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ABSTRACT
Kernel rootkits have posed serious security threats due to their stealthy
manner. To hide their presence and activities, many rootkits hi-
jack control flows by modifying control data or hooks in the kernel
space. A critical step towards eliminating rootkits is to protect such
hooks from being hijacked. However, it remains a challenge be-
cause there exist a large number of widely-scattered kernel hooks
and many of them could be dynamically allocated from kernel heap
and co-located together with other kernel data. In addition, there is
a lack of flexible commodity hardware support, leading to the so-
calledprotection granularitygap – kernel hook protection requires
byte-level granularity but commodity hardware only provides page-
level protection.

To address the above challenges, in this paper, we present Hook-
Safe, a hypervisor-based lightweight system that can protect thou-
sands of kernel hooks in a guest OS from being hijacked. One
key observation behind our approach is that a kernel hook, once
initialized, may be frequently “read”-accessed, but rarely “write”-
accessed. As such, we can relocate those kernel hooks to a ded-
icated page-aligned memory space and then regulate accesses to
them with hardware-based page-level protection. We have devel-
oped a prototype of HookSafe and used it to protect more than
5, 900 kernel hooks in a Linux guest. Our experiments with nine
real-world rootkits show that HookSafe can effectively defeat their
attempts to hijack kernel hooks. We also show that HookSafe achieves
such a large-scale protection with a small overhead (e.g., around
6% slowdown in performance benchmarks).

Categories and Subject DescriptorsD.4.6 [Operating Sys-
tem]: Security and protection – Invasive software

General TermsSecurity
Keywords Malware Protection, Rootkits, Virtual Machines

1. INTRODUCTION
Kernel rootkits are considered one of the most stealthy com-

puter malware and pose significant security threats [28]. By di-
rectly subverting operating system (OS) kernels, such rootkits can
not only hide their presence but also tamper with OS functional-
ities to launch various attacks such as opening system backdoors,
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stealing private information, escalating privileges of malicious pro-
cesses, and disabling defense mechanisms.

Given the serious security threats, there has been a long line of
research on rootkit defense. Specifically, prior research efforts can
be roughly classified into three categories. In the first category,
systems such as Panorama [33], HookFinder [32], K-Tracer [15],
and PoKeR [24] focus on analyzing rootkit behaviors. Systems
in the second category are primarily designed for detecting rootk-
its based on certain symptoms exhibited by rootkit infection. Ex-
amples are Copilot [20], SBCFI [21], and VMwatcher [13]. In
the third category, systems such as SecVisor [26], Patagonix [16],
and NICKLE [23] have been developed to preserve kernel code
integrity by preventing malicious rootkit code from executing. Un-
fortunately, they can be bypassed byreturn-orientedrootkits [11],
which will first subvert kernel control flow (i.e., by hijacking func-
tion pointers or return addresses on the stack) and then launch the
attack by only utilizing legitimate kernel code snippets.

In light of the above threat, it becomes evident that, in addition to
the preservation of kernel code integrity, it is also equally important
to safeguard relevant kernel control data so that we can preserve the
kernel control flow integrity and thus block rootkit infection in the
first place. In this paper, we consider kernel data as control data
if it is loaded to processor program counter at some point in ker-
nel execution. There are two main types of kernel control data:
return addressesandfunction pointers. In prior research, there ex-
ist extensive studies [1, 2, 9] on how to effectively protect return
addresses some of which [1, 9] have been deployed in real-world
applications. In this work, our primary focus is to protect those
function pointers. Note that function pointers are typically hijacked
or “hooked” by rootkits. For ease of presentation, we use the term
function pointers and kernel hooks interchangeably.

To safeguard a kernel hook, an intuitive approach [18] is to lever-
age hardware-based page-level protection so that any write-access
to the memory page with the kernel hook can be monitored and ver-
ified. This approach will work well if (1) there exist only a very lim-
ited number of kernel hooks for protection and (2) these hooks are
not co-located together with frequently modified memory data. Un-
fortunately, in a commodity OS kernel such as Linux and Windows,
it is not uncommon that there exist thousands of kernel hooks and
these kernel hooks can be widely scattered across the kernel space.
Further, many of them might be dynamically allocated from kernel
heap and are co-located together with other writable kernel data in
the same physical memory frames. If this intuitive approach is de-
ployed, it has to trap all writes to memory pages containing kernel
hooks, even those not targeting at kernel hooks. Consequently, it
will introduce significant performance overhead, particularly from
frequent unnecessary page faults that are caused by write-accesses
to irrelevant data. In fact, our investigation with a recent Linux sys-



tem indicates that about1% of kernel memory writes may cause
such unnecessary page faults.

To address the above challenges, in this paper, we present Hook-
Safe, a hypervisor-based lightweight system that is able to effi-
ciently protect thousands of kernel hooks in a guest OS from be-
ing hijacked. Our approach recognizes a fundamental challenge,
namely theprotection granularity gap, that hardware provides page-
level protection but kernel hook protection requires byte-level gran-
ularity. To tackle this challenge, we observe that these kernel hooks,
once initialized, rarely change their values. This observation in-
spires us to relocate kernel hooks to a dedicated page-aligned mem-
ory space and then introduce a thinhook indirection layerto reg-
ulate accesses to them with hardware-based page-level protection.
By doing so, we avoid the unnecessary page faults caused by trap-
ping writes to irrelevant data.

We have implemented a prototype of HookSafe based on the lat-
est Xen hypervisor [7] (version3.3.0) and used it to protect more
than5, 900 kernel hooks in a Ubuntu 8.04 Linux system. Our ex-
periments with nine real-world rootkits show that HookSafe can ef-
fectively defeat their attempts to hijack kernel hooks that are being
protected. We also show that HookSafe achieves such a large-scale
protection with only6% slowdown in performance benchmarks [6,
29]. To the best of our knowledge, HookSafe is the first system that
is proposed to enable large-scale hook protection with low perfor-
mance overhead.

The rest of the paper is structured as follows. We first discuss
the problem space HookSafe aims to address in Section 2. Then
we present our system design and implementation in Section 3 and
Section 4. We show our evaluation results with real-world rootkits
and performance benchmarks in Section 5. After discussing limi-
tations of our HookSafe prototype in Section 6, we describe related
work in Section 7. Finally, we conclude our paper in Section 8.

2. PROBLEM OVERVIEW
Kernel rootkits can be roughly classified into two categories:

Kernel Object Hooking (KOH) and Dynamic Kernel Object Ma-
nipulation (DKOM). KOH rootkits hijack kernel control flow while
DKOM rootkits do not hijack the control flow but instead subvert
the kernel by directly modifying dynamic data objects. In this
work, we focus on KOH rootkits since majority of kernel rootk-
its in the wild are of this type. In fact, a recent thorough analysis
[21] on 25 Linux rootkits indicates that24 (96%) of them make
control-flow modifications.

A KOH rootkit can gain the control of kernel execution by hi-
jacking either code hooks or data hooks [31, 32]. Since hijacking a
kernel code hook requires modifying the kernel text section which
is usually static and can be marked as read-only, it is straightfor-
ward to protect them [16, 23, 26]. Kernel data hooks instead are
typically function pointers and usually reside in two main kernel
memory regions. One is the preallocated memory areas including
the data sections and the bss sections in the kernel and loadable ker-
nel modules. The other are the dynamically allocated areas such as
the kernel heap. By design, HookSafe aims to prevent kernel rootk-
its from tampering with kernel hooks inbothmemory regions with
low performance overhead.

As mentioned earlier, to efficiently protect kernel hooks, we face
a critical challenge of theprotection granularity gap, where the
hardware provides page-level protection but kernel hooks are at the
byte-level granularity. Since kernel hooks are scattered across the
kernel space and often co-located with other dynamic kernel data,
we cannot simply use hardware-based page-level protection.

To better understand it, we have analyzed a typical Ubuntu 8.04
server by using a whole-system emulator called QEMU [22]. Our
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Figure 1: Distribution of 5, 881 kernel hooks in a running
Ubuntu system

analysis with5, 881 Linux kernel hooks (we describe how we ob-
tain these hooks in Section 5) indicates that they are scattered across
41 physical pages and some of them are located in dynamic kernel
heap. In Figure 1 we show the histogram of the number of kernel
hooks in a single memory page. We can see that14 pages contain
less than50 hooks. In the worst case, one hook is allocated in a
page (4, 096 bytes) along with other4, 092 bytes of dynamic data.
As a result, writes to these physical pages would trigger frequent
unnecessary page faults if one marked them as write-protected.
To quantify these unnecessary page faults, we recorded all kernel
memory write operations in the Ubuntu server. Based on the col-
lected log, within a randomly-selected period of100 seconds, we
found that there are in total700, 970, 160 kernel memory writes.
Among these writes, there is no single write to the set of5, 881

kernel hooks for protection, while the number of writes to the 41
memory pages that contain protected hooks is 6,479,417. In other
words, about1% of kernel memory writes would cause unneces-
sary page faults and thus introduce expensive switches between a
VM and a hypervisor. When designing HookSafe, a key technical
task is to avoid these unnecessary page faults while still effectively
securing the protected kernel hooks.

In this paper, we assume that a trusted bootstrap mechanism such
as tboot [3] is in place to establish the static root of trust of the entire
system. With that, a trustworthy hypervisor can be securely loaded
which, in turn, can protect the integrity of the guest kernel at boot
time. We also assume the runtime integrity of hypervisor is main-
tained. As such, we consider the attacks to hypervisor including
recent SMM ones [14] fall outside the scope of this paper.

3. HOOKSAFE DESIGN

3.1 Overview
HookSafe is a hypervisor-based lightweight system that aims to

achieve large-scale protection of kernel hooks in a guest OS so that
they will not be tampered with by kernel rootkits. To efficiently
resolve the protection granularity gap, in HookSafe we relocate
kernel hooks from their original (widely-scattered) locations to a
page-aligned centralized location and then use a thin hook indirec-
tion layer to regulate accesses to them with hardware-based page-
level protection. In other words, we create a shadow copy of the
kernel hooks in a centralized location. Any attempt to modify the
shadow copy will be trapped and verified by the underlying hy-
pervisor while the regular read access will be simply redirected to
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Figure 2: The HookSafe architecture

the shadow copy. By using hook indirection, we avoid the perfor-
mance overhead caused by trapping legitimate writes to dynamic
kernel data around protected hooks.

In HookSafe, all read or write accesses to protected kernel hooks
are routed through the hook indirection layer. For performance rea-
sons, we handle read and write accesses differently. Specifically,
for a normal write access that updates a kernel hook, because only
the hypervisor can write to the memory pages of protected kernel
hooks, we will transfer the control from the guest kernel to the hy-
pervisor to commit the update and then switch back to the guest
kernel. However, for a read access, we use a piece of indirection
code residing in the guest OS kernel memory to read the corre-
sponding shadow hook. By doing so, we avoid the overhead of
switching from the guest to the hypervisor and vice versa in read
accesses. Note that read accesses to protected hooks could be very
frequent, and thus we can benefit significantly by keeping read in-
direction inside the guest OS kernel.

Figure 2 shows the overall architecture of HookSafe. Given a
set of kernel hooks (for protection) as input, HookSafe achieves its
functionality in two key steps:

• First, anoffline hook profilercomponent profiles the guest
kernel execution and outputs a hook access profile for each
protected hook. A hook access profile includes those kernel
instructions that read from or write to a hook and the set of
values assigned to it. In the next step, a hook’s access pro-
file will be used to enable transparent hook indirection. For
simplicity, we refer to those instructions that access a hook
as Hook Access Points (HAPs).

• Second, taking hook access profiles as input, anonline hook
protectorcreates a shadow copy of all protected hooks and
instruments HAP instructions such that their accesses will
be transparently redirected to the shadow copy. The shadow
hooks are aggregated together in a central location and pro-
tected from any unauthorized modifications.

In the rest of this section, we will describe these two steps in
detail. We will focus on key ideas in HookSafe’s design and defer
implementation details to Section 4.

3.2 Offline Hook Profiling
Our first step is to derive, for the given kernel hooks (as input),

the corresponding hook access profiles. To do so, there are two
main approaches: The first approach is to performstatic analysis
on the OS kernel source code and utilize known program analysis
techniques such as points-to analysis [5] to automatically collect
hook access profiles. The second approach is to leveragedynamic
analysiswithout the need of requiring the OS kernel source code.
In particular, dynamic analysis runs the target system on top of an
emulator (e.g., QEMU [22]) and monitors every memory access
to derive the hook access instructions. In comparison, dynamic
analysis allows for recording precise runtime information such as
the values a hook has taken, but potentially has less coverage while
static analysis is more complete but less precise.

We note that both approaches have been widely explored before
and the results can be directly applicable in HookSafe. In our cur-
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Figure 3: The architecture of online hook protection.

rent prototype, we have chosen to implement the offline hook pro-
filer based on dynamic analysis.

3.3 Online Hook Protection
After collecting hook access profiles, our next step is to effi-

ciently protect kernel hooks in a guest OS from being manipulated
by kernel rootkits. Figure 3 shows the architecture of our online
hook protection. The essential idea here is to leverage a thin hook
indirection layer to regulate accesses to kernel hooks. Specifically,
after a guest OS boots up, we first create a shadow copy of identi-
fied hooks, and then instrument all HAPs in kernel code so that read
or write accesses will be redirected to the hook indirection layer. In
addition, there exists a memory protection component in the hyper-
visor that protects the indirection code, the shadow hooks, and the
kernel code in the guest OS from being tampered with. Next, we
will describe how HookSafe initializes online hook protection and
how it handles read/write accesses.

3.3.1 Initialization
HookSafe initializes the online hook protection in two steps. It

first uses an in-guest short-lived kernel module to create the shadow
copy of kernel hooks and load the code for the indirection layer.
Then it leverages the online patching provided by the hypervisor to
instrument the HAPs in the guest kernel. As mentioned earlier, we
assume the system bootstrap process and the in-guest kernel mod-
ule loading are protected by trusted booting [3]. Next we describe
these two steps in detail.

As a part of system bootstrap process, the in-guest kernel mod-
ule will be loaded to allocate memory pages from the non-paged
pool. The non-paged memory allocation is needed to prevent them
from being swapped out. After that, the kernel module will copy
protected kernel hooks at their original locations to the newly allo-
cated memory pages. Then it will load the code of the indirection
layer to these memory pages. Before the guest kernel module un-
loads itself, it will make a hypercall to notify the hypervisor the
starting address and size of the memory pages so that they can be
protected.

When the hypervisor receives the hypercall regarding the guest
memory pages for shadow hooks and indirection code, it conducts
the second step to patch HAPs in the kernel code. The basic idea
is to detour the execution of an HAP instruction to the hook indi-
rection layer so that the access to the original kernel hook will be
redirected to the corresponding shadow copy.

3.3.2 Run-Time Read/Write Indirection
After the initialization, all accesses to protected hooks at the

HAPs will be redirected to the hook indirection layer. It then han-



dles hook accesses differently depending on whether it is a read or
write access. For read accesses, the indirection layer simply reads
from the shadow hooks then returns to the HAP site. For write
accesses, the indirection layer will issue a hypercall and transfer
the control to the hypervisor. Then the memory protection com-
ponent in the hypervisor will validate the write request and update
the shadow hook if the request is valid. To validate a write request,
HookSafe requires the new hook value to be seen in the offline
profiling phase. We note that other policies can also be naturally
supported in HookSafe, including those proposed in SBCFI [21] to
check if the new kernel hook points to a valid code region, a valid
function, a valid function with correct type, or the related points-to
set calculated from static analysis.

We point out that the hypervisor-based memory protection com-
ponent protects not only the centralized shadow hooks but also the
code for hook indirection and other legitimate kernel code. To do
so, HookSafe utilizes the shadow page table realized in the hypervi-
sor for a running guest VM and sets proper protections for memory
pages of the protected contents (more in Section 4.3).

3.3.3 Run-Time Tracking of Dynamically Allocated
Hooks

The design of HookSafe is complicated by the support of dy-
namically allocated hooks. In particular, since those hooks are
allocated and deallocated at runtime, we need to effectively keep
track of these events. To this end, we notice that a dynamically al-
located hook is typically embedded in a dynamic kernel object. In
other words, a dynamic hook will be created when the hosting ker-
nel object is being allocated and instantiated from the kernel heap.
Similarly, a dynamic hook will be removed when the hosting kernel
object is being de-allocated and the related memory space is being
returned back to kernel heap. Accordingly, we can instrument the
memory allocation/deallocation functions and utilize the run-time
context information to infer whether a particular kernel object of
interest is being allocated or de-allocated. If one such kernel ob-
ject that contains a kernel hook is being allocated, a hypercall will
be issued to HookSafe to create a shadow copy of the hook (not
the entire hosting kernel object!). Similarly, another hypercall is
triggered to remove the shadow copy when the hosting kernel ob-
ject is released. By introducing two extra hypercalls, HookSafe is
able to track the creation and removal of dynamically allocated ker-
nel hooks. After that, HookSafe’s hook indirection layer works the
same regardless of the nature of kernel hooks.

Another related challenge is the recognition of those dynami-
cally allocated kernel hooks that may already exist before load-
ing HookSafe’s in-guest module for hook protection. To address
that, a natural approach is to initiate the run-time tracking imme-
diately after the guest OS begins execution. However, it implies
HookSafe needs to instrument the memory management functions
at the very first moment when the guest OS executes. Also with-
out the help from an in-guest module, HookSafe needs to maintain
its own buffer to record those dynamically-allocated kernel hooks.
To avoid that, in our prototype, we instead take another approach.
Specifically, our approach exploits the fact that any dynamically
allocated kernel object must be accessible in some way from cer-
tain global variable(s) or CPU register(s). If one imagines kernel
objects as a graph where the edges are pointers, then all objects
will be transitively reachable from at least one global variable. If
an object is not reachable in this way, then the kernel itself will
not be able to access it and the object cannot be used. A similar
observation has also been made in previous work on both garbage
collection and state-based control-flow integrity [21]. As a result,
with the knowledge of these global variables, it is a straightforward

process to identify the current run-time addresses of target kernel
objects, which contain kernel hooks. After that, we can apply the
normal process of creating shadow copies of these pre-existing ker-
nel hooks and patching the guest kernel to redirect access to their
shadow copies.

3.4 Hardware Register Protection
In addition to regular memory-based kernel hooks, hardware reg-

isters such asGDTR, IDTR, DR0-DR7debug registers, andSYSEN-
TER MSRregisters can also be potentially exploited by rootkits to
hijack kernel control flow. These hooks are special in that they are
invoked directly by the hardware. Therefore it is vital for HookSafe
to regulate accesses to these registers as well. To do that, we use
hardware-based virtualization support to intercept and validate any
write attempts to these registers. Related to the hardware register
protection is how we secure theGDT and IDT descriptor tables.
These two tables contain critical system data structures and their
contents must be protected. We protect these two tables using the
hardware-based page-level protection.

Another related issue is how we prevent DMA from being abused
to subvert the HookSafe’s memory protection. In particular, to limit
the physical memory accessible to a DMA engine of an I/O de-
vice, we utilize the hardware-based IOMMU support (already im-
plemented in Xen) in the recent CPU/chipsets to map the address
space of DMA engine to a safe place. In other words, the way the
IOMMU is set up preludes the possibility of overwriting HookSafe
as well as HookSafe-protected memory regions in a guest.

4. IMPLEMENTATION
We have implemented a prototype of HookSafe. The online hook

protection component was developed based on the Xen hypervi-
sor [7] (version3.3.0), and the offline hook profiling component is
based on QEMU [22], an open source whole-system emulator. The
current prototype is mainly implemented and evaluated in a system
running Ubuntu Linux 8.04. Because of that, for most of this sec-
tion, we choose it as the default guest OS protected by HookSafe.
In the following, we will first present the implementation of the of-
fline hook profiler. Then we will describe how we implement the
hook indirection and the memory protection.

4.1 Offline Hook Profiler
Our offline hook profiler is essentially a whole-system emulator

with additional functionality in instrumenting and monitoring the
execution of every memory access instruction. In particular, given a
list of kernel hook locations for protection, we run the target system
on top of the profiler. At the end of a run, the profiler records, for
each kernel hook, a list of HAP instructions that read from or write
to these kernel hooks and the set of values the hook may take at
runtime.

QEMU implements a key virtualization technique called binary
translation that rewrites the guest’s binary instructions. Our pro-
totype extends the binary translator in QEMU with additional in-
strumentation code to record executions of instructions that read or
write memories. If an instruction accesses any kernel hook in the
given list, we mark it as an HAP instruction and log the value that is
written to or read from the hook. For a dynamically allocated ker-
nel hook, the profiler also tracks the creation of the hosting kernel
object and locates the runtime hook location. At the end of profil-
ing, the collected HAP instructions and recorded hook values will
be compiled as the corresponding hook access profile.

Figure 4 shows an example profile for the kernel hookext3_dir_
operations ->readdir, which is located in theext3.koloadable ker-
nel module (LKM) and has been hijacked by existing kernel rootk-



Hook:  ext3_dir_operations->readdir (0xc025c924)
================================================

HAP1 (Access Type: READ):
        address:  0xc015069a (vfs_readdir+0x1D)
    instruction:  83 78 18 00 cmpl $0x0,0x18(%eax)
        content:  0xc016f595 (ext3_readdir)
     
HAP2 (Access Type: READ):
        address:  0xc01506dd (vfs_readdir+0x60)
    instruction:  ff 53 18    call *0x18(%ebx)
        content:  0xc016f595 (ext3_readdir)
   

Figure 4: An example access profile related to
ext3_dir_operations ->readdir kernel hook

its (Section 5) for hiding purposes. The profiled results indicate
that this specific hook is accessed by two instructions located at
0xc015069a and0xc01506dd (both in thevfs_readdirfunction).
During the entire profiling, this particular hook always points to
theext3_readdirfunction and there is no instruction observed that
will update the hook value.

4.2 Hook Indirection

1: jmp1: jmp

Trampoline

3: jmp

Trampoline

3: jmp ......

......

Kernel Text

HAPs

2: call/ret

Hook Redirector

2: call/ret

Hook Indirection Layer

Figure 5: The implementation of hook indirection

The key novelty in HookSafe is to instrument every HAP in-
struction such that the access to the (original) kernel hook is trans-
parently redirected to the corresponding shadow hook. In Figure
5, we show how the hook indirection is realized in our prototype.
In essence, the hypervisor replaces the HAP instruction at run-
time with a jmp instruction to detour the original execution flow
to specially-crafted trampoline code. The trampoline code collects
runtime context information that will be used by the hook redirector
to determine the exact kernel hook being accessed. After the hook
redirector processes the actual read or write to a shadow hook, the
trampoline will execute the HAP-specific overwritten instructions,
if any, before returning back to the original program. To make our
prototype memory-efficient, each HAP instruction has its own copy
of trampoline code but the hook redirector code is shared by all the
HAPs. Note that both trampoline and hook redirector code reside
in the guest kernel memory and are protected by the hypervisor’s
memory protection component. In Figure 5, the arrowed lines (with
instructions and numbers on them) show the control flow transfers
among HAPs, trampolines and the hook redirector.

4.2.1 HAP Patching
Our implementation uses a five-bytejmp instruction (one byte

opcode0xe9 plus the 32-bit offset as operand) to detour the control
flow from an HAP instructions to its trampoline code in the hook
indirection layer. Since x86 architecture uses instructions with vari-
able lengths, we must align the overwritten bytes to the instruction
boundary. When an HAP instruction occupies more than five bytes,
we will fill the rest space withNOP instructions. When an HAP

c0150693:   8b 46 10      mov    0x10(%esi),%eax
c0150696:   85 c0         test   %eax,%eax

c015069e:   74 5c         je     c01506fc <vfs_readdir+0x7f>        

c0150698:   74 62         je     c01506fc <vfs_readdir+0x7f>                

vfs_readdir in linux/fs/readdir.c:

c015069a:   83 78 18 00   cmpl   $0x0,0x18(%eax)

(a) An example HAP instruction (highlighted in bold font)

vfs_readdir in linux/fs/readdir.c

         goto out;
  if(!file−>f_op ||    !file−>f_op−>readdir             )  

(b) The C source code related to the HAP (highlighted in bold
font)

Figure 6: An example HAP instruction and the related C code

instruction has less than five bytes, we overwrite the subsequent in-
structions to make the space for the five-bytejmp instruction, and
execute these overwritten instructions at the end of hook indirec-
tion. By doing so, our detouring code preserves the boundary of
subsequent instructions.

Using the same example in Figure 4, we show the first HAP
instruction (located in0xc015069a) and its surrounding instruc-
tions in Figure 6(a). The corresponding C source code is shown in
Figure 6(b), which belongs to thevfs_readdirfunction defined in
linux/fs/readdir.cof the linux kernel. In the disassembled code, the
first three instructions test whetherfile->f_op is NULL. The fourth
instruction is the HAP instruction that checks whether the hookfile-
>f_op->readdir is NULL. As shown in Figure 6(a), this particular
HAP instruction only occupies four bytes. To successfully detour
its execution with the five-bytejmp instruction, we need to over-
write the subsequent instruction located at0xc015069e with two
bytes as well.

In the patching process, there are two caveats that we have expe-
rienced in our prototype, particularly when overwriting additional
instructions that follow the patched HAP instruction. First, if two
HAPs are close to each other, the first detouringjmp instruction
may overwrite the second HAP instruction. Second, even worse,
some instruction overwritten by thejmp instruction may be a jump
target. In the example shown in figure 6(a), there may exist an in-
struction that directly jumps to the secondje instruction, which un-
fortunately has been overwritten by the detouringjmp instruction.
In other words, that instruction would essentially jump to the mid-
dle of the detouringjmp, which typically causes an invalid opcode
exception.

These two scenarios occur because other instructions than the
original HAP instruction are overwritten by the detouringjmp in-
struction. We solve this problem by conducting function-level bi-
nary rewriting similar to Detours [12]. Instead of locally modifying
the original function, we create a new copy of it in which we replace
HAP instructions withjmp instructions and shift the subsequent in-
structions accordingly. In addition, we replace the first instruction
in the old function with ajmp instruction so that any function call
to it will be redirected to the new function. In this way, we avoid
rewriting the entire kernel image. Note that we assume there is no
control transfer from one function to the middle of another func-
tion, which was empirically confirmed in our evaluation.

4.2.2 Read/Write Indirection
The hook indirection layer in HookSafe has two components:

trampoline and redirector. The trampoline code prepares the hook-
related context information (e.g., the HAP address and machine
registers’ contents). The redirector uses the context information
to find which hook is being read or written and then identify the
corresponding shadow hook.



For the support of variable-length instructions, the HAP patching
may overwrite additional instructions that follow an HAP instruc-
tion. To reclaim them, our prototype customizes the trampoline
code for each detoured HAP instruction as follows. First, the ad-
ditional overwritten instruction(s) are appended to the end of the
trampoline code. By doing so, they will be executed when the con-
trol returns back from the hook redirector. Second, at the end of the
trampoline code, we further append an additionaljmp instruction
so that the control is transferred back to the original program.

Upon the call from the trampoline code, the redirector first de-
termines which hook is being accessed based on the current CPU
context and the semantics of the detoured HAP instruction. Using
the first HAP instruction in Figure 6(a) as an example the hook’s ad-
dress is the registereax plus0x18. The redirector retrieves the con-
tent of registereax from the CPU context saved by our trampoline
code and determines the original kernel hook that is being accessed.
After that, the redirector identifies the corresponding shadow hook
and performs the desired access indirection. If it is a read access,
the redirector will read the shadow hook and update the saved CPU
states to reflect the effect of HAP instruction. Continuing the previ-
ous HAP instruction example (Figure 6(a)), the redirector will up-
date theeflags register in the saved CPU states to indicate whether
file->f_op->readdiris NULL. After returning from the redirector,
the trampoline will restore saved CPU states. By doing so, the read
access of the original kernel hook is effectively redirected to its
shadow copy. If it is a write access, the redirector will make a hy-
percall to the hypervisor so that the memory protection component
can verify the new hook value and update the shadow hook if it is
legitimate.

In our prototype, instead of completely ignoring original kernel
hooks, we also utilize them to detect rootkits’ hooking behavior.
More specifically, for each redirected hook read access, the hook
indirection layer in addition performs a consistency check between
the original kernel hook and its shadow copy. Any difference would
indicate that the original hook has been compromised. Similarly,
for each redirected hook write access, if the write operation is le-
gitimate, we need to update both the shadow hook and the original
hook to keep them synchronized.

4.2.3 Run-Time LKM and Hook Tracking
To support runtime tracking of dynamically allocated kernel hooks,

we first observe that the lifetimes of these hooks are consistent
with their hosting kernel objects. In addition, in Linux, these host-
ing kernel objects are typically allocated/deallocated through the
SLAB interface. More specifically, the SLAB allocator manages
caches of objects (that allow for fast and efficient allocations) and
each different type of object has its own SLAB cache identified
by a human-readable name. Since there are two main functions to
allocate and deallocate a kernel objects, i.e.,kmem_cache_alloc

andkmem_cache_free, our current prototype instruments these
two functions using a very similar technique with hook indirec-
tion. Specifically, before these two functions return, the instru-
mented code checks whether the SLAB manages a particular ker-
nel object of interest (i.e., whether it contains a kernel hook that
needs to be shadowed). If so a hypercall will be issued to no-
tify HookSafe so that it can track the hook creation and termina-
tion. Note that the instrumented code runs in the guest kernel space
and the world switch only occurs when the kernel object being al-
located/deallocated through the SLAB interface contains a kernel
hook of interest.

Related to dynamic kernel hook tracking is how we support the
kernel hooks inside the Loadable Kernel Modules (LKMs). For a
given LKM, because its runtime memory will not be determined

until at runtime, it poses additional challenges for HookSafe to
precisely determine the locations of those hooks contained in the
LKM. Fortunately, for those kernel hooks (and HAP instructions)
inside a LKM, the relative offsets to the LKM base address where
the module is loaded are fixed. Therefore a LKM hook’s runtime
location can be simply calculated as the addition of the LKM’s
current base location and the relative offset. Based on this ob-
servation, a hook address is extended to a tuple of (module_hash,
hook_offset), where the hash is used to uniquely identify a module.

To precisely locate the LKM base address at runtime, we uti-
lize the well-known technique called virtual machine introspection
[10, 23, 26]. Specifically, during our profiling and online Hook-
Safe protection, we leverage the virtual machine introspection to
intercept module loading/unloading events in the guest kernel. Af-
ter a module is loaded and fixed up by the guest kernel, we then
derive the runtime location of a LKM hook by simply adding the
base address of the module and the relative offset of the hook.
An example of such LKM hook is shown in Figure 4 where the
ext3_dir_operations ->readdiris a kernel hook inside theext3.ko
module.

4.3 Memory Protection
To protect the guest kernel code and the in-guest memory used by

HookSafe, we leverage the shadow page table (SPT) management
subsystem in the Xen hypervisor. In the SPT memory management
mode, the hypervisor maintains an SPT for each guest, which regu-
lates the translation directly from a guest virtual address to the host
physical address. Any update to the guest page table (GPT) in the
guest kernel is trapped and propagated to the SPT by the hypervi-
sor. In other words, the hardware performs the address translation
solely with the shadow page table.

To protect guest memories, we check if the guest virtual address
is in the range of our protected memories before propagating the
changes in GPT to SPT. If so, we make sure the physical pages are
marked read-only.

4.4 System Call Indirection Optimization
When building our prototype, we realized that the system call

table provides a unique opportunity for optimization. Note that the
Linux’s system call table shares a memory page with other dynamic
data [23], which means that we cannot simply mark the memory
page read-only but rely on HookSafe’s protection. In the meantime,
a system call table usually contains a large number of hooks. For
instance, in the kernel we tested, the system call table has 330 func-
tion pointers and each of them may be hooked by a rootkit. Due to
the fact that accesses to the system call table is fairly frequent, it is
also critical to optimize its indirection to reduce the overhead.

We observe that the system call table in the linux kernel is ac-
cessed by only tworeadHAP instructions, and both of them has the
base address of the system call table hardcoded in the instructions.
This provides a unique opportunity for optimization. In our proto-
type, instead of creating a shadow for each individual system call
hook, we simply create a shadow system call table and replace the
base addresses in the two HAP instructions with the new shadow
table address. By doing so, we essentially eliminate the system call
redirection overhead caused by hook indirection. Our experience
indicates that this is a special case and we did not find any other
hooks that can be optimized this way.

5. EVALUATION
In this section, we present our evaluation results. In particular,

we have conducted two sets of experiments. The first set of ex-
periments (Section 5.1) is to evaluate HookSafe’s effectiveness in



HookSafe Results
Rootkit Attack Vector Hooking Behavior Outcome Reason

proc_root_inode_operations ->lookup Hiding fails Hook indirection
proc_root_operations ->readdir Hiding fails Hook indirection

adore-ng LKM ext3_dir_operations ->readdir Hiding fails Hook indirection
0.56 ext3_file_operations ->write Hiding fails Hook indirection

unix_dgram_ops ->recvmsg Hiding fails Hook indirection
eNYeLKM 1.2 LKM kernel code modification Installation fails Memory Protection

sk2rc2 /dev/kmem sys_call_table[__NR_oldolduname]‡ Installation fails Memory Protection
superkit /dev/kmem sys_call_table[__NR_oldolduname]‡ Installation fails Memory Protection

Phalanx b6 /dev/mem sys_call_table[__NR_setdomainname]‡ Installation fails Memory Protection
mood-nt 2.3 /dev/kmem sys_call_table[__NR_olduname]‡ Installation fails Memory Protection

sys_call_table[__NR_getuid]† Hiding fails Hook indirection
sys_call_table[__NR_geteuid]† Hiding fails Hook indirection

override LKM sys_call_table[__NR_getdents64]† Hiding fails Hook Indirection
sys_call_table[__NR_chdir]† Hiding fails Hook indirection
sys_call_table[__NR_read]† Hiding fails Hook indirection

Sebek 3.2.0b LKM sys_call_table[__NR_read]‡ Installation fails Memory Protection
hideme.vfs LKM kernel code modification Installation fails Memory Protection

Table 1: Effectiveness of HookSafe in preventing9 real world kernel rootkits: Hiding fails indicates that although the rootkit modified
the original kernel hooks, it failed to hijack the control flow because HookSafe has redirected the hook to its shadow;Installation
fails indicates that the rootkit hooking behavior causes the memory protection violation, hence failing the installation. Additionally,
depending on how the rootkit searches for the system call table, itmay locate either the original system call table (marked with†) or
the shadow system call table (marked with‡).

preventing real-world rootkits from tampering with kernel hooks.
We tested HookSafe with nine real-world rootkits. It successfully
prevented all of them from modifying protected hooks and hiding
themselves. The second set of experiments (Section 5.2) is to mea-
sure performance overhead introduced by HookSafe. We evalu-
ated HookSafe on benchmark programs (e.g., UnixBench [29] and
ApacheBench[6]) and real-world applications. Our experimental
results show that the performance overhead introduced by Hook-
Safe is around6%.

In our experiments, HookSafe takes as input two sets of kernel
hooks. The first set includes5, 881 kernel hooks in preallocated
memory areas of main Linux kernel and dynamically loaded kernel
modules. Specifically, we derive this set by scanning the data/bss
sections of the kernel and LKMs in a guest VM running Ubuntu
Server 8.04 (with a default installation). In our experiment, we ex-
amine those sections every four bytes (32-bit aligned) and consider
it as a kernel hook if it points to the starting address of a function
in the kernel or kernel modules. At the end, we found5, 881 kernel
hooks in the guest VM. The second set is from39 kernel objects
(with function pointers) that will be dynamically allocated from
kernel heap. We obtain this set by manually going through a subset
of the entire Linux source code and locate those kernel objects of
interest. Note that during runtime, it is not uncommon that tens or
hundreds of copies of the same type of kernel objects will be allo-
cated. Not surprisingly, a large part of them are related to timer,
callback/notifier functions, and device drivers. We point out that
this set can be further improved from existing systems such as [15,
24, 32, 33] as they are capable of profiling rootkit execution and
reporting those compromised kernel objects with hooks. Given the
above two sets of kernel hooks, with our offline profiler, we iden-
tified 968 HAP instructions for these hooks:785 of them are read
HAPs while the remaining183 are write HAPs. Next we describe
our experiments in detail.

5.1 Effectiveness Against Kernel Rootkits
We have evaluated HookSafe with nine real-world Linux 2.6

rootkits shown in Table 1. These rootkits cover main attack vectors
and hooking behaviors of existing kernel rootkits, therefore pro-

viding a good representation of the state-of-the-art kernel rootkit
technology. HookSafe successfully prevented these rootkits from
modifying the protected kernel hooks: these rootkits either failed
to hide their presences or failed to inject code into the kernel. In
the following, we describe in detail our experiments with two rep-
resentative rootkits.

Adore-ng Rootkit Experiment The adore-ngrootkit infects
the kernel as a loadable kernel module. If successfully installed,
it will hijack a number of kernel hooks and gain necessary control
over kernel execution so that it can hide certain rootkit-related files,
processes, and network connections. Meanwhile, it also has a user-
level control program namedavathat can send detailed instructions
(e.g., hiding a particular file or process) to the rootkit module.

For comparison, we performed our experiments in two scenar-
ios: First, we loadedadore-ngin a guest OS that isnot protected
by HookSafe and showed that it can successfully hide a running
process as instructed by theava program (see Figure 7(a)). Sec-
ond, we repeated the experiment in the same guest OS that is now
protectedby HookSafe. This time the rootkit failed to hide the pro-
cess (see Figure 7(b)). By analyzing the experiments, we found that
the rootkit was able to locate and modify certain kernel hooks at
their original locations. However, since now control flows related
to these hooks are determined by the shadows hooks, this rootkit
failed to hijack the control flow and thus was unable to hide the
running process.

As mentioned earlier, the hook indirection layer performs an
additional check by comparing the original kernel hook with its
shadow copy whenever the hook is accessed. As a result, we are
able to successfully identify these kernel hooks that are being ma-
nipulated byadore-ng. Our experiments show that theadore-ng
rootkit hijacks a number of kernel hooks, includingproc_root_inode
_operations ->lookup, proc_root_operations ->readdir, ext3_dir_
operations ->readdir, ext3_file_operations ->write, andunix_dgra
m_ops ->recvmsg. As pointed out earlier, theext3_file_operations
kernel object is a part of theext3.koand this module will be loaded
somewhere in the kernel heap at run time. A detailed analysis with
the rootkit source code reveals that the first two are hijacked for hid-
ing processes, the next two are for hiding files and directories, and



(a) Adore-ng hides thebashprocess (b) HookSafe prevents adore-ng from hiding processes

Figure 7: HookSafe foils the adore-ng rootkit.

the last one is for filtering messages to thesyslogddaemon. This
demonstrates that, with HookSafe’s protection, this rootkit and oth-
ers of its kind will not be able to hijack these hooks to hide their
malicious activities.

Mood-nt Rootkit Experiment Themood-ntrootkit attacks the
Linux kernel by directly modifying the kernel memory through the
/dev/kmeminterface. This is a rather advanced kernel-level attack
that leverages an attack strategy reflecting the so-calledreturn-to-
libc attacks [8, 11, 27]. Specifically, it first overwrites a function
pointer, i.e., a system call table entry called__NR_olduname, via
the /dev/kmeminterface and makes it pointing to a kernel func-
tion calledvmalloc. Then it “executes” this function by invoking a
syscall (with syscall number__NR_olduname) and this legitimate
kernel function will allocate a chunk of contiguous kernel memory
for the rootkit. After that, it populates the memory with its own
code (via the same/dev/kmeminterface), which essentially installs
itself in the kernel. Next it overwrites the same function pointer
again but this time it will point to its own code, and invokes it by
making another syscall (with the same syscall number). Finally, it
launches its payload and starts manipulating the OS kernel.

The mood-ntrootkit demonstrates the trend of leveraging the
return-to-libcattack strategy to evade systems [16, 23, 26] that aim
to preserve kernel code integrity. Instead of hijacking a syscall ta-
ble entry, it can also choose to control any other kernel hook and
potentially make use of it multiple times and each time it can point
to an arbitrary kernel function routine or code snippet. By doing
so, the rootkit can manage to sequentially execute these legitimate
kernel functions in the order chosen by the rootkitwithoutinjecting
its own code.

With HookSafe’s protection, this rootkit was stopped at the first
step when it tried to overwrite the function pointer__NR_olduname
in the shadow syscall table. Interestingly, the rootkit somehow is
able to locate and attempt to modify the corresponding shadow
copy of the function pointer. It turns out it identifies the shadow
copy by following the new base address of the syscall table in the
syscall handler, which is provided in our optimization (Section 4.4).
As a result, by stoppingmood-ntat the first place, HookSafe essen-
tially prevents function pointers from being subverted to manipu-
late kernel control flow.

5.2 Performance
To evaluate the performance overhead introduced by HookSafe,

we measured its runtime overhead on 10 tasks including those in
the UnixBench [29] and Linux kernel decompression and compila-
tion. We also measured its throughput degradation on a web server
using the ApacheBench [6].

Item Version Configuration
Ubuntu Server 8.04 standard installation (kernel 2.6.18-8)
Kernel Build 2.6.18-8 make defconfig & make

Gunzip 1.3.12 tar -zxf <file>
Apache 2.2.8 default configuration

ApacheBench 2.0.40-dev -c3 -t 60 <url/file>
UnixBench 4.1.0 default configuration

Table 2: Software package configurations for evaluation

Our testing platform is a Dell Optiplex 740 with an AMD64 X2
5200+ CPU and 2GB memory. HookSafe ran with the Xen hy-
pervisor of version 3.3.0. The guest OS is a default installation of
Ubuntu server 8.04 with a custom compile of the standard 2.6.18-8
kernel. Table 2 lists the configurations of the software packages
used in our evaluations. In the Apache test, we ran an Apache web
server to serve a web page of 8K bytes. We ran the ApacheBench
program on another machine in the same gigabit Ethernet to mea-
sure the web server throughput. For each benchmark, we ran 10
experiments with and without HookSafe and calculated the aver-
age.
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Figure 8: Runtime overhead on UnixBench and three applica-
tion benchmarks for HookSafe.

In Figure 8 we show the runtime overhead on 7 tasks in the
UnixBench, kernel decompression and kernel build, as well as the
throughput drop in ApacheBench. We can see that the maximum
overhead added by HookSafe is 6.5% when the standard Linux ker-
nel source packagelinux-2.6.18-8.tar.gz(51 megabytes) is decom-
pressed with thegunzipprogram. In the ApacheBench test, the
throughput degradation caused by HookSafe is 6.1%.

The ApacheBench experiment is particularly interesting. In a
short time period of 1 minute, the Apache server accepted more
than 10,000 TCP connections from the ApacheBench. For each
TCP connection, two dynamic kernel objects containing function
pointers were created:struct sock(a kernel object for an active net-



work socket) andstruct ip_conntrack(a kernel object used in the
Linux packet filtering framework for IP connection tracking pur-
poses). Note that although thesockobject will be destroyed when
the connection is closed, theip_conntrackobject lives longer until
the connection completely expires. During the ApacheBench test,
at its peak, there were24 active sockets and10, 096 ip_conntrack
objects alive, which means during this particular test, there are
around16, 000 kernel hooks (including more than10, 120 dynam-
ically allocated hooks) being protected by HookSafe. To quan-
tify the performance overhead, we measured the ApacheBench’s
throughput by only enabling run-time hook tracking. The results
show that the Apache server is able to transmit491.81MB in one
minute period, an overhead of0.7% when compared to the through-
put of495.39MB without HookSafe’s protection.

In addition, we performed a micro-measurement on the overhead
due to the hypercall made when creating a socket object. In this
measurement, we recorded the hardware timestamp counter regis-
ter (with the instructionrdtsc) [4] right before and after the socket
creation call, i.e., thesk_allocfunction. Originally, it took2266

CPU ticks for sk_alloc to complete while, with the overhead of
an additional hypercall, it required5839 CPU ticks to complete.
As a result, the hypercall incurs 157% overhead for a socket cre-
ation. Note that this overhead occurs only when the socket is being
created, which counts for a small part of the computation for the
entire lifetime of a socket connection. In other words, the perfor-
mance degradation due to these hypercalls is amortized over the
lifetime of kernel objects. The longer the lifetime, the smaller the
performance overhead.

In conclusion, HookSafe is lightweight and able to achieve large-
scale hook protection with around6% performance slowdown.

6. DISCUSSION
A fundamental limitation faced by our current HookSafe proto-

type for Linux guest OS is that hook access profiles are constructed
based on dynamic analysis and thus may be incomplete. The lack
of completeness is an inherent issue of dynamic analysis shared
by other approaches [15, 24, 31, 32]. In our case, it could result in
missing HAPs and legitimate hook values and has the following im-
pact on the protected system. First, since HookSafe maintains the
consistency between original hooks and shadow hooks, unpatched
read HAP instructions would work normally in a clean system by
reading from original hook locations. However, if a guest OS is
compromised, there may exist a (small) time window in which a
rootkit may hijack the control flow. Specifically, after a rootkit
modifies original hooks and before HookSafe detects the inconsis-
tency, the control flow will be hijacked if an unpatched HAP in-
struction reads from the original hook location to decide a control
transfer. Second, for unpatched write HAP instructions, their writes
to original hook locations will not affect patched read HAPs. Be-
fore HookSafe detects the inconsistency, the protected system will
be in an unstable state. Third, for legitimate hook values missing
in hook access profiles, HookSafe will raise a false alarm when
an HAP instruction attempts to update a hook with such a value.
However this is not a serious problem during our experiments. We
detected only5 (or 0.085%) kernel hooks with an incomplete hook
value set.

To mitigate the incompleteness problem, there are two possible
approaches. The first one is to improve the coverage of dynamic
analysis. Recent efforts such as multiple path exploration [17] have
shown promise that one can leverage runtime information to sys-
tematically guide the exploration process to achieve better cover-
age. The second one is to combine a complementary approach –
static analysis (Section 3.2), which is more complete but less pre-

cise. Note that an imprecise hook access profile has the implication
of causing false alarms. However, the integration of dynamic anal-
ysis and static analysis remains an interesting research problem.

Another limitation is that HookSafe assumes the prior knowl-
edge of the set of kernel hooks that should be protected from rootkit
attacks. In other words, HookSafe itself is not designed to automat-
ically discover those kernel hooks. From another perspective, this
problem is being addressed to some extent by a number of existing
systems, such as HookFinder[32] and HookMap [31], to systemat-
ically derive the set of kernel hooks that are or will be of interest
to rootkits. We expect that our work will be combined with these
efforts in the future to enable integrated hook discovery and rootkit
defense.

7. RELATED WORK
Kernel Rootkit Prevention The first area of related work in-

cludes recent systems that aim at preventing kernel rootkit infec-
tion. For example, SecVisor [26] is a tiny hypervisor that uses
hardware support to enforce kernel code integrity. Patagonix [16]
provides hypervisor support to detect covertly executing binaries.
NICKLE [23] mandates that only verified kernel code will be fetched
for execution in the kernel space. However, these systems do not
protect kernel hooks from being subverted to compromise kernel
control flow, which is the main goal of HookSafe.

Lares [18] is a closely related work and our work mainly differs
from it in two ways. First, our goal is to enable efficient, large-
scale hook protection while Lares is mainly intended to enable re-
liable active monitoring of a VM by securing the execution path
in which a monitoring point has been planted. Second, Lares di-
rectly uses hardware-based page-level protection to trap all writes
to those memory pages containing kernel hooks. As a result, any
write to irrelevant dynamic data but in the same physical page will
cause a page fault (Section 2). When it is applied to protect thou-
sands of hooks that are often co-located with dynamic kernel data,
it will lead to significant performance overhead. In comparison,
HookSafe recognizes the protection granularity gap and solves it by
introducing a hook indirection layer that relocates protected kernel
hooks to a page-aligned centralized memory space. By doing so,
our approach only incurs small (6%) performance overhead.

Kernel Rootkit Detection The second category of related work
aim at detecting rootkit presence. For example, a number of rootkit
detection tools such as System Virginity Verifier [25] validate the
kernel code and examine the kernel data (including hooks) known
to be the targets of current rootkits. Copilot[20] uses a trusted add-
in PCI card to grab a runtime OS memory image and infers pos-
sible rootkit presence by detecting any kernel code integrity viola-
tions. The approach is extended by follow-up research to examine
other types of violations such as kernel data semantic integrity [19]
and state-based control flow integrity [21]. Livewire [10] pioneered
the virtual machine introspection methodology to inspect the inner
states of guest VM to detect malware infections. Other systems
such as Strider GhostBuster [30] and VMwatcher [13] leverage the
self-hiding nature of rootkits to infer rootkit presence by detecting
discrepancies between the views of a system from different per-
spectives. Note that all these approaches were proposed to detect
kernel rootkits after the system is infected. In comparison, Hook-
Safe targets at preventing rootkits by protecting kernel hooks and
kernel text from being manipulated by them.

Kernel Rootkit Analysis There also exist a number of re-
cent efforts [15, 24, 31, 32, 33] on analyzing and profiling kernel-
mode malware, especially kernel rootkits. The goal of these ef-
forts is to enrich our understanding on stealthy malware, including
their hooking behavior and targeted kernel objects. Specifically,



Panorama [33] performs system-wide information flow tracking to
understand how sensitive data (e.g., user keystrokes) are stolen or
manipulated by malware. HookFinder [32] applies dynamic taint-
ing techniques to identify and analyze malware’s hooking behavior.
HookMap [31] monitors normal kernel execution to identify poten-
tial kernel hooks that rootkits may hijack for hiding purposes. K-
Tracer [15] makes a step further to systematically discover system
data manipulation behavior by rootkits. PoKeR [24] defines four
key aspects of kernel rootkit behaviors and accordingly proposes
a combat tracking approach to efficiently characterize and profile
them. HookSafe has a different goal: instead of locating the kernel
hooks hijacked by rootkits, it is designed to protect them from be-
ing hijacked. Therefore, HookSafe is complementary to the above
systems and thus can be naturally integrated together with them.

8. CONCLUSION
We have presented the design, implementation, and evaluation of

HookSafe, a hypervisor-based lightweight system that can protect
thousands of kernel hooks from being hijacked by kernel rootkits.
To enable large-scale hook protection with low overhead, Hook-
Safe overcomes a critical challenge of theprotection granularity
gapby introducing a thin hook indirection layer. With hook indi-
rection, HookSafe relocates protected hooks to a continuous mem-
ory space and regulates accesses to them by leveraging hardware-
based page-level protection. Our experimental results with nine
real-world rootkits show that HookSafe is effective in defeating
their hook-hijacking attempts. Our performance benchmarks show
that HookSafe only adds about6% performance overhead.
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