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a b s t r a c t

The traditional inventory models focus on characterizing replenishment policies in order
tomaximize the total expected profit or tominimize the expected total cost over a planned
horizon. However, for many companies, total inventory costs could be accounting for
a fairly large amount of invested capital. In particular, raw material inventories should
be viewed as a type of invested asset for a manufacturer with suitable risk control.
This paper is intended to provide this perspective on inventory management that treats
inventory problems within a wider context of financial risk management. In view of this,
the optimal inventory problem under a VaR constraint is studied. The financial portfolio
theory has been used to model the dynamics of inventories. A diverse portfolio consists
of raw material inventories, which involve market risk because of price fluctuations as
well as a risk-free bank account. The value-at-risk measure is applied thereto to control
the inventory portfolio’s risk. The objective function is to maximize the utility of total
portfolio value. In thismodel, the ordering cost is assumed to be fixed and the selling cost is
proportional to the value. The inventory control problem is thus formulated as a continuous
stochastic optimal control problem with fixed and proportional transaction costs under a
continuous value-at-risk (VaR) constraint. The optimal inventory policies are derived by
using stochastic optimal control theory and the optimal inventory level is reviewed and
adjusted continuously. A numerical algorithm is proposed and the results illustrate how
the raw material price, inventory level and VaR constraint are interrelated.

© 2012 Published by Elsevier Ltd

1. Introduction

Inventories are stocks of raw materials, components and finished goods that are stored in warehouses, the
instrumentalities of transportation, and retail stores. Rawmaterial inventories are necessary tomanufacturers because they
create buffers against irregular supplies and demand shifts, guarantying product availability. Yet, according to Ballou [1],
stockpiling inventory may result in costs in the range of 20%–40% of annual invested capital. Thus, good inventory control
will provide lower costs and promote overall company performance. Recognizing the importance of inventorymanagement,
copious literature investigating optimal inventory strategies exists. Arrow et al. [2] laid the foundation of modern inventory
theory, inwhich expected costs are chosen as an objective function. The traditional inventorymodels focus on characterizing
replenishment policies in order to maximize the total expected profit or to minimize the expected total cost over a planned
horizon. Examples include the popular (EOQ)model and the (s, S)model [3,1,4]. The conventional inventory controlmethods
are appropriate for risk-neutralmanagers, but in realitymostmanagers are risk averse [5], and in the field of the supply chain,
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risk analysis and risk control have become more and more important [6,7]. Therefore, techniques that consider both risks
and returns of holding inventory are crucial.

Risk management is increasingly important in many disciplines, ranging from banking [8] and technology [9–12] to
humanity and ecology [13,14]. The literature on inventorymodels with risk control is quite limited and is mainly focused on
discrete-time problems. Eeckhoudt et al. [15] investigate the effects of risk and risk aversion in the single-period inventory
(‘‘newsvendor’’) problem Agrawal and Seshadri [16] consider the single-period inventory problem for a risk-averse retailer,
whose objective is to maximize expected utility. Bouakiz and Sobel [17] optimize themulti-period news vendor model with
an exponential utility criterion. Chen et al. [18] extend the multi-period inventory model with a general risk-averse utility
function and illustrate with numerical results the effects of risk aversion on inventory strategies. In recent years, the VaR
measure has also received attention in the supply chain [19]. Some literatures of inventorymanagement have also used VaR
as a risk control measure. Luciano et al. [20] consider a standard multi-period static inventory model and define the optimal
policy as one that maximizes the expected discounted profits. The mean and variance of profits (and costs) are obtained for
both finite and infinite cycles. The VaR induced by the optimal replenishment policy is estimated by applying probability
theory Tapiero [21] attempts to formulate a single period inventory model which is to minimize the VaR of the total cost.
So far, the models considered are discrete in nature with fixed cycle length between replenishments. Clearly, sophisticated
stochastic models have not been used to model inventory price fluctuation and continuous replenishment policy has not
been studied.

The recent violent fluctuations in commodity prices have forcedmanymanufacturers to endure large market risk. Under
these circumstances material inventories not only ensure production availability, but are also a kind of investment asset.
Their price fluctuation nature closely resembles the risky assets of a financial portfolio. Undoubtedly, the concept of portfolio
theory has beenwell developed in finance. In this paper, the financial portfolio theorywill be applied to address the inventory
control problem.

The specific focus hereinwill be the industrialmanufacturer’s rawmaterial inventory. It is assumed that themanufacturer
can sell the rawmaterial inventories back to the suppliers at a discountedmarket price. And once a non-zero order is placed,
the manufacturer has to pay a fixed ordering cost to the supplier except purchasing costs. The problems are then addressed
from the perspective of financial portfolio theory with fixed and proportional transaction costs. The rawmaterial inventory
required by amanufacturer is considered as an investment, and a portfolio consisting of thesematerial inventories aswell as
a risk free bank account is explored. To exercise proper risk control over the inventory portfolio value, the VaR constraint is
imposed continuously over time. The objective function is tomaximize the total expected utility of the portfolio value during
the horizon. The optimal ordering and selling conditions are derived by using stochastic optimal control theory. Under this
formulation, the optimal inventory level can be reviewed and adjusted continuously. By applying the VaR constraint, and
assuming that portfolio allocations do not change over a short horizon period, we indicate that holding value in the raw
material inventory is reduced whenever the VaR constraint becomes active.

The rest of the paper is organized as follows. In Section 2, the model for the continuous-time optimal inventory portfolio
without VaR constraint is derived for one raw material inventory plus a risk-free asset. After that, the VaR constraint is
imposed in Section 3 and the optimal ordering and selling conditions are derived. The final optimal inventory policy under
a VaR constraint is continuously reviewed and adjusted. Finally, in Section 4, a numerical algorithm is proposed to solve the
optimal control problem and illustration examples are presented in Section 5.

2. Inventory model without VaR constraint

2.1. Model formulation

Consider an industrial plant producing only one kind of product and requiring only one type of raw material. Our focus
is on the inventory policies of the raw material. Because of fluctuations in the price of the raw material, holding onto an
inventory is a kind of risky asset. Given a sufficient amount of capital to maneuver, the manager has two choices: to invest
in a risk free asset, such as bank notes, or tomaintain rawmaterial inventories. From the perspective of finance, themanager
has a portfolio consisting of one risk free asset and one risky asset. For simplicity, the following assumptions are made:

• In the planned time horizon, the price of product is a deterministic function in respect to time t , which is exogenously
determined by markets.

• The demand of product and the price of raw material are independent to each other.
• There is no lead time for the raw material.

First, some notations are introduced:

• ω0(t) is the risk free asset value at time t .
• ω1(t) is the holding value of raw material inventory at time t .
• X(t) is the total value of the risk free asset plus the raw material inventory, that is

X(t) = ω0(t) + ω1(t).

• S0(t) is the risk free asset price at time t .
• S1(t) is the raw material price at time t .
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• D(t) is the demand quantity for the product per unit time at time t .
• P(t) is the product price at time t .
• ω̄ is the inventory quantity to be consumed for the raw material to produce one piece of product.
• ζ is the holding cost per unit value of the raw material per unit time.
• η is the transaction cost per unit value for selling the raw material.
• F is the fixed order cost on each non-zero order of the raw material.
• ω0(t+) is the risk free asset value after rebalancing takes place at time t in the state of (ω0(t), ω1(t)).
• ω1(t+) is the inventory value of the raw material after rebalancing takes place at time t in the state of (ω0(t), ω1(t)).

Next, the following dynamics are assumed:

(1) D(t) is the demand rate of the product at time t . It follows that

D(t) = µD + σDB̃(t), (1)

where B̃(t) is a standard Brownian motion, both µD and σD are constants. Thus the demand rate D (t) follows a normal
distribution as

D(t) ∼ N

µD, σD

√
t


.

(2) S0(t) is a deterministic process at a deterministic short rate of interest r , which can be written as

dS0(t) = rS0(t)dt. (2)

(3) S1(t) is the price process of the raw material, which is assumed to follow a geometric Brownian motion as

dS1(t) = S1(t) (µSdt + σSdB(t)) , (3)

where B(t) is a standard Brownian motion, µS and σS are constants. Solving the above SDE yields

S1(t) = S1(0) exp


µS −
1
2
σS

2

t + σSB(t)


, (4)

which implies the distribution of S1(t) is lognormal, that is

ln S1(t) ∼ N (α(t), β(t)) ,

where α(t) = ln S1(0) +

µS −

1
2σS

2

t and β(t) = σS

√
t .

Here, µS is the average return rate of the raw material inventory and since the raw material is a type of investment
for the manufacturer, it is reasonable to assume the following condition

µS − ζ − r > 0. (5)

For a small value of 1t , if there is no transaction and no consumption of the raw material between (t, t + 1t), the risk
free asset and rawmaterial inventory holdings in (t, t + 1t) evolve as the prices of the underlying assets change. According
to the dynamical equations (2) and (3), we have

ω0 (t + 1t) = ω0(t) + rω0(t)1t, (6)
ω1 (t + 1t) = ω1(t) + ω1(t) (µS1t + σS1W (t)) . (7)

For any t, 0 ≤ t < T , we define

(a) qB(t) = qB (ω0, ω1, t) ≥ 0 is the capital value used to order raw material at time t in the state of (ω0, ω1).
(b) qS(t) = qS (ω0, ω1, t) ≥ 0 is the inventory value of the raw material to be sold at time t in the state of (ω0, ω1).

Since there is no lead time for ordering and selling the material, the rebalancing takes place instantly. Then we have

ω0 (t+) = ω0(t) + (1 − η) qS(t) − qB(t) − FΘ [qB(t)] , (8)
ω1 (t+) = ω1(t) + qB(t) − qS(t), (9)

where

Θ(x) =


1, if x > 0,
0, if x = 0. (10)

In our formulation, short-selling is not allowed for the raw material inventory, which provides the condition that

ω1(t) ≥ 0. (11)

And the assumption that raw material inventory will always fulfill production demand implies that

ω1 (t+) ≥ S1(t)D(t)ω̄1t. (12)
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According to Eqs. (6) and (7), the holdings of the assets at time t + 1t can be written as

ω0 (t + 1t) = ω0 (t+) + 1ω0 (t+) + P(t)D (t) 1t − ζω1 (t+) 1t
= ω0 (t+) + r {ω0(t) + (1 − η) qS(t) − qB(t) − FΘ [qB(t)]} 1t + (P(t)D(t) − ζω1 (t+)) 1t, (13)

ω1 (t + 1t) = ω1 (t+) + 1ω1 (t+) − S1(t)ω̄D(t)1t
= ω1 (t+) + (ω1(t) + qB(t) − qS(t)) µS1t − S1(t)ω̄D(t)1t (ω1(t) + qB(t) − qS(t)) σS1B(t). (14)

X(t) is the total value of the risk free asset and the inventory at time t , that is

X(t) = ω0(t) + ω1(t). (15)

Given a small time interval 1t , we define

1X(t) = X (t + 1t) − X (t+) . (16)

Substituting Eqs. (13) and (14) into (16), we have

1X(t) = ω0 (t + 1t) + ω1 (t + 1t) − [ω0 (t+) + ω1 (t+)]
= [P(t) − S1(t)ω̄]D(t)1t + r {ω0(t) + (1 − η)qS(t) − qB(t) − FΘ [qB(t)]} 1t

+ [ω1(t) + qB(t) − qS (t)] [(µS − ζ ) 1t + σS1B(t)] .

Taking the limit as 1t → 0, 0 ≤ t < T , we get

dX(t) = r {ω0(t) + (1 − η) qS(t) − qB(t) − FΘ [qB(t)]} dt + [ω1(t) + qB(t) − qS(t)]
× (µS − ζ ) dt + [P(t) − S1(t)ω̄]D(t)dt + [ω1(t) + qB(t) − qS(t)] σSdB(t), (17)

and

ω1 (t+) = ω1(t) + qB(t) − qS(t) > 0. (18)

The objective is to maximize the total expected value of the utility function, thus the optimal problem is

sup
qB,qS

E
 T

0
U (t, X(t)) dt + W (T , X(T ))


, (19)

subject to

dX(t) = r {ω0(t) + (1 − η) qS(t) − qB(t) − FΘ [qB(t)]} dt + [ω1(t) + qB(t) − qS(t)]
× (µS − ζ ) dt + [P(t) − S1(t)ω̄]D(t)dt + [ω1(t) + qB(t) − qS(t)] σSdB(t), (20)

ω1 (t+) = ω1(t) + qB(t) − qS(t) > 0. (21)

2.2. Derivation of the Hamilton–Jacobi–Bellman equation

In this section, wewill derive the Hamilton–Jacobi–Bellman partial equation of the optimal control problem. Themethod
we used is similar with the dynamic portfolio selection problem without transaction cost (see, for example, [22]). Define
the optimal value function as

V (x, t) = sup
qB,qS

Et

 T

t
U (x, s) ds + W (T , X(T ))


, (22)

where x = ω0(t) + ω1(t) is a possible state of X(t).
Then we assume the following:

(a) An optimal control

q̂B, q̂S


exists;

(b) The optimal value function V is regular in the sense that V ∈ C1,2;
(c) During rebalancing, the value of the value function is preserved [23], that is

V (x (t+) , t) = V (x, t) . (23)

Note

G (qB, qS) ≡ r {ω0 + (1 − η) qS − qB − FΘ (qB)} + (ω1 + qB − qS) (µS − ζ ) + (P − s1ω̄)D,

and

H (qB, qS) = σS
2 (ω1 + qB − qS)2 .
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Given a small time interval 1t , expand the value function V [x(t + 1t), t + 1t] at time t after rebalancing, that is at the
point (x (t+) , t+), by Taylor’s series. Using the properties of Brownian motion yields

Et [V (x (t + 1t) , t + 1t)] = V (x (t+) , t+) +
∂V
∂t

(x, t) 1t + G (qB, qS)
∂V
∂x

(x, t) 1t

+
1
2
H (qB, qS)

∂2V
∂x2

(x, t) 1t + o (1t) ,

where o (1t) refers to the truncated higher order terms.
According to the preservation property of the value function stated by Eq. (23), the Taylor expansion can be written as

Et [V (x (t + 1t) , t + 1t)] = V (x, t) +
∂V
∂t

(x, t) 1t + G (qB, qS)
∂V
∂x

(x, t) 1t

+
1
2
H (qB, qS)

∂2V
∂x2

(x, t) 1t + o (1t) . (24)

Given the state point (x · t), consider the following two strategies over the interval [t, T ]:
Strategy I. Use the optimal control


q̂B, q̂S


.

Strategy II. Use the control (qB∗, qS∗) defined as
qB∗, qS∗


=


(qB (y, s) , qS (y, s)) , (y, s) ∈ R × [t, t + 1t] ,
q̂B (y, s) , q̂S (y, s)


, (y, s) ∈ R × (t + 1t, T ] . (25)

Expected utility for Strategy I. This is trivial, since by definition the utility is the optimal one given by V (x, t).
Expected utility for Strategy II. Divide the time internal [t, T ] into two parts, the intervals of [t, t + 1t] and (t + 1t, T ],
respectively.

• The expected utility, using Strategy II, for the interval [t, t + 1t] is given by

Et

 t+1t

t
U (x, s) ds


. (26)

• By the definition of the control (qB∗, qS∗), use the optimal strategy during the entire interval [t + 1t, T ]. Thus the
remaining expected utility at time t + 1t is given by V (x (t + 1t) , t + 1t). Then the conditional expected utility over
the interval [t + 1t, T ] on the state (x, t), is given by

Et [V (x (t + 1t) , t + 1t)] . (27)

So the total expected utility for Strategy II is

Et

 t+1t

t
U (x, s) ds + V (x (t + 1t) , t + 1t)


. (28)

Comparing these two strategies yields the following inequality because Strategy I is, by definition, the optimal one

V (x, t) ≥ Et

 t+1t

t
U (x, s) ds + V (x (t + 1t) , t + 1t)


. (29)

Substituting the Eq. (24) into the above inequality gives
∂V
∂t

(x, t) + G (qB, qS)
∂V
∂x

(x, t) +
1
2
H (qB, qS)

∂2V
∂x2

(x, t)


1t + Et

 t+1t

t
U (x, s) ds


+ o (1t) ≤ 0.

Dividing by 1t and letting 1t tend to zero provides

U (x, t) +
∂V
∂t

(x, t) + G (qB, qS)
∂V
∂x

(x, t) +
1
2
H (qB, qS)

∂2V
∂x2

(x, t) ≤ 0. (30)

Since the control law (qB, qS) is arbitrary, this inequality will hold for all choices and we will have equality if and only if
(qB, qS) =


q̂B, q̂S


. Thus we conclude that V (x, t) satisfies the HJB-equation

∂V
∂t

(x, t) + sup
qB,qS


U (x, t) + G (qB, qS)

∂V
∂x

+
1
2
H (qB, qS)

∂2V
∂x2


= 0, (31)

with the boundary condition

V (x, T ) = 0, V (0, t) = 0. (32)
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2.3. Establishment of optimal inventory policy

We know as a matter of common sense that it is not optimal to order and sell raw material simultaneously, so

qB × qS = 0. (33)

Then at time t in the state of x, themanager has three options: (i) order rawmaterials for inventory, (ii) sell the rawmaterials
currently in inventory, or (iii) do nothing. So the total control set Ω can be split into three independent regions: (i) the
ordering region ΩB, (ii) the selling region ΩS and (iii) the no transaction region ΩNT , such that

ΩB = {(qB, qS = 0) |qB > 0} , ΩS = {(qB = 0, qS) |qS > 0} ,

ΩNT = {(qB = 0, qS = 0)} , and Ω = ΩB ∪ ΩS ∪ ΩNT .
(34)

According to the HJB equation, the optimal problem is reduced to solve the static optimization problem provided by

sup
qB,qS


U (x, t) + G (qB, qS)

∂V
∂x

+
1
2
H (qB, qS)

∂2V
∂x2


.

2.3.1. The optimal ordering policy
In the ordering region ΩB = {(qB, qS = 0) |qB > 0}, the static optimization problem is reduced to

sup
qB>0


U (x, t) + G (qB, 0)

∂V
∂x

+
1
2
H (qB, 0)

∂2V
∂x2


, (35)

where

G (qB, 0) ≡ r {ω0 − qB − F} + (ω1 + qB) (µS − ζ ) + (P − s1ω̄)D,

and

H (qB, 0) = σS
2 (ω1 + qB)2 .

The first-order necessary conditions of the static optimization problem with respect to qB are given by

(µS − ζ − r)
∂V
∂x

+ σS
2 (ω1 + qB)

∂2V
∂x2

= 0, (36)

and

∂2V
∂x2

< 0. (37)

Rearranging (36) yields

qBopt (x, t) =
−Vx (µS − ζ − r)

σS
2Vxx

− ω1 (x, t) , (38)

where Vx =
∂V
∂x and Vxx =

∂2V
∂x2

.
In the ordering region qBopt > 0, the following ordering condition is present

ω1 (x, t) <
−Vx (µS − ζ − r)

σS
2Vxx

. (39)

At the same time, if

qBopt, 0


is the optimal control of the static optimization problem, the value of the static problem of

qBopt, 0

must be better than that of (0, 0), which is

U (x, t) + G

qBopt, 0

 ∂V
∂x

+
1
2
H


qBopt, 0

 ∂2V
∂x2

> U (x, t) + G (0, 0)
∂V
∂x

+
1
2
H (0, 0)

∂2V
∂x2

,

where

G (0, 0) ≡ rω0 + ω1 (µS − ζ ) + (P − S1ω̄)D,

and

H (0, 0) = σS
2ω2

1.

Expanding G

qBopt, 0


,H


qBopt, 0


,G (0, 0) and H (0, 0) and rearranging the items yields

− rFVx + (µS − ζ − r) qBoptVx +
σS

2

2


q2Bopt + 2ω1qBopt


Vxx > 0. (40)
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Substituting

qBopt (x, t) =
−Vx (µS − ζ − r)

σS
2Vxx

− ω1 (x, t) ,

into the inequality (40), we could further simplify it as

− rFVx −
σS

2

2
Vxx


−

(µS − ζ − r) Vx

σS
2Vxx

− ω1 (x, t)
2

> 0. (41)

Then from that inequality we can derive another ordering condition apparent as

ω1 (x, t) < −
(µS − ζ − r) Vx

σS
2Vxx

−


−2rFVx

σS
2Vxx

. (42)

So far the ordering conditions for the inventory can be summarized as

ω1 (x (t+) , t+) = qBopt (x, t) + ω1 (x, t) = −
(µS − ζ − r) Vx

σS
2Vxx

> 0, (43)

ω1 (x, t) < −
(µS − ζ − r) Vx

σS
2Vxx

−


−2rFVx

σS
2Vxx

, (44)

∂2V
∂x2

< 0. (45)

The aforementioned ordering conditions yield the optimal inventory strategies for a risk-averse manager at time t when
the total portfolio value is x. If the inventory value is below −

(µS−ζ−r)Vx
σS2Vxx

−


−2rFVx
σS2Vxx

, then placing an order to raise the

inventory value to the level of − (µS−ζ−r)Vx
σS2Vxx

is optimal.

2.3.2. The optimal selling policy
Similarly, in the selling region ΩS = {(qB = 0, qS) |qS > 0}, the static optimization problem is defined as

sup
qS>0


U (x, t) + G (0, qS)

∂V
∂x

+
1
2
H (0, qS)

∂2V
∂x2


, (46)

where

G (0, qS) ≡ r {ω0 + (1 − η) qS} + (ω1 − qS) (µS − ζ ) + (P − S1ω̄)D,

and

H (0, qS) = σS
2 (ω1 − qS)2 .

The first-order necessary conditions of the static optimization problem with respect to qS are given by

− (µS − ζ − r (1 − η))
∂V
∂x

− σS
2 (ω1 − qS)

∂2V
∂x2

= 0 (47)

and

∂2V
∂x2

< 0. (48)

Rearranging (47) gives

qSopt(x, t) =
Vx (µS − ζ − r (1 − η))

σS
2Vxx

+ ω1 (x, t) . (49)

In the selling region qSopt > 0, we have the following selling condition

ω1 (x, t) > −
Vx (µS − ζ − r (1 − η))

σS
2Vxx

.

Similarly, we also have the condition that the static optimal value of the control

0, qSopt


must be better than that of the

control (0, 0), which is

U (x, t) + G

0, qSopt

 ∂V
∂x

+
1
2
H


0, qSopt

 ∂2V
∂x2

> U (x, t) + G (0, 0)
∂V
∂x

+
1
2
H (0, 0)

∂2V
∂x2

.



8 S.Y. Wang et al. / Mathematical and Computer Modelling ( ) –

By expanding G

0, qSopt


,H


0, qSopt


,G (0, 0) and H (0, 0), the inequality can be reduced as

−
σS

2

2
Vxx


(µS − ζ − (1 − η) r) Vx

σS
2Vxx

+ ω1 (x, t)
2

> 0.

The above inequality will always be correct in the selling region under the condition of qSopt > 0. Therefore the selling point
is characterized by

ω1 (x (t+) , t+) = ω1 (x, t) − qSopt(x, t) = −
Vx (µS − ζ − r (1 − η))

σS
2Vxx

> 0, (50)

ω1 (x, t) > −
Vx (µS − ζ − r (1 − η))

σS
2Vxx

, (51)

∂2V
∂x2

< 0. (52)

For a risk-averse manager, when the inventory value is larger than −
Vx(µS−ζ−r(1−η))

σS2Vxx
, the optimal strategy is to sell some

inventory back to the supplier to reduce the inventory value to the level of − Vx(µS−ζ−r(1−η))

σS2Vxx
.

2.3.3. The optimal inventory policy
The aforementioned ordering and selling conditions yield the optimal inventory strategies for a risk-averse manager at

time t when the total portfolio value is x. If the inventory value is below −
(µS−ζ−r)Vx

σS2Vxx
−


−2rFVx
σS2Vxx

, then placing an order

to raise the inventory value to the level of −
(µS−ζ−r)Vx

σS2Vxx
is optimal. On the contrary, if the inventory value is larger than

−
Vx(µS−ζ−r(1−η))

σS2Vxx
, the optimal strategy is to sell some inventory back to the supplier to reduce the inventory value to the

level of − Vx(µS−ζ−r(1−η))

σS2Vxx
.

3. Inventory model under a VaR constraint

In order to exercise proper risk control over the portfolio value, we will impose the VaR constraint on the inventory
portfolio. Given a small time interval 1t , we define the loss of the portfolio during the interval [t+, t + 1t] by

1X(t) = X (t + 1t) − X (t+) .

Given the level of significance z, the VaR definition is

Pr (1X(t) ≤ −VaRt) = z.

Therefore the definition of VaR implies

VaRt = −Et [1X(t)] − Φ−1 (z)

Covt [1X(t)],

where Φ−1(·) is the standard normal distribution function.
In the case with one kind of raw material and one kind of product, the conditional mean and variance can be calculated

as

Et [1X(t)] = r {ω0 (t) + (1 − η) qS(t) − qB (t) − FΘ [qB(t)]} 1t
+ (ω1(t) + qB(t) − qS (t)) (µS − ζ ) 1t + [P (t) − s1ω̄]D(t)1t,

Covt [1X(t)] = σS
2 (ω1(t) + qB(t) − qS(t))2 1t.

If we restrict the value at risk below the level R, the VaR constraint is given by

a1 (ω1 + qB − qS) + a2qS + a3Θ (qB) + b ≤ R, (53)

where

a1 = − (µS − ζ − r) 1t − Φ−1(z)σS
√

1t, a2 = r1tη, a3 = r1tF ,

b = − [P − s1ω̄]D1t − rx1t.

Thus the optimal inventory problem under value at risk constraint is given by

sup
qB,qS

E
 T

0
U (τ , X (τ )) dτ + W (T , X(T ))


, (54)
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subject to

dX(t) = r {ω0(t) + (1 − η) qS(t) − qB(t) − FΘ [qB(t)]} dt + [ω1(t) + qB(t) − qS(t)]
× (µS − ζ ) dt + [P(t) − S1(t)ω̄]D(t)dt + [ω1(t) + qB(t) − qS(t)] σSdB(t), (55)

a1 (ω1 + qB − qS) + a2qS + a3Θ (qB) + b ≤ R, (56)
ω1 (t+) = ω1(t) + qB(t) − qS(t) > 0. (57)

3.1. The optimal ordering policy

For an ordering point as (qB > 0, qS = 0), the VaR constraint of the portfolio is calculated as

VaRt = a1 (ω1 + qB) + a3 + b,

where

a1 = − (µS − ζ − r) 1t − Φ−1(z)σS
√

1t, a3 = r1tF , b = − [P − s1ω̄]D1t − rx1t.

Notice that

a3 + b = − [P − s1ω̄]D1t − r (x − F) 1t.

For a manufacturer, P(t) is the price of the product at time t and S1(t)ω̄ is the cost of the raw material for the product. It is
reasonable for us to assume that

P(t) ≥ S1(t)ω̄.

Obviously, the ordering cost $F must be significantly smaller than the total portfolio value x. Thus we have the following
result

a3 + b = − [P − s1ω̄]D1t − r (x − F) 1t ≤ 0.

Thus, we next only consider the case with a1 > 0 because the VaR of the portfolio will always be negative and the constraint
will not be active when a1 ≤ 0. If the VaR is limited to below the level R, we have

ω1 + qB ≤ (R − b − a3) /a1. (58)

Then the ordering condition determined by the VaR constraint is

ω1 ≤ (R − b − a3) /a1.

Combining the ordering conditions without the VaR constraint, the optimal inventory ordering strategies under a VaR
constraint can be summarized as

ω1 (x (t+) , t+) = qBopt (x, t) + ω1 (x, t) = min

−

(µS − ζ − r) Vx

σS
2Vxx

,
R − b − a3

a1


, (59)

ω1 (x, t) < min


−

(µS − ζ − r) Vx

σS
2Vxx

−


−2rFVx

σS
2Vxx

,
R − b − a3

a1


, (60)

∂2V
∂x2

< 0. (61)

3.2. The optimal selling policy

For a selling point as (qB = 0, qS > 0), the VaR constraint of the portfolio is calculated as

VaRt = a1ω1 − (a1 − a2) qS + b ≤ R,

where

a1 = − (µS − ζ − r) 1t − Φ−1(z)σS
√

1t, a2 = r1tη, b = − [P − s1ω̄]D1t − rx1t.

In a situation where a1ω1 + b > R, and a1 − a2 ≤ 0, the VaR cannot be controlled under the given level R because qS must
be positive. We can summarize the optimal inventory selling strategies under a VaR constraint as

ω1 (x (t+) , t+) = ω1 (x, t) − qSopt (x, t) = min

−

(µS − ζ − (1 − η) r) Vx

σS
2Vxx

,
R − b − a2ω

a1 − a2


,

ω1 (x, t) > min


−Vx (µS − ζ − r (1 − η))

σS
2Vxx

,
R − b
a1


,

∂2V
∂x2

< 0.
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3.3. The optimal inventory policy

We note

rB = min


−

(µS − ζ − r) Vx

σS
2Vxx

−


−2rFVx

σS
2Vxx

,
R − b − a3

a1


,

RB = min

−

(µS − ζ − r) Vx

σS
2Vxx

,
R − b − a3

a1


,

rS = min


−Vx (µS − ζ − r (1 − η))

σS
2Vxx

,
R − b
a1


,

RS = min

−

(µS − ζ − r (1 − η)) Vx

σS
2Vxx

,
R − b − a2ω1

a1 − a2


.

For a risk-aversemanager,which implies ∂2V
∂x2

< 0, the optimal inventory policy is determined by the variables (rB, RB, rS, RS).
At time t when the total portfolio value is x, if the inventory value ω1 (x, t) is below rB, then the manager places an order
to raise the inventory value to the level of RB. On the contrary, if the inventory value ω1 (x, t) is higher than rS , then the
manager sells the amount of inventory necessary to reduce the inventory value to the level of RS .

3.4. Solution algorithm

The approach is illustrated for one raw material and one product, that is n = 1,m = 1, but can be extended for n
inventories andm products. Thus the optimal inventory problem is given by

sup
qB,qS

E
 T

0
U (t, X(t)) dt


,

subject to

dX(t) = r {ω0(t) + (1 − η) qS(t) − qB(t) − FΘ [qB(t)]} dt + [ω1(t) + qB(t) − qS(t)]
× [(µS − ζ ) dt + σSdB(t)] + [P(t) − S1 (t) ω̄]D(t)dt,

a1 (ω1 + qB − qS) + a2qS + a3Θ (qB) + b ≤ R,
ω1 + qB − qS > 0.

Define the optimal value function as

V (x, t) = sup
qB,qS

E
 T

t
U (τ , X (τ )) dτ


.

We have proven that the optimal problem is equivalent to finding a solution to the HJB-equation

∂V
∂t

(x, t) + sup
qB,qS


U (x, t) + G (qB, qS)

∂V
∂x

+
1
2
H (qB, qS)

∂2V
∂x2


= 0, (62)

with the boundary condition

V (x, T ) = 0, V (0, t) = 0,

where

G (qB, qS) ≡ r {ω0 + (1 − η) qS − qB − FΘ (qB)} + (ω1 + qB − qS) (µS − ζ ) + (P − s1ω̄)D,

and

H (qB, qS) = σS
2 (ω1 + qB − qS)2 .

In the following computation, the utility function is defined to a power function of value

U(t, x) = e−δtxγ , δ > 0, 0 < γ < 1. (63)

Under this type of utility function, the form of the value function is

V (x, t) = e−δth(t)xγ , δ > 0, 0 < γ < 1.
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Neglecting the derivatives of hwith respect to x, we have

∂V
∂x

= γ e−δth (x, t) xγ−1,
∂2V
∂x2

= γ (γ − 1) e−δth (x, t) xγ−2, (64)

∂V
∂t

= e−δth′ (x, t) xγ
− δe−δth (x, t) xγ . (65)

Substituting the trial function into the HJB-equation reduces it to a Bernoulli equation for h(t) which is an ordinary
differential equation. Substituting the derivatives into Eq. (62), dividing by e−δtxγ and rearranging give

h′ (x, t) + A

qBopt, qSopt, x


h (x, t) + 1 = 0 (66)

with the terminal condition

h (x, T ) = 0,

where

A

qBopt, qSopt, x


= γ

G

qBopt, qSopt


x

+
1
2

γ (γ − 1)H

qBopt, qSopt


x2

− δ.

In the case without VaR constraint, substituting Eqs. (64) and (65) to (38) and (49), yields the reduced form for qBopt and
qSopt as

qBopt (x, ω1, t) =
x (µS − ζ − r)
σS

2 (1 − γ )
− ω1, (67)

qSopt (x, ω1, t) = ω1 −
x (µS − ζ − (1 − η) r)

σS
2 (1 − γ )

. (68)

Furthermore, when there is no VaR constraint, in the ordering region ΩB = {(qB, qS = 0) |qB > 0}, we have

qBopt (x, t) =
x (µS − ζ − r)
σS

2 (1 − γ )
− ω1 (x, t) , (69)

ω1 (x, t) <
x (µS − ζ − r)
σS

2 (1 − γ )
−


2rFx

(1 − γ ) σ 2
. (70)

In the selling region ΩS = {(qB = 0, qS) |qS > 0}, we have

qSopt (x, t) = ω1 (x, t) −
(µS − ζ − (1 − η) r) x

σS
2 (1 − γ )

, (71)

ω1 (x, t) >
(µS − ζ − (1 − η) r) x

σS
2 (1 − γ )

. (72)

Finally, in the no truncation region ΩNT = {(qB = 0, qS = 0)}, we have

x (µS − ζ − r)
σS

2 (1 − γ )
−


2rFx

(1 − γ ) σ 2
≤ ω1 (x, t) ≤

(µS − ζ − r (1 − η))

σS
2 (1 − γ )

. (73)

This unconstrained solution will be used as an initial guess to solve the problem. If we impose a VaR constraint to control
the risk, the optimal inventory policy is denoted as (rB, RB, rS, RS), where

rB = min


x (µS − ζ − r)
σS

2 (1 − γ )
−


2rFx

(1 − γ ) σS
2
,
R − b − a3

a1


,

RB = min

x (µS − ζ − r)
σS

2 (1 − γ )
,
R − b − a3

a1


,

rS = min


(µS − ζ − r (1 − η))

σS
2 (1 − γ )

,
R − b
a1


,

RS = min


(µS − ζ − r (1 − η))

σS
2 (1 − γ )

,
R − b − a2ω1

a1 − a2


.

Dividing the computational time horizon [0, T ] into a grid ofNt points and omitting (x, t) in all variables for the simplicity
of notation, the algorithm can be summarized as follows:
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Fig. 1. Price sequence of the raw material.

Fig. 2. Demand sequence of the product.

(1) At t = 0, we set ω1(0) = 0, X(0) = x.
(2) Calculate qBopt(0), ω0 (0+) , ω1 (0+) and X (0+) by

qBopt(0) =
x (µS − r)
σS

2 (1 − γ )
− ω1(0), ω1 (0+) = ω1(0) + qBopt(0) =

x (µS − r)
σS

2 (1 − γ )
,

ω0 (0+) = x − ω1(0) − qBopt(0) − F = x −
x (µS − r)
σS

2 (1 − γ )
− F ,

X (0+) = ω0 (0+) + ω1 (0+) = x − F .

(3) For tk = [1t, . . . , (Nt − 1)1t,Nt1t = T ], generating two sequences of standard Brownian motion B (tk) and B̃ (tk)
randomly, the price process and the product demand process can be simulated by

S1 (tk) = S1(0) exp


µS −
1
2
σS

2

t + σSB (tk)


,

D (tk) = µD + σDB̃ (tk) .
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Fig. 3. Optimal inventory strategy without VaR constraint.

Fig. 4. Optimal inventory strategy under a VaR constraint.

(4) Then ω0 (tk) , ω1(tk) and X (tk) can be calculated by

ω0 (tk) = ω0 (tk−1+) er1t
+ P (tk−1) 1t,

ω1 (tk) =
ω1 (tk−1+)

S1 (tk−1)
S1 (tk) − D (tk−1) ω̄S1 (tk−1) 1t,

X (tk) = ω0(tk) + ω1 (tk) .

(5) Calculate (rB, RB, rS, RS) by

rB = min


X (tk) (µS − ζ − r)

σS
2 (1 − γ )

−


2rFX (tk)

(1 − γ ) σS
2
,
R − b − a3

a1


,

RB = min

X (tk) (µS − ζ − r)

σS
2 (1 − γ )

,
R − b − a3

a1


,
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Fig. 5. Inventory level (unit).

Fig. 6. Total portfolio value X(t).

rS = min

X (tk) (µS − ζ − r (1 − η))

σS
2 (1 − γ )

,
R − b
a1


,

RS = min

X (tk) (µS − ζ − r (1 − η))

σS
2 (1 − γ )

,
R − b − a2ω1 (tk)

a1 − a2


.

If ω1 (tk) < rB (tk), place an order for the raw material so as to

qBopt (tk) = RB − ω1 (tk) , ω1 (tk+) = ω1 (tk) + qBopt (tk) = RB (tk) ,

ω0 (tk+) = ω0 (tk) − qBopt(tk) − F , X (tk+) = X (tk) − F .

If ω1 (tk) > rS (tk), sell raw materials so as to

qSopt (tk) = ω1 (tk) − RS, ω1 (tk+) = ω1 (tk) − qSopt (tk) = RS (tk) ,

ω0 (tk+) = ω0 (tk) + (1 − η) qSopt (tk) , X (tk+) = X (tk) − ηqSopt (tk) .
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Fig. 7. Value function V (x, t).

Fig. 8. h(x, t) over x at different time.

If rB ≤ ω1 (tk) ≤ rS , we have

popt(tk) = qopt(tk) = 0, ω1 (tk+) = ω1 (tk) , ω0 (tk+) = ω0 (tk) ,

X (tk+) = ω0 (tk+) + ω1 (tk) = X (tk) .

(6) Set h(T ) = 0 and for tk = [(Nt − 1) 1t, . . . , 1t, 0], we have

h (tk) = h (tk+1) + (A (tk) ∗ h (tk+1) + 1) ∗ 1t.

4. Illustrative examples

This section has four objectives. First, the optimal strategies for the inventory model with and without VaR constraint
are presented. Second, the results of the (s, S) models are compared. Third, the behaviors of the optimal policies under VaR
constraint are illustrated. Finally, the impacts of parameters including ordering, selling and holding costs are discussed.

A matlab program was written to implement the above procedure. The time horizon we considered is one year, T = 1.
We assume the firm evaluates the VaR constraint once perweek, whichmeans that1t ≈ 1/52. The parameters in the utility
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Fig. 9. Compare the inventory level with and without VaR constraint.

Fig. 10. VaR sequence at different time.

function are taken to be δ = 0.2, γ = 0.3. For the VaR constraint, the maximum loss is limited to R = 80 with a probability
of k = 0.01. In addition, the parameters of demand rate are assumed to be µD = 1000, σD = 100 and the product price is
P(t) = 2. The initial capital is X(0) = 1600 and the price of thematerial at t = 0 is S1(0) = 1. Finally, the stochastic process
of the price is chosen arbitrarily with σS = 1, µS = 0.25 and the risk free rate is r = 0.05.

4.1. Optimal inventory strategies

The fixed order cost per non-zero order is F = 10 and the proportional selling cost per unit of inventory value is η = 0.2.
Figs. 1 and 2 display the generated time series of the price of rawmaterial S1(t) as well as the demand quantity D1(t) of the
product. Figs. 3 and 4 illustrate the inventory levels, ordering and selling boundaries of the inventorymodelwith andwithout
VaR constraint. From the optimal inventory strategies illustrated in the figures it can be concluded that if the inventory level
is below the ordering boundary, then the manager places an order to raise the inventory value to the optimal level; on
the contrary, if the inventory level is higher than the ordering boundary, then the manager sells the amount of inventory
necessary to reduce the inventory value to the optimal level.
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Fig. 11. Value function V (x, t).

Fig. 12. h (x, t) over x at different time.

4.2. Comparison with the (s, S) model

We compare the inventory level (Fig. 5), the total portfolio value (Fig. 6) and the value function (Fig. 7) between
our optimal model and the classical (s, S) model. Since there is no lead time and the inventory review period is 1t , we
calculate (s, S) as

s = D(t)1t, S = EOQ =


2FD(t)
ζ S1(t)

.

From Fig. 5, we find that the inventory level of the (s, S) model is independent on the price of the raw material (except
at the ordering point), while in the present model the inventory level is positively related to the price sequence. That
coincides with our common sense understanding. Figs. 6 and 7 prove that our optimal model is better than the (s, S) model
from both the aspects of portfolio value and utility value. Fig. 8 depicts the h(x, t) function over x at different times. It
illustrates that h(x, t) changes little for different x values, so our neglect of the derivatives of h(x, t) with respect to x is
reasonable.
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Fig. 13. Inventory level of different order cost.

Fig. 14. VaR for different order cost.

4.3. Effects of the VaR constraint on the optimal inventory policy

This will be compared to the inventory level (Fig. 9) and VaR sequence (Fig. 10) both with and without VaR constraint in
the optimal inventorymodel. The figures show that good control over the investment in the rawmaterial inventory quantity
is achieved and the inventory level is reduced in order to fulfill the VaR constraint. When the VaR constraint is inactive the
portfolio allocation follows the unconstrained solution; as the portfolio value increases, the VaR constraint becomes active
(Fig. 10) and allocates less to the raw material inventory. The points where the constraints become active produce kinks in
the curve, but the risk is well controlled through the VaR constraint. Figs. 11 and 12 depict the value function V (x, t) and
the h(x, t) function over time. Fig. 11 shows that the difference between the value functions in the cases with and without
a VaR constraint is very small. Thus we can conclude that imposing a VaR constraint will not significantly affect the optimal
value function.

4.4. Effects of cost parameters on the optimal inventory policy

This section shows how ordering and holding costs affect inventory policies. As conjectured, the ordering frequency is
reduced when the ordering cost is increased, which is confirmed in Fig. 13. With augmentation of the ordering cost, the loss



S.Y. Wang et al. / Mathematical and Computer Modelling ( ) – 19

Fig. 15. Inventory level for different holding cost.

Fig. 16. VaR for different holding cost.

risk of the total portfolio value is also enlarged, so the VaR constraint becomes active at earlier points in time (Fig. 4). We
conclude from Fig. 5 that when the holding cost increases from 5% to 15%, the inventory level is greatly reduced (see Figs. 14
and 15). The low inventory level directly results in a low VaR level, which is represented in Fig. 16.

5. Conclusion

This paper presented optimal inventory policies under a VaR constraint. By considering the rawmaterial inventories as a
kind of risky investment, we optimized the portfolio consisting of the risk free bank account and the rawmaterial inventory.
The problem is formulated as a continuous time stochastic control problem with fixed ordering costs and proportional
selling and holding costs. We have proven that the optimal problem is reduced to solve the Hamilton–Jacobi–Bellman
equation by applying the dynamic programming technique and the stochastic control theory. The VaR constraint is imposed
continuously to control the risk of the portfolio. The optimal inventory strategy under a VaR constraint is summarized as a
continually reviewed policy (rB, RB, rS, RS). In the end, we proposed a numerical algorithm to solve the constrained optimal
stochastic problem with a power-law utility function. From the numerical results, we find that risk is effectively reduced
where holdings in raw material inventories are optimally decreased.
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