Fig. 3.3.1.   Generating the “Next” Pre-terminal Structures for the 
Base Structures in Table 3.2.1 (partial tree shown). 
  
    One approach that is simple to describe and implement is 
to output all possible pre-terminal structures, evaluate the 
probability of each, and then sort the result. Unfortunately 
this pre-computation step is not parallelizable with the 
password cracking step that follows (i.e., it is not an online 
algorithm).  
    Originally when we were still trying to see if using 
probabilistic grammars was worth further investigation, we 
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created a proof of concept program that took this approach. 
Unfortunately in addition to the problems described above, 
it also resulted in over a hundred gigabytes of data that we 
had to generate and then sort before we could make our first 
password guess. As you can imagine, this does not lend itself 
to a real world application. 
    Our actual solution adopts as its main data structure a 
standard priority queue, where the top entry contains the 
most probable pre-terminal structure. In the following, we 
denote by the index of a variable in a base structure to mean 
the   position in which the variable appears. For example, in 
the base structure L3D1S1 the variable L3 would be assigned 
an index of 0, D1 an index of 1, and S1 an index of 2. Next, 
we order all terminal values, (such as the numbers 4, and 5 
for D1) in priority order for their respective class. That way 
we can quickly find the next most probable terminal value.  
    The structure of entries in the priority queue can be seen 
in Table 3.3.2. They contain a base structure, a pre-terminal 
structure, and a pivot value.  This pivot value is checked 
when a pre-terminal structure is popped from the priority 
queue. The pivot value helps determine which new pre-
terminal structures may be inserted into the priority queue 
next.  The goal of using pivot values is to ensure that all 
possible pre-terminal structures corresponding to a base 
structure are put into the priority queue without duplication. 
    More precisely, the pivot value indicates that the pre-
terminal structures to be next created from the original base 
structure are to be obtained by replacing variables with an 
index value equal to or greater than the popped pivot value. 
Let’s look at an example based on the data in Table 3.2.1. 
Initially all the highest probability pre-terminals from every 
base structure will be inserted into the priority queue with a 
pivot value of 0. See Figure 3.3.1 and Table 3.3.2. 
 

TABLE 3.3.2  
Initial Priority Queue 

Base Struct Pre-Terminal Probability Pivot Value 
D1L3S2D1 4L3$$4 0.188 0 
L3D1S1 L34! 0.097 0 
 

    Next, the top entry in the priority queue will be popped. 
The pivot value will be consulted, and child pre-terminal 
structures will be inserted as part of new entries for the 
priority queue. These pre-terminal structures are generated 
by substituting variables in the popped base structure by 
values with next-highest probability. Note that only one 
variable is replaced to create each new candidate entry. 
Moreover, this replacement is performed (as described 
above) for each variable with index equal to or greater than 
the popped pivot value. The new pivot value assigned to 
each inserted pre-terminal structure is equal to the index 

value of the variable that was substituted. See Fig. 3.3.1 and 
Table 3.3.3 to see the result after popping the top queue 
entry.  Also see Appendix 1. 

TABLE 3.3.3  
Priority queue after the first entry was popped 

Base Struct Pre-Terminal Probability Pivot Value 
L3D1S1 L34! 0.097 0 
D1L3S2D1 4L3**4 0.081 2 
D1L3S2D1 5L3$$4 0.063 0 
D1L3S2D1 4L3$$5 0.063 3 
 

    In this instance, since the popped pivot value was 0, all 
index variables could be substituted. L3 was not incremented 
since there were no values to fill in for it, as the alpha strings 
are handled by the password cracker in a later stage. Both of 
the D1 structures and S2 were replaced, resulting in three new 
pre-terminal structures being inserted into the queue with 
pivot values of 0, 2 and 3. Notice that when the priority 
queue entry corresponding to the 2rd row of Table 3.3.3 is 
popped, it will not cause a new entry to be inserted into the 
priority queue for its first D1 or its S2 structure. This is 
because 4L3**4’s pivot value is equal to 2, which means that 
it cannot replace the first D1 structure with an index value of 
0. As for the S2 structure, since ‘**’ is the least probable 
terminal variable, there is no next-highest replacement rule 
and this entry will simply be consumed.  
    Observe that the algorithm is guaranteed to terminate 
because it processes existing entries by removing them and 
replacing them with new ones that either (a) have a higher 
value for the pivot or (b) replace the base structure variable 
in the position indicated by the pivot by a terminal that has 
lower probability than the current terminal in that position. It 
can moreover be easily ascertained that the pre-terminal 
structures in the popped entries are assigned non-increasing 
probabilities and therefore the algorithm can output these 
structures for immediate use as a mangling rule for the 
underlying distributed password cracker. 
    This process continues until no new pre-terminal 
structures remain in the priority queue, or the password has 
been cracked.  Note that we do not have to store pre-
terminal structures once they are popped from the queue, 
which has the effect of limiting the size of the data structures 
used by the algorithm.  In section 4.5, we discuss the space 
complexity of our algorithm in detail in the context of our 
experimental results. 
    The running time for the current implementation of our 
next algorithm for generating guesses is extremely 
competitive with existing password cracking techniques.  On 
one of our lab computers, (MaxOSX 2.2GHz Intel Core 2 
Duo) it took on average 33 seconds to generate 37781538 
unhashed guesses using our method.  Comparatively, the 
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popular password cracking tool John the Ripper [11] 
operating in wordlist mode took 28 seconds to make the 
same number of guesses.  If we expand the number of 
guesses to 300 million, our technique took on average 3 
minutes and 23 seconds to complete, while John the Ripper 
operating in incremental (brute-force) mode took 2 minutes 
and 55 seconds.  Note that the vast majority of time (often 
weeks) taken in cracking passwords is spent in generating 
the hashes from those guesses and not in the generation of 
the actual guesses themselves. Because of this, even an extra 
minute or two spent generating guesses would be minor, and 
thus the running times of these two methods are essentially 
identical. 

3.4 PROOF OF CORRECTNESS OF THE NEXT FUNCTION 

    Property P1: pre-terminal structures are output in non-
increasing probability order. 
     
Proof that P1 holds: 
1. Remember that the priority queue is initialized with one 

entry per base structure, and that the entry contains the 
pre-terminal structure with maximum probability for 
that base structure. These entries can be easily 
constructed by simply replacing the highest likelihood 
terminal values for all the non-alpha variables in each 
base structure. 

2. Remember that the processing of an entry in the priority 
queue results in its removal and output, and (possibly) 
in the insertion of new entries. For convenience of 
description, we call these new entries “the children” and 
the removed entry “the parent”. Recall that children 
never contain pre-terminal structures of strictly higher 
probability than the pre-terminal structure contained in 
the parent. 

 
    For the sake of contradiction, assume that P1 does not 
hold, i.e., that at some step of processing, an entry x is 
output of strictly higher probability than a previously output 
entry y.  That is: 

 
Prob(x) > Prob(y) and y is removed and output before x. 

 
    First let's argue that x had a parent entry z. Indeed, if x has 
no parent, then it was inserted in the priority queue during 
the algorithm initialization (when the highest probability 
pre-terminal structure for each base structure was inserted). 
But that means that x was in the priority queue at the step 
where y was output, in violation of the priority queue 
property. This contradiction implies that x had a parent z.  
    Without loss of generality, we can also assume that x is 
the first value produced by the algorithm that violates P1. 

Consequently, when z was output, it did not violate this 
property, and since: 
 

Prob(z) >= Prob(x) > Prob(y), 
 

it follows that z must have been output (and processed) 
before y. That means that x was inserted in the priority queue 
prior to y's removal, again in violation of the priority queue 
property. This final contradiction concludes the proof. 
    Note that by meeting the following conditions we can 
fully prove the required correctness of the next function: 
• No duplicate pre-terminal structures are entered into the 

priority queue. 
• All possible pre-terminal structures resulting from base 

structures are eventually entered into the priority queue. 
    

    Due to space requirements we do not include a proof of 
these conditions but it follows from our use of the pivot 
values. 

4. EXPERIMENTS AND RESULTS 

4.1 DESCRIPTION OF PASSWORD LISTS 

    For the research in this paper we obtained three password 
lists to try different cracking techniques against. All three 
lists represent real user passwords, which were compromised 
by hackers and subsequently publicly disclosed on the 
Internet. As stated before, we realize that while publicly 
available, these lists contain private data; therefore we treat 
all password lists as confidential. If you wish a copy of the 
list please contact the authors directly. Due to the moral and 
legal issues with distributing real user information, we will 
only provide the lists to legitimate researchers who agree to 
abide by accepted ethical standards. 
    The first list, hereafter referred to as the “MySpace List”, 
was originally published in October 2006. The passwords 
were compromised by an attacker who created a fake 
MySpace login page and then performed a standard phishing 
attack against the users. The attacker did not secure the 
server they were collecting passwords upon which allowed 
independent security researchers to obtain copies of the 
passwords. One of these researchers, (not affiliated with any 
university), subsequently posted his copy of the list on the 
Full-Disclosure mailing list [15]. While multiple versions of 
the MySpace list exist, owing to the fact that different 
researchers downloaded the list at different times, we choose 
to use the version posted on Full-Disclosure which contained 
67042 plain text passwords. Please note that not all of these 
passwords represent actual user passwords. This is because 
some users recognized that it was a phishing attack and 
entered fake, (and often vulgar), data. For our test we did not 
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attempt to purge these fake passwords due to the difficulties 
in distinguishing between fake and real passwords.  
    The second list will be referred to as the SilentWhisper 
list. This list contains 7480 plain text passwords and was 
originally from the website www.silentwhisper.net. A hacker 
compromised the site via SQL injection, and due to a feud 
with the site owner, subsequently posted the list to bittorrent. 
As a special note, these later passwords were extremely 
basic. Only 3.28% of the passwords contained both letters 
and numbers, and only 1.20% of them contained both letters 
and special characters. A grand total of two of the passwords 
contained letters, numbers and special characters. We 
included this list though as it does represent the passwords 
many users choose. 
    The final list will be referred to as the “Finnish List”. This 
list was obtained by a hacker group via SQL injection 
attacks and the results were subsequently posted on the 
internet [16]. This list actually contains the passwords from 
many different sites that were compromised; most of them 
based in Finland, hence the name.  This list contains 15699 
passwords in plain text and an additional 22733 unique 
MD5 password hashes. It is important to note that the plain 
text passwords and the hashed passwords represent different 
user bases as they came from separate compromised sites. In 
fact, it appears that each set, (both the MD5 and plaintext 
lists), are composed of several lists from distinct websites 
that were broken into. 

4.2 EXPERIMENT SETUP AND PROCEDURES 

    In the current implementation of our probabilistic 
password cracking guess generator, (written in C), our 
program is trained on an existing password list. Then once it 
is given an input dictionary it can generate password guesses 
based on either the pre-terminal probability or the terminal 
probability of the password structures. It is important to note 
that the training need only be done once to generate the 
grammar that will be used. This means that any group can 
create many different targeted grammars and then distribute 
them to the end users of the password cracking program. 
The end user would use input dictionaries of their choosing 
to crack passwords. Note that the storage requirement of a 
grammar is likely to be significantly less than the storage 
requirements of a typical input dictionary. Section 4.5 
discusses space requirements in greater detail. This 
distinction between training and operation, and the small 
size of the base grammar generated means that our method is 
highly portable. 
    Our program currently outputs these guesses to stdout. 
This gives us the flexibility to use our guesses as input to 
various other password cracking programs. For instance, to 
test against a test set of plaintext passwords, we can simply 

check for an exact match, and record how many guesses 
were necessary before the first match could be found. For 
password lists that are hashed, such as the Finnish list, we 
piped the guesses generated by our program into the popular 
password cracking program John the Ripper [11]. 
Essentially this allows us to use our program’s word-
mangling rules without having to code our own hash 
evaluator. 
    As a comparison against our probabilistic password 
cracking technique, we decided to use John the Ripper’s 
default word-mangling rules.  These word-mangling rules 
are as close to an industry standard as we could find, and 
represent the approach most people would take when 
performing a dictionary-based password cracking attack. At 
its core, both our probabilistic password cracking guess 
generator and John the Ripper operating in wordlist mode 
are dictionary based attacks. When comparing the two 
methods, we ensure both programs use the same input 
dictionaries when trying to crack a given password set. In a 
dictionary-based attack, the number of guesses generated is 
finite, and determined by the size of the dictionary and the 
type of word-mangling rules used. To reflect this, unless 
otherwise specified, we limited the number of guesses our 
probabilistic password generator was allowed to create 
based on the number of guesses generated by the default 
John the Ripper rule set. This is because our program can 
generate many more rules than what is included in the 
default John the Ripper configuration and thus would create 
more guesses given the chance. By ensuring both methods 
are only allowed the same number of guesses, we feel we 
can fairly compare the two approaches. 
    To use our method, we have to train our password cracker 
on real passwords. To do this, we needed to separate our 
password lists into training lists and test lists. As a special 
note, if a password was used to train our method we made 
sure we did not include it in any of our test lists. We created 
two different training lists to train our probabilistic password 
cracker. The first list was created from the MySpace 
password list. We divided the MySpace password list into 
two parts, a training list and a test list. The MySpace training 
list contained a total of 33561 passwords. For the second 
training list, we used all of the plaintext passwords from the 
Finnish list. This contained a total of 15699 passwords. We 
used all the Finnish plaintext passwords since we used the 
Finnish hashed passwords for the test set.  We did not create 
a training list from the SilentWhisper set due to its small size 
and the fact that we would need to have passwords left over 
to test against. 
    We then designated all passwords not in the training set as 
the test set. These passwords are never trained against, and 
are used solely to gauge the effectiveness of both our 
probabilistic password cracker and John the Ripper on real 
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world passwords. Just as in standard machine learning 
research, our goal is by keeping these two groups, (training 
and testing), separate so we can avoid overtraining our 
method and provide a more accurate estimation of its 
potential.    In summary, the three test lists we used were the 
MySpace test list containing 33481 plaintext passwords, the 
SilentWhisper list which contained 7480 plaintext passwords 
and the Finnish test list which contained 22733 unique MD5 
password hashes. 
    One final note; a password was considered ‘cracked’ if 
the program generated a guess that matched the password in 
the test list. 

4.3 DESCRIPTION OF INPUT DICTIONARIES 

    Due to the fact that both our password cracker and John 
the Ripper in wordlist mode operate as a dictionary attack, 
they both require an input dictionary to function. We choose 
a total of six publicly available input dictionaries to use in 
our tests. Four of them, “English_lower”, “Finnish_lower”, 
“Swedish_lower” and “Common_Passwords” were obtained 
from John the Ripper’s public web site [11]. As a side note, 
the word “lower” refers to the fact that the dictionary words 
are stored as all lower case. Additionally we used the input 
dictionary “dic-0294” which we obtained from a popular 
password-cracking site [9]. This list was chosen due to the 
fact that we have found it very effective when used in 
traditional password crackers. Finally, we created our own 
wordlist “English_Wiki” which is based on the English 
words gathered off of www.wiktionary.org. This is a sister 
project of Wikipedia, and it provides user updated 
dictionaries in various languages. 
    Each dictionary contained a different number of 
dictionary words as seen in Table 4.3.1. Due to this, the 
number of guesses generated by each input dictionary when 
used with John the Ripper’s default mangling rules also 
varied as can be seen by Fig. 4.3.2.  
 

Table 4.3.1  
Size of Input Dictionaries 

Dictionary Name Number of Dictionary Words 

Dic-0294 869228 

English_Lower 444678 

Common_Passwords 816 

English_Wiki 68611 

Swedish_Lower 14555 

Finnish_Lower 358963 

 
Fig. 4.3.2.   Number of Password Guesses Generated by JtR 

4.4 PASSWORD CRACKING RESULTS 

    Our first test, pictured in Fig. 4.4.1, shows the results of 
training our Probabilistic Password Cracker on the MySpace 
training list. Three different cracking techniques are used on 
the MySpace test list. The first is the default rule set for John 
the Ripper. The second technique is our Probabilistic 
Password Cracker using the pre-terminal probabilities of its 
structures. Once again, the pre-terminal probabilities do not 
assign a probability value to the dictionary words.  The third 
technique is our Probabilistic Password Cracker using the 
probabilities of the terminals (guesses). Recall that in this 
case, we assign probabilities to dictionary words and extend 
our probabilistic context-free grammar to terminal strings.  
Once again, the number of guesses allowed to each run is 
shown in Fig. 4.3.2.  
 

 
Fig. 4.4.1.   Number of Passwords Cracked. Trained on the 
MySpace Training List. Tested on the MySpace Test List 
 

    As the data shows, our password cracking operating in 
terminal probability order performed the best. Using it, we 
achieved an improvement over John the Ripper ranging from 
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28% to 129% more passwords cracked given the same 
number of guesses. Additionally, when we used the pre-
terminal order, in all cases but one we also achieved better 
results than John the Ripper, though less then what we 
achieved using terminal probability order. 
    The next question would be how does our probabilistic 
method work when trained on a different data set? The same 
test as above was run on the MySpace test list, but this time 
we used the Finnish training list to train our password 
cracker. The results are shown in Fig. 4.4.2.  
 

 
Fig. 4.4.2.   Number of Passwords Cracked. Trained on the Finnish 
Training List. Tested on the MySpace Test List 

 
    As the results show, the terminal probability order once 
again performed the best, though not as well as it did when it 
was trained on the MySpace data. This time the 
improvement ranged from 11% to 96% more passwords 
cracked compared to John the Ripper. A surprising result to 
us was that when we used Pre-Terminal Probability Order, it 
did not result in a noticeable improvement over John the 
Ripper’s default rule set. In fact, in two of the test cases it 
actually performed worse. 
    Next we ran the same tests by training our Probabilistic 
Password Cracker on the MySpace training list, and then 
running it against the SilentWhisper test list. The results can 
be seen in Fig. 4.4.3. As expected, in this case the default 
John the Ripper word-mangling rules performed slightly 
better. This is due to the relative simplicity of the 
SilentWhisper test set.  Since our probabilistic method had 
been trained on more complex passwords, it spent much of 
its time generating guesses using advanced mangling rules, 
vs. John the Ripper which exhausted the simple mangling 
rules, (such as just use the dictionary word), first. This does 
show a limitation of our probabilistic method as it does need 
to be trained on passwords of similar complexity as the 
passwords it is trying to crack.  That being said, in all of the 
test runs with the exception of the one using the 
English_Lower dictionary, our method operating in terminal 

probability order performed competitively with John the 
Ripper. 
 

 
Fig. 4.4.3.   Number of Passwords Cracked. Trained on the 
MySpace Training List. Tested on the SilentWhisper Test List 
 

    To round things out, we then evaluated our probabilistic 
method by training it on the Finnish training set and then 
attacking the Finnish test set. Please note that the Finnish 
training set and the Finnish test set were gathered from 
separate websites. Thus for this experiment, even though the 
users share a common language, we trained and then tested 
our password cracker against different user bases. Due to the 
time it takes to audit these passwords since they are hashed, 
we only performed this test with John the Ripper’s default 
rule set and our method operating in terminal probability 
order. The results can be seen in Fig. 4.4.4. 
  

 
Fig. 4.4.4.   Number of Passwords Cracked. Trained on the Finnish 
Training List. Tested on the Finnish Test List 

     
    While the results were not as dramatic as compared to 
cracking the MySpace list, we still see an improvement 
ranging from 17% to 29% over John the Ripper in all but 
one of the test cases. Considering that we had no previous 
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knowledge of how the passwords in the test set compared in 
complexity to the passwords in the training set, this is still a 
fairly significant improvement. What this means is that we 
were able to train our password cracker on one user base and 
then use is successfully against another group which we 
knew nothing about except for their native language. 
    Looking back through the previous tests as shown in Fig. 
4.4.1 through Fig. 4.4.4, one thing we noticed was that our 
probabilistic method performed significantly worse when it 
used the English_Lower dictionary compared to the results it 
obtained using the other input dictionaries. For example, 
let’s consider the test, Fig 4.4.1, where we trained our attack 
on the MySpace training set, and tested it against the 
MySpace test set. If we exclude the run that used the 
English_Lower dictionary, the average improvement of our 
method using terminal probability order compared to John 
the Ripper was 90%. The improvement on the run which 
used the English_Lower dictionary was 28%. The other tests 
show similar results. We are still investigating why our 
attacks do not perform as well with this dictionary. Despite 
its name, the English_Lower dictionary seems to be 
comprised mostly of “made up” words, such as ‘zoblotnick’, 
and ‘bohrh’. Our current assumption is that the presence of a 
large number of nonsense words throws off our method in 
two different ways. First our program wastes time trying 
these nonsense words. Second, when operating in terminal 
probability order, a large number of essentially “junk” words 
can make what should be a highly probable structure have a 
lower probability, and thus not be tried as soon.  We still 
need to investigate this more thoroughly. 
    The next test we ran was to evaluate how the size of the 
training list affected our probabilistic password cracker.  To 
investigate this we used training lists of various sizes 
selected from the original MySpace training list. The size of 
these lists is denoted by the number after them, aka the 
MySpace20K list contains twenty thousand training 
passwords. For reference, the MySpaceFull list contains all 
33,561 training passwords from the MySpace training list. 
We were concerned about sampling bias as the lists became 
shorter, (such as containing only 100 or 500 passwords). To 
address this, for all training sets containing less than one 
thousand passwords we trained and then ran each test twenty 
five times with a different random sample of passwords 
included in the training list each time. We then averaged the 
results of the 25 different runs. All the tests to measure the 
effect of the training list size used Terminal Probability 
Order and were run against the MySpace Test List. The 
results can be seen in Fig. 4.4.5. For comparison, John the 
Ripper’s performance is the left-most value, and training sets 
increase in size from left to right for each input dictionary. 
    It was surprising that even when our password cracker 
was trained on only 10,000 passwords, our Probabilistic 

Method performed only slightly worse than when it was 
trained on 33,561 passwords. What was more surprising was 
that our password cracker performed comparable to John the 
Ripper even when it was trained on only 100 input 
passwords. We expect that given a longer run (aka allowing 
our password cracker to generate more guesses), the effect 
of having a larger training set will become more pronounced 
as it  will generally provide the password cracker more base 
structures as well as digit and symbol strings to draw upon. 
Also, we expect that the larger training set would better 
reflect more accurate probabilities of the underlying base 
structures and replacement values. 
 

 
Fig. 4.4.5.   Number of Passwords Cracked. Trained on different 
sized MySpace Training Lists. Tested on the MySpace Test List 
using Terminal Order Probability 

 
    In all the previous tests we limited our probabilistic 
method to the number of guesses generated by the default 
rule set of John the Ripper.  One last test we wanted to run 
was to see how our probabilistic method performed if we let 
it continue to run over an extended time. The following Fig. 
4.4.6 shows the number of passwords cracked over time 
using our probabilistic method operating in terminal 
probability order. Please note, while John the Ripper exited 
after making 37,781,538 guesses, we continued to let our 
program operate until it made 300,000,000 guesses. Also 
note that our Probabilistic Password Cracker was still 
creating guesses when we stopped it. We choose 
300,000,000 just as a benchmark number. The results are 
shown in Fig. 4.4.6.     
    These results match with the previous test on this data set, 
as seen in Fig. 4.4.1, in that given the same number of 
guesses our password cracker operating in terminal 
probability order cracks 68% more passwords than John the 
Ripper.  As you can see in Fig. 4.4.6 though, the rate at 
which our method cracks passwords does slow down as 
more guesses are made. This is to be expected as it tries 
lower and lower probability password guesses.  
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Fig. 4.4.6. Number of Passwords Cracked Over Time. Trained on 
the MySpace Training List. Tested on the MySpace Test List 

     
    We decided to run the test in Fig. 4.4.6 again, but this 
time have John the Ripper switch to brute-force after 
exhausting all of its word-mangling rules. We feel this 
would best simulate an actual password cracking session, 
(aka exhaust a dictionary attack and then resort to brute-
force) using John the Ripper. Please note that John the 
Ripper uses Markov models in its brute-force attack to first 
try passwords phonetically similar to human generated 
words.  It creates the conditional probability based not only 
on letters, but also on symbols and numbers as well. As a 
third experiment, we also ran a pure brute-force attack 
without using John the Ripper’s rules first.  The results of 
these tests are shown in Fig. 4.4.7.   

 
Figure 4.4.7. Number of Passwords Cracked Over Time.  Trained 
on the MySpace Training List.  Tested on the MySpace Test List  

 
    One thing we learned from this data is that it may be 
effective to pause our probabilistic method after around 100 
million guesses and switch to a brute-force attack using a 
small keyspace for a limited time before resuming our 

probabilistic attack.  This would allow us to quickly crack 
any short passwords our method may have missed.  After a 
period of time though, brute-force becomes completely 
infeasible due to the length of the passwords and the size of 
the keyspace. We expect that even the low probability 
guesses generated by our cracker are better than a 
completely random guess which would result from a pure 
brute-force approach against a large keyspace. Therefore, 
the more passwords you can crack before having to solely 
rely upon brute-force attacks, the more advantageous it is. 
Because of this, the large number of rules, (possibly 
billions), that our method automatically generates is another 
major advantage of our approach. 

4.5 SPACE COMPLEXITY RESULTS 

    In this section we focus on the space complexity related to 
generating our password guesses. We first discuss the space 
complexity of storing the grammar as this is what would be 
distributed to the end user once the password cracker has 
been trained. 
    Since the grammar is generated from the training set, the 
size of the grammar is dependent on the size of this set.  To 
distribute this grammar we need to save the set of S-
productions (grammar rules with the start symbol S on the 
left hand side) that give rise to the base structures and their 
associated probabilities. See Figure 3.2.1. Consider a 
training set of j passwords each of maximal length k.  At 
worst each password could result in a unique base structure 
resulting in O (j) S-productions.  Similarly the number of Di-
productions and Si-productions depend on the number of 
unique digit strings and special strings, respectively, in the 
training set.  This could result in a maximum of O(jk) unique 
productions. Finally, the number of L-productions (rewriting 
an alpha string using a dictionary word) depend on the input 
dictionary chosen.  For a dictionary of size m, the maximum 
number of L-productions is simply O(m).  In practice, we 
expect the grammars to be highly portable with many fewer 
production rules than the worst case. See Table 4.5.1. 
 

Table 4.5.1 
Size of the Stored Grammar 

Training Set 
& Size 

# of Base 
Structures 

Number of 
 Si-productions 

Number of  
Di-productions  

MySpace10k 820 79 2405 

MySpace20k 1216 108 3377 

MySpace 
(33,561) 

1589 144 4410 

Finnish 
(15,699) 

736 49 1223 
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    We next consider the space complexity of an actual 
password cracking session. Using the grammar, for each 
base structure, we generate pre-terminal structures, using the 
“next” function that are pushed and popped from the priority 
queue as described in Section 3.3.  The space complexity of 
this algorithm is the maximum size of the priority queue.  It 
should be clear that this is worst case O(n) where there are n 
possible pre-terminals generated.  We do not expect that the 
worst case is actually sublinear.  In practice, the maximum 
size of the priority queue has not been an issue in our 
experiments to date. Table 4.5.2 shows the total number of 
pre-terminals generated to create a specified number of 
password guesses. The space requirement is shown by the 
maximume size of the priority queue.  Figure 4.5.3 shows 
the size of the priority queue as a function of the passwords 
generated when trained on the MySpace training sets. 
 

Table 4.5.2  
Space Cost using Dic-0294 

Training Set Total Pre-
Terminals 
Generated 

Maximum 
Size of 
Queue 

Password 
Guesses 
(millons) 

MySpace10k 28,457 1,274 50 

MySpaceFull 14,661 1,688 50 

Finnish 19,550 4,753 50 

MySpace10k 174,165 4,642 500 

MySpaceFull 109,453 3,691 500 

Finnish 1,567,911 138,187 500 

MySpace10k 470,949 9,946 1,000 

MySpaceFull 193,963 6,682 1,000 

Finnish 4,324,913 299,933 1,000 

 

 
Figure 4.5.3 Size of the Priority Queue over Time, using Dic-0294 
as the Input Dictionary 

    All tests were run using terminal probability order and 
using the dictionary Dic-0294. Note that in terminal 
probability order while the specific L-production is not 
expanded in the priority queue, its probability is taken into 
account when pushing and popping the pre-terminal 
structures.  The input dictionary thus can cause differences 
in how the priority queue grows. 
    We finally consider the maximum number of pre-
terminals and password guesses that could possibly be 
generated by our grammar. Consider as an example a base 
structure that takes the form S1L8D3. A pre-terminal value 
might take the form $L8123, and a final guess, (terminal 
value), might take the form $password123. To find the total 
number of possible pre-terminal values for this base 
structure, one simply needs to examine the total possible 
replacements for each string variable in the base structure. 
Using this example, and assuming there are 10 S1-production 
rules and 50 D2-production rules, then the total number of 
pre-terminals that may be generated by S1L8D3 is 500. 
    To find the total number of password guesses we simply 
expand this calculation by factoring in the number of 
dictionary words that can replace the alpha string. In the 
above example, if we assume there are 1,000 dictionary 
words of length 8, then the total number of guesses would be 
500,000.  See Table 4.5.4 for the total search space 
generated by each given training set and input dictionary. 
 

Table 4.5.4  
Total Search Space 

Training 
Set 

Input Dictionary Pre-
Terminals 
(millions) 

Password 
Guesses 
(trillions) 

MySpaceFull dic-0294 34,794,330 >100,000,000 

MySpaceFull English-Wiki 34,794,330 >100,000,000 

MySpaceFull Common_Passwords 34,785,870 36,000 

Finnish dic-0294 578 >100,000,000 

Finnish English-Wiki 578 10,359,023 

Finnish Common_Passwords 506 6 

 
    To explain the results of Table 4.5.4 further, note the 
number of pre-terminals generated can be dependent on the 
input dictionary, since if a Li-production exists where no 
dictionary word matches it, (for example the dicionary does 
not contain any words of length 9), then the base structure 
containing the Li-production is discarded for that password 
cracking run. Also, we found that the total number of pre-
terminals were mostly driven by a few base structures that 
contained a large number of Di and Si-productions, for 
example S1D3S2D3S1D4. Likewise the number of terminals, 
(final password guesses), was dominated by a few base 
structures that contained many Li-productions such as:  
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L1S1L1S1L1S1L1S1L1S1L1S1L1S1. This was made worse by 
the fact that in our code we did not remove duplicate 
dictionary words. For example we would have 52 L1 
replacements from the input dictionary “dic-0294” even 
though we lowercased all input words before using them. 
This is because by not removing duplicates we had two 
instances of every single letter of length 1. 
    That being said, the advantage of our method is that these 
highly complex base structures will generally not be utilized 
until late in the password cracking session due to their 
corresponding low probabilities. Therefore, we would not 
expand them in our priority queue until all the more 
probable guesses have been generated first. 

5. FUTURE RESEARCH 

    There are several areas that we feel are open for 
improvement in our approach with using probabilistic 
grammars for password cracking. As stated earlier in section 
3.2, we are currently looking into different ways to do 
insertion of dictionary words into the final guess that take 
into account the size of the input dictionary. As can been 
seen in Figures 4.4.1 – 4.4.5, there was a definite advantage 
to using terminal probability order vs. pre-terminal 
probability order with our probabilistic password cracker. 
Currently we determine the probability of dictionary words 
of length n by assigning a probability of 1/k if there are k 
words of length n in the input dictionary.  There are however 
many other approaches we could take. Currently the most 
promising approach seems to be the use of several input 
dictionaries with different associated probabilities. This way 
one might have a small highly probable dictionary, (aka 
common passwords), and a much larger dictionary based on 
words that are less common. 
    Another point where we have identified room for future 
improvement is modifying the base structures to more 
accurately portray how people actually create passwords. 
For example, we could add another category, ‘U’, to 
represent uppercase letters as currently our method only 
deals with lowercase letters. Also we could add another 
transformation to the base structure that would deal with 
letter replacement, such as “replace every ‘a’ in the 
dictionary word with an ‘@’.” Since we are using a context-
free grammar, this would be fairly straightforward. All we 
need to do is create a new production rule that deals with 
letter replacement. The harder part would be identifying 
those transformations during the training phase. We are 
currently looking into several ways to efficiently identify 
those transformations such as checking the edit distance 
between known passwords and a dictionary file.  
    It may also be useful to add probability smoothing or 
switch to a Bayesian method in the training stage. This 

would allow our generator to create password guesses of a 
structure or containing a terminal value that was not present 
in the training set. For example, currently if the number ‘23’ 
does not appear in the training set, our method will never use 
it. Ideally we would like it to try this terminal value, but at a 
reduced probability compared to values found in the training 
set. The ultimate goal would be to allow our method to 
automatically switch between dictionary based attacks and 
targeted brute-force attacks based upon their relative 
probability of cracking a password. For example, it might try 
some word-mangling rules, then brute-force all words of 
length four, before returning back to trying additional word-
mangling rules.  
    There also exists more research to be performed on 
verifying the performance of this method if it is trained and 
tested against password lists from different sources. 

6. CONCLUSION 

    Our experiments show that using a probabilistic context 
free grammar to aid in the creation of word-mangling rules 
through training over known password sets is a promising 
approach.  It also allows us to quickly create a ruleset to 
generate password guesses for use in cracking unknown 
passwords. When compared against the default ruleset used 
in John the Ripper, our method managed to outperform it by 
cracking 28% - 129% more passwords, given the same 
number of guesses, based on training and testing on the 
MySpace password set.  Our method also did very well 
when trained on the Finnish training set and tested on the 
MySpace test set. Our approach is expected to be most 
effective when tailoring one's attack against different sources 
by training it on passwords of a relevant structure. For 
example, if it is known that the target password was 
generated to satisfy a strong password policy (such as 
requiring it to be 8 characters long and containing numbers 
and special characters) the algorithm could be trained only 
on passwords meeting those requirements. We have also 
shown that we can quickly and manageably generate 
password guesses in highest probability order which allows 
us to test a very high number of rulesets effectively.  
    We feel that our method might successfully help forensic 
investigators by doing better than existing techniques in 
many practical situations.  Our work can also provide a more 
realistic picture of the real security (or lack of the same) 
provided by passwords.  We expect that our approach can be 
an invaluable addition to the existing techniques in password 
cracking. 
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APPENDIX 1  

PSEUDO CODE FOR THE NEXT FUNCTION 

//The probability calculation depends on if pre-terminal or terminal probability is used 
//New nodes will be inserted into the queue with the probability of the pre-terminal structure acting as the priority value 
For (all base structures) { //first populate the priority queue with the most probable values for each base structure 
 working_value.structure = most probable pre-terminal value for the base structure 
 working_value.pivot_value = 0 
 working_value.num_strings = total number of L/S/D strings in the corresponding base structure 
 working_value.probability = calculate_probability(working_value.structure) 
 insert_into_priority_queue(priority_queue, working_value)   //higher probability == greater priority 
} 
working_value = Pop(priority_queue) //Now generate password guesses 
while (working_value!=NULL) { 
 Print out all guesses for the popped value by filling in all combinations of the appropriate alpha strings. 
 For (i=working_value.pivot_value; i<working_value.num_strings;i++) {  
        insert_value.structure=decrement(working_value.structure,i);  //get next lower probability S or D structure at pivot value ‘i’ 
        if (insert_value.structure!=NULL) { 
   insert_value.probability = calculate_probability(insert_value.structure); 
   insert_value.pivot_value = i 
   insert_value.num_strings = working_value.num_strings 
   insert_into_priority_queue(priority_queue,insert_value) 
        } 
 } 
 working_value = Pop(priority_queue) 
} 
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