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Abstract

This paper proposes a novel algorithm for manifold alignment preserving global
geometry. This approach constructs mapping functions that project data instances
from different input domains to a new lower-dimensional space, simultaneously
matching the instances in correspondence and preserving global distances between
instances within the original domains. In contrast to previous approaches, which
are largely based on preserving local geometry, the proposed approach is suited
to applications where the global manifold geometry needs to be respected. We
evaluate the effectiveness of our algorithm for transfer learning in two real-world
cross-lingual information retrieval tasks.

1 Introduction
Knowledge transfer is becoming increasingly popular in machine learning and data
mining [10, 13]. This area draws inspiration from the observation that people can often
apply knowledge learned previously to new problems. Some previous work in transfer
assumes the training data and test data are originally represented in the same space.
However, many real-world applications like cross-lingual information retrieval [4], or
matching words and pictures [1], require transfer of knowledge across domains defined
by different features. A key step in addressing such transfer learning problems is to find
a common underlying latent space shared by all input high-dimensional data sets that
may be defined by different features.

Manifold alignment [5, 9, 15] provides a geometric framework to construct such a
latent space. The basic idea of manifold alignment is to map all input data sets to a new
space preserving the local geometry (neighborhood relationship) of each data set and
matching instances in correspondence. This framework makes use of unlabeled data
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instances, and can be consequently highly effective when the given correspondence
information is limited. In the new space, all input domains are defined by the same
features, so manifold alignment can be combined with a variety of existing transfer
learning approaches [10, 13] to solve real-world knowledge transfer challenges. Man-
ifold alignment can be done at two levels: instance-level and feature-level. In text
mining, examples of instances can be documents in English, Arabic, etc; examples of
features can be English words/topics, Arabic words/topics, etc. Work on instance-level
alignment, such as [5], computes nonlinear embeddings for alignment, but such an
alignment result is defined only on known instances, and difficult to generalize to new
instances. Feature-level alignment [15] builds mappings between features, and is more
suited for knowledge transfer applications than instance-level alignment. Feature-level
alignment can be accomplished by computing “linear” mapping functions, where the
mappings can be easily generalized to new instances and provide a “dictionary” repre-
senting direct mappings between features in different spaces.

Many existing approaches to manifold alignment are designed to only preserve lo-
cal geometries of the input manifolds. This objective is not desirable in many applica-
tions where the global geometries of the input data sets also need to be respected. One
such example is from text mining. Documents in different languages can be aligned in
a new space, where direct comparison and knowledge transfer between documents (in
different languages) is possible. Local geometry preserving manifold alignment [5, 15]
does not prevent distinct documents in the original space from being neighbors in the
new space (it only encourages similar documents in the original space to be neighbors
in the new space). This could lead to poor performance in some tasks, and needs to
be corrected. In some other applications, the distance between instances also provides
us with valuable information. For example, in a robot navigation problem, we may be
given distances between locations recorded by different sensors, which are represented
in distinct high-dimensional feature spaces. We want to align these locations based on
a partial correspondence, where we also want to preserve the pairwise distance score.
Clearly, manifold alignment based on local geometry may not be sufficient for such
tasks.

To address the problems mentioned above, we describe a novel framework that con-
structs functions mapping data instances from different high dimensional data sets to
a new lower dimensional space, simultaneously matching the instances in correspon-
dence and preserving pairwise distances between instances within the original data set.
Our algorithm has several other added benefits. For example, its solution involves com-
puting the eigenvectors associated with the largest eigenvalues, which are more stable
numerically than computing the smallest eigenvectors used by many other manifold
alignment methods. It also has fewer parameters that need to be specified. The effec-
tiveness of our algorithm is demonstrated and validated in two real-world cross-lingual
information retrieval tasks.
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Figure 1: This figure illustrates global distance preserving alignment. X and Y are
two input data sets. Three corresponding pairs are given: red i corresponds to blue i
for i ∈ [1, 3]. α and β are mapping functions that we want to construct. They project
instances from X and Y to a new space Z, where instances in correspondence are
projected near each other and pairwise distance within each input set is also respected.

2 Theoretical Analysis

2.1 High Level Explanation
We begin with a brief review of manifold alignment preserving local geometry. Given
two data sets X,Y along with l additional pairwise correspondences between a subset
of the training instances, local geometry preserving manifold alignment computes the
mapping results of xi and yj to minimize the following cost function:

C(f, g) = µ
∑
i,j

(fi − gj)2W i,j + 0.5
∑
i,j

(fi − fj)2W i,j
x + 0.5

∑
i,j

(gi − gj)2W i,j
y ,

where fi is the embedding of xi, gj is the embedding of yj , W i,j represents the corre-
spondence between xi and yj ,W i,j

x is the similarity of xi and xj ,W i,j
y is the similarity

of yi and yj , and µ is the weight of the first term. The first term penalizes the differences
between X and Y in terms of the embeddings of the corresponding instances. The sec-
ond and third terms encourage the neighborhood relationship (local geometry) within
X and Y to be preserved. There are two types of solutions to this problem: either
instance-level [5], when there is no constraint on the mapping functions; or feature-
level [15], when the mapping functions are linear.

It can be verified that the optimal (in terms of the above metric) instance-level so-
lution is given by Laplacian eigenmaps [2] on a graph Laplacian matrix modeling the
joint manifold that involves X , Y and the correspondence information, whereas the
optimal feature-level solution is given by locality preserving projections (LPP) [6] on
the same graph Laplacian matrix. As discussed in the introduction, preserving neigh-
borhood relationship may not be sufficient for many applications, like text mining. To
solve this problem, we propose a novel framework for manifold alignment, simultane-
ously matching corresponding instances and preserving global pairwise distances. Our
approach uses a distance matrix D rather than a Laplacian matrix to represent the joint
manifold. Our contributions are two-fold: (a) our approach provides a way to construct
a distance matrix to model the joint manifold; (b) it enables learning a mapping func-
tion for each input dataset (treated as a manifold), such that the mapping functions can
work together to project the input manifolds to the same latent space preserving global
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geometry of each manifold. Some ideas used in (b) are based on MDS/ISOMAP [12]
and Isometric projections [3]. Similar to local geometry preserving approaches, there
are two solutions to this problem: instance-level and feature-level. In this paper, we
focus the latter, which is technically more challenging. The instance-level alignment
can be solved in a similar manner. The high level idea is illustrated in Figure 1.

2.2 Notation
Data sets and correspondences:
X = [x1 · · ·xm] is a p ×m matrix, where xi is defined by p features. X represents
one high-dimensional data set. Y = [y1 · · · yn] is a q × n matrix, where yi is defined
by q features. Y represents another high-dimensional data set. The correspondence
between X and Y is given as follows: xai ←→ ybi , where i ∈ [1, l], ai ∈ [1,m] and
bi ∈ [1, n]. Here, the correspondence can be many to many correspondence.
Matrices for re-scaling factor computation:
Da is a l × l matrix, where Da(i, j) is the distance between xai and xaj . Db is a l × l
matrix, where Db(i, j) is the distance between ybi and ybj .
Distance matrices modeling the joint graph:
Dx,x is an m×m matrix, where Dx,x(i, j) is the distance between xi and xj . Dx,y =
DT
y,x is an m × n matrix, where Dx,y(i, j) represents the distance between xi and

yj . Dy,y is an n × n matrix, where Dy,y(i, j) is the distance between yi and yj .

D =

(
Dx,x Dx,y

Dy,x Dy,y

)
is a (m+ n)× (m+ n) matrix, modeling a joint graph used in

our algorithm.
Mapping functions and distances:
We construct mapping functions α and β to map X and Y to the same d-dimensional
space. α is a p× d matrix, β is a q× d matrix. In this paper, ‖.‖2 represents Frobenius
norm, tr(.) represents trace. The τ operator [12] converts distances to inner products,
which uniquely characterize the geometry of the data. Given anm×m distance matrix
D, where Di,j represents the distance between instance i and j, τ(D) = −HSH/2.
Here, Si,j = D2

i,j , Hi,j = πi,j − 1/m and πi,j = 1 when i = j; 0, otherwise.

2.3 The Problem
We assume the (m+n)×(m+n) distance matrixD, representing the pairwise distance
between any two instances from {x1, · · · , xm, y1, · · · , yn}, is already given (we will
discuss how to construct D later). The τ operator converts distances to inner products,
which uniquely characterize the geometry of the data. To preserve global geometry, we
define the cost function that needs to be minimized as follows:

C(α, β, k) = ‖τ(D)−τ(DX,Y,α,β,k)‖22 = ‖τ(D)−k
[
αTX, βTY

]T [
αTX, βTY

]
‖22,

where α, β and k are to be determined: α is a d× p matrix, β is a d× q matrix, k is a
positive number to rescale mapping functions.
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2.4 Construct D to Represent the Joint Manifold
When data sets X and Y are given, Dx,x and Dy,y are easily computed using the
geodesic distance measure. However, the scales of Dx,x and Dy,y could be quite dif-
ferent. To create a joint manifold of both X and Y , we need to learn an optimal rescale
factor η such that Dx,x and ηDy,y are rescaled to the same space. To compute η, we
first create distance matrices Da, Db using the instances in correspondence. Obviously
Da and Db are both l× l matrices. The algorithm to compute η is given in Theorem 1.

Theorem 1: Given two l × l matrices Da and Db, the solution to η that mini-
mizes ‖Da − ηDb‖22 is given by η = tr(DT

b Da)/tr(D
T
b Db)

Proof:
‖Da − ηDb‖22 = tr(DT

aDa)− 2ηtr(DT
b Da) + η2tr(DT

b Db).

tr(DT
aDa) is constant, so argηmin ‖Da−ηDb‖22 = argηmin η2tr(DT

b Db)−2ηtr(DT
b Da).

Differentiating η2tr(DT
b Db)−2ηtr(DT

b Da) with respect to η, we have η = tr(DT
b Da)/tr(D

T
b Db).

To construct a distance matrix D representing the joint manifold, we need to com-
pute distances between instances across datasets. We use Dx,x, Dy,y and the corre-
spondence information to compute these distances. We know Dx,x and Dy,y model
the distance between instances within each given data set. The corresponding pairs can
then be treated as “bridges” to connect the two data sets. For any pair (xi and yj), we
compute the distances between them through all possible “bridges”, and set Dx,y(i, j)
to be the minimum of them. i.e.

Dx,y(i, j) = min
u∈[1,l]

(Dx,x(xi, xau) +Dy,y(yj , ybu)).

In the approach shown above, we provide one way to compute the distance matrixD us-
ing geodesic distance. Depending on the application, we can also use other approaches
to create D. For example, D could be constructed using Euclidean distance.

2.5 Find Correspondence Across Data Sets
Given X , Y , and the correspondence information, we want to learn mapping functions
α for X , β for Y and rescale parameter k, such that C(α, β, k) is minimized. The
optimal solution will encourage the corresponding instances to be mapped to similar
locations in the new space, and the pairwise distance between instances within each
set to be respected. To remove the arbitrary scalings, we add one more constraint to
guarantee the generated lower dimensional data is sphered, :

[
αTX βTY

] [ XTα
Y Tβ

]
= Id.

Theorem 2: Let Z =

[
X 0
0 Y

]
. Then, the eigenvectors corresponding to the

d maximum eigenvalues of Zτ(D)ZT γ = λZZT γ provide optimal mappings to
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minimize C(α, β, k).
Proof:

C(α, β, k) = ‖τ(D)− k ·
[
XT 0
0 Y T

] [
α
β

] [
αTβT

] [ X 0
0 Y

]
‖22.

Let f =

[
α
β

]
, then we have

C(α, β, k) = ‖τ(D)− k · ZT ffTZ‖22 = tr((τ(D)− k · ZT ffTZ)(τ(D)− k · ZT ffTZ)T )
= tr(τ(D)τ(D)T )− k · tr(ZT ffTZτ(D)T )− k · tr(τ(D)ZT ffTZ) + k2 · tr(ZT ffTZZT ffTZ).

Given the property that tr(AB) = tr(BA), we have

C(α, β, k) = tr(τ(D)τ(D)T )− 2k · tr(fTZτ(D)ZT f) + k2 · tr(Id).

Differentiating C(α, β, k) with respect to k, we have

2 · tr(fTZτ(D)ZT f) = 2k · d.

This implies k = tr(fTZτ(D)ZT f)/d. So

C(α, β, k) = tr(τ(D)τ(D)T )− 2/d · (tr(fTZτ(D)ZT f))2 + 1/d · (tr(fTZτ(D)ZT f))2.

Since both tr(τ(D)τ(D)T ) and d are constant, we have

argminC(α, β, k) = argmax(tr(fTZτ(D)ZT f))2.

It can be verified that fTZτ(D)ZT f is positive semi-definite, so tr(fTZτ(D)ZT f) ≥
0.

Then, argminC(α, β, k) = argmax tr(fTZτ(D)ZT f).

It can be shown that the solution to

argmax tr(fTZτ(D)ZT f), s.t. fTZZT f = Id.

is given by the eigenvectors corresponding to the d largest eigenvalues ofZτ(D)ZT γ =
λZZT γ.

3 The Algorithms

3.1 The Algorithmic Procedure
Notation used in this section is defined in the previous section. Given two high dimen-
sional data setsX , Y along with additional pairwise correspondences between a subset
of the instances, the algorithmic procedure is as follows:

1. Rescale data set Y : Y = ηY , where η = tr(DT
b Da)/tr(D

T
b Db).
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2. Construct distance matrix D, modeling the joint graph:

D =

(
Dx,x Dx,y

Dy,x Dy,y

)
, where Dy,x(j, i) = Dx,y(i, j) = min

u∈[1,l]
(Dx,x(xi, xau)+Dy,y(yj , ybu)).

3. Find the correspondence between X and Y :
Compute the eigenvectors [γ1, · · · , γd] corresponding to d maximum eigenvalues
of [

X 0
0 Y

]
τ(D)

[
XT 0
0 Y T

]
γ = λ

[
X 0
0 Y

] [
XT 0
0 Y T

]
γ.

4. Construct α and β to map X and Y to the same d-dimensional space:

The d-dimensional representations of X and Y are columns of αTX and βTY , where[
α
β

]
= [γ1, · · · , γd].

3.2 Added Benefits
The cost function for local geometry preserving manifold alignment shown in the pre-
vious section uses a scalar real-valued parameter µ to balance the conflicting objectives
of matching corresponding instances and preserving manifold topologies. µ is usually
manually specified by trial and error. In the new approach, µ is not needed. The us-
age of µ is replaced by setting the distance between corresponding instances across
domains to 0. In contrast to local geometry preserving alignment approaches that use
eigenvectors corresponding to the smallest eigenvalues, the new approach is based on
eigenvectors corresponding to the largest eigenvalues. Numerically, eigensolvers are
less stable in computing the smallest eigenvectors than when they compute the largest
eigenvectors. In this paper, we illustrate our approach using the linear feature-level
framework, but it is straightforward to generalize it to the non-linear case: replace
αTX with A and βTY with B in the cost function. The solution is then given by the
maximum eigenvalue solution to τ(D)γ = λγ.

3.3 Time Complexity Analysis
Given two input domains X with m instances and Y with n instances, our approach
first needs to construct a local neighborhood graph, which is an O(N2) problem as-
suming N = m + n. Then it requires the shortest paths between every pair of points
resulting in O(N2 logN) computation. The step of eigenvalue decomposition takes
O(P 3) time when all eigenvectors are needed, where P is the total number of features
from the input domains. Similar to the other manifold learning approaches, techniques
like Nÿstrom approximation [11] are needed to address the computational challenges
whenN is very large. Recent work [11] shows that a problem involving 18M instances
represented over 2,304 features can be handled under a similar setting as ours.
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4 Experimental Results
In the first experiment, we compare our global geometry preserving approach to lo-
cal geometry preserving approaches at finding both instance-level [5] and feature-
level [15] alignments using parallel data in two languages: English and Arabic. In
the second experiment, we use three input datasets, since our approach can be gener-
alized to handle more than two domains. This ability to process multiple datasets is
useful for the situations when we have knowledge from multiple related sources. We
compare our approach against local geometry preserving manifold alignment and the
other state of the art approaches, including Canonical Correlation Analysis (CCA) [7],
Affine matching based alignment [9] and Procrustes alignment [14]. In this paper, we
use kNN (k = 10) to build adjacency graphs.

4.1 English Arabic Cross-Lingual Retrieval
The first experiment is to find exact correspondences between documents in different
languages. This application is useful, since it allows users to input queries in their na-
tive language and retrieve results in a foreign language. The data set used below was
originally studied in [4]. It includes two collections: one in English and one in Arabic
(manually translated). The features are constructed by the language model. The topical
structure of each collection is treated as a manifold over documents. Each document
is an instance sampled from the manifold. To learn correspondences between the two
collections, we are also given some training correspondences between documents that
are exact translations of each other. The task is to find the most similar document in
the other corpus for each English or Arabic document in the untranslated set. In this
experiment, each of the two document collections has 2,119 documents. We tried two
different settings: (1) Correspondences between 25% of them were given; (2) Corre-
spondences between 10% of them were given. The remaining instances were used in
both training (as unlabeled data) and testing. Our testing scheme is as follows: for
each given English document, we retrieve its top k most similar Arabic documents.
The probability that the true match is among the top k documents is used to show the
goodness of the method. We use this data to compare our framework with the local
geometry preserving framework. Both frameworks map the data to a 100 dimensional
latent space (d = 100), where documents in different languages can be directly com-
pared. A baseline approach was also tested. The baseline method is as follows: assume
that we have l correspondences in the training set, then document x is represented by
a vector V with length l, where V (i) is the similarity of x and the ith document in
the training correspondences. The baseline method maps the documents from different
collections to the same embedding space Rl.

When 25% instances are used as training correspondences, the results are in Fig-
ure 2. In our global geometry preserving approach, for each given English document,
if we retrieve the most relevant Arabic document, then the true match has a 35% prob-
ability of being retrieved. If we retrieve the 10 most similar documents, the probability
increases to 80%. For feature-level local geometry preserving manifold alignment [15],
the corresponding numbers are 26% and 68%. Instance-level local geometry preserv-
ing manifold alignment [5] results in a very poor alignment. One reason for this is
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Feature−level Manifold Alignment Preserving Global Geometry
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Figure 2: Test on cross-lingual data (25%
instances are in the given correspon-
dence).
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Figure 3: Test on cross-lingual data (10%
instances are in the given correspon-
dence).
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Figure 4: EU parallel corpus data with
1,500 English-Italian-German test triples.
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Figure 5: EU parallel corpus data with
69,458 English-Italian test pairs.

that instance-level alignment learns non-linear mapping functions for alignment. Since
the mapping function can be any function, it might overfit the training data and does
not generalize well to the test data. To verify this, we also examined a case where the
training instances lie on the new space and found out that the training instances were
perfectly aligned. When 10% instances are used as training correspondences, similar
results are reported in Figure 3.

4.2 European Parliament Proceedings Test
Eight approaches are tested in this experiment. Three of them are instance-level ap-
proaches: Procrustes alignment with Laplacian eigenmaps, Affine matching with Lapla-
cian eigenmaps, and instance-level manifold alignment preserving local geometry. The
other five are feature-level approaches: Procrustes alignment with LPP, Affine match-
ing with LPP, CCA, feature-level manifold alignment preserving local geometry and
our feature-level manifold alignment preserving global geometry. Procrustes align-
ment and Affine matching can only handle pairwise alignment, so when we align two
collections the third collection is not taken into consideration. The other manifold
alignment approaches and CCA align all input data simultaneously.

In this experiment, we make use of the proceedings of European Parliament [8],
dating from 04/1996 to 10/2009. The corpus includes versions in 11 European lan-
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guages. Altogether, the corpus comprises of about 55 million words for each language.
The data for our experiment comes from English, Italian and German collections. The
dataset has many files, each file contains the utterances of one speaker in turn. We
treat an utterance as a document. We filtered out stop words, and extracted English-
Italian-German document triples where all three documents have at least 75 words.
This resulted in 70,458 document triples. We then represented each English document
with the most commonly used 2,500 English words, each Italian document with the
most commonly used 2,500 Italian words, and each German document with the most
commonly used 2,500 German words. The documents were represented as bags of
words, and no tag information was included. The topical structure of each collection
can be thought as a manifold over documents. Each document is a sample from the
manifold.

Instance-level manifold alignment cannot process a very large collection since it
needs to do an eigenvalue decomposition of an (m1 +m2 +m3)×(m1 +m2 +m3)
matrix, where mi represents the number of examples in the ith input dataset. Ap-
proaches based on Laplacian eigenmaps suffer from a similar problem. In this ex-
periment, we use a small subset of the whole dataset to test all seven approaches.
1, 000 document triples were used as corresponding triples in training and 1, 500 other
document triples were used as unlabeled documents for both training and testing, i.e.
p1 = p2 = p3 = 2, 500, m1 = m2 = m3 = 2, 500. xi1 ←→ xi2 ←→ xi3 for
i ∈ [1, 1000]. Similarity matrices W1, W2 and W3 were all 2, 500 × 2, 500 adjacency
matrices constructed by nearest neighbor approach, where k = 10. To use Procrustes
alignment and Affine matching, we ran a pre-processing step with Laplacian eigenmaps
and LPP to project the data to a d = 100 dimensional space. In CCA and feature-level
manifold alignment, d is also 100. The procedure for the test is quite similar to the
previous test. The only difference is that we consider three different scenarios in the
new setting: English ↔ Italian, English ↔ German and Italian ↔ German. Figure 4
summarizes the average performance of these three scenarios.

Our new global preserving approach outperforms all the other approaches. Given
a document in one language, it has a 21% probability of finding the true match if
we retrieve the most similar document in another language. If we retrieve 10 most
similar documents, the probability of finding the true match increases to more than
40%. Our approach results in three mapping functions to construct the new latent
space: F1 (for English), F2 (for Italian) and F3 (for German). These three mapping
functions project documents from the original English/Italian/German spaces to the
same 100 dimensional space. Each column of Fi is a 2, 500 × 1 vector. Each entry
on this vector corresponds to a word. To illustrate how the alignment is achieved using
our approach, we show the words that make the largest contributions to 2 selected
corresponding columns fromF1,F2 andF3 in Tabel 1. From this table, we can see that
the mapping functions can automatically project the documents with similar contents
but in different languages to similar locations in the new space.

The second result shown in Figure 4 is that all three instance-level approaches
outperform the corresponding feature-level approaches. There are two possible reasons
for this. One is that feature-level approaches use linear mapping functions to compute
lower dimensional embedding or alignment. Instance-level approaches are based on
non-linear mapping functions, which are more powerful than linear mappings. Another
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Top Terms
English 1 policy gentlemen foreign committee behalf security eu defence rights development
English 2 programme administrative turkey process answer ministers adoption conclusions created price
Italian 1 politica chiusa estera nome sicurezza sapere modifica chiarezza dobbiamo diritti
Italian 2 programma turchia processo paese chiusa disoccupazione cambiamenti obiettivi milioni potra

German 1 politik ausschusses gemeinsame bereich man namen eu menschenrechte herren insgesamt
German 2 programm turkei prozess meines programms britischen linie aufmerksam menschenrechte zweitens

Table 1: 2 selected mapping functions in English, Italian and German.

reason is that the number of training samples in this experiment is smaller than the
number of features. So the training data is not sufficient to determine the mapping
functions for feature-level approaches. Feature-level approaches have two advantages
over instance-level approaches. Firstly, feature-level approaches learn feature feature
correlations, so they can be applied to a very large dataset and directly generalize to
new test data. Secondly, their chance of getting into overfitting problems is much lower
than instance-level approaches due to the “linear” constraint on mapping functions.

The third result is that CCA does a very poor job in aligning the test documents.
CCA can be shown as a special case of feature-level manifold alignment preserving
local geometry when manifold topology is not respected. When the training data is
limited, CCA has a large chance of overfitting the given correspondences. Feature-level
manifold alignment does not suffer from this problem, since the manifold topology also
needs to be respected in the alignment.

Our new approach and the feature-level local geometry preserving manifold align-
ment algorithm can handle problems at a large scale. In our second setting, we apply
these two approaches to process all 69,458 test English-Italian document pairs repre-
sented over the most popular 1,000 English/Italian words. The results are summarized
in Figure 5. For any English document, if we retrieve the most similar Italian docu-
ment, the new approach has a 17% chance of getting the true match. If we retrieve
10 most similar Italian documents, the new approach has a 30% probability of get-
ting the true match. Feature-level local geometry preserving approach performs much
worse than the new approach. This shows that global geometry preservation is quite
important for applications like text mining. This test under the second setting is in fact
very hard, since we have thousands of features, roughly 70,000 documents in each in-
put dataset but only 1,000 given corresponding pairs. In contrast to most approaches
in cross-lingual knowledge transfer, we are not using any specialized pre-processing
technique from information retrieval to tune our framework to this task.

5 Conclusions
This paper proposes a novel framework for manifold alignment, which maps data in-
stances from different high dimensional data sets to a new lower dimensional space,
simultaneously matching the instances in correspondence and preserving global dis-
tances between instances within the original data set. Unlike previous approaches
based on local geometry preservation, the proposed approach is better suited to appli-
cations where the global geometry of manifold needs to be respected like cross-lingual
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retrieval. Our algorithm can also be used as a knowledge transfer framework for trans-
fer learning, providing direct feature-feature translation across domains.
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