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Abstract—The recent surge in popularity of smart hand-
held devices, including smart-phones and tablets, has given
rise to new challenges in protection of Personal Identifiable
Information (PII). Indeed, modern mobile devices store PII for
applications that span from email to SMS and from social
media to location-based services increasing the concerns of
the end user’s privacy. Therefore, there is a clear need and
expectation for PII data to be protected in the case of loss,
theft, or capture of the portable device.

In this paper, we present a novel FUSE (Filesystem in
USErspace) encryption filesystem to protect the removable and
persistent storage on heterogeneous smart gadget devices run-
ning the Android platform. The proposed filesystem leverages
NIST certified cryptographic algorithms to encrypt the data-
at-rest. We present an analysis of the security and performance
trade-offs in a wide-range of usage and load scenarios. Using
existing known micro benchmarks in devices using encryption
without any optimization, we show that encrypted operations
can incur negligible overhead for read operations and up
to twenty (20) times overhead for write operations for I/O-
intensive programs. In addition, we quantified the database
transaction performance and we observed a 50% operation
time slowdown on average when using encryption. We further
explore generic and device specific optimizations and gain
10% to 60% performance for different operations reducing the
initial cost of encryption. Finally, we show that our approach
is easy to install and configure across all Android platforms
including mobile phones, tablets, and small notebooks without
any user perceivable delay for most of the regular Android
applications.

Keywords-Smart handheld devices, Full disk encryption,
Encrypted filesystem, I/O performance.

I. INTRODUCTION

Technology trends in both hardware and software have
driven the hardware industry towards smaller, faster and
more capable mobile hand-held devices that can support
a wider-range of functionality and open source operating
systems. Mobile hand-held devices are popularly called
smart gadgets(e.g. smartphones, tablets, e-book readers).
The smart gadget life-cycle has evolved drastically in recent
years. Nielsen market data trends [9] shows that mobile
devices have lifetimes of approximately 6 months between
generations. Numerous factors influenced the industry to
grow at this fast pace. One of the most important reasons was
the availability of operating systems for mobile handheld
devices that were hardware-agnostic by design.

These new generations of the smart gadget devices such as
the iPhone and Google Android devices are powerful enough
to accomplish most of the tasks that previously required a
personal computer. Indeed, this newly acquired computing
power gave a rise to plethora of applications that attempt to
leverage the new hardware. These include but are not limited
to Internet browsing, email, messaging, social networking,
and GPS navigation.

However, smart gadgets have to come a long way in
terms of security. Organizations have come to realize that
these commercially available smart gadgets will soon have
to serve as an integral part of their operations. This requires
a level of security that allows for security of data at-rest
and on the move to support secure communications. A major
obstacle is that there is a serious lack of National Institute of
Standards (NIST) approved encryption algorithms on these
commercially available smart gadgets. Much less common
is the existence of any encryption techniques that can pass
the strong government validation process in place for any
computing device to be used in an adversarial environment.
Also, the expectation for each individual application to
support encryption runs into the key management problem:
other applications in the system can potentially gain access
to the key and render the encryption useless. Therefore, there
is a need for a practical approach to build common security
libraries that operate at the operating system level and
provide strong encryption. This system has to be ubiquitous
and integrate into the ecosystem of smart gadgets with
minimal maintenance and installation cost.

Encryption however comes at a significant performance
cost. On smart gadgets where resources, like the battery, are
very limited, it is important to keep a low footprint on such
solutions. In this paper, we focus on analysing the perfor-
mance for persistent storage protection using encryption on
smart gadget devices. We use a filesystem encryption which
uses certified cryptographic algorithms to store encrypted
versions of every file in a source directory. The volume key
is decrypted using a password supplied by the user. This
is different from full-disk encryption software because the
protected data is mount in memory at a specified mount point
in the filesystem. Moreover, the features and restrictions
depend on the underlying partition’s filesystem type.

A detailed comparison of a filesystem-encryption over a



kernel-based full-disk encryption is beyond the scope of this
paper. However, we list some of the advantages that applied
to us.

• We were able to leverage NIST validated cryptographic
libraries [6] which are not implemented in kernel-space.

• Our implementation can be extended to different hard-
ware with negligible effort.

• We focus on data encryption without having to deal
with other aspects of filesystem design. Underlying
filesystems like ext3 and yaffs2 already have strong
support for handling data-corruption and journalling.

Since file I/O operations on the mount point eventually hit
the encrypted copy of the file on the underlying filesystem,
various performance optimizations can be possible by adjust-
ing the filesystem parameters such as block size, buffer size.
In addition, we analyse the performance of various SQLite
database transactions on Android.

The main contributions of this paper are summarized as
follows:

• We are the first to study the filesystem encryption’s
performance on commodity smart gadget devices given
modern NAND technology as storage media. To that
end, we ported an open-source cryptographic filesys-
tem, EncFS, on commodity Android systems

• We present benchmark results of the EncFS running
on Android system with various I/O operations. Par-
ticularly, we focus our analysis on the security versus
performance trade-off including SQLite database trans-
actions

• Finally, we discuss the limitations of filesystem encryp-
tion and demonstrate that it is feasible on smart gadget
devices with a reasonable performance overhead.

The rest of this paper is organized as follows: Sec-
tion II presents related research on mobile operating system
and filesystem benchmarking. Section III introduces the
background information and our threat model. The design
and implementation of EncFS on Android platform fits in
Section IV. In Section V, we discuss the performance results
under different filesystem operations and offer optimization
solutions and Section VII concludes the paper.

II. RELATED WORKS

Secure Storage: As the amount of stored digital data
follows an explosive trend, so does the theft of sensitive
data through the loss or misplacement of laptops, smart
gadget devices, flash drives, portable hard drives, and other
electronic storage media. Sensitive data may also be leaked
accidentally due to improper disposal or resale of storage
media. Diesburg et al. [17] surveys, summarizes and com-
pares existing methods of providing confidential storage and
deletion of data in personal computing environments given
that we must protect the secrecy of the entire data lifetime
by employing confidential ways to store and delete data.

Lee et al. [23] designed a NAND flash file system with a
secure deletion functionality by using encryption to delete
files and forces all keys of a specific file to be stored in the
same block. Keypad [20] presents an auditing file system
for theft-prone devices, such as laptops and smart gadget
devices. Keypad supports fine-grained file auditing and can
disable future file access after a device’s loss, even in the
absence of device network connectivity.

There are existing full disk encryption solutions for
Android device[1], [13]. Both techniques leverage Linux
in-kernel crypto APIs and insert an additional device-
mapper layer to achieve transparent full disk encryption.
Android encryption [1] uses 128bits AES with CBC and
ESSIV:SHA256. However, there is no systematic benchmark
for either of them yet.

Filesystem Performance: Kim et al. [22] studied the
performance of web browsing and application installation
under various storage device and concludes the performance
variation can be attributed to the characteristics of the
storage device, the workload pattern (random or sequential),
and the operating system.

Existing research work on FUSE-based filesystem bench-
marks only focus on traditional desktop system and com-
parison to other in-kernel filesystems [30]. To the best of
our knowledge, current mobile database research focus on
universal accessibility [31], [32] and there is much research
space on FUSE-based file-system benchmarking on modern
smart gadget devices.

Mobile OS Attacks and Defenses: The emerging threats
brought by smart gadget devices and defense approaches are
also well studied by the research community. The presen-
tation “Understanding Android’s Security Framework” [19]
presents a high-level overview of the mechanisms required to
develop secure applications within the Android development
framework. The tutorial contains the basics of building an
Android application. However, the described interfaces must
be carefully secured to defend against general malfeasance.
They showed how Android’s security model aims to provide
mechanisms for requisite protection of applications and
critical smart phone functionality and present a number of
best practices for secure application development within the
environment. However, authors in [28] showed that this is
not enough and that new semantically rich and application-
centric policies have to be defined and enforced for Android.
Moreover, in [26] the authors show how to establish trust
and measure the integrity of application on mobile phone
systems.

Racic and Kim et al. [29], [21] studied malware that aims
to deplete the power resources on the mobile devices. The
provided solutions involve changes in the GSM telephony
infrastructure. Their work shows that attacks were mainly
carried out through the MMS/SMS interfaces on the device.
In addition, in [25] the authors show that applications can
simply overuse the WiFi, Bluetooth or display of the device



Table I
GOOGLE NEXUS S HARDWARE MODULES.

Modules Hardware
CPU Samsung Intrinsity S5PV210 1Ghz
GPU PowerVR SGX 540
Mother board Samsung S3C SoC
RAM 512 MB, 345MB Application Processor accessible
ROM 1981 MB , partitioned as boot/system/userdata/cache and radio
External Storage 13.3GB VFAT partition
Camera 5 MegaPixels Sensor S5KA3DFX
Wifi+BlueTooth+FM Boardcom BCM 4329, 802.11a/b/g/n
Touch Screen Input Atmel MaxTouch 224
Digital Compass AK8973 compass
Accelerometer KR3DM sensor
Near Field Communication NXP PN544 NFC

and eventually cause a denial of service attack. VirusMe-
ter [24] models the power consumption and detects the mal-
ware based on power abnormality. However, the use of linear
regression model with static weights for devices’ relative rate
of battery consumption is a non-scalable approach [27].

Bickford et al. [14] uses three example rootkits to show
that smart phones are just as vulnerable to rootkits as desktop
operating systems. However, the ubiquity of smart phones
and the unique interfaces that they expose, such as voice,
GPS and battery, make the social consequences of rootkits
particularly devastating. Cloaker [16] is a non-persistent
rootkit that does not alter any part of the host operating
system (OS) code or data, thereby achieving immunity to all
existing rootkit detection techniques which perform integrity,
behavior and signature checks of the host OS. Cloaker
leverages the ARM architecture design to remain hidden
from current deployed rootkit detection techniques, therefore
it is architecture specific but OS independent. Bojinov et al.
proposed a mechanism of executable ASLR that requires
no kernel modifications for defending remote code injection
attacks for mobile devices [15]. TaintDroid [18] addresses
the security issues with dynamic information flow and
privacy on mobile handheld devices by tracking application
behavior to determine when privacy-sensitive information
is leaked. This includes location, phone numbers and even
SIM card identifiers, and to notify users in realtime. Their
findings suggest that Android, and other phone operating
systems, need to do more to monitor what third-party
applications are doing when running in smart phones. Our
encryption filesystem protects the static data on storage in
complimentary.

III. BACKGROUND & THREAT MODEL

A. Background

Google’s Android is a comprehensive software frame-
work for mobile devices (i.e., smart phones, PDAs), tablet
computers and set-top-boxes. The Android operating system
includes the system library files, middle-ware, and a set
of standard applications for telephony, personal information
management, and Internet browsing. The device resources,

like the camera, GPS, radio, and Wi-Fi are all controlled
through the operating system. Android kernel is based on
an enhanced Linux kernel to better address the needs of
mobile platforms with improvements on power management,
better handling of limited system resources and a special
IPC mechanism to isolate the processes. Some of the system
libraries included are: a custom C standard library (Bionic),
cryptographic (OpenSSL) library, and libraries for media
and 2D/3D graphics. The functionality of these libraries
are exposed to applications by the Android Application
Framework. Many libraries are inherited from open source
projects such as WebKit and SQLite. The Android runtime
comprises of the Dalvik, a register-based Java virtual ma-
chine. Dalvik runs Java code compiled into a dex format,
which is optimized for low memory footprint. Everything
that runs within the Dalvik environment is considered as
an application, which is written in Java. For improved
performance, applications can mix native code written in
the C language through Java Native Interface (JNI). Both
Dalvik and native applications run within the same security
environment, contained within the ‘Application Sandbox’.
However, native code does not benefit from the Java ab-
stractions (type checking, automated memory management,
garbage collection). Table I lists the hardware modules of
Nexus S, which is a typical Google branded Android device.

Android’s security model differs significantly from the
traditional desktop security model [2]. Android applications
are treated as mutually distrusting principals; they are iso-
lated from each other and do not have access to each others’
private data. Each application runs within their own distinct
system identity (Linux user ID and group ID). Therefore,
standard Linux kernel facilities for user management is
leveraged for enforcing security between applications. Since
the Application Sandbox is in the kernel, this security model
extends to native code. For applications to use the protected
device resources like the GPS, they must request for special
permissions for each action in their Manifest file, which is
an agreement approved during installation time.

Android has adopted SQLite [12] database to store struc-
tured data in a private database. SQLite supports standard



relational database features and requires only little memory
at runtime. SQLite is an Open Source database software
library that implements a self-contained, server-less, zero-
configuration, transactional SQL database engine. Android
provides full support for SQLite databases. Any databases
you create will be accessible by name to any java class in
the application, but not outside the application. The Android
SDK includes a sqlite3 database tool that allows you to
browse table contents, run SQL commands, and perform
other useful functions on SQLite databases. Applications
written by 3rd party vendors tend to use these database fea-
tures extensively in order to store data on internal memory.
The databases are stored as single files in the filesystem and
carry the permissions for only the application that created
the file to be able to access it. Working with databases in
Android, however, can be slow due to the necessary I/O.

EncFS is a FUSE-based file-system offering file-system
encryption on traditional desktop operating systems. FUSE
is the supportive library to implement a fully functional
filesystem in a userspace program [5]. EncFS uses the
FUSE library and FUSE kernel module to provide the file-
system interface and runs without any special permissions.
EncFS runs over an existing base file-system (for exam-
ple, ext4,yaffs2,vfat) and offers the encrypted file-system.
OpenSSL is integrated in EncFS for offering cryptographic
primitives. Any data that is written to the encrypted file-
system is encrypted transparently from the user’s perspective
and stored onto the base file-system. Reading operations will
decrypt the data transparently from the base filesystem and
then load it into memory.

B. Threat Model

Handheld devices are being manufactured all over the
world and millions of devices are being sold every month to
the consumer market with increasing expectation for growth
and device diversity. The price for each unit ranges from free
to eight hundred dollars with or without cellular services. In
addition, new smartphone devices are constantly released
to the market which results the precipitation of the old
models within months of their launch. With the rich set
of sensors integrated with these devices, the data collected
and generated are extraordinarily sensitive to user’s privacy.
Smartphones are therefore data-centric model, where the
cheap price of the hardware and the significance of the
data stored on the device challenge the traditional security
provisions. Due to high churn of new devices it is compelling
to create new security solutions that are hardware-agnostic.

While the Application Sandbox protects application-
specific data from other applications on the phone, sensitive
data may be leaked accidentally due to improper placement,
resale or disposal of the device and its storage media (e.g.
removable sdcard). It also can be intentionally exfiltrated by
malicious programs via one of the communication channels
such as USB, WiFi, Bluetooth, NFC, cellular network etc.

Figure 1. Abstraction of Encryption Filesystem on Android

For example, an attacker can compromise a smartphone and
gain full control of it by connecting another computing
device to it using the USB physical link [33]. Moreover,
by simply capturing the smartphones physically, adversaries
have access to confidential or even classified data if the
owners are the government officials or military personnels.
Considering the cheap price of the hardware, the data on
the devices are more critical and can cause devastating
consequences if not well protected. To protect the secrecy of
the data of its entire lifetime, we must have robust techniques
to store and delete data while keeping confidentiality.

In our threat model, we assume that an adversary is
already in control of the device or the bare storage media.
The memory-borne attacks and defences are out of the
scope of this paper and addressed by related researches in
Section II. A robust data encryption infrastructure provided
by the operating system can help preserve the confidentiality
of all data on the smartphone, given that the adversary cannot
obtain the cryptographic key. Furthermore, by destroying the
cryptographic key on the smartphone we can make the data
practically irrecoverable. Having established a threat model
and listed our assumptions, we detail the steps to build
encryption filesystem on Android in the following sections.

IV. SYSTEM OVERVIEW

A. EncFS for Android

EncFS is selected as the basis for our encryption filesys-
tem. We introduced the filesystem in Section III-A.

Three major components are required to make EncFS
work on any platform: kernel FUSE library support, user
space libfuse, and EncFS binaries. To make an encryption
file-system work on Android, a modified bootstrapping pro-
cess and password login was integrated into the operating
system framework.

EncFS uses standard OpenSSL cryptographic libraries
in userspace. This gives us various advantages over us-
ing a kernel-based cryptographic library. Some of the fea-
tures of our solution verses other in-kernel encryption ap-
proaches [1], [13] are as follows:

• By using EncFS our system is backward and forward
compatible with existing and future Android versions.



Since libfuse and libc are stable across different ver-
sions of Android and different devices, only minimal
engineering efforts are needed (if any) to make EncFS
work on other variations of Android-based smart de-
vices.

• EncFS leverages OpenSSL suite as the crypto engine.
The OpenSSL libraries, libcrypto and libssl, implement
various cryptographic algorithms that are validated and
in compliance with FIPS 140-2 Level:1 standard [10].

• In addition, our approach supports all underlying file-
systems, including yaffs2, ext4 and vfat.

In order to build EncFS, we created a package with the
components described below. It is required to root the phone
in order to prepare it with the modified kernel, system
binaries and java framework patches discussed below. Once
installed, EncFS does not need processes or applications to
run as root, in order to encrypt their data. The userspace will
function without knowledge of any change in the underlying
layers.

Kernel FUSE support: In general, FUSE module pro-
vides a bridge to the actual kernel interfaces. However, the
Android Linux kernel does not support FUSE file-systems
by default to eliminate redundant functionalities that are not
required by Android. Most Android devices, including the
Nexus S which we use, do not come with the FUSE modules
enabled in the kernel. We obtain the kernel source code from
Google’s Android Open Source Project (AOSP) website and
enabled the kernel FUSE modules necessary for libfuse to
run. We then flash our device with this customized kernel.

Libfuse: As the fundamental supportive library for all
FUSE-based file-systems, libfuse is not officially supported
in the Android system. Furthermore, The Bionic C library
in Android is missing glue layer code for interfacing VFS
(Virtual FileSystem in Linux) and FUSE. We patched the
Bionic C library with missing header files (statvfs) and
corresponding data structures that are required for libfuse
version 2.8.5.

EncFS: By building the EncFS sources for the ARM
architecture, we created the executables that would enable us
manage the EncFS filesystem. In addition to libfuse, EncFS
also depends on the boost library which is a widely adopted
C++ library[3], librlog for logging[8] and libcrypto/libssl for
cryptographic primitives. We patched boost library version
1.45 which is the current-to-date version as of this devel-
opment and built it against Android Bionic C library. The
librlog is versioned at 1.4 while the OpenSSL suite included
with Android 2.3 is 1.0.0a.

EncFS supports two block cipher algorithms: AES and
Blowfish. AES runs as a 16 byte block cipher while Blowfish
runs as a 8 byte block cipher. Both algorithms support key
lengths of 128 to 256 bits and block sizes of 64 to 4096
bytes. Since AES is selected by US government as standard
block cipher, our experiments in Section V focus on AES
only.

hobbit_stat charge

User Application

EncFS

EncFSctlEncFSmount

libfuse

Lib Bionic C 

YAFFS2

USER SPACE

KERNEL SPACE

Existing module New module Patched

VFAT
(for SDcard)

EXT4

VFS

MTD/eMMC Block Device Driver

librloglibcrypto&libssl libboost_filesystem

FUSE kernel 
module

Figure 2. The EncFS Layout.

Depending on whether we built them as static or shared
libraries, we push the compiled binaries onto the required
locations on the phone. Figure 2 illustrate the overall layout
of EncFS.

User Interface: Normally, the Android framework loads
the user interface by unpacking the applications and other
files from /system and /data partitions. The /data partition
contains all the user-installed applications and all other user-
specific data. In our implementation, this /data partition
contains only a skeleton of the required folders which won’t
be used by the users for actual data. We store the encrypted
data in a separate directory and mount it over /data partition
when the user supplies the password.

We modified the Launcher application in Android frame-
work to accept this password, which is the key for the
encrypted version of the /data partition. If the password
provided by the user is valid, EncFS mounts the encrypted
data partition on /data mountpoint using FUSE. If the mount
is performed successfully, the Launcher will call a dedicated
native program installed by us to soft reboot Android Dalvik
environment and the user is presented with his encrypted
userdata partition, decrypted into the memory transparently.

The user has limited number of login attempts. If the
failure attempts accumulates to a predefined threshold value
(10 in our case), the Launcher program will erase all the
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Figure 3. EncFS Basic I/O Throughput and Normalized Overhead

Table II
GOOGLE NEXUS S NAND PARTITION LAYOUT.

Dev Size Name
/dev/mtd/mtd0: 2MB bootloader
/dev/mtd/mtd1: 1MB misc
/dev/mtd/mtd2: 8MB boot
/dev/mtd/mtd3: 8MB recovery
/dev/mtd/mtd4: 469.5MB cache
/dev/mtd/mtd5: 13MB radio
/dev/mtd/mtd6: 6MB efs
/dev/block/mmcblk0p1: 512MB system
/dev/block/mmcblk0p2: 1024MB userdata
/dev/block/mmcblk0p3: 13651MB sdcard

data. Although we implemented a program to perform multi-
pass wipe of the partition, destroying the key alone is
adequate as we will be left with a partition full of encrypted
data which cannot be decrypted.

V. PERFORMANCE

A. Experimental Setup

For our experiments, we use the Google’s Nexus S
smartphone device with Android version 2.3 (codename
Gingerbread). The bootloader of the device is unlocked
and the device is rooted. The persistent storage on Nexus
S smartphones is a 507MB MTD (Memory Technology
Device). MTD is neither a block device not a character
device, and was designed for flash memory to behave like
block devices. In addition to the MTD device, Nexus S has
a dedicated MMC (MultiMediaCard, which is also a NAND
flash storage technique) device dedicated to system and user-
data partition, which is 512MB and 1024MB respectively.
Table II provides the MTD device and MMC device partition
layout.

In order to evaluate this setup for performance, we in-
stalled two different types of benchmarking tools. We used
the SQLite benchmarking application created by RedLicense

Labs - RL Benchmark Sqlite. To better understand fine-
grained low level file I/O operations under different I/O
patterns, we use IOzone [7], which is a popular open source
filesystem micro benchmarking tool. It is to be noted that
these tools are both a very good case study for ‘real-use’
as well. RL Benchmark Sqlite behaves as any application
that is database-heavy would behave. IOzone uses the direct
file I/O intensively just like any application would, if it
was reading or writing files to the persistant storage. All
other applications which run in memory and use the CPU,
graphics, GPS or other device drivers are irrelevant for our
storage media tests and the presence of encrypted filesystem
will not affect their performance.

IOzone is a filesystem benchmark tool [7]. The benchmark
generates and measures a variety of file operations and
has been widely used in research work for benchmarking
various filesystems on different platforms. The benchmark
tests file I/O performance for the generic file operations,
such as Read, write, re-read, re-write, read backwards, read
strided, fread, fwrite, random read, pread ,mmap, aio read,
aio write.

IOzone has been ported to many platforms and runs
under various operating systems. Here in our paper, we use
ARM-Linux version (Android compatible) of latest IOzone
available and focus on the encryption overhead. The cache
effect is eliminated by cold rebooting the device for each
run of IOzone and RL Benchmark Sqlite. The device is
fully charged and connected to external USB power while in
experiments. We collect the data and plot the average results
of the 5 runs in the figures in all the following experiments.

B. Throughput Performance of EncFS

In this section, we present the IOzone performance results
for random read and write operations on userdata partition.
The benchmark is run for different file sizes and for each file
size, with different record lengths. The maximum file size



Table III
SQLITE PERFORMANCE ON GOOGLE NEXUS S

Time taken by the operation (in seconds)
SQL Operation EncFS EXT4(No Encfs) Overhead
100 SELECTs without an index 0.064 0.064 0%
100 SELECTs on a string comparison 0.068 0.059 15%
5000 SELECTs with an index 2.247 2.478 -9%
DB Read(The above 3 operations) 2.379 2.601 -8%
1000 INSERTs 87.25 54.262 61%
25000 INSERTs in a transaction 2.826 2.620 8%
25000 INSERTs into an indexed table in a transaction 2.837 2.628 8%
Creating index 1.198 1.008 19%
1000 UPDATEs without an index 6.607 6.431 3%
25000 UPDATEs with an index 7.018 5.704 23%
INSERTs from a SELECT 3.215 1.932 66%
DELETE without an index 5.300 1.944 173%
DELETE with an index 5.419 1.636 231%
DROP TABLE 4.614 0.921 401%
DB Write(The above 10 operations) 126.284 79.0835 60%
Overall 128.663 81.684 58%

is selected as 4MB due to the observation that 95% of the
user data files are smaller than 4MB on a typical Android
system.

Fig 3 compares the throughput for four typical file I/O op-
erations, namely read, random read, write and random write.
The IOzone experiments are run on the original ext4 file sys-
tem and EncFS with different AES key lengths. Fig 3 shows
for read operation, EncFS performs the same with original
ext4. However, for random read, write, random write, EncFS
only gives 3%, 5%, 4% of the original throughput respec-
tively. Our analysis shows the encryption/decryption con-
tributes the overhead and is the expected trade-off between
security and performance. The buffered read in EncFS makes
the read operation only incur marginal overhead. However,
for random read, the need for the data blocks alignment
during decryption results in slower throughput. For different
key length, the 256-bits key only incurs additional 10%
overhead comparing to 128-bits key for better security. In
particular, AES-256 runs 12866KB/s,8915KB/s, 9804KB/s
at peak for random read,write and random write respectively
while AES-128 runs 14378KB/s, 9808KB/s, 10922KB/s.
The performance loss of a longer key length trading better
security properties is only marginal to the performance loss
of the encryption scheme. Optimizations can compensate
such key-length overhead as illustrated in Section V-D.
Based on this observation, AES-256 is recommended and
used as default in the following subsection unless otherwise
mentioned explicitly.

Similarly, sdcard partition gives the identical pattern with
slightly different value. Due to the fact that the sdcard
partition shares the same underlying physical MMC device
with userdata partition as listed in Table II, our experiment
results demonstrates the original vfat filesystem performs
16% faster than ext4 filesystem for read and random read

operation while ext4 outperforms vfat 80% and 5% for
write and random write operations respectively. However,
comparing different filesystems is out of our focus in this
paper. We observed different throughput values and overhead
patterns on other devices such as Nexus One, HTC Desire
and Dell Streak which use a removable sdcard as separate
physical medium to internal NAND device. Both AES-128
and AES-256 throughput on sdcard are statistically identical
to the ones on userdata partition given a 95% confidence
interval. Such results show that the scheme of encryption
in EncFS(e.g. internal data block size, key length) and its
FUSE IO primitives are the bottleneck of the performance
regardless of the underlying filesystems. We suggest corre-
sponding optimizations in Section V-D.

In addition to the basic I/O operations, we look at the
read operation in detail under different file I/O record size
before and after encryption. In particular, we plot the 3D
surface view and contour view. In the 3D surface graph,
the x-axis is the record size, the y-axis is the throughput
in Kilobytes per second, and the z-axis is the file sizes.
The contour view presents the distribution of the throughput
across different record sizes and file sizes. In a sense, this
is a top-view of the 3D surface graph. Figure 4 and 5 show
the throughput when IOzone read partial of the file from the
beginning. Figure 4 shows the default ext4 file system in
Android 2.3 favors bigger record size and file size for better
throughput. The performance peak centers in the top-right
corner in the contour view of the 3-D graph. However, after
placing EncFS, the performance spike shifts to the diagonal
where the record size equals to file size. This is an interesting
yet expected result because of the internal alignment of the
file blocks in decryption.

To better understand the performance of our encryption
filesystem under Android’s SQLite IO access pattern, we



present the database transactions benchmark in the next
subsection, which is more related to the users’ experiences.

C. SQLite Performance Benchmarking

In addition to the IOzone micro benchmark results in last
subsection, we measure the time for various typical database
transactions using the RL Benchmark SQLite Performance
Application in the Android market [11]. Table III groups the
read and write filesystem operations and lists the results in
detail.

We consider that random read and write is a fair represen-
tation of database I/O operations in our scenario. This is due
to the fact that for SQLite, the database file consists of one
or more pages. All reads from and writes to the database file
begin at a page boundary and all reads/writes are an integer
number of pages in size. Since the exact page is managed
by the database engine, file-system only observe random I/O
operations.

After incorporating the encryption filesystem, the
database-transactions-intensive apps slows down from 81.68
seconds to 128.66 seconds for the list of operations as
described in the Table III. The read operations reflected
by select database transactions shows the consistent results
with IOzone result: the EncFS buffers help the performance.
However, any write operations resulting from insert, update,
or drop database transactions will incur 3% to 401% over-
head. The overall overhead is 58%. This is the trade-off
between security and performance.

D. Optimization

To achieve better performance, we optimize the EncFS.
The first parameter we tuned is filesystem block size. EncFS
support block sizes of 64 to 4096 bytes while 1024 bytes
is the default. After we re-create encryption file system
and configure 4096 bytes as the block size, we observe
performance boost for random read,write and random write
while the read gives statistically equivalent result. The
experimental results showed additional 15%, 21% and 19%
performance gained for random read,write and random write
respectively.

Direct-IO gives the throughput for read, random
read,write and random write as 13197KB/s, 13190KB/s,
11026KB/s, 12689KB/s respectively. Such results gives ad-
ditional 4%,23%, 28% performance gains for for random
read, write and random write respectively. However Direct-
IO defeats the buffer mechanism in FUSE and causes read
performance to fall from 472770KB/s to 13197KB/s. As
its name indicates, the Direct-IO option makes the filesys-
tem keep pulling and flushing the storage device without
buffering, and such continuous writings perform better than
buffered writings on encryption filesystem environment. Fig-
ure 6 shows the combined performance gains in percentage
of the 4k block size and Direct-IO configuration. This
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Table IV
GOOGLE NEXUS ONE DATA PARTITION PERFORMANCE.

Throughput in KB/s
Operation Yaffs2 EncFS AES-256 Overhead
read 318947 311577 2.3%
random read 328834 12752 2479%
write 3455 1559 121.7%
random write 3381 1221 177%

experiment on sdcard partition shows the same increased
performance pattern.

E. Portability and Device Specific Optimization

In addition to the Nexus S device, we also run our EncFS
on Nexus One, HTC Desire, and Dell Streak, to demonstrate
portability of our approach. Vendors manufacture the devices
using diverse hardware modules that come with different fea-
ture and qualities. Despite the variance of hardware electrical
characteristics and quality, the corresponding kernel driver
for such hardware components also play critical role for
functionality and performance. For instance, the aforemen-
tioned three types of devices all use Qualcomm QSD8250
chipset as CPU. However, only Dell Streak enables the dy-
namic CPU frequency governing feature in the kernel. Such
vendor specific discrepancies cause systematic performance
tuning leverage hardware features a challenging task and it
can be done only to specific devices. We name a few of
our experiences here. Firstly, we run the same benchmark
in previous sections on all three types of devices. Our data
shows all the three devices using YAFFS2 filesystem give
noticeable slower performance than EXT4 filesystem before
encryption. Therefore encryption overhead appears to be
less. However, comparing the filesystems or the quality of
the physical medium is out of the scope of this paper. We
list Nexus One’s /data performance in Table IV.
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Secondly, for Dell Streak, we over-clock the main CPU
frequency from 1GHz to 1.245GHz and gain extra 3%
optimization while maintaining the stability of the overall
system. In this case, faster encryption computation is the
driving source of the additional performance. However, a
higher value than 1.245GHz of the CPU main frequency
results unstable system behavior.

Thirdly, we tune particular hardware parameters in the
kernel driver for additional optimization. Android(Linux)
system export a variety of hardware specific configuration
through sysfs, which allows the user changing the behavior
of the hardware. Specifically, we change the default value of
/sys/block/mtdblock5/queue/max sectors kb from 8 to 128
on HTC Desire, and gain 10% throughput for read and
write operations. Moreover, the default I/O scheduler for
this particular type of device is set to BFQ (Budget Fair
Queueing). After changing it to CFQ (Completely Fair
Queuing) at /sys/block/mtdblock5/queue/scheduler, an extra

5% performance is obtained. However, for Nexus One and
Dell Streak, such entries in sysfs are set to be readonly or
not available at all. Such tuning are strongly depend on the
particular hardware and the specific kernel driver.

In sum, we are able to run regular applications on our
EncFS filesystem without any noticeable lag on all above
devices, and have deployed a fully encrypted userdata and
sdcard partitions on many phones which are in use. There-
fore, we conclude that despite a large cost in performance
for encryption, this filesystem-level encryption technique is
feasible, specially in the case of database intensive applica-
tions.

VI. DISCUSSION

In this section, we discuss the limitations of our approach
and various discoveries in our experiments.

Filesystem encryption can only protect the data kept on
any external or internal storage but not data in the memory
or over the network. It can, however, offer protection and



prevent data from being accessed externally in the case of
lost or captured devices by adversaries. To the best of our
knowledge, there is no system with encrypted memory yet
that can support all Android devices. Systems with encrypted
filesystem are still vulnerable to existing memory-borne
attacks such as buffer overflows and requires additional
defenses [15]. If the attacker gains system privileges by
such attacks, he may not have direct access to the encrypted
filesystem but he can access the memory which is in plain
text. In addition, encryption filesystem is also vulnerable to
cryptographic attacks such as known-plaintext attack or side
channel attacks against its cryptographic module.

Based on the fact that the cache partition only contains
the de-dexed [4] Java code for speeding up the Java runtime
and no user specific data in this partition, our approach keeps
the cache partition as unencrypted, which is consistent to
other encryption filesystem approaches[1], [13]. Our focus
is only on encrypting the user-specific data. To achieve this,
we created encrypted copies of only userdata and sdcard
partitions on Nexus S. However, it is to be noted that our
implementation is scalable to any partition that might need
encryption. For instance, Dell Streak phones use a separate
partition for databases called firstboot. We encrypted this
partition using the same technique as described for userdata
partition in this paper.

Surprisingly, we found that Android 3.2’s built-in encryp-
tion functionality on HTC Flyer tablet is unstable during
activation, when the user selects encrypt tablet. Further, there
is no interface to switch between encrypted or unencrypted
states. It can only be activated on userdata partition. Once
activated, the system reboots into encrypted state and doesn’t
have the flexibility that a userspace FUSE-based implemen-
tation like ours provides. Such evidence indicates the in-
kernel approach is not scalable.

Our further investigation reveals, in Honeycomb, zeros
were considered encrypted mistakenly. Even if the built-
in encryption of Android 3.2 or Android 4.0 is eventually
adopted, it does not adhere to the NIST approved crypto-
graphic standards and cannot be deployed for government
or military use.

VII. CONCLUSIONS

In this paper, we presented an implementation of a
portable filesystem encryption engine that uses NIST certi-
fied cryptographic algorithms for Android mobile devices.
We offer a comparative performance analysis of our en-
cryption engine under different operating conditions and for
different loads including file and database (DB) operations.
Our experimental results suggest a 20 times overhead for
write operations on the internal storage. When increasing
the cryptographic key-length from AES-128 to AES-256,
we incurred an additional performance loss of 10% to 15%,
depending upon the operation performed. Although file oper-
ations incurred a 20 times overhead, the database operations

had a much more moderate overhead of 58% which accounts
for sequential write and update DB operations.

By optimizing the filesystem block-size and I/O mode, we
were able to gain 20% to 57% performance. In addition, we
then demonstrate that device-specific optimization methods
can also provide performance boost. Despite the seemingly
large overhead observed for I/O intensive applications, we
were successful in running our encryption filesystem on a
variety of Android devices and applications without signif-
icant user-perceived latency. Therefore, we conclude that
our encryption engine is easily portable to any Android
device and the overhead due to the encryption scheme
is an acceptable trade-off for achieving the confidentiality
requirement.
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