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Abstract

Several off-the-shelf products enable network operators

to enforce usage restrictions by actively terminating con-

nections when deemed undesirable. While the spectrum of

their application is large—from ISPs limiting the usage of

P2P applications to the “Great Firewall of China”—many

of these systems implement the same approach to disrupt

the communication: they inject artificial TCP Reset (RST)

packets into the network, causing the endpoints to shut

down communication upon receipt. In this work, we study

the characteristics of packets injected by such traffic con-

trol devices. We show that by exploiting the race-conditions

that out-of-band devices inevitably face, we not only can

detect the interference but often also fingerprint the spe-

cific device in use. We develop an efficient injection detector

and demonstrate its effectiveness by identifying a range of

disruptive activity seen in traces from four different sites,

including termination of P2P connections, anti-spam and

anti-virus mechanisms, and the finding that China’s “Great

Firewall” has multiple components, sometimes apparently

operating without coordination. We also find a number of

sources of idiosyncratic connection termination that do not

reflect third-party traffic disruption, including NATs, load-

balancers, and spam bots. In general, our findings highlight

that (i) Internet traffic faces a wide range of control devices

using injected RST packets, and (ii) to reliably detect RST

injection while avoiding misidentification of other types of

activity requires significant care.

1 Introduction

Arguments tend to become heated when network oper-

ators restrict their users’ communication by actively inter-

fering with traffic. Recently, when Comcast was accused of

interrupting their customers’ BitTorrent connections [11],

the public debate eventually even led to a high-profile FCC

hearing on the legality of their practice [13]. One conse-

quence of such uproar is that network operators may decline

to openly inform customers about active measures they de-

ploy, leaving users with only speculation about the cause

for connections terminating without apparent reason—and

sometimes users then wrongly accuse their ISP [26].

A different form of such active traffic interference comes

not from ISPs but governments. For example, the “Great

Firewall of China” censors Internet communication by ter-

minating connections that relate to transfer of information

deemed undesirable by the Chinese government [12].

Faced with uncertainty about the presence and degree of

active interference, a natural question arises: to what degree

can we detect when a network actively disrupts communica-

tion? In this study, we pursue answering this question. We

focus on a specific, commonly deployed method to termi-

nate an active connection on demand, namely the injection

of forged TCP Reset (RST) packets into TCP flows, which

manipulates the involved endpoints into shutting down their

communication. While this method has been well-known

for years, it recently gained traction with several companies

now offering such functionality in high-performance, off-

the-shelf products.

A crucial observation about RST injectors is their out-of-

band operation. They can modify neither timing nor con-

tent of any packets sent by end-hosts (if they could, they

could control traffic by simply dropping any further pack-

ets). Therefore, such injectors face race conditions: be-

tween the time when they inject RSTs until the endpoints

receives these, the TCP connection state can change due to

the transmission or reception of additional legitimate pack-

ets. These changes can delay the connection termination or

even render it ineffective.

In this work we exploit these race-conditions to identify

instances of injected RSTs via passive monitoring. We de-

velop a set of tests for a number of relevant situations and

combine them into a detector that can operate on both traces

and real-time on live traffic. In addition, we find that many

real-world injectors exhibit idiosyncratic peculiarities in the

specifics of how they craft the RST packets, enabling us to

develop injector fingerprints that identify which specific de-

vice is deployed on a given network path.

We have designed our detector to operate in a conserva-

tive fashion: it only reports RSTs that with high probability



correspond to external injection, preferring false negatives

over false positives. This trade-off is crucial because, as we

see during our evaluation, regular network devices can also

create unusual situations that a passive observer could mis-

interpret as a sign of injection. When carefully examining

our datasets, we indeed discover anomalous RSTs sent by

NATs, load-balancers, PlanetLab hosts, and buggy TCP im-

plementations of spam bots. Thus, it is valuable to not only

detect a RST as suspicious, but to also develop fingerprints

in an attempt to classify an injected RST’s source. Finally,

while in this work we do not aim to take a position regard-

ing the legitimacy of active traffic interference, we note that

we observe evidence of anti-spam and virus blockers that

also use RST-injection to block malicious traffic.

We structure the remainder of this paper as follows. In

Section 2 we cover related work on known sources of in-

jected RST packets. Section 3 discusses the principles of

out-of-band flow blocking. Section 4 discusses the free-

doms involved in creating RST packets, both from the end

host and for an injector. Section 5 presents our detector for

anomalous packets commonly generated by RST injectors.

Section 6 introduces the four datasets we used in our eval-

uation, and Section 7 discusses the injectors we were able

to find and fingerprint, as well as several types of anoma-

lous RSTs not caused by packet injection. We conclude in

Section 8.

2 Related Work

A study by Arlitt and Williamson [1] shows that RSTs

are surprisingly common on the Internet. They examined

a year of SYN/FIN/RST packets from the University of

Calgary’s border and found that roughly 15% of all TCP

flows were terminated by a RST packet after payload had

already been sent in at least one direction. The reset rate

was even higher for HTTP traffic, with 22% of the flows ter-

minated by a client-side RST, and 3% by a server-side RST.

To understand these surprisingly high numbers, the authors

evaluated different combinations of Web servers and clients

to determine when they generate RSTs instead of normal

FIN shutdowns. Among other effects, they discovered Web

servers closing idle connections with RST packets as well

as browsers consistently terminating persistent connections

with RSTs.

Packet injection is a well known technique employed by

network intrusion detection systems (NIDS) to terminate

malicious connections. Snort’s [24] sp response and

sp response2 plugins support RST and ICMP injection.

The Bro NIDS [19] likewise comes a with a tool to inject

RST packets. Song’s tcpkill [25] is a stand-alone utility for

the same purpose. We discuss the operation of these tools

in Appendix B.

A well-known deployment of RST injectors is the “Great

Firewall of China”, which terminates Internet connections

deemed undesirable by the Chinese government [12]. Clay-

ton et al. [5] observe that the “Great Firewall” sends se-

quences of RST packets with TCP sequence numbers in-

creasing by 1460 with each packet,1 apparently to compen-

sate for potential further data having arrived at the destina-

tion in the meantime, as discussed below. They also report

that the RSTs have IP TTLs that differ from other packets

from the purported source address. Once a host pair has had

a connection terminated, the “Great Firewall” then sends in-

dividual RSTs for each newly initiated connection to main-

tain the block. As a counter-measure, the authors propose

to ignore RST packets with wildly different TTLs. How-

ever, as developed in our study, we do not find this a prac-

tical mitigation technique, as similar wildly different TTLs

arise in normal traffic (see Appendix C). Crandall et al. [8]

spent considerable effort mapping the “Great Firewall”, in-

cluding determining the first point where filtering occurs by

sending probes with different TTLs, and developing key-

word maps of the detector’s sensitivity. Independent of the

detailed functioning of the “Great Firewall”, Fallows [12]

argues that it does not need to be technically perfect to reach

its goal; rather it suffices to make access to external infor-

mation enough of nuisance to spur people to prefer using

resources within China’s borders.

A recent controversial use of RST injection is restrict-

ing peer-to-peer (P2P) traffic as practiced by multiple ISPs,

particularly to block bulk transfers such as those of BitTor-

rent [2]. Extensive publicity surrounded Comcast’s use of

this technique [11], leading to significant debate and mul-

tiple (somewhat ad hoc) studies. It can prove difficult to

conduct such investigations in a sound fashion. One study,

since retracted, claimed detection of RST injection that in

fact occurred due to an artifact of the local NAT reacting

to a large number of distinct flows [26]. Vuse, based on

simply counting the total number of received RST pack-

ets seen by a client, claimed that AT&T performs RST in-

jection without regard to their context [27]; AT&T denied

these allegations [4]. The EFF has initiated a “Test Your

ISP” project [10] with the goal to develop information and

software tools that allow customers to examine their Inter-

net connections for active interference. So far the two tools

released in this context are pcapdiff, which compares two

packet traces of the same communication captured at dif-

ferent locations for telltale differences, and Switzerland, a

higher-level tool that automates the comparison process by

utilizing a central server. In both cases, only if both sides

of a flow are operating the tool, injected RSTs and other

changes will be detected. Dischinger and colleagues de-

veloped a Java applet for volunteers to run which imitates

11460 is a common maximal TCP payload, based on 1500-byte Ether-

net payloads minus 40 bytes of TCP/IP headers.



BitTorrent traffic [9]. Although they used a very differ-

ent method, many of their results agree with ours in terms

of detecting individual ISPs, including Cox, Comcast, and

StarHub.

A somewhat different RST injection attack than those we

consider in this study is blind RST injection. While its goal

is the same—externally shutting down a connection using

forged traffic—here attackers cannot observe the connec-

tion’s packets. As such, they lack sufficient information to

craft in-sequence RST packets, but they can still carry out

brute-force attacks by sending many RSTs with different se-

quence numbers (abetted by guessing likely values of some

fields), hoping to hit the target’s TCP window with at least

one. As Watson [28] shows, such an attack can be success-

ful within a few minutes using a DSL line. The threat of

such attacks disrupting Internet routing lead to the develop-

ment of the TCP MD5 signature option [14], and [21] pro-

poses requiring RSTs to exactly match the current sequence

point.

3 Out-of-Band Flow Blocking

In this section we summarize approaches to block com-

munication deemed undesirable. We assume use of a traf-

fic monitor that inspects TCP flows for violations of a net-

work’s policy; it instructs a (generally) independent con-

nection terminator to stop those identified. Such policy de-

cisions can for example be taken based on security policy

(e.g., by an IDS), access restrictions (e.g., China’s “Great

Firewall”) or for traffic management purposes (e.g., Com-

cast’s BitTorrent policy). The main difference of such a

monitor/terminator setup compared to a traditional firewall

is that typically all flows are initially allowed through (“de-

fault allow”), with potential blocking decisions taken only

later if a connection is found to violate policy.

Devices to interrupt communication can operate either

inline or out-of-band. For inline devices, blocking undesir-

able connections is easy: once the drop decision is made,

the device simply ceases to forward (i.e., drops) all subse-

quent packets associated with the flows. However, inline

operation also introduces new points of failure and can eas-

ily become a performance bottleneck. Consequently, many

operators prefer out-of-band devices operating on a copy

of the traffic stream (e.g., received via an optical splitter),

which does not impact the network’s principle operation

when stressed or upon failure. This may be true even when

devices support inline operation, such as the Sandvine tool

used by Comcast [6].

Since out-of-path devices cannot directly block undesir-

able traffic, they must resort to indirect mechanisms to ter-

minate flows, of which several exist: (i) instruct an exist-

ing in-path device, such as router, to block the flow (ACL

injection); (ii) insert bogus TCP data packets to desynchro-

nize the endpoints’ TCP stacks (this can however lead to

“storms” of packets between the endpoints that consume

considerable network resources [15]); (iii) inject forged

TCP FIN packets into the flow, one for each direction; and

(iv) injecting forged RST packets instead of FINs, which

has the advantage of requiring only one endpoint to accept

a packet, and runs less risk of desynchronization storms.

In this study, we focus on the last of these, injection of

forged RST packets, a method commonly used today (e.g.,

it is deployed by the “Great Firewall” as well as by Com-

cast’s P2P disrupter). More broadly, however, the principles

underlying our techniques—in particular, the insight that in-

jection based on passive monitoring will face race condi-

tions due to delays in the packet creation process—should

apply to other forms of injection, including TCP FIN pack-

ets and spoofed DNS replies.

4 Properties of RST Packets

We now explore how benign, end-host initiated RSTs

should appear versus how injectors can craft their pack-

ets. (Not surprisingly, we find end-hosts do not always be-

have like they “should”, however, per Section 7.2.) Accord-

ing to RFC 793 [20], an end-host should sent a TCP RST

packet when it either aborts (prematurely terminates) an ex-

isting connection, or when it receives a TCP packet (other

than an initial SYN or a RST) that does not correspond to

an active connection, which includes connections already

aborted. Once an end-host has sent a RST for a connection,

it should not send further data packets. It can however send

more RSTs in response to continued traffic from the other

side of the connection.2

The crucial field in a RST is its sequence number, which

must be chosen correctly for the packet to be accepted by

the destination. Per the RFC, when aborting a connection

the sender should send an in-sequence RST, i.e., set the se-

quence number to the next available octet in sequence space

if terminating an active connection. If the host is responding

to a packet received for an inactive or already closed con-

nection, the RST’s sequence number should reflect the ACK

field in the eliciting packet (or zero, if ACK was not set).

Thus, the first RST packet sent should not have a sequence

number lower than a previous data packet—although subse-

quent RST packets, responding to ACKs for data sent earlier

in the sequence space, may use a lower sequence number.

The RFC however also specifies that receivers should

treat arriving RSTs liberally: any in-window sequence num-

ber is considered acceptable because data packets preceding

the RST may have been lost. Yet not all TCP stacks follow

2This is another reason why TCP RSTs, rather than FINs, are preferable

for terminating connections. With a FIN, a host may accept a FIN but still

send data in a half-open state, while a host that accepts a RST will neither

accept nor send subsequent data on that connection.



this advice. Some are very lax and accept RSTs outside

of the window; others are strict and require the sequence

number to be exactly in-sequence, ignoring other values

within the window (which prevents blind RST injection at-

tacks [21]). Figure 4 of [23] summarizes the behavior of

numerous systems.

An injector might attempt to exploit the standard’s ad-

vice by sending RSTs with multiple sequence numbers,

with the additional sequence numbers deliberately picked

higher than the current sequence point in order to counter

the race-condition of further data packets being already in

flight (see Section 5). We do not expect to see such be-

havior from benign end-hosts, as this would require the end

host sending RSTs that don’t correspond to any data packets

sent or received.

Other fields of the IP and TCP header are less crucial for

a RST packet, and an injector has therefore considerable

freedom in choosing them. If their values however divert

from characteristics exhibited by the purported endpoint, a

possibility for fingerprinting or detection arises.

Four significant header fields not checked for correct-

ness when receiving a RST packet are other TCP flags, TCP

ACK number, IPID and TTL. We would however expect an

end-system to set these in a consistent fashion. According

to our analysis, common choices for the ACK number are

zero, the current sequence point, and an ACK number cor-

rectly acknowledging received data. The IPID is often zero,

or incremented in consistent steps for subsequent packets.

We might also expect that the TTL should not vary signifi-

cantly across packets from the same source.

For all three of these fields, an injector can in principle

pick arbitrary values for its forged RSTs. Looking for in-

consistencies thus would appear to offer a means to spot

injectors that do not try to evade detection. However, as we

report in Appendix C, both IPID and TTL are highly volatile

even for normal RST traffic. Thus, they are not suitable by

themselves for detecting injected RSTs, but do prove useful

in constructing fingerprints for individual RST injectors.

Another feature to look at is payload. While RST pack-

ets can carry data payloads (for diagnostic messages—not

part of the regular bytestream), most commonly they do not.

The forged RSTs we have observed are usually also empty,

and therefore the presence of payload does not provide a

suitable feature for detection. As we show in Section 7.1.7,

there are however sources that insert readable messages into

RST packets.

Finally, the timing of RST packets is important to con-

sider as well. The gap between a RST and the packet pre-

ceding it can vary widely for end-host generated RSTs. For

example, Web browsers often abort connections within mil-

liseconds, while RSTs triggered by state timeouts are pre-

ceded by a substantial interval of non-activity. An injector

does not have this freedom: the longer it takes it to inject

the RST, the higher the likelihood that further packets are

transmitted between the endpoints, rendering the termina-

tion ineffective. Therefore, in our injection detector we fo-

cus on RSTs occurring in short succession to the preceding

packets.

5 Detection Toolbox

We now develop a set of detectors for abnormal situa-

tions that active, out-of-band RST injection can cause. As

our discussion in Section 4 shows, due to the large degree

of freedom an injector has when building a RST packet,

a passive observer cannot always reliably differentiate be-

tween injected RSTs and normal end-host/network behav-

ior. Therefore, when building our toolbox of tests, we do

not strive for comprehensive coverage of all the ways in

which an injected RST packet can show up at our moni-

toring point. We rather pick cases in which injection causes

artifacts sufficiently distinct from normal end-host traffic to

warrant further inspection. As we later show in Section 7.1,

our set of detectors is indeed able to identify a wide spec-

trum of active interference.

Each of our detectors targets a specific situation that is

likely to indicate the presence of one or more injected RST

packets. We assume that injectors will send at least one

RST to each endpoint of the connection to be terminated,

which is nearly all injectors known to us work (the excep-

tion is tcpkill [25]). In the following we describe the de-

tectors informally and refer to Appendix A for their precise

definitions.

We start with two detectors, RST SEQ DATA and

DATA SEQ RST, which target two race conditions that any

out-of-path RST injector inevitably faces:

• RST SEQ DATA: One race condition occurs between

the time when an injector sees a data packet that trig-

gers its decision to terminate the connection, and the

time when the injector sends out the fake RST packet.

During this interval, further packets from the sender

may pass the injector’s observation point. If this hap-

pens we will observe that the RST packet is “out of se-

quence”, with the receiver observing a sequence num-

ber less than the preceding data packet would suggest,

a condition we detect as RST SEQ DATA. Most re-

ceivers will likewise consider the RST to be out-of-

sequence and therefore ignore it. As data packets are

often sent quickly back-to-back, we expect this situa-

tion to occur frequently when an injector is in use. In

the absence of injection, however, it should not occur

during normal TCP operation, other than in quite pe-

culiar situations.

• DATA SEQ RST: Another race condition occurs when

at the time the RST is injected, further packets are now



already in flight, or will be sent shortly later, because

the injector cannot stop the sender quickly enough. In

these cases, the receiver will see further data packets

from the sender after it has already received the RST.

Our detector DATA SEQ RST triggers for such situa-

tions by looking for data packets having a larger se-

quence number than indicated by a previously arriving

RST packet. Again, this situation should in general not

occur during normal end-host communication.

These race conditions do not have to occur. In particular,

RST SEQ DATA race conditions depend upon the reaction

time of the injector—whether it can make a decision and

generate a RST packet before the next packet passes the

injector. Thus, the prevalence of this race condition may

depend on the injector’s implementation and current load.

The DATA SEQ RST race depends more on network topol-

ogy. If the injector is far from the end-host, it is more likely

that there will be a subsequent in-flight packet.

Our third detector triggers when it sees a common

counter-measure many injectors take: sending multiple

RSTs instead of just one. Without this countermeasure, a

conforming TCP stack would ignore the RST packet when

a RST SEQ DATA race occurs.

• RST SEQ CHANGE: By quickly sending multiple

RSTs with increasing sequence numbers, an injector

can increase the likelihood of getting at least one of

them through. It however faces the dilemma of hav-

ing to pick a higher sequence number without knowing

what the source will sent, and therefore might guess a

value higher than the maximum sequence number the

receiver will have seen at the time the RST arrives.

The RST SEQ CHANGE detector leverages this obser-

vation by looking for back-to-pack pairs of RSTs in

which the second RST has a sequence number higher

than the first, and that exceeds the current maximum

sequence number. A standard compliant TCP stack

should never send such a packet because its RSTs

should either be in sequence with the data (so at the

maximum sequence number) or in response to packets

from the other side (which should have an ACK field

less than the maximum sequence number sent).

The RST SEQ CHANGE detector does not depend on a

race condition. Rather, it detects a natural consequence

of constructing a robust RST injector. Thus, our detector

is not guaranteed to detect injectors that are not robust to

the RST SEQ DATA race condition, but will detect injec-

tors that send multiple packets to avoid the race condition.

Finally, we add three more detectors to our toolbox

which, even though they are not clear indicators for the

presence of an active injector, trigger for RST traffic that

is sufficiently odd to warrant further inspection:

• RST ACK CHANGE: Detects RSTs with seemingly

nonsensical ACK numbers. Specifically, the detector

looks for pairs of RSTs in which the second RST’s

ACK number differs from its predecessor and does not

lie within the range of sequence numbers seen from the

data sender. Although not a necessary feature for in-

jected RSTs, we have observed that some injectors in-

correctly increment the ACK rather than the SEQ field

when sending multiple packets.

• SYN RST: Detects initial SYNs immediately followed

by a RST in the same direction. While this behavior

can occur benignly for some applications (e.g., Web

browsers), it can be an indicator of active interference

for others.

• SYN ACK RST: Detects initial SYN/ACKs immedi-

ately followed by a RST in the same direction with

no intervening packet. Similar to SYN RST, this can

be an indicator of RST injection. We however also see

it with servers making a decision to accept a connec-

tion only after their TCP stack has already acknowl-

edged the initial SYN (e.g., because load-monitoring

finds the server’s load too high to accept new requests,

or due to consulting an SMTP blacklist).

Finally, for our detectors we need to select values for

two parameters (T1 and T2 in Appendix A). The first of

these governs the maximum delay an injector can exhibit

in issuing its response to traffic, for which we chose 2 sec

as sufficient for a very slow injector even on a very slow

link. RSTs with larger delays likely reflect state manage-

ment or sender-side bugs rather than injection. The sec-

ond parameter bounds the delay for termination of con-

nections during the establishment phase (for the SYN RST

and SYN ACK RST detectors). Here we chose 0.1 sec, be-

cause such decisions should be quick for an injector to make

(since only inspection of header information can come into

play).

We implement our detector in Click [16], aiming for high

performance when running on large traffic streams such as

campus borders. To keep memory management efficient

and simple, we use a fixed cache to track active flows, rather

than dynamically allocated tables. We provision the cache

with 256K entries and 32-way associativity with LRU re-

placement. Bad evictions from this cache lead to missed

alerts rather than false positives; we checked for such evic-

tions when running on particularly large UCB traces and

did not record any that would have resulted in loss of accu-

racy. To enable further analysis, we couple the detector to a

500K-packet buffer to extract context surrounding possible

detections.

We insert all detections into a database, including packet

headers for the alerting packet, up to 200 prior and 100 sub-



sequent packets, and payloads of any RST packets. This

provides us with significant context around the alert to de-

velop and evaluate fingerprints of injectors. We also store

in the database the fully qualified reverse-lookup (PTR)

for the IP addresses, excluding the actual hostname (thus

foo.bar.baz.com is recorded as bar.baz.com), as

well as the nation, state, and city lookup results from the

GeoLite City GeoIP database [17]. To enable others to run

our detector, it optionally can anonymize the IP addresses

and hostnames.

6 Datasets

We used the datasets from four institutions for our study:

International Computer Science Institute: We ran a pro-

totype of our detector at ICSI from January 23rd, 2008 until

May 1st, running on all TCP traffic other than SSH. This de-

tector was used to guide a “hosts-of-interest” selection, cap-

turing all traffic between any two hosts generating an alert

for later analysis. During the measurement period the detec-

tor was not static, but received several improvements. It ini-

tially only detected DATA SEQ RST and RST SEQ DATA

anomalies, but later ran the entire complement of alerts.

Thus, we cannot use this data to gauge the overall presence

of injected packets, but because it has extensive context it

allows detailed investigation of individual activity.

UC Berkeley: We captured the UCB trace using an exper-

imental intrusion detection cluster that receives traffic from

the campus’ two border routers. As the routers aggregate

traffic onto a single 1 Gbps SPAN port, this environment

can saturate during traffic peaks. We captured data repre-

senting 40% of the total border traffic, except for data in-

volving UCB’s PlanetLab nodes. The monitoring setup re-

ceives a subselection of the flows from the SPAN port; in

most cases, both halves of each flow, but in some cases only

a single side. These latter do not hinder our analysis ex-

cept that we suppress the RST ACK CHANGE alert, and the

RST SEQ CHANGE alert does not check the ACK value.

This trace ran for 19 hours starting at 2PM, April 21,

2008, capturing 5.2 Gpkts and 73M TCP flows. Excluding

backscatter and partially created flows, the trace contains

30.2M TCP flows.

In evaluating this trace, we also verified that our caching

was not causing problematic evictions: we experienced no

evictions from our data structure’s caches for data less than

4 sec old. Thus, our caching-based structure did not cause

us to miss alerts. However, the limited buffer of 500K pack-

ets did cause us to lose significant context for the alerts. At

worst, the buffer only held 7 sec of associated traffic, limit-

ing the context around each alert for further analysis.

Columbia University: The Columbia trace consists of a

day captured at the border of the institute’s Computer Sci-

ence Department, excluding PlanetLab servers. We do not

have packet counts for this trace.

George Mason University: The GMU trace consists of 5 hr

of traffic captured at the campus border, totaling approx-

imately 70 GB. This trace was processed live rather than

offline.

For all traces, we excluded SYN RST alerts for ports 80,

113, and 443, and SYN ACK RST alerts for ports 25, 80,

and 443, in both cases due to there being a large number

of benign causes for the alerts. (For example, Facebook’s

HTTP servers generated a large number of SYN ACK RST

alerts in the UCB data.) One source of SYN RST alerts on

port 80 and 443 comes from users hitting the “Stop” but-

ton on their web browser. Alerts on port 113 arise from

how some mail servers contact the “identification” service.

SYN ACK RST alerts on port 25 can be due to mail server

aborts, where the mail server accepts a connection and then

checks a blacklist, while port 80 and 443 alerts appear due

to high-load issues, where a Web server will initially accept

a connection and then reject it due to its load policies.

Once all alerts, context, and data are loaded into the

database, we were able to correlate between multiple alerts

and develop fingerprints of individual RST injectors as well

as benign sources. We developed these fingerprints through

manual examination, looking for common patterns present

in the alerts from the same and different IP addresses.

When we could fingerprint an injector or a non-injected

source, we classified it as either a true detection or as non-

injected (such as due to a misbehaving in-path device or a

misconfigured TCP stack). In addition, as discussed later,

we also find behavior that we deem as likely one or the

other, but, because we could not determine a reliable fin-

gerprint for it, we cannot precisely identify.

7 Results

We now present the results of our detector running on the

datasets discussed in the previous section. We start with the

kinds of injectors we were able to identify by their charac-

teristic fingerprints, followed by a discussion of unexpected

RSTs we observed that do not appear due to out-of-band

injection. Table 1 summarizes the fingerprints we deter-

mined for different RST injectors, and Table 2 summarizes

the alerts for these reported by the detector.

Counts in Table 2 reflect distinct IP addresses, not dis-

tinct flows. Any given address may have multiple flows that

generate an alert, as systems may retry connections.



Identified Source Signature

Identified Injector

Sandvine Multipacket: First Packet IPID += 4, second packet SEQ + 12503, IPID += 5

Bezeqint Multipacket: Constant sequence, RST ACK CHANGE, IPID = 16448

Yournet SYN RST: Only on SMTP, TTL usually +3 to +5, unrelated IPID

Victoria Multipacket: Sequence Increment 1500, IPID = 305, TTL += 38

IPID 256 Single packet: Usually less TTL, IPID = 256

IPID 64 Multipacket: IPID = 64, often sequence increment of 1460

IPID -26 Multipacket: First IPID -= 26, often sequence increment of 1460

SEQ 1460 Multipacket: Sequence increment always 1460

RAE Single packet: Sets RST, ACK and ECN nonce sum (control bit 8)

Go Away Single packet: Payload on RST of “Go Away, We’re Not Home”

Optonline Multipacket: No fingerprint, all activity from a single ISP

Identified Non-Injected Source

SYN/RST 128 SYN RST with RST TTL += 128

SYN/RST 65259 SYN RST with RST IPID = 65259

0-Seq RST Reset with SEQ = 0

IPID 0 IPID = 0, multiple RSTs, limited range

IPID 0 Solo IPID = 0, spurious RST (often ignored)

Stale RST RST belonging to a previous connection (port reuse)

Spambot SR Spam source sending payload packets with SYN and RST flags

DNS SYN RST Normal DNS servers aborting connections at initiation

Table 1. Features for both identified RST injectors and identified non­injected sources.

7.1 Identified RST Injectors

By correlating the characteristics of RSTs across our

datasets, we identified and fingerprinted a number of in-

jectors that we believe our detector consistently identifies.

We present these in Section 7.1.1–7.1.6 and then discuss in

Section 7.1.7 additional cases that appear likely to reflect in-

jection, yet for which we lack sufficient evidence to confirm

that suspicion.

7.1.1 The Sandvine RST Injector

Comcast has publicly stated that they use RST injection to

manage P2P traffic [11], and it has been reported that these

devices were purchased from Sandvine [22, 6]. We exam-

ined all flows reported by our detector involving a Comcast

host (as identified via reverse DNS lookups). Across the

four sites, 90% (174 of 193) of the alerting sources have

at least one alerting flow with a back-to-back pair of RSTs

for which the second has a sequence number 12503 higher

than the first and an IPID incremented by 1. Additionally,

in 164 cases at least one of the alerting flows had the IPID

of the first RST corresponding to that of the previously seen

packet incremented by 4.

Given the consistency of these RSTs, we consider these

features to be a fingerprint of the Sandvine injector. In the

ICSI trace we observe 106 distinct Comcast IP addresses,

30 at UCB, 36 at Columbia, and 2 at GMU (top row of Ta-

ble 2).

The Sandvine CTO subsequently indicated to us that the

particular sequence number increment of 12503 represents a

known bug in their tool, and that the intended increment was

far smaller [3]. Incrementing the IPID by 4 does not have

any fundamental reasons, since the only network mecha-

nism sensitive to IPID (fragmentation) should not come into

play. If the goal is to avoid repeating a previous IPID, se-

lecting a value at random would work just as well, or using

a larger increment.

Comcast’s Use of Sandvine: We looked closer at Com-

cast’s usage of RST injection to verify the company’s public

statements about its application of traffic management. At

ICSI, we confirmed that RSTs reported for Comcast traffic

indeed correspond to the usage of P2P software. Almost

all of the Comcast alerts came in 4 bursts: 10 on February

9th, 23 on February 18th, 39 between March 8th and 10th,

and 26 between April 22nd and 24th. Two bursts matched

with reported instances of excessive bandwidth usage by lo-

cal users running P2P software, and we verified that these

remote hosts were communicating with the offending local

systems. One of the solo alerts was also manually corre-

lated with a user who forgot to turn off his BitTorrent trans-

fer when entering ICSI’s network. These alerts all reflected

high TCP ports (> 1050), which fits with many forms of

P2P software.



Identified Alert Source ICSI UCB Columbia GMU

Identified Forged RSTs

Sandvine Comcast 106 30 36 2

Sandvine Cox 35 262 3 0

Sandvine Korea 1 50 4 0

Sandvine Other 0 1 0 1

Bezeqint Bezeq Int. 25 0 2 0

Yournet yournet.ne.jp 29 0 0 0

Victoria UVic.ca 1 0 0 0

IPID 256 Korea 9 90 16 0

IPID 256 Other 0 5 0 0

IPID 64 China 13 6 0 0

IPID -26 China 35 1 0 0

SEQ 1460 China 21 5 3 1

RAE China 229 4,162 8 0

Total Identified 275 450 64 4

Possibly Forged RSTs

Go Away Various 3 5 0 0

Optonline Optimum Online 12 0 0 0

Exact Multipacket Various 7 11 2 0

Approx. Multipacket Various 2 2 2 0

Total Identified 253 4,180 12 0

Identified Non-Injected RSTs

SYN/RST 128 Various 98 36 2 0

SYN/RST 65259 Various 9 2 0 0

0-Seq Reset Various 48 46 6 1

IPID 0 Various 17 35 19 0

IPID 0 Solo Various 36 149 17 0

Stale RST Various 36 72 3 1

Spambot SR Various 11 1 0 0

DNS SYN/RST Various 2 14 0 0

Total Identified 257 355 47 2

Likely Non-Injected RSTs

Web Server Various 17 134 1 0

SMTP SYN RST Various 61 54 0 0

Unknown SYN RST Various 38 172 10 0

Unknown SYN ACK RST Various 5 321 14 0

Unknown RST ACK CHANGE Various 74 97 32 5

Confused Multipacket Various 18 36 7 1

Hanson Hanson Infosystems 1 0 0 0

Total Identified 214 814 64 6

Total Unknowns 210 588 28 8

Total Sources 1,209 6,387 215 20

Table 2. Number of alerting source IP addresses and their classifications in each trace.
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Figure 1. Bytes transferred and received to/from Comcast hosts communicating with ICSI. The left

plot shows sizes for connections terminated by Sandvine­injected RST packets, with Comcast hosts
identified based on hostnames. For comparison, the right plot shows sizes for all connections be­
tween the same ICSI hosts and Comcast hosts that were instead closed with a normal FIN handshake;

here, we identified Comcast hosts based on WHOIS data for P2P traffic.

Comcast has stated that their P2P traffic management

targets only uploads, i.e., Comcast users sending signifi-

cant volumes to others [7]. To verify this, we estimated

the data transferred by the affected flows in each direc-

tion before they were terminated. Figure 1 shows that ter-

minated connections accorded with Comcast’s statement—

disruption mostly occurred on uploads from Comcast hosts,

and did not occur on flows where the Comcast host received

substantially more data than it sent. (The second plot shows

that this pattern is not simply an artifact of regular commu-

nication patterns with Comcast hosts.) However, we also

see that 7% of the affected flows did not transfer a signifi-

cant volume of data in either direction before being blocked

by an injected RST, suggesting that traffic upload is not the

only discriminator in use. According to Sandvine, their

software supports direct recognition that a client is acting

as a BitTorrent seed by parsing BitTorrent messages [3].

Other Users of Sandvine: We have observed two other

ISPs using the Sandvine injector: Cox Communications,

and a Korean ISP. The former confirms a report by Topol-

ski of Cox disrupting P2P traffic [18], and we have iden-

tified the tool in use as the same as deployed by Comcast.

We have not identified the Korean ISP, but the fingerprint is

clear. We also found one alerting source in each of two other

traces, both geolocating to the USA, but without resolvable

hostnames.

7.1.2 The BezeqInt Injector

Another injector consistently appears in traffic involving

hosts from Bezeq International, an ISP belonging to the pri-

mary Israeli phone company. Like with Comcast hosts, we

could confirm these cases as reflecting P2P usage at ICSI.

Again, this is a multiple-packet injector. However, rather

than changing the sequence number, for unknown reasons it

increments the ACK number (based on the received packet

window size, and without setting the ACK flag). It also al-

ways uses IPID 16448 and a differing TTL. These features

appear due to either ease of implementation or bugs.

This injector operates more aggressively than Comcast’s.

Out of 30 flows blocked at ICSI, only two managed to ex-

change more than a few hundred bytes of data. For both of

these flows, the data was almost exclusively sent from ICSI

to the Bezeq International host.

7.1.3 The IPID 256 Injector

Another injection source we found is the “IPID 256” dis-

ruptor, an injector that uses a constant IPID of 256. We

observe this injector primarily in hosts that geo-locate to

Korea, along with some other Asian countries. Use of this

injector appears unrelated to Korean use of the Sandvine

injector. Again, this disruptor appears to target P2P traffic.



7.1.4 The Yournet Injector

At ICSI we observed 29 addresses that generated SYN RST

alerts, all from a single Japanese ISP, yournet.ne.jp.

Each alert corresponds to SMTP traffic incoming to ICSI,

representing 30% of all SMTP clients that exhibit only

SYN RST alerts. (There is also one RST SEQ CHANGE

alert.) In this case we observe the TTL of the RST

packet as usually 5 higher, and the IPID appears to

have no relationship with the data IPID. Thus, it appears

that yournet.ne.jp actively disrupts email delivery at-

tempts, presumably in an attempt to control spam originated

by bots.

7.1.5 The Victoria Injector

One peculiar host generated 96 alerts in ICSI traces dur-

ing a 5-day period in April. From the traffic contents, this

host appears to be a mail server that repeatedly attempts

to deliver a “mail undeliverable” message triggered by the

W32/MyDoom-O mail virus. The server never success-

fully transferred the message, with each attempt suffering

interruption mid-transfer by a sequence of 10 RST pack-

ets. These RSTs always have IPID 305 and a TTL that is

38 higher than the data packet, and with sequence numbers

increasing by 1500 per RST.

We speculate this traffic reflects an in-network “virus

scanner” that heuristically (mis-)recognizes the bounce

message as malicious. We attempted to contact postmaster

and security at this site, but have not yet received a response.

7.1.6 The Chinese Injectors

We observe four distinct RST injectors that appear only in

traffic with Chinese hosts. The “IPID 64” injector uses a

constant IPID value of 64, and the “IPID -26” injector an

IPID value 26 less than the preceding data packet. The

“RAE” injector sets the RST flag, the ACK flag, and bit 8

of the TCP flags (ECN nonce sum). The “SEQ 1460” in-

jector is a multipacket injector that increments the sequence

number by 1460 regardless of the previous packet’s size or

apparent MTU; sets the ACK flag on the RST packet; and

appears to choose an arbitrary IPID and TTL.

All of these injectors disrupt a variety of traffic, includ-

ing email, Web, and P2P. The RAE injector is by far the

most common, and apart from its strange use of the ECN

nonce sum flag is hard to fingerprint. It is a single packet

injector, so it does not generate clear RST SEQ CHANGE

alerts. It often, but not always, takes its IPID from the previ-

ous packet. The injector’s aggressiveness triggers SYN RST

and SYN ACK RST alerts as well as DATA SEQ RST and

RST SEQ DATA alerts.

Sometimes multiple Chinese injectors operate simulta-

neously. For example, we observed an SMTP client com-

municating with the ICSI mail server that exhibits packets

originating from both the SEQ 1460 and IPID 64 injectors,

while a web server visited from Columbia manifests the

IPID 64 injector, likely the SEQ 1460 injector (though an

imperfect match), a RST seemingly generated by the end

host and a RST apparently generated by the IPID -26 in-

jector whose IPID suggests that it was at least partially re-

sponding to the packet injected by the 1460 injector! The

only other apparent explanation is that our fingerprints are

overly narrow, i.e., we have assigned two distinct finger-

prints to the same device.

Of all 298 ICSI hosts classified as disrupted by one or

more of the Chinese injectors, 102 hosts contain the finger-

prints of two or more injectors. In general, the RAE injec-

tor appears independent of the other three (only two sources

overlap), but the other three injectors appear to target simi-

lar, and sometimes the same, flows.

7.1.7 Likely RST Injectors

One interesting type of source sends RSTs with a payload

of “Go Away, we’re not home”. The RST sequence

numbers, although changing from packet to packet, never

exceed the maximum-sent sequence, so we believe the

source is either stateful or uses incoming ACKs to generate

the sequence numbers; thus, we can only detect it when a

RST SEQ DATA or DATA SEQ RST race condition occurs.

We saw such sources from SBC/Pacific Bell (AT&T) as well

as from two Mexican ISPs (prod-infinitum.com.mx

and telnor.net). All alerts correlate with P2P activity.

As these are not unique to just one ISP, and are too few to

fully classify, we suspect the traffic could be generated by a

non-ISP source—possibly end-system software.

It appears that Optimum Online, a division of Cablevi-

sion, terminates P2P flows as well. 12 sources at ICSI from

this domain generate RST SEQ CHANGE alerts, which ap-

pear due to a multi-packet injector. The injector usually uses

either the last packet’s TCP payload size as the sequence

number increment or twice this value. We were not able

to generate a more precise fingerprint, and as we do not see

any evidence of this injector in the other, more recent traces,

we assume the practice may have been discontinued. Thus,

we classify these only as a probable injector rather than a

confirmed source.

Finally there is a group of systems that exhibit

RST SEQ CHANGE alerts, either using an exact interval

from the previous packet or a slightly different interval. We

have been unable to classify these further, although some

correspond to the StarHub network previously reported as

blocking P2P by Dischinger et. al [9].



7.2 Apparently Legitimate but Unexpected RSTs

Our detector identifies anomalous RSTs, yet not all of

them are due to injectors. We cross-checked the alerts us-

ing several strategies in order to assess those due to sources

other than injection, including looking for RSTs sent by

local hosts (for which we could obtain ground truth) and

for external hosts known to not be subjected to traffic man-

agement. These may represent either in-path network de-

vices with various bugs, or bugs in end-system TCP stacks,

rather than packets injected by a separate traffic manage-

ment/disruption system.

Just as RST injectors can show clear signatures, we can

fingerprint some benign sources of unexpected RSTs as

well. We discuss these cases first, followed by likely-non-

injected RSTs for which we could not develop an effective

signature.

7.2.1 Legitimate Resets With Fingerprint

Common SYN/RST Signatures: We see a large num-

ber of SYN RST alerts with repeated signatures, including

TTL 128 higher than the triggering SYN (“SYN/RST 128”),

and a constant IPID of 65259 (“SYN/RST 65259”). As

these signatures do not appear to have any geographic or

ISP commonality, we consider them to reflect non-injected

sources.

Common RST Signatures: Three other seemingly be-

nign signatures are (i) RSTs with a sequence number of

zero (“0-Seq RST”), (ii) sending multiple RSTs with IPID

0 within a limited sequence number range (“IPID 0”),

and (iii) hosts that generate spurious RST SEQ DATA and

DATA SEQ RST errors with a RST packet with IPID 0 in

active flows (“IPID 0 Solo”). Traces of these appear quite

peculiar; we suspect the behavior is due to middlebox or

end-host bugs.

Stale RSTs: We observed a rare RST SEQ DATA alert gen-

erated by our institute’s mail server. Further examination

shows the cause: A system (presumably a spam bot) con-

tacting the mail server first receives a SYN/ACK, prior to a

blacklist check causing the server to terminate the connec-

tion. Several seconds later, the presumed spam bot connects

again, using the same TCP source port (in violation of the

TCP spec). This second SYN is acknowledged with a differ-

ent sequence number, a few packets are exchanged, and then

the mail server sends a TCP RST with the sequence number

of the first flow, creating a completely out-of-sequence RST

that trips the detector. We term this situation “Stale RST”.

Spambot SYN/RST Bug: We observed non-injected RSTs

due to an apparently buggy custom TCP stack in spam bots.

These systems at first communicate normally, and then for

unknown reasons generate an out-of-sequence packet with

both SYN and RST flags set, and payload containing por-

tions of a spam message.

DNS SYN/RST: We find that DNS servers can generate

SYN RST alerts on TCP communication, for unknown rea-

sons. This appears to be benign activity caused by the end-

system.

Planetlab: In an early test trace of Columbia traffic,

we observed more than 300 distinct RST SEQ DATA and

DATA SEQ RST alerts involving communication between

Columbia’s three PlanetLab nodes. We do not know the

cause, but due to PlanetLab’s experiment nature we ex-

cluded these.

7.2.2 Ambiguous Cases

HTTP Servers: Several domains, including Google and

Yahoo, show rare DATA SEQ RST and RST SEQ DATA

alerts with HTTP/HTTPS connections. We assume that

these domains do not perform active traffic management via

RST injection; manual examination did not reveal any ap-

parent cause. We speculate this traffic is due to bugs or race

conditions in HTTP load-balancers employed by these sites.

For example, the ICSI trace shows 18 instances of

RST SEQ DATA alerts generated by ad1.p1.vip.rm.

sp1.yahoo.com, where two MTU-sized data packets are

sent followed by two RST packets. The first RST packet has

a sequence equal to the start of the second data packet, and

the second RST packet comes properly in sequence. Man-

ually examining one of these connections shows an appar-

ently normal request to one of Yahoo’s ad servers. Google

generates similar alerts, as well as DATA SEQ RST alerts.

We were not able to develop a fingerprint for such load-

balancers, and thus consider Web servers that generate only

RST SEQ DATA and DATA SEQ RST alerts as probably

non-injected sources. However, the Web server of one

particular site, flightglobal.org, does show a very

distinct fingerprint. On an HTTP 302 (“Temporarily

moved”) error in a persistent connection, instead of send-

ing a normal data packet it sends a TCP RST packet with

the payload containing the HTTP “Object Moved” mes-

sage. Not only does this not make sense, but the RST

packet’s sequence number equals that of the previous data

packet: a RST SEQ DATA error.

SMTP SYN RST alerts: Unless we find a significant clus-

tering (e.g., the Yournet alerts in Section 7.1.4), SYN RST

alerts are so common from SMTP clients that we must treat

them as non-injected sources.

Inefficacy of Some Tests: We find three of the alerts—

RST ACK CHANGE, SYN RST, and SYN ACK RST—non-



definitive on their own. We can sometimes correlate across

alerts (such as the Japanese SMTP interference and the

BezeqInt injector) to create a global picture or fingerprint,

but in isolation these alerts do not provide convincing evi-

dence of injection, so we consider them as likely not reflect-

ing injected RSTs.

Confused Multipacket: Although RST SEQ CHANGE is

an effective tool at fingerprinting injectors, we occasion-

ally see obviously anomalous cases, where the second RST

packet is very close (< 200) or very far away (> 4x) from

the last data packet’s position in the sequence space. We

do not consider these as part of deliberate injection activity

unless we can fingerprint them in some other manner (such

as the Sandvine injector), because for deliberate injection

the choice of increment would be ineffective and hence is

puzzling.

Hanson Infosystems: We have observed a single SMTP

server belonging to Hanson Systems that shows unusual be-

havior. It could be end-host software or it could be RST

injection that is triggering on the message. This host gen-

erates RST SEQ DATA alerts when the ICSI mail server at-

tempts to forward a user’s spam to this site. The remote mail

server issues a rejection message immediately followed by

a RST packet with sequence equal to the previous packet’s

starting sequence, a RST SEQ DATA error.

NATs: One internal host at ICSI generated 30 alerts

during operation, almost all RST SEQ DATA alerts, with

one DATA SEQ RST alert. Investigation revealed that the

source is not an end-host host but a NAT, so we suspect that

the RSTs result from erroneous state expiration on the part

of the NAT. (Erroneous because the connection was active

at the time of termination.) We suspect that some addresses

counted as “unknown” in Table 2 might likewise be due to

NATs.

8 Conclusions

In this work we develop an efficient detector for forged

TCP RST packets, as deployed for example by some ISPs

to manage P2P traffic, as well as by the “Great Firewall

of China” to censor communication deemed undesirable by

the Chinese government. Our detector identifies injected

RSTs by exploiting the race conditions that out-of-band in-

jectors fundamentally face. We then further leverage the id-

iosyncratic peculiarities specific to many brands of injectors

to fingerprint their particular type.

Using datasets from four network sites, our evaluation is

able to confirm the use of RST injection by several ISPs.

We also observe that multiple distinct injectors operate in

China. As sometimes they are independently attempting to

block the same connection, they may have been installed by

local ISPs, independent of the “Great Firewall”. In addi-

tion to traffic management and censoring, we also find RST

injection used as a tool to counter spam and virus spreading.

Our study also shows the limits of passive monitoring

to detect active traffic interference. The most fundamen-

tal limitation stems from likely benign in-network devices,

often end-hosts, that produce abnormal effects similar to

those observed when RSTs are injected. As regularly ex-

perienced by network researchers, the variety observed in

network traffic includes many situations not covered by any

RFC; in our case that means RSTs sent by buggy TCP

stacks and misbehaving middle-boxes. We therefore de-

signed our injection detector to operate in a conservative

fashion, correlating several distinct properties to ensure re-

liable results. Our experiences also highlight the pitfalls one

can encounter if assuming that peculiar RSTs necessarily

reflect traffic control.
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A The Complete Detector Toolbox

For a more precise description of our toolbox, we in-

troduce some terminology. Each detector works on a per-

connection basis. A connection consists of two sequences

of packets, one per direction: the originator sends packets

(p1, p2, . . ., pn) and the responder sends (p1, p2, . . ., pm).
As much of our discussion is symmetric in terms of di-

rectionality, here we consider only detection of originator-

side activity. We indicate a packet’s TCP flags by writing

pflags, where flags is a subset of {S,A, F,R} correspond-

ing to which of SYN, ACK, FIN, and RST are set. We use

pD to indicate a data packet (which will have ACK set, but

not SYN, FIN, or RST). seq(p) is the sequence number of

packet p; ack(p) the ACK number; len(p) the TCP payload

length; and time(p) the packet’s timestamp. When we com-

pare sequence/ack numbers, we do so in accordance with

TCP’s sequence space (e.g., taking 32-bit wrap-arounds into

account). τ(i) yields the largest index j so that time(pi) >

time(pj), pinpointing the most recent packet (relative to pi)

in the opposite direction. Finally, for easier notation we de-

fine a predicate earlier(p, flags, [same-dir‖opp-dir]), which

is true if and only if there exists a packet earlier than p, sent

by either the same endpoint (same-dir) or the opposite one

(opp-dir), that has one of the specified flags set. If the di-

rection is omitted, the predicate holds if such a packet has

been seen in either direction. Using this terminology, Ta-

ble 3 provides the precise definition for our detectors.

B Open-Source Injector Implementations

Although we did not have access to the tools/devices we

detected in our datasets, there are open-source RST injec-

tors available that we studied: two separate plug-ins for this

task that come with the Snort NIDS [24]; the rst utility

that comes with the Bro NIDS [19]; and tcpkill, a stand-

alone tool for RST injection [25].

We find (as discussed below) that each tool crafts its

RST packets somewhat differently. While the TCP standard

mandates some packet header elements for injected RSTs

(e.g., IP addresses and ports), other fields exhibit more free-

dom. In Section 4 we systematically discuss the range of

choices available to an injector. Most injectors will send

packets to both endhosts, reversing the SYN and ACK fields

for the packets in the reverse direction.



Snort (as of version 2.8.1) has two plugins able to per-

form RST injection. The older plugin, sp respond sends

a single packet in each direction with a random IPID, a

random TTL, and zero window size. The newer plugin,

sp respond2 sends by default 3 RSTs to each endpoint. In

each it sets the TTL to one of four values (depending on

the triggering packet) and selects a random IPID. The first

RST is initialized with the current SEQ number, with sub-

sequent RSTs increasing the ACK number by half the TCP

window size, but not incrementing the sequence number.

Although sp respond2 has the same basic logic bug as the

Bezeq injector of incrementing the ACK instead of the SEQ

field, the different ACK increment and constant IPID for

the Bezeq injector suggest that these are independent im-

plementations.

The Bro NIDS comes with an external tool, rst, which

takes the connection’s 4-tuple as well as the most recently

observed sequence numbers as arguments. The injected

RSTs have a TTL of 255, IPID and window size of 0, and

the SEQ and ACK value from the arguments. The tool gen-

erates a controllable number of RSTs in each direction; if

sending more than one, then it also inserts fake data pack-

ets with rising sequence numbers in between to attempt to

advance the sequence point if the first RST is ignored, with

each data packet is followed by an in-sequence RST.

tcpkill ships as part of the dsniff toolbox and is the only

injector that operates in a single direction. It monitors a net-

work link via libpcap and selects a subset of TCP packets

as specified by a user-supplied BPF expression. For each

(non-control) packet, tcpkill sends (by default) three RSTs

back to the packet’s source address. When building the

RSTs, it sets the TTL to 64, picks a random IPID, keeps the

packet’s window size, and sets the sequence number to the

ACK number plus i times the window size, with i = 0..2
according to the number of the RST sent. It sets the RST’s

ACK number to zero.

Although all these injectors have potential fingerprints,

we did not notice any of them being used in a significant

amount.

C Real-World IPIDs and TTLs

In initial experiments aimed at understanding which of a

RST’s features an injection detector can rely on, we exam-

ined IPID and TTL values in depth before concluding that

they did not provide suitable criteria for detecting injected

RSTs.

As these fields can in principle be freely chosen by an

injector (see Section 4), we thought that at least a subset

of forged RSTs would be detectable by observing inconsis-

tent choices within individual flows. However, as is often

the case due to network traffic’s variability, we found that

these values are highly volatile even within normal network

traffic. To demonstrate this, we examined one week of our

research institute’s border traffic, starting on April 18, 2008.

The dataset included 4,033,204 flows, 25.0% of which had

more than 10 packets from either the source or the destina-

tion.

We started by testing whether the results on the preva-

lence of RST traffic from [1] held. Of all flows, about 5%

were terminated with an originator-side RST and 0.6% with

a responder-side RST. While lower than the 15% figure in

the original study, the general observation still holds: a sig-

nificant portion of connections are terminated via RSTs.

In general, we found that the TTLs of the RST packets

varied markedly from the previous data packet. Examin-

ing only RST-terminated flows, for about 7% of those ter-

minated by the originator the RST packet’s TTL differed;

this rose to 28% for responder-terminated flows. We might

expect such TTL differences to be minor, but in fact the

volatility was often very high, with TTL changes clustering

around 64, 96, 128, and 192, with a significant number of

seemingly arbitrary differences.3

We also confirmed that affected flows were not particu-

larly unusual. We randomly selected 200 flows where the

RST packets had a differing TTL, 20 flows where the client

was volatile and 20 where the server was volatile, in each

of 5 TTL ranges. Of these, only two flows appeared to be

unusual (these flows triggered our detector).

Thus, we conclude that the recommendation in [5] to ig-

nore RST packets with unusual TTLs will suffer from sig-

nificant false positives.

We also examined the IPID volatility on these reset con-

nections. For originator-terminated connections, 36% used

an increment consistent with the current flow; 34% were

four times the normal increment; a bit under 1% had a RST

IPID of 0; another 1% used the same IPID as the previ-

ous packet; a bit over 1% used twice the normal increment;

0.5% used three times the current increment; and 27% had

no apparent relation. We found a similar distribution for

responder-terminated connections. Thus, although we use

both TTL and IPID to fingerprint injectors (Section 7), we

do not find these to be effective distinguishers of injected

RST packets.

3We also observed a similar level of TTL volatility between SYNs and

data packets, as well as between data packets and FINs.



Name Description Definition

RST SEQ DATA Outdated RST following data. (pD
i , pR

i+1) , where

seq(pi+1) < seq(pi) + len(pi+1), and

time(pi+1) − time(pi) < T1, and

¬ earlier(pi, F |R)

DATA SEQ RST Data following a RST. (pR
i , pD

i+1) , where

seq(pi+1) + len(pi+1) > minj≤iseq(pR
j ), and

time(pi+1) − time(pi) < T1

RST SEQ CHANGE Multiple RSTs with increasing seq. (pR
i , pR

i+1) , where

seq(pi+1) > seq(pi) + 2, and

seq(pi+1) > maxj<iseq(pj), and

seq(pi+1) > maxj≤τ(i)ack(pj) + 2, and

time(pi+1) − time(pi) < T1, and

¬ earlier(pi, F ), and

¬ earlier(pi, R, opp-dir)

RST ACK CHANGE Multiple RSTs with increasing ack. (pR
i , pR

i+1) , where

ack(pi+1) /∈ {ack(pi), seq(pi), 0}, and

ack(pi+1) > maxj≤τ(i)seq(pj) + 2, and

time(pi+1) − time(pi) < T1, and

¬ earlier(pi, F ), and

¬ earlier(pi, R, opp-dir)

SYN RST RST after SYN. (pS
i , pR

i+1) , where

time(pi+1) − time(pi) < T2, and

¬ earlier(pi, any, opp-dir)

SYN ACK RST RST after SYN/ACK. (pSA
i , pR

i+1) , where

time(pi+1) − time(pi) < T2, and

¬ earlier(pi, any, opp-dir)

Table 3. Detector Toolbox. See Appendix A for terminology and Section 5 for the rationale behind
choosing T1 = 2 sec and T2 = 0.1 sec.


