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Abstract. At FSE 2009, Albrecht et al. proposed a new cryptanalytic
method that combines algebraic and differential cryptanalysis. They in-
troduced three new attacks, namely Attack A, Attack B and Attack C.
For Attack A, they explain that the time complexity is difficult to de-
termine. The goal of Attacks B and C is to filter out wrong pairs and
then recover the key. In this paper, we show that Attack C does not pro-
vide an advantage over differential cryptanalysis for typical block ciphers,
because it cannot be used to filter out any wrong pairs that satisfy the ci-
phertext differences. Furthermore, we explain why Attack B provides no
advantage over differential cryptanalysis for PRESENT. We verify our
results for PRESENT experimentally, using both PolyBoRi and Min-
iSat. Our work helps to understand which equations are important in
the differential-algebraic attack. Based on our findings, we present two
new differential-algebraic attacks. Using the first method, our attack on
15-round PRESENT-80 requires 259 chosen plaintexts and has a worst-
case time complexity of 273.79 equivalent encryptions. Our new attack on
14-round PRESENT-128 requires 255 chosen plaintexts and has a worst-
case time complexity of 2112.83 equivalent encryptions. Although these
attacks have a higher time complexity than the differential attacks, their
data complexity is lower.
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1 Introduction

Differential cryptanalysis [6, 7] is one of classic cryptanalytic methods for block
ciphers. Resistance against differential cryptanalysis is a typical design crite-
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rion for new block ciphers. Algebraic cryptanalysis is a general method to at-
tack ciphers. It has been widely used to cryptanalyze many primitives such as
stream ciphers [13, 16], multivariate cryptosystems [19] and in particular block
ciphers [14,15,17,22]. The basic idea of algebraic cryptanalysis is to express the
block cipher as a large multivariate polynomial system of equations. The secret
key of the cipher is the solution of this system of equations. If the system is
very sparse, overdefined or structured, it may be solved faster than a generic
non-linear system of equations. By solving the system of equations for the block
cipher, the key can be recovered with only a few plaintext-ciphertext pairs.

There are several methods to solve these systems of equations, such as com-
puting a Gröbner basis or using a SAT solver. To compute a Gröbner basis,
PolyBoRi [11] can be used. MiniSat [18] is a fast SAT solver. The advantage of
computing a Gröbner basis is that useful equations can be generated, but this
computation is typically slower than using a SAT solver and can more easily run
out of memory.

However, the feasibility of algebraic cryptanalysis against block ciphers still
remains a source of speculation. The main problem is that the size of the cor-
responding algebraic system is so large (thousands of variables and equations)
that it seems infeasible to correctly predict the complexity of solving such poly-
nomial systems. Therefore, algebraic cryptanalysis has so far had limited success
in targeting modern block ciphers.

Recently, some works combining statistical cryptanalysis and algebraic crypt-
analysis were presented [2–4, 20, 26]. Specifically, the combination of differential
cryptanalysis and algebraic cryptanalysis appears to offer an advantage in re-
ducing the data complexity. In [2, 3], Albrecht et al. propose new differential-
algebraic cryptanalytic methods, which they refer to as Attack A, Attack B and
Attack C. In order to describe them, let p denote the probability of the r-round
differential characteristic for an N -round block cipher.

In Attack A, the system of equations consists of the equations of the plaintext
bits, ciphertext bits, and subkey bits, the equations of the key schedule, and
the linear equations resulting from the differential characteristic and the filter
equations of the last (N − r) rounds (i.e. the equations that must hold if the
output difference after round r holds). Attack A recovers the key by solving this
system of equations for each of the about 1/p plaintext-ciphertext pairs.

In Attack B, the same system of equations is used. The longest time to find
that the system of equations is inconsistent, is measured. If this time is exceeded,
a right pair is found with a high probability.

In Attack C, the system of equations only consists of the filter equations
after r rounds for an r-round differential and the key schedule algorithm after
r rounds. The conditions resulting from the differential characteristic and the
conditions from the plaintext to the corresponding ciphertext are omitted in
Attack C. The goal of Attack C in [3] is to filter out wrong pairs by solving
the system of equations using tools such as PolyBoRi or MiniSat, and use the
remaining right pair to recover the subkey bits.
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In differential cryptanalysis, the filtering process can only filter out the wrong
pairs according to the difference values of the ciphertext pairs. That is, after the
filtering process, a lot of wrong pairs may still remain, which may increase the
time complexity to recover the key in the differential attack. However, in At-
tack B and Attack C, Albrecht et al. claim that the right pairs can be identified
with a good probability if the equations after the r-th round of the differential
characteristic are inconsistent. They claim that with their technique, the time
complexity will be lower than in the standard differential attack. Their work re-
ceived a lot of attention in the cryptographic community [5,8,12,21,23], because
it gives hope for the combination of a statistical attack and an algebraic attack.

In this paper, we will revisit the differential-algebraic attack given by Al-
brecht et al., which they applied to PRESENT [9]. We find that Albrecht’s
method cannot filter out most of the wrong pairs satisfying the ciphertexts differ-
ences. However, we will show that wrong pairs that do not satisfy the ciphertext
differences, can easily be filtered out without the algebraic method. Using [3,4],
it is not possible to filter out more wrong pairs than using differential cryptanal-
ysis.

Firstly, we show that Attack C typically cannot be used to filter out wrong
pairs that do not satisfy the difference values of the ciphertexts to improve the
differential cryptanalysis. Secondly, we verify using PolyBoRi and MiniSat2 that
Attack B does not improve the current differential results for the PRESENT
block cipher. The reason is that there are too few usable equations in the system
of equations to derive an inconsistency for the wrong pairs or to find a solution
for the right pairs. Based on our findings, we introduce two new methods that can
more reliably use the right pairs to solve the right key within an acceptable time.
For wrong pairs, no solution will be produced. One method is to fix certain key
bits in the system of equations. This will allow an inconsistency to be derived
faster. Another method is to use more than one plaintext-ciphertext pair to
construct the system of equations.

We apply our attack methods to a reduced-round PRESENT block cipher.
With the first method, we attack 15-round PRESENT-80 with 259 chosen plain-
texts and 273.79 equivalent encryptions in the worst case. The 2R-differential
attack on 15-round PRESENT-80 has a data complexity of more than 259 and
a time complexity of less than 262 memory accesses. Therefore, the time com-
plexity of the differential-algebraic attack for PRESENT-80 is much larger than
that of the differential attack, but the data complexity is lower and the key does
not have to be the same for every pair. If the number of chosen plaintext pairs
that the attacker can obtain is limited, the algebraic-differential attack might
be the only feasible attack. Note, however, that more rounds can be attacked
in the case of PRESENT-80 using differential cryptanalysis (16 rounds instead
of 15 rounds). We also provide a new attack on 14-round PRESENT-128 with
a data complexity of 255 chosen plaintexts and a worst-case time complexity of
2112.83 equivalent encryptions.



4

With our second method, the time complexity will be larger than with the
first method for 15-round PRESENT-80. It is an open question whether the
second method can offer an improvement for other block ciphers.

Our work also points out which equations are important in the differential-
algebraic attack. With pure algebraic cryptanalysis, a 5-round PRESENT block
cipher [15,22] can be attacked. Compared to this result, our differential-algebraic
attack can attack more rounds, but the data complexity will be higher than that
for the pure algebraic attack.

This paper is organized as follows. Section 2 describes Albrecht’s differential-
algebraic attack. In Sect. 3, we show why Attack C cannot filter out more wrong
pairs than differential cryptanalysis for most block ciphers. We verify using Poly-
BoRi and MiniSat2 that Attack B cannot improve the differential cryptanalysis
of the PRESENT block cipher. In Sect. 4, we present two methods that can be
used to successfully solve the right key with the right pairs. Our attack methods
are then applied to a reduced-round PRESENT block cipher. We conclude the
paper in Sect. 5.

2 Description of Albrecht’s Differential-Algebraic Attack

In [2, 3], Albrecht et al. proposed three types of attacks that combine algebraic
techniques with differential cryptanalysis. They are referred to as Attack A,
Attack B and Attack C. We now describe these three types of attacks.

Attack A. For an r-round differential characteristic ∆ = (δ0, δ1, . . . , δr), the
probability of the differential characteristic is denoted by p. For a pair of plain-
texts (P ′, P ′′), where P ′⊕P ′′ = δ0, and the corresponding ciphertexts (C ′, C ′′),
two systems of equations F ′ and F ′′ are constructed under the same encryption
key K. With the differential characteristic, the following linear equations are
constructed:

X ′

i,j ⊕X ′′

i,j = ∆Xi,j → ∆Yi,j = Y ′

i,j ⊕ Y ′′

i,j ,

where X ′

i,j and X ′′

i,j are the j-th bit of the input to the S-box layer in round i
for the systems F ′ and F ′′ respectively. The corresponding output bits are Y ′

i,j

and Y ′′

i,j . The values resulting from the differential characteristic are ∆Xi,j and
∆Yi,j . The linear expressions corresponding to bits of active S-boxes hold with
some non-negligible probability. For the non-active S-boxes, the following linear
relations also hold with non-negligible probability:

X ′

i,j ⊕X ′′

i,j = 0 = Y ′

i,j ⊕ Y ′′

i,j .

If the r-round differential characteristic is used to recover the key for N rounds,
the differences from the (r + 1)-th round to the N -th round can be derived from
the output difference of the r-th round. Theses differences after the r-th round
are described by equations. Attack A combines the two systems of equations F ′

and F ′′, the above linear relations resulting from the differential characteristic
and the equations from the difference values after round r to produce the system
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of equations F that holds with probability p. If about 1/p systems corresponding
to 1/p pairs of plaintext-ciphertext can be solved, a right pair is expected to
be found which can then be used to obtain the right key. However, the time
complexity to solve the system about 1/p times may be very high.

Attack B. Attack B uses the same system equations as Attack A to filter out
the wrong pairs. In a differential attack, the ciphertext difference values are
commonly used to filter out wrong pairs. However, in Attack B, by measuring
the time t it maximally takes to find that the system is inconsistent, it is assumed
that a right pair has been identified with high probability if a time t has elapsed
without finding an inconsistency. More specifically, Attack B assumes that ∆Y1,j

holds with a high probability after time t has elapsed. With the remaining pairs,
the subkey bits involved in the active S-boxes in the first round can be recovered.
An alternative form of Attack B is to recover key bits from the last round. It is
assumed that if time t passes for a given plaintext-ciphertext pair, a right pair
has been found. In this case, some subkey bits in the last rounds will be fixed,
and then it is checked whether time t still passes without contradiction. The
time to find an inconsistency or a reduced-round PRESENT block cipher was
measured in Appendix C of [3].

Attack C. In Attack C, the differential is used instead of the differential char-
acteristic as in Attack B. If the r-round differential δ0 → δr is used to recover the
key for N rounds, the system of equations only consists of the equations resulting
from the round functions from round (r + 1) to round N , the relations for the
difference values from the (r + 1)-th round to the N -th round, and the equations
of key schedule from the (r + 1)-th round to the N -th round. In this system of
equations, there are no equations to restrict the relations between the plaintext
and the corresponding ciphertext, and there are no equations for the difference
values from the first round to the r-th round. By solving the system of equations
and waiting for a fixed time t, a contradiction can be found in the system of
equations. If one tested pair did not produce a contradiction after a fixed time,
it is assumed to be a right pair satisfying the differential. Then with the right
pair, the partial information for the subkey bits can be recovered. Appendix D
in [3] measured the time to find an inconsistency for a reduced-round PRESENT
block cipher. Based on this measured time, attacks on 16-round PRESENT-80,
17, 18 and 19 rounds of PRESENT-128 block cipher were given in [2, 3].

3 Inapplicability of Albrecht et al.’s Attacks

3.1 Inapplicability of Attack C

In this section, we will show that Attack C typically cannot be used to filter out
the wrong pairs satisfying the difference values of the ciphertexts. Therefore,
the right pairs cannot be identified and the key cannot be recovered. Moreover,
Attack C can not filter out more wrong pairs than differential cryptanalysis
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to improve the differential cryptanalysis. As in the previous description, the
system of equations in Attack C consists of the equations resulting from the
round functions from round (r + 1) to round N , the relations resulting from the
difference values from the (r + 1)-th round to the N -th round, and the equations
of key schedule from the (r + 1)-th round to the N -th round. Let C ′

i and C ′′

i

be the i-th bit of ciphertext pair C ′ and C ′′ respectively, and ∆Ci is the i-th
bit of the difference value of ciphertext pair C ′ and C ′′. We then classify these
equations into three groups, Group A, Group B and Group C.

Group A. The linear equations resulting from the difference values of cipher-
texts corresponding to the non-active S-boxes in the last round are

∆Ci = C ′

i ⊕ C ′′

i = 0 ,

where the i-th bit position corresponds to an output bit of any non-active S-box.

Group B. The equations resulting from the difference values of ciphertexts
corresponding to the active S-boxes in the last round are

(∆Ci1 ‖ ∆Ci2 ‖ · · · ‖ ∆Cia
) =

(

C ′

i1
‖ C ′

i2
‖ · · · ‖ C ′

ia

)

⊕
(

C ′′

i1
‖ C ′′

i2
‖ · · · ‖ C ′′

ia

)

= δN , δN ∈ ΓN ,

where i1, i2, . . . , ia correspond to output bits of the active S-boxes, and ΓN is
the set of the ciphertext difference values.

Group C. The remaining equations are the equations resulting from the round
functions from round (r + 1) to round N , the relations resulting from the differ-
ence values from the (r + 1)-th round to the (N−1)-th round, and the equations
of key schedule from the (r + 1)-th round to the N -th round.

If a plaintext-ciphertext pair satisfies all the equations in Group A, Group B
and Group C, it must be a right pair for the given differential. In the differential
attack, the wrong pairs that do not satisfy the equations in Group A and Group B
are easy to filter out using a look-up table combined with a time-memory trade-
off. Because the equations in Group C involve unknown subkey bits, they cannot
easily be used to filter out the remaining wrong ciphertext pairs after the filtering
process with the ciphertext differences. In Attack C, Albrecht et al. wish to
measure the maximum time t to identify a pair as a wrong pair with all the
equations in Group A, B and C. In fact, the equations in Group A and Group B
can easily be used to find a contradiction because they are only related to the
ciphertext difference values. For a typical block cipher, it is impossible to find
contradictions for the equations in Group C. To understand why this is the case,
we claim the following.

Claim 1. If there is a wrong ciphertext pair that satisfies all the equations in
Group A and Group B but does not satisfy the equations in Group C, it is
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impossible for a typical block cipher to find a contradiction for the equations in
Group C.

Proof. We consider a block cipher based on a substitution-permutation network
(SPN). For other structures (Feistel, Generalized Feistel,...), a similar proof can
be given. We assume that the difference value of the ciphertext pair satisfies
the equations in Group A and Group B, but does not satisfy the equations in
Group C. First, we will prove Claim 1 for a 1R-attack and extend the proof to
an sR-attack4 (s = 1, 2, 3, . . .).

In a 1R-attack, the wrong ciphertext pair satisfies the output difference values
of all non-active and active S-boxes in the last round, but does not satisfy the
input difference of some active S-boxes in the last round. In most SPN block
ciphers, after the S-box layer in the last round, the whitening subkeys will be
XORed.

Let us introduce the shortened notation

X ′

i ← X ′

i,j1
||X ′

i,j2
|| . . . ||X ′

i,jm

,

where X ′

i,j is the j-th bit of the input to the S-box layer in round i. We can then
describe the round function for the last round as follows:

Y ′

N = S[X ′

N ] , C ′

N = Y ′

N ⊕KN ,

Y ′′

N = S[X ′′

N ] , C ′′

N = Y ′′

N ⊕KN ,

where X ′

N and X ′′

N are the inputs of the S-box layer S in the last round for the
system F ′ and F ′′ respectively, and Y ′

N and Y ′′

N are the corresponding outputs.
The values C ′

N and C ′′

N are the ciphertext bits, and K ′

N is the whitening subkey
in the last round.

We now consider Fig. 1. Under the right key, the wrong ciphertext pair
(C ′ ⊕ Z,C ′′ ⊕ Z) will result in the output difference of the S-box Ωe and the
input difference of the S-box Ωw, however, the right pair (C ′, C ′′) will result
in the output difference and the input difference for the S-box as Ωe and Ωr

respectively. As the subkey bits in the above equations are unknown variables,
we will solve the following system of equations,

X ′

N ⊕X ′′

N = Ωr.

We can obtain

S−1[Y ′

N ]⊕ S−1[Y ′′

N ] = Ωr,

where S−1 denotes the inverse S-boxes Layer. Then we have

S−1[C ′

N ⊕KN ]⊕ S−1[C ′′

N ⊕KN ] = Ωr .

4 An sR-attack means that the r-round differential is used to recover the key for (r+s)
rounds of the block cipher. We require in this paper that s ≪ N , which is the case
for typical differential attacks.
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S

KN

C′

X ′

S

C′′

X ′′

Ωr

ΩeY ′ Y ′′

KN

∆C

(a) Right pair, right key

S

KN ⊕ Z

C′ ⊕ Z

X ′

S

C′′ ⊕ Z

X ′′

Ωr

ΩeY ′ Y ′′

KN ⊕ Z

∆C

(b) Wrong pair, wrong key

Fig. 1. It is not possible to detect that (C′ ⊕Z, C′′ ⊕Z) is a wrong pair (see Claim 1).

Because the right pair always can produce the difference from Ωr 7→ Ωe for
the active S-boxes, there is at least one pair of input values (X ′

r,X
′′

r ) and the
corresponding output values (Y ′

r , Y ′′

r ) satisfying the following equations:

X ′

r ⊕X ′′

r = Ωr, Y ′ ⊕ Y ′′ = Ωe .

We have
S−1[Y ′

r ]⊕ S−1[Y ′′

r ] = X ′

r ⊕X ′′

r = Ωr.

For the wrong pair (C ′ ⊕Z,C ′′ ⊕Z), let the whitening subkey in the last round
satisfy the following equations:

C ′

N ⊕ Z ⊕KN = Y ′

r , C ′′

N ⊕ Z ⊕KN = Y ′′

r .

The resulting wrong whitening subkey KN ⊕ Z in the last round can make
the wrong pair (C ′ ⊕ Z,C ′′ ⊕ Z) produce the right input difference Ωr, so the
wrong pair (C ′⊕Z,C ′′⊕Z) cannot be filtered out with the system of equations
in the last round.

The proof for 1R-attack is helpful to understand the idea. The analysis of
the sR-attack works in a similar way. As stated by Biham and Shamir [7] (and
similarly by Selçuk [24]):

“Each surviving pair suggests several possible values for [the subkey] bits. Right
pairs always suggest the correct value for [the subkey] bits (along with several
wrong values), while wrong pairs suggest random values [for the subkey bits].”

This statement is true for typical block ciphers. Therefore, any remaining wrong
pair must produce some solutions for the subkey satisfying the difference values
in the last s-round. The solution may be the right subkey or the wrong subkey.
Thus, it is impossible for most block ciphers to produce a contradiction for the
sR-attack in the above s-round equations.

The equations for the key schedule may lead to a contradiction in Group C for
the derived subkey value for the last s rounds, but the number of the subkey bits
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involved in the last s rounds is usually not large enough to produce a contradic-
tion, assuming the key schedule is random. However, assume that the equations
for the key schedule result in a contradiction for the subkey values of the last s
rounds. Then, this contradiction holds for all values of the subkeys. That is, the
contradiction is independent of the subkey values. The contradiction must be
a contradiction on the difference of the ciphertext pair: a contradiction on the
values of the ciphertext pair cannot appear because the ciphertext is calculated
as C = YN ⊕KN . Therefore, this contradiction can be included into Group A
or Group B. Because the differential cryptanalysis attack uses the equations of
Group A and Group B to filter the ciphertext values, an inconsistency in the
key schedule does not improve the differential attack. ⊓⊔

In order to verify Claim 1, we tested the filtering time for different values
of N and r of the PRESENT block cipher. In our tests, we constructed wrong
ciphertext pairs that only satisfy the equations in Group A and Group B, but
do not satisfy the equations in Group C when evaluated on the correct key. We
used the source code provided by Albrecht [1] to apply Attack C with PolyBoRi-
0.6 and MiniSat2. We performed a Gröbner basis computation to generate the
filtering equations from the (r + 1)-th round to the (r + 4)-th round for the dif-
ferential characteristic (2 ≤ r ≤ 14) for PRESENT-80. These filtering equations
can speed up the procedure of producing the contradiction.

However, there is no contradiction for any ciphertext pair with PolyBoRi-0.6
after six hours of computation. MiniSat2 always obtained the wrong solution
for the key. In Table 1, we list these test results. For the wrong pairs under the
right key, the wrong solution can be obtained within t seconds. We tested 20
wrong pairs for different values of r and N , and list one example of a wrong
pair (P ′, P ′′) and the corresponding right key K. Due to space limitations, we
only present the difference values for the wrong pair in the last row of Table 1
and the differential characteristic for the right pair in Table 2. In Table 2, the
output difference for the wrong pair of the r-th (r = 12) round is not equal to
the output difference of the characteristic, but the output difference of the 13-th
round is equal to the output difference of the characteristic. Therefore, this is a
wrong pair.

At the same time, we construct the wrong ciphertext pairs for PRESENT-80
which do not satisfy the equations in any Group, the contradiction can be pro-
duced quickly and the filtering time is listed in Table 3. In addition, we construct
some wrong ciphertext pairs that only satisfy the equation in Group A, the time
to produce the contradiction is listed in Table 4. Moreover, we use a look-up ta-
ble combined with a time-memory trade-off in differential cryptanalysis to filter
out these pairs. As a result, our filter is more efficient than Attack C.

The computer we used is an IBM X3950 M2 with a CPU clock frequency of
2.4 GHz and 64GB RAM. From Tables 3 and 4, our test time with PolyBoRi
approaches the corresponding time in Appendix D of [3], but our tested time with
MiniSat2 is greater. The main reason is that our CPU is not same as Albrecht’s.
However, we can deduce that the wrong pairs Albrecht et al. used are wrong
pairs that do not satisfy the equations in Group A or Group B, so they did not
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filter out wrong pairs that do satisfy the equations in Group A and Group B.
Furthermore, even if Attack C is used as a filter for wrong pairs that do not
satisfy the equations in Group A and Group B, its efficiency is much lower than
the filter used in differential cryptanalysis. This shows that Attack C does not
provide an advantage over differential cryptanalysis for most block ciphers.

Using Group A and Group B in a Differential Attack. We now clarify
in more detail how the equations of Group A and Group B can be used in a
differential attack. We consider two types of differential attacks:

(a) By generating a table of all possible ciphertext differences (corresponding to
all solutions to the equations of Group A and Group B), wrong pairs can
easily be filtered out. Because key counters will be used for the subkey bits
corresponding to the active S-boxes, the number of output differences is less
than the number of key counters required. Therefore, the table of all possible
ciphertext differences provides only a relatively small overhead.

(b) In the filtering process, for each pair of ciphertexts (C ′, C ′′), a table is made
of all possible input differences for the last round. This table does not depend
on the value of the subkey bits in the last round. If we do not find a valid
input difference for a particular pair of ciphertexts, this pair is identified as a
wrong pair (i.e. it does not satisfy the equations of Group A and Group B).
In this way, it is only necessary to make table of all input differences, and
not all ciphertext differences. Typically, the table of all input differences
should be small. For the remaining pairs, subkey bits in the last round will
be guessed (instead of using key counters), to filter out pairs. For a wrong
key, no pairs will remain, but the right pair will remain for the right key.

Note that (b) is in fact a time-memory trade-off applied to (a). In both (a) and
(b), if output differences are invalid for some active S-boxes, they can be filtered
using smaller tables. Then, the table that is described in (a) and (b) will be used
to filter out the remaining pairs. In the next paragraph, we describe in detail
how (a) can be used for a 2R attack on PRESENT. To construct a filter for a
3R and 4R attack on PRESENT, (b) can be used.

Relation to the Work of [4]. The equation system that Albrecht et al. set up
in [4], is similar to the system of [3], except that the ciphertext bits (C ′

i and C ′′

i )
are variables instead of fixed values. This equation system is used to compute a
Gröbner basis for PRESENT up to degree D = 3 using PolyBoRi. Polynomials
that contain non-ciphertext variables are removed.

The resulting equations are used as a first filter for the ciphertext pairs.
The probability p1 that a random ciphertext pair passes the first filter, is esti-
mated by Albrecht et al. as p1 ≈ 2−50.669 for a 2R-attack on PRESENT-80 and
PRESENT-128. Afterwards, [4] uses Attack C to filter out the remaining pairs.
They estimate the total filtering probability p2 ≈ 2−51.669 for PRESENT-80 and
p2 ≈ 2−51.361 for PRESENT-128.
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For a 2R-attack on PRESENT, it is straightforward to write a fast program
to compute the total number of ciphertext differences. We find that 11664 ≈
213.51 ciphertext differences are possible, and store them in a small table. This
results in the accurate filtering probability of pa = 213.51/264 = 2−50.49 for
both PRESENT-80 and PRESENT-128. When we derive the probability of p1

ourselves, using the equations in [4, Fig. 2], we find that p1 = p2 = pa = 2−50.49.
This confirms our result, and shows that the calculation of p1 and p2 in [4]
is not correct. The accurate filtering probability pa is slightly lower than the
probability of the rough filter used by Wang [25].

By storing the output differences in a small table, we can easily filter out
the wrong ciphertext pairs without using the algebraic method. Furthermore,
we calculate that the reinterpretation of Attack C in [4] as a technique to filter
ciphertext differences, does not result in a better filter. Therefore, Attack C
does not provide an advantage over differential cryptanalysis in the case of a
2R-attack on PRESENT.

For a 3R-attack and a 4R-attack on PRESENT, we used a look-up table
combined with a time-memory trade-off to filter out 1000 randomly generated
wrong pairs. We note that although the filtering probability of our filter and
Attack C is same, our filter is much faster than Attack C.

3.2 Inapplicability of Attack B to PRESENT

Attack B involves two other types of equations, besides the equations in Group A,
Group B and Group C in Attack C. The first type of equations is the linear
equations derived from the difference values from round 1 to round r, and the
second type of equations is the round functions and the key schedule algorithm
from round 1 to round r. In this way, the restriction from the plaintext to the
corresponding ciphertext was added. Although we cannot show that Attack B
does not provide an advantage over differential cryptanalysis for any block cipher,
we make the following two observations for Attack B:

Observation 1. If N approaches the maximum number of rounds that can be
attacked with a pure algebraic attack, the linear equations for the inner rounds
and the round functions restricting the relation between the plaintext and the
ciphertext are all usable to solve the system of equations. There are three possible
subcases:

1. If the key size is much larger than the block size, for a wrong pair, the
probability that a solution can be found for the key in the system of equations
is non-negligible. In this way, there is a non-negligible probability that a
contradiction for the wrong pairs cannot be produced. Attack B will likely
fail.

2. If the key size is smaller than the block size, for a wrong pair, the probability
that no solution can be found for the key in the system of equations is high. In
this way, the contradiction for the wrong pairs can be produced and the right
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solution for the right pair can be found with a high probability. Attack B is
likely to succeed.

3. If the key size approaches the block size, Attack B can either succeed or fail.

Observation 2. If N is much larger than the maximum number of rounds that
can be attacked with a pure algebraic attack, the linear equations for the inner
rounds and the round functions and the key schedule algorithm for the inner
rounds are not crucial to solve the system of equations. Only the equations for
the outer rounds are relevant. We consider two subcases.

1. If there are few active S-boxes in the outer rounds, the restriction condi-
tions are so few that a contradiction will be produced with low probability.
Attack B will likely fail.

2. If there are many active S-boxes in the outer rounds, there are enough re-
striction conditions to derive a contradiction with high probability. Attack B
is then likely to succeed.

In order to verify our observations for a small number of rounds, we apply
Attack B to PRESENT-80 with for N = 4, r = 3. The block size and the key
size for PRESENT-80 are 64 and 80, respectively. We have tested 10 wrong pairs
satisfying the filter conditions in Group A and Group B, but not satisfying the
conditions in Group C. We found that among 10 wrong pairs, only one wrong
pair was filtered out within 1500 seconds. The reason is that the key size is larger
than the block size.

As N and r increase, we ran several tests and list the results in Table 5. We
identify different differential characteristics for the PRESENT-80 block cipher.
For any value of r we tested, the characteristics have two active S-boxes from
round 1 to round r. There will be two active S-boxes in round (r + 1) and 6, 7
or 8 active S-boxes in round (r + 2). Round r + 3 has at least 12 active S-boxes
and round (r+4) has 16 active S-boxes. We use MiniSat2 to filter out the wrong
pairs. For N = r, N = r + 1 or N = r + 2, no wrong pairs were filtered out. For
N = r +3, very few wrong pairs were filtered out. Although for N = r +4, more
wrong pairs were filtered out compared to N = r + 3, lots of wrong pairs still
remain. The reason is that there are more active S-boxes in round (r + 4) than
in round (r+3). This result is consistent with Table 10.8 of [2], where N = r+4
is used as well.

Further experiments are listed in Table 5. In Table 5, the plaintext pairs
are all wrong pairs and we cannot filter them out within 1500 seconds. Even
if wrong pairs can be filtered out after 1500 seconds, the time complexity of
Attack B would become much higher than differential cryptanalysis. Due to
space limitations, we only present the difference values for the pair in the last
row of Table 5 and the characteristics for the right pair in Table 6. For the pair
in Table 6, the output difference of the r-th (r = 14) round is same as that
of the characteristics, but the difference values from round 2 to round 10 are
different from that of the characteristic. Therefore, this pair is a wrong pair. We
also confirmed experimentally that Attack B cannot filter out wrong pairs that
do not satisfy the output difference for the first round.
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Observation 2 can be derived from the following statements:

1. SAT solvers use a tree-structured search algorithm, where branching is per-
formed by heuristic guesses based on non-algebraic criteria. In order to re-
duce the search time, we must minimize both the average search depth and
the dependencies of the unknown variables. In this way, those equations
should be identified that tend to result in an inconsistency sooner.

2. In the system of equations in Attack B, the equations that lead to incon-
sistencies the soonest, are the equations related to the difference values, the
round functions in the outer rounds such as the previous few rounds and the
later few rounds. In contrast, the equations related to the difference values
and the round functions in the inner rounds do not easily lead to inconsisten-
cies. Therefore, the equations in the inner rounds can be removed in order
to reduce the solving time.

3. Since the equations for the difference value in the outer rounds are very
important for the solving process, we must obtain enough such equations to
ensure there are enough restrictions for the dependent unknown subkey bits.
If there are fewer active S-boxes in the outer rounds, there are not enough
restrictions on the involved unknown subkey bits to obtain the right solution
or filter out the wrong solutions. In other words, if there are more active S-
boxes in the outer rounds, the solving process or the filtering process will be
more efficient.

It is noted that if there are more active S-boxes in the outer rounds, the
filtering process will be efficient, but it is not favorable to filter out the wrong
ciphertext pairs directly according to the difference value of the ciphertexts. This
will further increase the time complexity.

To overcome these problems, we propose the following two methods for the
differential-algebraic attack. The first method is to fix certain key bits to ensure
with a high probability that the right key can be recovered from the right pair.
The second method has the same goal, but adds some extra equations. We will
describe these two attacks in Sect. 4.

4 New Differential-Algebraic Attacks

In Sect. 3, we showed that neither Attack C nor Attack B can improve the
differential cryptanalysis of the PRESENT block cipher. We also explained why
Attack C does not provide an improvement for most block ciphers. The reason
is that the attacks cannot filter out the wrong pairs satisfying the ciphertext
difference values to identify the right pair. We present two methods that can
find the right solution in acceptable time t, based on the system of equations
constructed in Attack B. For the right pair, we can solve the right key within
time t. If a pair cannot be filtered within time t, we discard it and consider
another pair.



14

Attack 1 Based on Fixing Certain Key Bits. According to the key schedule
algorithm and the outer rounds of the characteristic, fix the key bits related
to the active S-boxes in the top rounds or the bottom rounds. In this way,
inconsistencies can be found sooner. As we showed in Sect. 3.2, Attack B cannot
be used to filter out most wrong pairs. Therefore, our attack fixes key bits in
all tested pairs. The idea of fixing key bits was already proposed in [3]. The
difference with Attack 1 is that we recover the entire key, and not only subkey
bits from the last rounds.

Attack 2 Based on Multiple Pairs. Because the equations for the differ-
ence values in the outer rounds lead to inconsistencies sooner, appending more
such equations will be helpful to find the inconsistency. Using multiple plaintext-
ciphertext pairs to construct more equations of outer rounds will make the solv-
ing process or the filtering process more efficient. For example, if two plaintext-
ciphertext pairs are used to perform the attack, the number of such equations
will double. This means that if we use two right pairs to solve the system of
equations, the right key can be found. However, if there is at least one wrong
pair involved in the two pairs, the key cannot be found. In addition, if we use
three plaintext-ciphertext pairs, the efficiency can be improved further. However,
as the number of pairs increase, the number of combinations of pairs grows expo-
nentially and the time complexity increases. So the number of pairs to construct
the system of equations should not be too high.

Our experiments show that some wrong pairs can be filtered out quickly, but
others cannot. However, if most of the wrong pairs cannot be filtered out, the
attack becomes infeasible. So we attack the PRESENT block cipher with the
above approaches and try to solve the right key with the right pairs.

4.1 Attack 1 for the PRESENT block cipher

We now apply Attack 1 to the PRESENT block cipher. The results are listed
in Table 7. If we use r = 13 to attack N = 15 rounds of PRESENT-80, the
probability of the characteristic is 2−58 (using the last 13 rounds of the 14-round
characteristic of [25]). The filtering probability according to the difference value
for the ciphertext pair is 2−50.49 (as calculated at the end of Sect. 3.1). The
CPU clock frequency is 2.4 GHz. From Table 7, we find that it takes at most
523.16 s to find an inconsistency. The table also shows that we should guess at
least 34 key bits, so the time complexity will be 234 ·258−50.49 ·2.4 ·109 ·523.16 =
234 · 27.51 · 231.16 · 29.03 = 281.70 CPU cycles. We assume that a single encryption
costs at least 16 CPU cycles per round5. Therefore, the time complexity for our
attack (273.79 equivalent encryptions) is better than exhaustive search (280).6

The data complexity is 259 chosen plaintexts. For the 2R-differential attack, the

5 The bitsliced implementation of PRESENT by Albrecht achieves 16.5 cycles per
round [2].

6 We used 20 trials to obtain time t. Although more trials may result in a longer time
t, we expect that our attack will still be much faster than exhaustive search.
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data complexity must be higher than 259 chosen plaintexts, because then one
right plaintext-ciphertext pair is not sufficient to recover the key with a high
success probability. However, the time complexity of the 15-round 2R-differential
attack must be lower than 262 memory accesses (the time complexity given
for the 16-round differential attack in [25]). Depending on the processor, one
memory access requires about 2 to 10 CPU cycles. This means the complexity
of the differential-algebraic attack for PRESENT-80 is much higher than that
of the differential attack, but the data complexity is lower. Depending on how
many chosen plaintext-ciphertext pairs the attacker can obtain, the algebraic-
differential attack might however be the only feasible attack.

For PRESENT-128, we could not identify the right pairs for r > 12 using
the method from [2]. If we use the 12-round differential characteristic with the
probability 2−54 to attack 14-round PRESENT-128, the time complexity will be
about 278+54−50.49+31.16+7.97 = 2120.64 CPU cycles, or about 2112.83 equivalent
encryptions. The data complexity is 255 chosen plaintexts.

4.2 Attack 2 for the PRESENT block cipher

We respectively use two pairs and three pairs to attack the PRESENT. The test
results are listed in Tables 8 and 9. For the right pairs, the right key can be
solved within t seconds. We ran 10 trails for different values of r and N , and one
example of right pairs {(P ′

0, P
′′

0 ), (P ′

1, P
′′

1 )} or {(P ′

0, P
′′

0 ), (P ′

1, P
′′

1 ), (P ′

2, P
′′

2 )} and
list the corresponding right key K. As in Attack 1, we can solve the right key
from the right pairs, but the wrong pairs cannot always be filtered out. So we
perform the test with the right pairs to recover the right key. We obtained the
following results:

1. For N = r + 3 or N = r + 4 rounds of PRESENT-80 with the r-round
differential characteristic, the right key can be solved with the two right
pairs. Some test results are listed in Table 8. However, because we use two
right pairs, this means that if m pairs of ciphertexts remain after filtering
according to the ciphertext difference, we must consider

(

m

2

)

combinations

of two pairs. However, the solving time for
(

m

2

)

combinations of two pairs
becomes unacceptable. If we attack 16-round PRESENT-80 with a 13-round
differential characteristic with the probability 2−58, we choose 259 pairs of
plaintexts and the filtering probability with the ciphertext difference is about
2−25.711, so the number of the remaining ciphertext pairs is about 233.289

which will be combined to produce 265.578 combinations of two pairs. The
time complexity will be 265.578 · 231.16 · t > 288. We have not identified the
right pairs for r = 13, so we cannot test the time for t and it should be more
than 100 seconds according to the test time for r < 13. Therefore, Attack 2
is slower than exhaustive search.

2. For N = r + 2 rounds of PRESENT-80, only few combinations of two right
pairs can be used to solve the right key, so the success rate is too low.

3. For N = r + 4 rounds of PRESENT-128 with the r-round differential, only
few combinations of two right pairs can be used to recover the right key and
the success rate is also very low.
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4. For N = r+3 rounds of PRESENT-80 and N = r+4 rounds of PRESENT-128
with the r-round differential, the right key can be solved with the three right
pairs. The test results are listed in Table 9. However, because we use three
pairs, this means that if m pairs of ciphertexts remain, there are

(

m

3

)

com-

binations of three pairs. However, the solving time for
(

m

3

)

combinations of
three pairs becomes unacceptable.

From the above results, Attack 2 (using two pairs or three pairs for PRESENT)
has no advantage over Attack 1 (fixing certain key bits). Maybe these attacks
have some advantage for other ciphers. For example, if there would be more ac-
tive S-boxes involved in the outer rounds in PRESENT, maybe we could obtain
the right key using two right pairs with a high success probability.

5 Conclusion

The cryptanalytic method combining differential cryptanalysis and algebraic
cryptanalysis has been a focus topic in the field of the cryptanalysis of sym-
metric ciphers. At FSE 2009, Albrecht et al. propose new differential-algebraic
attacks, which they claim improves the results of the differential cryptanalysis.
In this paper, we revisited Albrecht’s cryptanalytic method and identified that
the time complexity to identify the right pairs is not correct. Firstly, we showed
that Attack C cannot be used to filter out the wrong pairs satisfying the differ-
ence value of the ciphertexts for most block ciphers to improve the differential
cryptanalysis. We identified some important properties for Attack B and showed
that Attack B does not provide an advantage over differential cryptanalysis for
PRESENT. Faugère et al. presented a similar attack for DES, however, they
could only attack 8-round DES with a 5-round differential characteristic. Their
attack for DES is accordant with our Observation 1 in Sect. 3.2 because the key
size for DES is smaller than the block size.

In this paper, we introduce two new methods to perform a differential-
algebraic attack. The first method is to fix certain key bits to solve the system of
equations and the second method is to use multiple pairs to construct the system
of equations. This method is more efficient for the PRESENT block cipher and
its data complexity is better than that of the differential attack, but the time
complexity is worse. Although we did not significantly improve the results of
the differential cryptanalysis for PRESENT, our work indicates which equations
are important in the differential-algebraic attack. For the differential-algebraic
attack, we obtain the following three conclusions:

1. Compared with the differential cryptanalysis, the differential-algebraic at-
tack can reduce the data complexity, but the time complexity increases.
Compared with the algebraic cryptanalysis, the differential-algebraic attack
can attack more rounds because the relations resulting from the differential
characteristic are very important for the solving process.
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2. In order to make the solving process in the differential-algebraic attack more
efficient, more active S-boxes should be involved in the outer rounds. How-
ever, more active S-boxes will reduce the filtering probability with the ci-
phertext difference and it will increase the time complexity. The lower bound
for the number of the active S-boxes should be used to ensure the system
of equations can be solved reliably. The detailed analysis of this case can be
seen as future work.

3. If the methods to solve systems of equations can be improved, and if the com-
putational power available increases, we expect that differential-algebraic
attacks will gain in importance.
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for their detailed comments and suggestions.
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Table 1. Attack C’s Filtering Test for Wrong Pairs with MiniSat2

N r P ′ P ′′ K t(s)

8-10 7 8b29917c174f21b7 8c29917c174f26b7 2b8bc6ad5d4b869101c2 12.20-12.77

9-11 8 d549bf122a09edfa d249bf122a09eafa 5d05c98dce5da5894fc5 12.26-12.92

10-12 9 f5fc5a0d3979d9d3 f2fc5a0d3979ded3 f53e4ecaf9ce361ee6d7 12.11-13.03

11-13 10 50d752ee7f6017d7 57d752ee7f6010d7 afc238c99ce160d8254b 12.22-12.73

12-14 11 155fdec5b70e8b3a 125fdec5b70e8c3a b544c98fce9474d53925 12.33-12.92

13-15 12 504ad07e763a8289 574ad07e763a8589 a7ece17b6ab73269d7e9 12.01-12.71

N : the round number we attack; r: the round number of the differential; K: right key;
(P ′, P ′′): one example of wrong pairs; t: the wrong solution obtained within t seconds.
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Table 2. Difference Values for Wrong Pair and Right Pair in Attack C

R ∆wrong ∆right R ∆wrong ∆right

I x2 = 7, x14 = 7 x2 = 1, x14 = 1

R1 S x2 = 1, x14 = 1 x2 = 1, x14 = 1 R8 S x0 = 9, x2 = 9 x8 = 9, x10 = 9
R1 P x0 = 4, x3 = 4 x0 = 4, x3 = 4 R8 P x0 = 5, x12 = 5 x2 = 5, x14 = 5

R2 S x0 = 5, x3 = 5 x0 = 5, x3 = 5 R9 S x0 = 1, x12 = 1 x2 = 1, x14 = 1
R2 P x0 = 9, x8 = 9 x0 = 9, x8 = 9 R9 P x0 = 1, x3 = 1 x0 = 4, x3 = 4

R3 S x0 = 4, x8 = 4 x0 = 4, x8 = 4 R10 S x0 = 3, x3 = 3 x0 = 5, x3 = 5
R3 P x8 = 1, x10 = 1 x8 = 1, x10 = 1 R10 P x0 = 9, x4 = 9 x0 = 9, x8 = 9

R4 S x8 = 3, x10 = 3 x8 = 9, x11 = 9 R11 S x0 = 4, x4 = 4 x0 = 4, x8 = 4
R4 P x2 = 5, x6 = 5 x2 = 5, x14 = 5 R11 P x8 = 1, x9 = 1 x8 = 1, x10 = 1

R5 S x2 = 1, x6 = 1 x2 = 1, x14 = 1 R12 S x8 = 9, x9 = 9 x8 = 9, x10 = 9
R5 P x0 = 4, x1 = 4 x0 = 4, x3 = 4 R12 P x2 = 3,x14 = 3 x2 = 5,x14 = 5

R6 S x0 = 5, x1 = 5 x0 = 5, x3 = 5 R13 S x2 = 1,x14 = 1 x2 = 1,x14 = 1

R6 P x0 = 3, x8 = 3 x0 = 9, x8 = 9 R13 P x0 = 4,x3 = 4 x0 = 4,x3 = 4

R7 S x0 = 1, x8 = 1 x0 = 4, x8 = 4
R7 P x0 = 1, x2 = 1 x8 = 1, x10 = 1

Rj: output difference after round j (S: after S-box layer,
P: after permutation layer); ∆wrong: differential value for wrong pair;

∆right: differential value for right pair.

Table 3. Filter Time for Wrong Pairs Not Satisfying Equations in any Group

N r ♯trails PolyBoRi MiniSat2 N r ♯trails PolyBoRi MiniSat2

9 8 20 3.51-3.85 4.06-4.64 13 12 20 4.99-5.34 4.96-5.25
10 8 20 4.89-5.23 7.57-8.44 14 12 20 6.67-6.83 8.86-9.26
11 8 20 7.89-8.41 11.29-12.34 15 12 20 9.69-10.20 12.80-13.15

10 9 20 3.92-4.27 4.55-4.79 14 13 20 5.66-5.78 5.07-5.37
11 9 20 5.32-5.66 8.40-8.66 15 13 20 7.02-7.50 9.08-9.38
12 9 20 6.24-6.59 12.19-12.45 16 13 20 7.99-8.51 12.91-13.58

11 10 20 4.28-4.67 4.73-4.99 15 14 20 6.06-6.18 5.24-5.52
12 10 20 4.75-5.09 8.35-8.59 16 14 20 6.50-6.95 9.04-9.47
13 10 20 6.93-7.05 12.32-12.59 17 14 20 8.48-8.88 13.17-13.77

12 11 20 4.66-5.02 4.87-5.12
13 11 20 6.09-6.42 8.69-8.97
14 11 20 7.41-10.17 12.42-12.75

♯trails: the number of wrong pairs we test;
PolyBoRi: the filtering time in seconds with PolyBori;
MiniSat2: the filtering time in seconds with Minisat2.

Table 4. Filter Time for Wrong Pairs Only Satisfying Equations in Group A

N r ♯trails PolyBoRi MiniSat2

10 8 20 5.07-5.55 8.09-8.53

11 9 20 6.33-6.68 7.34-7.81

12 10 20 6.02-6.45 7.53-8.12
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Table 5. Attack B’s Filtering Test for Wrong Pairs Satisfying Ciphertext Difference
Values with MiniSat2 (Timeout t = 1500 s)

N r P ′ P ′′ K

5-7 4 67279b1efdb93674 60279b1efdb93174 9ad864e12a6ecc872280

6-8 5 cdc43299824183d4 cac43299824184d4 70be32f5dd35396cdbfd

7-9 6 bc887a5de0597dd6 bb887a5de0597ad6 716d9698292707b0b6da

8-10 7 c53f11ab7329e7cf c23f11ab7329e0cf 78bf3977acaffded898a

9-11 8 6d736a36a28d4f93 6a736a36a28d4893 5e7f5234d2063c5dd11d

10-12 9 94bd4ffd6585072e 93bd4ffd6585002e 1e00538c107f7abc4a73

11,12,13 10 f02f740d8d4b6d37 f72f740d8d4b6a37 df76f9fdaf4ead07d9a2

12,13,14 11 85f4ab19cf1dd9ac 82f4ab19cf1ddeac 5d0de0769a874e36d362

13,14,15 12 ca8b8755e65217af cd8b8755e65210af 2d0d71c7a40d3084ac3a

15,16,17 14 934c64486fa9ed41 944c64486fa9ea41 8b1c1828ec601df09214

Table 6. Difference Values for Wrong Pair and Right Pair in Attack B

R ∆wrong ∆right R ∆wrong ∆right

I x2 = 7, x14 = 7 x2 = 7, x14 = 7

R1 S x2 = 1, x14 = 1 x2 = 1, x14 = 1 R8 S x8 = 5, x10 = 5 x8 = 9, x10 = 9
R1 P x0 = 4, x3 = 4 x0 = 4, x3 = 4 R8 P x2 = 5, x10 = 5 x2 = 5, x14 = 5

R2 S x0 = 9, x3 = 9 x0 = 5, x3 = 5 R9 S x2 = 1, x10 = 1 x2 = 1, x14 = 1
R2 P x0 = 9, x12 = 9 x0 = 9, x8 = 9 R9 P x0 = 4, x2 = 4 x0 = 4, x3 = 4

R3 S x0 = 4, x12 = 4 x0 = 4, x8 = 4 R10 S x0 = 5, x2 = 5 x0 = 5, x3 = 5
R3 P x8 = 1, x11 = 1 x8 = 1, x10 = 1 R10 P x0 = 5, x8 = 5 x0 = 9, x8 = 9

R4 S x8 = 9, x11 = 9 x8 = 9, x10 = 9 R11 S x0 = 4, x8 = 4 x0 = 4, x8 = 4
R4 P x2 = 9, x14 = 9 x2 = 5, x14 = 5 R11 P x8 = 1, x10 = 1 x8 = 1, x10 = 1

R5 S x2 = 4, x14 = 4 x2 = 1, x14 = 1 R12 S x8 = 9, x10 = 9 x8 = 9, x10 = 9
R5 P x8 = 4, x11 = 4 x0 = 4, x3 = 4 R12 P x2 = 5, x14 = 5 x2 = 5, x14 = 5

R6 S x8 = 5, x11 = 5 x0 = 5, x3 = 5 R13 S x2 = 1, x14 = 1 x2 = 1, x14 = 1
R6 P x2 = 9, x10 = 9 x0 = 9, x8 = 9 R13 P x0 = 4, x3 = 4 x0 = 4, x3 = 4

R7 S x2 = 4, x10 = 4 x0 = 4, x8 = 4 R14 S x2 = 4, x10 = 4 x0 = 4, x8 = 4
R7 P x8 = 4, x10 = 4 x8 = 1, x10 = 1 R14 P x0 = 9, x8 = 9 x0 = 9, x8 = 9

Rj: output difference after round j (S: after S-box layer,
P: after permutation layer); ∆wrong: differential value for wrong pair;

∆right: differential value for right pair.
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Table 7. Time to Solve Right Key under Some Fixed Key Bits with MiniSat2

Ks N r ♯trails Nk t(s) Ks N r ♯trails Nk t(s)

80 10 10 20 32 45.18-285.20 80 14-17 14 20 36 63.47-120.08
80 11 10 20 32 64.45-564.87 128 10 10 20 79 43.75-288.63
80 12 10 20 32 61.88-591.56 128 11 10 20 78 63.38-821.45
80 13 10 20 32 53.49-497.96 128 12 10 20 75 79.83-966.38
80 11 11 20 33 60.19-151.28 128 13 10 20 72 89.15-751.30
80 12 11 20 33 53.01-316.94 128 11 11 20 79 98.35-662.19
80 13 11 20 33 56.64-528.03 128 12 11 20 79 58.73-483.92
80 14 11 20 33 56.25-104.26 128 13 11 20 79 69.41-805.18
80 12 12 20 34 97.19-487.77 128 14 11 20 71 78.20-891.08
80 13 12 20 34 69.24-680.41 128 12 12 20 82 57.35-115.11
80 14 12 20 34 61.09-110.02 128 13 12 20 82 118.08-668.53
80 15 12 20 34 59.25-77.82 128 14 12 20 78 61.84-251.14
80 13-16 13 20 34 85.54-523.16 128 15 12 20 66 64.86-309.90

Nk: the number of fixed key bits.

Table 8. Time to Solve Right Key using Two Right Pairs with MiniSat2

Ks N r P ′

0, P
′

1 P ′′

0 , P ′′

1 K t(s)

80 12 9 39121b2bffad3bbc, 3e121b2bffad3cbc, 4634342e33 ‖ 132.88-377.13
91f1a75a4f4d33e0 96f1a75a4f4d34e0 0d53e8cd71

80 13 10 67bb6eecd081767c, 60bb6eecd081717c, 6fcaf3033d ‖ 122.00-849.89
6f62c9bd561f718e 6862c9bd561f768e 39296c0f66

80 14 11 c2b3135aa3b8f3b4, c5b3135aa3b8f4b4, 22c587b7b2 ‖ 129.01-213.98
8a43480c3122ab14 8d43480c3122ac14 607cddab90

80 15 12 c2b3135aa3b8f3b4, 125fcb08afed6df3, 155fcb08af ‖ 133.64-141.75
85c6576306a6a545 82c6576306a6a245 ed6af317f1

80 13 9 0c03406225bf97cd, 0b03406225bf90cd, cca9deeb2c ‖ 115.61-133.35
0bbd25aea7c5b0c9 0cbd25aea7c5b7c9 0d98071ca6

80 14 10 9434381cb8083429, 9334381cb8083329, ab7b47fdf8 ‖ 124.22-132.99
0b40a64e215244c6 0c40a64e215243c6 93fb87c9cd

80 15 11 8814d6bea07fd660, 8f14d6bea07fd160, a7d16cda8d ‖ 130.48-144.89
f02e367f419a412e f72e367f419a462e b76ec42756

80 16 12 cbaef2f923614742, ccaef2f923614042, 6b9b4087a6 ‖ 189.26-280.49
b37ee1f334c4207b b47ee1f334c4277b 254f2bbef2
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Table 9. Time to Solve Right Key using Three Right Pairs with MiniSat2

Ks N r P ′

0,P
′

1,P
′

2 P ′′

0 ,P ′′

1 ,P ′′

2 K t(s)

80 11 9 d9591ff50fc1df6d, de591ff50fc1d86d,

f9866c0009f3bf44, fe866c0009f3b844, 66efab8af3 ‖ 177.77-1402.2
0e768137f568779d 09768137f568709d 74afe67553

80 12 10 3a659aa3dc72107c, 3d659aa3dc72177c,
62129df1a637b88f , 65129df1a637bf8f , 2dc9fceff3 ‖ 240.70-578.68
c566bb319010f0df c266bb319010f7df 174f9919c4

80 13 11 383663a9bc01cec5, 3f3663a9bc01c9c5,
88042f67e3b59e95, 8f042f67e3b59995, a0f5a7209b ‖ 247.53-t
c842b19a415d9105 cf42b19a415d9605 b95180a21c (t > 2500)

80 14 12 2ddbc9427defb9ee, 2adbc9427defbeee,
2aa2624e2cb1dede, 2da2624e2cb1d9de, 3200679dd6 ‖ 293.21-408.40
4d19fefd126a29ee 4a19fefd126a2eee 3d29ae18bc

80 12 9 3d84126858c7435e, 3a84126858c7445e,
32a6811bd0c6a32e, 35a6811bd0c6a42e, 5da70ed0b5 ‖ 216.35-239.90
cd66cbdb18c23c55 ca66cbdb18c23b55 13fb14435c

80 13 10 e519cccfa40ce691, e219cccfa40ce191,
e5aa80afcfc216a3, e2aa80afcfc211a3, 72ada6021d ‖ 238.47-258.13
8a179faf87127908 8d179faf87127e08 d2667ab4e5

80 14 11 f5a33b54749b6624, f2a33b54749b6124,
b2f64b6c661d6101, b5f64b6c661d6601, 8ab6e28d86 ‖ 292.15-319.56
2d106b5e6d2b4e24 2a106b5e6d2b4924 9ef6858a87

80 15 12 e6005b48d2abd194, e1005b48d2abd694,
41909dfa1ac196d9, 46909dfa1ac191d9, 393d660706 ‖ 271.31-340.26
0e43381eb485d900 0943381eb485de00 1dbe32c806

128 13 9 9d6902f268514522, 9a6902f268514222, 0578224d0c9eba10 ‖
95d585a882e6e250, 92d585a882e6e550, bb0fd3b56d8b4834 235.64-265.20
2da0d2114f1805c2 2aa0d2114f1802c2

128 14 10 972331fa763f86bd, 902331fa763f81bd, d8ca446899016e69 ‖
50d342a2a6dce17a, 57d342a2a6dce67a, 17641f71e11d09f5 235.16-291.02
efdfd44485f1ee81 e8dfd44485f1e981

128 15 11 76971713b1f0d438, 71971713b1f0d338, 9e3328405c865b25 ‖
aed2ee07ad11dc6d, a9d2ee07ad11db6d, 2201229c273fd1dd 285.00-303.82
e609bfed79d4143b e109bfed79d4133b

128 16 12 eb449a907d31f33e, ec449a907d31f43e, 73fdf364db99c472 ‖
84363465aaddb304, 83363465aaddb404, bb7a8e563b20a1f2 316.21-414.30
e3a2e5866f5814a9 e4a2e5866f5813a9


