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Abstract

Integer errors have emerged as an important threat to sys-
tems security, because they allow exploits such as buffer
overflow and privilege escalation. This paper presents
KINT, a tool that uses scalable static analysis to detect
integer errors in C programs. KINT generates constraints
from source code and user annotations, and feeds them
into a constraint solver for deciding whether an integer
error can occur. KINT introduces a number of techniques
to reduce the number of false error reports. KINT identi-
fied more than 100 integer errors in the Linux kernel, the
lighttpd web server, and OpenSSH, which were confirmed
and fixed by the developers. Based on the experience with
KINT, the paper further proposes a new integer family
with NaN semantics to help developers avoid integer er-
rors in C programs.

1 Introduction

It is well known that integer errors, including arithmetic
overflow, division-by-zero, oversized shift, lossy trun-
cation, and sign misinterpretation, can be exploited by
adversaries. Recently integer errors have emerged as one
of the main threats to systems security. One reason is
that it is difficult for programmers to reason about integer
semantics [15]. A 2007 study of the Common Vulnera-
bilities and Exposures (CVE) [1] suggests that they are
already “number 2 for OS vendor advisories” [12], second
only to buffer overflows. A recent survey [9] reviews the
Linux kernel vulnerabilities in CVE from 2010 to early
2011, and confirms the finding that integer errors account
for more than one third of the vulnerabilities that can be
misused to corrupt the kernel and gain root privilege.

Although integer errors are a known source of prob-
lems, there are no detailed studies of integer errors in
large systems. This paper’s first contribution is a detailed
study of integer errors in the Linux kernel, using a new
static analysis tool called KINT that we will present in
the rest of this paper. We conclude that integer errors
are prevalent in all of the subsystems in Linux. We also
found 105 new errors for which our patches have been ac-
cepted by the Linux kernel community. Finally, we found
that two integer errors previously reported in the CVE
database were fixed incorrectly, highlighting the difficulty
of reasoning about integer semantics.

off_t j, pg_start = /* from user space */;
size_t i, page_count = ...;
int num_entries = ...;
if ((pg_start + page_count > num_entries) ||

(pg_start + page_count < pg_start))
return -EINVAL;

...
for (i = 0, j = pg_start; i < page_count; i++, j++)

/* write to some address with offset j */;

Figure 1: Patched code for the CVE-2011-1745 vulnerability in the
Linux AGP driver. The original code did not have the overflow check
pg_start+ page_count < pg_start. In that case, an adversary could
provide a large pg_start value from user space to bypass the check
pg_start+ page_count > num_entries, since pg_start+ page_count
wraps around. This leads to out-of-bounds memory writes in later code.

In applying the tool to the Linux kernel, we found
that the state-of-the-art in static analysis tools for find-
ing integer errors have trouble achieving high coverage
and avoiding false error reports when applied to large
software systems. For example, both PREfix+Z3 [27]
and SmartFuzz [25] use symbolic execution to explore
possible paths, but large systems have an exponentially
large number of potential paths to explore, making it in-
feasible to achieve high coverage. Moreover, previous
tools (e.g., PREfix+Z3) generate many error reports that
do not correspond to actual integer errors [27].

This paper introduces a scalable static analysis for find-
ing integer errors, along with a number of automated and
programmer-driven techniques to reduce the number of
generated reports, implemented in a tool called KINT.
Similar to previous analysis tools, KINT generates a con-
straint to represent the condition under which an integer
error may occur, and uses an off-the-shelf solver to see if
it is possible to satisfy the constraint and thus trigger the
integer error. Unlike previous tools based on symbolic
execution, KINT statically generates a constraint captur-
ing the path condition leading to an integer error, as in
Saturn [37], which allows KINT to scale to large systems
while maintaining high coverage.

A problem for symbolic execution tools and KINT is
the large number of error reports that can be generated
for a complex system. To illustrate why it is necessary
to reduce the number of error reports, consider the code
snippet shown in Figure 1. This example illustrates a
correct and widely used pattern for guarding against ad-
dition overflow by performing the addition and checking
whether the result overflowed. Such checks are prevalent
in systems code, including most parts of the Linux kernel.
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However, a tool that signaled an error for every integer
operation that goes out of bounds would incorrectly flag
the overflow check itself as an error, because the check’s
addition can overflow. In addition to common overflow
check idioms, there are a number of other sources for false
error reports, such as complex invariants that hold across
the entire program which are difficult for an automated
tool to infer, and external invariants that programmers
assume, such as a number of CPUs not overflowing 232.

This paper provides several contributions to help de-
velopers effectively find and deal with integer errors, as
follows. First, we provide a pragmatic definition of inte-
ger errors that avoids reporting common idioms for over-
flow checking. Second, we introduce a whole-program
analysis for KINT that can capture certain invariants in a
way that scales to large programs and reduces the num-
ber of false errors. Third, because our automated anal-
ysis still produces a large number of error reports for
Linux (125,172), we introduce range annotations that
allow programmers to inform KINT of more complex in-
variants that are difficult to infer automatically, and thus
help reduce false error reports from KINT. Fourth, we
introduce a family of overflow-checked integers for C that
help programmers write correct code. Finally, we con-
tribute a less error-prone API for memory allocation in
the Linux kernel that avoids a common source of integer
errors, inspired by Andrew Morton.

Although we focus on the Linux kernel, we believe
KINT’s ideas are quite general. We also applied KINT to
the lighttpd web server and OpenSSH, and found bugs in
those systems too.

The rest of this paper is organized as follows. §2 dif-
ferentiates KINT from previous work on integer error
detection. §3 presents a case study of integer errors in the
Linux kernel. §4 outlines several approaches to dealing
with integer errors. §5 presents KINT’s design for gen-
erating constraints, including KINT’s integer semantics.
§6 evaluates KINT using the Linux kernel and known
CVE cases. §7 proposes the NaN integer family. §8
summarizes our conclusions.

2 Related work
There are a number of approaches taken by prior work to
address integer errors, and the rest of this section outlines
the relation between this paper and previous work by
considering each of these approaches in turn.

Static analysis. Static analysis tools are appealing to find
integer errors, because they do not require the availability
of test inputs that tickle an integer error, which often
involve subtle corner cases. One general problem with
static analysis is reports of errors that cannot be triggered
in practice, termed false positives.

One class of static analysis tools is symbolic model
checking, which systematically explores code paths for
integer errors by treating input as symbolic values and
pruning infeasible paths via constraint solving. Exam-
ples include PREfix+Z3 [27], KLEE [7], LLBMC [24],
SmartFuzz [25], and IntScope [34]. While these tools
are effective for exploring all code paths through a small
program, they suffer from path explosion when applied to
the entire Linux kernel.

KINT is carefully designed to avoid path explosion on
large systems, by performing costly constraint solving at
the level of individual functions, and by statically gener-
ating a single path constraint for each integer operation.
This approach is inspired by Saturn [37].

PREfix+Z3 [27], a tool from Microsoft Research, com-
bines the PREfix symbolic execution engine [6] with the
Z3 constraint solver to find integer errors in large systems.
PREfix+Z3 proposed checking precise out-of-bounds con-
ditions for integer operations using a solver. PREfix, how-
ever, explores a limited number of paths in practice [6],
and the authors of PREfix+Z3 confirmed to us that their
tool similarly stopped exploring paths after a fixed thresh-
old, possibly missing errors. The authors used some tech-
niques to reduce the number of false positives, such as
ignoring reports involving explicit casts and conversions
between unsigned and signed. Despite these techniques,
when applying their tool to 10 million lines of production
code, the authors found that the tool generated a large
number of false error reports, such as the overflow check
described in the introduction.

Verification tools such as ArC (now eCv) [13] and
Frame-C’s Jessie plugin [26] can catch integer errors,
but they accept only a restrictive subset of C (e.g., no
function pointers) and cannot apply to systems like the
Linux kernel.

Static analysis tools that do not keep track of sanity
checks cannot precisely pinpoint integer errors. For ex-
ample, a simple taint analysis that warns about untrusted
integers used in sensitive sinks (e.g., allocation) [8, 16]
would report false errors on correctly fixed code, such as
the code shown in Figure 1.

The range checker from Stanford’s metacompiler [3]
eliminates cases where a user-controlled value is checked
against some bounds, and reports unchecked integer uses.
A similar heuristic is used in a PREfast-based tool from
Microsoft [30]. This approach will miss integer errors
due to incorrect bounds checking since it does not per-
form reasoning on the actual values of the bounds. KINT
avoids these issues by carefully generating constraints
that include path conditions.

Runtime detection. An advantage of runtime detection
for integer errors is fewer false positives. Runtime inte-
ger error detection tools insert checks when generating
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code; any violation in these checks will cause a trap at
run time. Examples include GCC’s -ftrapv, RICH [4],
Archerr [11], IOC [15], blip [19], IntPatch [38], and PaX’s
overflow GCC plugin [29]. An alternative approach is to
instrument binary executable files, such as IntFinder [10]
and UQBTng [36]. Using such tools to find integer errors,
however, requires carefully chosen inputs to trigger them.
Because integer errors typically involve corner cases, the
dynamic approaches tend to have low coverage. Because
KINT is a static checker, it does not have this limitation.

Library and language support. To avoid integer er-
rors, developers can adopt an integer library with error
checks, such as CERT’s IntegerLib [32, INT03-C] and
SafeInt [22]. For example, developers change their code
by calling a library function addsl(x,y) to add two signed
long integers x and y. The library then performs sanity
checks at run time, and invokes a preset error handler if
an integer error occurs.

These integer libraries are trusted and supposed to
be implemented correctly. Unfortunately, integer errors
have recently been discovered in both IntegerLib and
SafeInt [15].

Ada provides language support to define a ranged sub-
type (e.g., integers from 0 to 9). The runtime will raise
an exception on any attempt to store an out-of-bounds
value to variables of that subtype, and developers are re-
sponsible for handling the exception. There is a similar
proposal that adds ranged integers to the C language [17].
Our NaN integer family is inspired by these designs.

Case studies. Integer overflows are a well-known prob-
lem, and a number of security vulnerabilities have been
discovered due to integer errors. Many of the tools above
find or mitigate integer errors, and have noted the com-
plexity involved in reasoning about integer errors [15].
In particular, PREfix+Z3 was applied to over 10 millions
lines of production code, and the authors of that tool
found 31 errors, but provided few details. We are not
aware of any detailed study of integer errors and their con-
sequences for a complete OS kernel, which we provide in
the next section.

3 Case study
A naïve programmer may expect the result of an n-bit
arithmetic operation to be equal to that of the correspond-
ing mathematical (∞-bit) operation—in other words, the
result should fall within the bounds of the n-bit integer.
Integer errors, therefore, are bugs that arise when the pro-
grammer does not properly handle the cases when n-bit
arithmetic diverges from the mathematically expected re-
sult. However, not every integer overflow is an integer
error, as described in §1 and shown in Figure 1.

In this section, we present a case study of integer errors
in the Linux kernel, which will help motivate the rest of

this paper. Figure 2 summarizes the integer errors we
discovered in the Linux kernel as part of this case study.
Each line represents a patch that fixes one or more integer
errors; the number is shown in the “Error” column if it is
more than one. An operation may have a subscript s or
u to indicate whether it operates on signed or unsigned
integers, respectively. As we will describe in the rest of
this section, this case study shows that integer errors are
a significant problem, and that finding and fixing integer
errors is subtle and difficult.

3.1 Methodology
To find the integer errors shown in Figure 2, we applied
KINT (which we describe later in this paper) to Linux,
analyzed the results, and submitted reports and/or patches
to the kernel developers. KINT generated 125,172 error
reports for the Linux kernel. To determine whether a
report was legitimate required careful analysis of the sur-
rounding code to understand whether it can be exploited
or not. We could not perform this detailed analysis for
each of the reports, but we tried a number of approaches
for finding real errors among these reports, as described in
§5.6, including several ad-hoc ranking techniques. Thus,
our case study is incomplete: there may be many more
integer errors in the Linux kernel. However, we report
only integer errors that were acknowledged and fixed by
kernel developers.

3.2 Distribution
As can be seen in Figure 2, the integer errors found in
this case study span a wide range of kernel subsystems,
including the core kernel, device drivers, file systems, and
network protocols. 78 out of the 114 errors affect both
32-bit and 64-bit architectures; 31 errors are specific to
32-bit architecture, and the other 5 are specific to 64-bit
architecture.

3.3 Incorrect fixes for integer errors
As part of our case study, we discovered that prevent-
ing integer errors is surprisingly tricky. Using the log of
changes in the kernel repository, the “# of prev. checks”
column in Figure 2 reports the number of previous san-
ity checks that were incorrect or insufficient. The fact
that this column is non-zero for many errors shows that
although developers realized the need to validate those
values, it was still non-trivial to write correct checks. One
of the cases, sctp’s autoclose timer, was fixed three times
before we submitted a correct patch. We will now de-
scribe several interesting such cases.

3.3.1 Incorrect bounds
Figure 3 shows an example using a magic number 230 as
the upper bound for count, a value from user space. Un-
fortunately, 230 is insufficient to limit the value of count
on a 32-bit system: sizeof(struct rps_dev_flow) is 8,
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Subsystem Module Error Arch Impact Attack vector # of prev. checks

drivers:drm crtc ×u 32 64 OOB write user space –
nouveau cmp 32 64 logic error – 1
vmwgfx ×u 32 OOB read user space –

×u 32 64 OOB write user space 2
i915 ×u (2) 32 OOB write user space 1 (2)
savage ×u (2) 32 OOB read user space –

drivers:input cma3000_d0x cmp 32 64 logic error – 1
drivers:media lgdt330x cmp 32 64 logic error – 1

uvc ×u 32 OOB read user space –
wl128x cmp (36) 32 64 logic error – 1 (36)
v4l2-ctrls ×u (2) 32 OOB write user space 1 (2)
zoran ×u +s 32 64 OOB write user space 1

drivers:mtd pmc551 cmp 32 64 logic error – 1
drivers:scsi iscsi_tcp ×u 32 64 OOB write network –
drivers:usb usbtest ×u 32 64 OOB write user space –

×u 32 logic error user space 1
drivers:platform panasonic-laptop ×u 32 64 OOB write user space –
drivers:staging comedi ×u 32 OOB write user space 1

olpc_dcon cmp 32 64 logic error – 1
vt6655 / vt6656 ×u +u (4) 32 OOB write user space –

drivers:xen gntdev † ×u (5) 32 OOB write user space 1
xenbus +u 64 N/A not exploitable –

block rbd ×u +u 32 OOB write disk –
fs ext4 † cmp 32 64 logic error – 1

<< 32 64 DoS disk 1 (CVE-2009-4307)
×u 32 OOB write disk –

nilfs2 ×u (2) 32 OOB read user space 1
×u 32 64 logic error disk –

xfs ×u 32 64 OOB write disk 1
ceph index (2) 32 64 OOB read network 1 (2)

×u 32 OOB write network 1
+u 32 64 DoS network 1

jffs2 +u 32 64 OOB write disk –
kernel auditsc cmp 32 64 logic error – –

relayfs † ×u (2) 32 64 OOB write user space –
mm vmscan † cmp 32 64 logic error – 1
net ax25 ×u (8) 32 64 timer user space –

×u (4) 64 timer user space 1 (4)
can cmp 32 64 logic error – –
ceph ×u +u (2) 32 OOB write network 1

+u 32 64 OOB write network –
×u,+u 32 OOB write network –

irda ×s 32 64 timer user space –
netfilter −u (2) 32 64 wrong output – 1 (2)
netrom ×u (4) 32 64 timer user space –
rps ×u +u 32 OOB write user space 1
sctp ×u 32 timer user space 3

+u 32 64 N/A – 1 (CVE-2008-3526)
unix +s 32 64 logic error user space –

sound usb ×u 32 OOB write usb –
×u 32 OOB read usb –

Figure 2: Integer errors discovered by our case study in the Linux kernel. Each line is a patch that tries to fix one or more bugs (the number is in the
“Error” column if more than one). For each patch, we list the corresponding subsystem, the error operation with the number of bugs, the affected
architectures (32-bit and/or 64-bit), the security impact, a description of the attack vector and affected values, and the number of previous sanity
checks from the history of the Linux kernel repository that attempt to address the same problem incorrectly or insufficiently. Numbers in parentheses
indicate multiple occurrences represented by a single row in the table. Nine bugs marked with † were concurrently found and patched by others.
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unsigned long count = /* from user space */;
if (count > 1<<30)

return -EINVAL;
table = vmalloc(sizeof(struct rps_dev_flow_table) +

count * sizeof(struct rps_dev_flow));
...
for (i = 0; i < count; i++)

table->flow[i] = ...;

Figure 3: Incorrect bounds in the receive flow steering (RPS) imple-
mentation. The magic number 1 << 30 (i.e., 230) cannot prevent integer
overflow in the computation of the argument to vmalloc.

int opt = /* from user space */;
if (opt < 0 || opt > ULONG_MAX / (60 * HZ))

return -EINVAL;
... = opt * 60 * HZ;

Figure 4: A type mismatch between the variable opt, of type int and
the bounds ULONG / (60 * HZ), of type unsigned long. This mismatch
voids the checks intended to prevent integer overflow in the computation
opt * 60 * HZ.

u32 yes = /* from network */;
if (yes > ULONG_MAX / sizeof(struct crush_rule_step))

goto bad;
... = kmalloc(sizeof(*r) +

yes * sizeof(struct crush_rule_step),
GFP_NOFS);

Figure 5: A malformed check in the form x > uintmaxn /b from the
Ceph file system.

if (num > ULONG_MAX / sizeof(u64) - sizeof(*snapc))
goto fail;

... = kzalloc(sizeof(*snapc) + num * sizeof(u64),
GFP_NOFS);

Figure 6: A malformed check in the form x > uintmaxn /b−a from the
Ceph file system.

and multiplying it with a count holding the value 230 over-
flows 32 bits. In that case, the allocation size for vmalloc
wraps around to a small number, leading to buffer over-
flows later in the loop.

Using magic numbers for sanity checks is not only
error-prone, but also makes code hard to maintain: devel-
opers need to check and update all such magic numbers
if they want to add a new field to struct rps_dev_flow,
which increases its size. A better practice is to use ex-
plicit arithmetic bounds. In this case, the allocation size
is in the form of a+count×b; a correct bounds check is
count> (ULONG_MAX−a)/b.

In addition, one needs to ensure that the type of the
bounds check matches that of the variable to be checked,
otherwise a mismatch may void the check. Figure 4 shows
one such example. Since opt is read from user space,
the code checks if the computation of opt * 60 * HZ
overflows, but the check is incorrect. On a 64-bit system,
opt of type int is a 32-bit integer, while ULONG_MAX of
type unsigned long is a 64-bit integer, with value 264 −
1. Therefore, the upper bound ULONG_MAX / (60 * HZ)
fails to prevent a 32-bit multiplication overflow, voiding
the check. A correct fix is to change the type of opt to
unsigned long, to match ULONG_MAX’s type.

struct dcon_platform_data { ...
u8 (*read_status)(void);

};
/* ->read_status() implementation */
static u8 dcon_read_status_xo_1_5(void)
{

if (!dcon_was_irq())
return -1;

...
}
static struct dcon_platform_data *pdata = ...;
irqreturn_t dcon_interrupt(...)
{

int status = pdata->read_status();
if (status == -1)

return IRQ_NONE;
...

}

Figure 7: An integer error in the OLPC secondary display controller
driver of the Linux kernel. Since ->read_status() returns an unsigned
8-bit integer, the value of status is in the range of [0,255], due to zero
extension. Comparing status with −1 will always be false, which
breaks the error handling.

3.3.2 Malformed checks
As discussed in §3.3.1, the correct bounds check to avoid
overflow in the expression a+ x×b is:

x >u (uintmaxn−a)/ub.

where a and b are constants, x is an n-bit unsigned inte-
gers, and uintmaxn denotes the maximum unsigned n-bit
integer 2n −1.

One common mistake is to check for x > uintmaxn /b,
which an adversary can bypass with a large x. As shown
in Figure 5, yes is read from network, and a crafted
value can bypass the broken check and overflow the
addition in the kmalloc allocation size, leading to fur-
ther buffer overflows. Another common broken form is
x > uintmaxn /b−a, as shown in Figure 6.

Both forms also appeared when a developer tried to
fix a similar integer error in the Linux perf tools; the
developer wrote three broken checks before coming up
with a correct version [31]. We will use this fix from perf
as an example to demonstrate how to simplify bounds
checking using NaN integers in §7.

3.3.3 Sign misinterpretation
C provides both signed and unsigned integer types, which
are subject to different type conversion rules. Incon-
sistent choice of signedness often breaks sanity checks.
For example, in Figure 7, the intent of the comparison
status == -1 was to check whether read_status returns
−1 on error. However, since the function returns an un-
signed 8-bit integer, which is zero-extended to int accord-
ing to C’s conversion rules, status is non-negative. Con-
sequently, the comparison always evaluates to false (i.e.,
a tautological comparison), which disables the error han-
dling. Using signed int for error handling fixes the bug.
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u32 len = ...;
if (INT_MAX - len < sizeof(struct sctp_auth_bytes))

return NULL;
... = kmalloc(sizeof(struct sctp_auth_bytes)

+ len, gfp);

Figure 8: An incorrect fix for CVE-2008-3526 from the sctp network
protocol implementation.

sbi->s_log_groups_per_flex = /* from disk */;
groups_per_flex = 1 << sbi->s_log_groups_per_flex;
if (groups_per_flex == 0)

return 1;
flex_group_count = ... / groups_per_flex;

Figure 9: An incorrect fix to CVE-2009-4307 in the ext4 file system [2],
because oversized shifting is undefined behavior in C.

Tautological comparisons are often indicative of signed-
ness errors. Surprisingly, a simple tautological expression
that compares an unsigned integer x with 0 (i.e., x <u 0)
affected several subsystems. The wl128x driver alone
contained 36 such bugs, effectively disabling most of its
error handling paths.

Figure 8 shows another example, the fix for CVE-2008-
3526, where a sanity check tries to reject a large len
and avoid overflowing the allocation size. However, the
check does not work. Consider len= 0xffffffff. Since
INT_MAX is 0x7fffffff, the result of the left-hand side of
the check is then 0x80000000. Note that len is unsigned,
the left-hand side result is also treated as unsigned (i.e.,
231), which bypasses the check. A correct check is len>
INT_MAX−sizeof(struct sctp_auth_bytes).

After discussion with the kernel developers, we came
to the conclusion that len could not become that large.
Therefore, CVE-2008-3526 is not exploitable, and the
fix is unnecessary. Our patch was nonetheless applied to
clarify the code.

3.3.4 Undefined behavior

Figure 9 shows a fix for CVE-2009-4307. A developer dis-
covered a division-by-zero bug, which an adversary could
trigger by mounting a corrupted file system with a large
s_log_groups_per_flex. To reject such illegal input, the
developer added a zero check against groups_per_flex,
the result of a shift operation [2].

However, this check turns out to be incorrect. Shifting
an n-bit integer by n or more bits is undefined behavior
in C, and the actual result varies across architectures and
compilers. For example, when s_log_groups_per_flex
is set to 36, which is an illegal value, 1 << 36 is essen-
tially 1 << 4 = 16 on x86, since x86’s shifting instruction
truncates the amount to 5 bits. This will bypass the check,
leaving the two values s_log_groups_per_flex (36) and
groups_per_flex (16) inconsistent. Some C compilers
even optimize away the check because they conclude that
left-shifting the value 1 never produces zero [35], which
effectively eliminates the fix.

Another kernel developer later revised the zero check
to groups_per_flex < 2, which still suffers from the
same problem. This issue was re-assigned CVE-2012-
2100 after we reported it. A correct fix is to check
s_log_groups_per_flex before the shift, so as to avoid
undefined behavior.

In general, it is unsafe to check the result of an integer
operation that may involve undefined behavior, such as
shifts, divisions, and signed integer operations [35]. One
should instead check the operands before the operation.

3.4 Impact
Integer errors that allow out-of-bounds writes (i.e., buffer
overflow) can break the integrity of the kernel and po-
tentially enable privilege escalation attacks. They can
be exploited via network, local access, or malformed file
systems on disk. Figure 3 shows a typical example of
an integer error that allows out-of-bounds writes. We
found a large number of such errors in ioctl, an infa-
mous error-prone interface. There are also two interesting
vulnerabilities in the sound subsystem; an adversary can
exploit them by plugging in a malicious USB audio de-
vice that responds with bogus sampling rates, leading to a
kernel hang, DoS, or buffer overflow.

Integer errors cause timing bugs in several network
protocol implementations. For example, when a user-
space application provides a large timeout argument, the
internal timer can wrap around to a smaller timeout value.

Most logic related integer errors are due to tautological
comparisons. These bugs would effectively disable error
handling, or make the kernel behave in unanticipated
ways. One example from the CAN network protocol
implementation is as follows:

if (((errc & 0x7f) >> 8) > 127) ...

The intent of the code is to test whether the error counter
errc has reached certain level. However, this comparison
will never be true because the left-hand side of the test,
which extracts 7 bits from errc, is at most 27 −1 = 127.
The fix is to check the right bit according to the specifica-
tion, using errc & 0x80.

4 Problems and approaches
As the previous section illustrated, integer errors are com-
mon, can lead to serious problems, and are difficult to fix
even for experts. Thus, it is important both to find integer
errors and to help developers verify their patches or write
correct code in the first place.

One approach to prevent integer errors is to avoid the
fixed-width arithmetic that leads to integer operations
deviating from the mathematically expected semantics.
Many languages, such as Python and Haskell, take this
approach. However, this is not always feasible because
there is a performance penalty for using infinite-precision
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arithmetic. Moreover, the runtime and libraries of these
languages are often implemented in C, and can have inte-
ger errors as well (e.g., CVE-2011-0188 in Ruby’s integer
implementation). As a result, this paper focuses on help-
ing developers find or avoid integer errors in the presence
of fixed-width arithmetic, such as in C code.

Another approach to dealing with integer errors is to
find them using static analysis. The key challenges in
making this approach work well lie in scaling the analysis
to large systems while achieving good coverage and mini-
mizing the number of false error reports. Minimizing false
errors is particularly important for verifying correctness
of patches. We describe the design of our scalable static
analysis tool for finding integer errors, and techniques for
reducing the number of false positives, in §5.

Based on the case study, we find that many integer
errors occur when computing the number of bytes to allo-
cate for a variable-sized data structure, such as an array of
fixed-sized elements. Better APIs that perform overflow-
checked multiplication for the caller, similar to the calloc
function, can help avoid this class of integer errors. To
help developers avoid this common problem, we con-
tributed kmalloc_array(n, size) for array allocation to
the Linux kernel, which checks overflow for n×u size,
as suggested by Andrew Morton. This function has been
incorporated in the Linux kernel since v3.4-rc1.

Finally, as illustrated by the case study, programmers
can make mistakes in writing overflow checks for integer
operations. One approach taken by prior work is to raise
an exception every time the value of an integer expression
goes out of bounds, such as in Ada or when using GCC’s
-ftrapv flag. However, this can generate too many false
positives for overflows that do not matter. §7 describes
our proposal for a C language extension that helps devel-
opers deal with integer overflows in complex expressions,
without forcing all expressions to avoid integer overflows.

5 Design
This section describes the design of KINT, and introduces
a number of techniques that help KINT reduce the number
of error reports for large systems.

5.1 Overview
Figure 10 summarizes the design of KINT. The first
step in KINT’s analysis is to compile the C source code
to the LLVM intermediate representation (IR), using a
standard C compiler (e.g., Clang). KINT then performs
three different analyses on this IR, as follows.

The first analysis, which we will call function-level
analysis, instruments the IR with checks that capture the
conditions under which an integer error may occur, for
each individual function. KINT infers integer errors in
two ways: first, KINT looks for certain expressions whose
value in C is different from its mathematically expected

C source code Standard C compiler

LLVM IR

Bounds check insertion
(§5.4.1)

Code rewriting
(§5.4.2)

Modified IR

Range analysis
(§5.5)

Range metadata

Taint analysis
(§5.6)

Taint metadata

Constraint generation
(§5.7)

Constraint solver Classification

Error reports

Figure 10: KINT’s workflow. Ellipses represent data, and rectangles
represent phases of KINT’s workflow.

value, and second, KINT looks for values that can violate
certain invariants—for example, array indexes that can be
negative, control flow conditions that are tautologically
true or false, or programmer-supplied invariants.

The second analysis, called range analysis, attempts
to infer range constraints on values shared between func-
tions (e.g., arguments, return values, and shared data struc-
tures). This analysis helps KINT infer global invariants
and thus reduce false error reports.

The third analysis, which we will call taint analysis,
performs taint tracking to determine which values can be
influenced by an untrusted source, and which values may
be used in a sensitive context, such as memory allocation;
some of these sources and sinks are built in, and others
are provided by the programmer. This analysis helps the
programmer focus on the errors that are most likely to be
exploitable.

Based on the output of function-level and range analy-
ses, KINT generates constraints under which an integer
error may occur, and feeds them to a solver to determine
whether that integer error can be triggered, and if so, what
inputs trigger it. Finally, KINT outputs all cases that trig-
ger integer errors, as reported by the solver, along with
annotations from the taint analysis to indicate the potential
seriousness of the error.

5.2 Applying KINT to Linux
To help KINT detect integer errors, the programmer
can define invariants whose violation indicates an inte-
ger error. For the Linux kernel, we annotate 23 func-
tions like memcpy with the invariant that the size param-
eter must be non-negative. Annotations are in the form
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Integer operation In-bounds requirement Out-of-bounds consequence

x+s y, x−s y, x×s y x∞ op y∞ ∈ [−2n−1,2n−1 −1] undefined behavior [21, §6.5/5]
x+u y, x−u y, x×u y x∞ op y∞ ∈ [0,2n −1] modulo 2n [21, §6.2.5/9]
x/sy y �= 0∧ (x �=−2n−1 ∨ y �=−1) undefined behavior [21, §6.5.5]
x/uy y �= 0 undefined behavior [21, §6.5.5]
x << y, x >> y y ∈ [0,n−1] undefined behavior [21, §6.5.7]

Figure 11: In-bounds requirements of integer operations. Both x and y are n-bit integers; x∞,y∞ denote their ∞-bit mathematical integers.

(function-name,parameter-index) in a separate input to
KINT. For example, (memcpy,3) means that the third pa-
rameter of memcpy represents a data size, and KINT will
check whether it is always non-negative.

Although KINT’s automated analyses reduce the num-
ber of error reports significantly, applying KINT to the
Linux kernel still produces a large number of false pos-
itives. In order to further reduce the number of error
reports, the programmer can add range annotations on
variables, function arguments, and function return val-
ues, which capture invariants that the programmer may
know about. Range annotations in the Linux kernel help
capture invariants that the programmer knows hold true:
for example, that the tail pointer in an sk_buff is never
greater than the end pointer. As another example, many
sysctl parameters in the Linux kernel have lower and
upper bounds encoded in the initialization code of their
sysctl table entries. §6.3 evaluates such annotations, but
we did not apply them for the case study in §3.

Finally, to help decide which of the reports are likely
to be exploitable, and thus help focus on important errors,
the programmer can annotate certain untrusted sources
and sensitive sinks. For the Linux kernel, we annotated
20 untrusted sources. For example, (copy_from_user,1)
means the first parameter of copy_from_user, a pointer,
is untrusted; KINT will mark all integers read from the
pointer as untrusted. We also annotated 40 sensitive sinks,
such as (kmalloc,1); KINT will highlight errors the result
of which is used as the first parameter of kmalloc (i.e.,
the allocation size).

5.3 Integer semantics

KINT assumes two’s complement [20, §4.2.1], a de facto
standard integer representation on modern architectures.
An n-bit signed integer is in the bounds −2n−1 to 2n−1−1,
with the most significant bit indicating the sign, while an
n-bit unsigned integer is in the bounds 0 to 2n −1.

KINT assumes that programmers expect the result of
an n-bit arithmetic operation to be equal to that of the
corresponding mathematical (∞-bit) operation. In other
words, the result should fall in the n-bit integer bounds.
Any out-of-bounds operation violates the expectation and
suggests an error. Figure 11 lists the requirements of
producing an in-bounds result for each integer operation.

Addition, subtraction, and multiplication. The mathemat-
ical result of an n-bit signed additive or multiplicative
operation should fall in [−2n−1,2n−1 − 1], and that of
an unsigned operation should fall in [0,2n − 1]. For ex-
ample, 231 ×u 16 is not in bounds, because the expected
mathematical product 235 is out of the bounds of 32-bit
unsigned integers.

Division. The divisor should be non-zero. Particularly,
the signed division −2n−1/s−1 is not in bounds, because
the expected mathematical quotient 2n−1 is out of the
bounds of n-bit signed integers (at most 2n−1 −1).

Shift. For n-bit integers, the shifting amount should be
non-negative and at most n− 1. Unlike multiplication,
KINT assumes that programmers are aware of the fact
that a shift operation is lossy since it shifts some bits out.
Therefore, KINT considers that x << 1 is always in bounds,
but x×u 2 is not.

Conversion. KINT does not flag conversions as integer
errors (even if a conversion truncates a value into a nar-
rower type), but does precisely model the effect of the
conversion, so that an integer error may be flagged if the
resulting value violates some invariant (e.g., a negative
array index).

5.4 Function-level analysis
The focus of function-level analysis is to detect candidate
integer errors at the level of individual functions. The
analysis applies to each function in isolation in order to
scale to large code sizes.

5.4.1 Bounds check insertion
KINT treats any integer operation that violates the in-
bounds requirements shown in Figure 11 as a potential
integer error. To avoid false errors, such as when program-
mers explicitly check for overflow using an overflowing
expression, KINT reports an error only if an out-of-bounds
value is observable [14] outside of the function. A value
is observable if it is passed as an argument to another
function, used in a memory load or store (e.g., as an ad-
dress or the value being stored), returned by the function,
or can lead to undefined behavior (e.g., dividing by zero).

At the IR level, KINT flags potential integer errors by
inserting a call to a special function called kint_bug_on
which takes a single boolean argument that can be true
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#define IFNAMSIZ 16
static int ax25_setsockopt(...,

char __user *optval, int optlen)
{

char devname[IFNAMSIZ];
/* consider optlen = 0xffffffff */
/* optlen is treated as unsigned: 232 −1 */
if (optlen < sizeof(int))

return -EINVAL;
/* optlen is treated as signed: −1 */
if (optlen > IFNAMSIZ)

optlen = IFNAMSIZ;
copy_from_user(devname, optval, optlen);
...

}

Figure 12: An integer error in the AX.25 network protocol implemen-
tation of the Linux kernel (CVE-2009-2909). A negative optlen will
bypass both sanity checks due to sign misinterpretation and reach the
copy_from_user call, which interprets optlen as a large positive integer.
Depending on the architecture-specific implementation, the consequence
may be a silent failure, a kernel crash, or a stack overflow.

if an integer error can occur (i.e., the negation of the in-
bounds requirements show in Figure 11). KINT will later
invoke the solver to determine if this argument can ever
be true, in which case an error report will be generated.
For example, for division x/uy, the in-bounds requirement
of which is y �= 0, KINT inserts kint_bug_on(y==0).

KINT also generates calls to kint_bug_on for invariants
hard-coded in KINT or specified by the programmer:
• Array index. For an array index x, KINT generates a

call to kint_bug_on(x <s 0).
• Data size. A common programmer-supplied invari-

ant is that data size arguments to functions like
memcpy be non-negative. For calls to such functions
with data size argument x, KINT generates a call to
kint_bug_on(x <s 0). Figure 12 shows an example of
such an error.

Tautological control flow conditions, such as in Fig-
ure 7, cannot be expressed using calls to the special
kint_bug_on function. KINT separately generates con-
straints to check for these kinds of integer errors.

5.4.2 Code rewriting
In order to reduce false errors and to improve performance,
KINT performs a series of code transformations on the
generated LLVM IR.

Simplifying common idioms. Explicit overflow checks
can lead to complex constraints that are difficult for con-
straint solvers to reason about. For example, given two
n-bit unsigned integers x and y, a popular overflow check-
ing idiom for x×u y is as follows:

(x×u y)/uy �= x.

KINT replaces such idioms in the LLVM IR with equiva-
lent expressions, as shown in Figure 13, by using LLVM

Original expression Simplified expression

x+ y <u x uadd-overflow(x,y)
x− y <s 0 x <u y
(x× y)/uy �= x umul-overflow(x,y)
x >u uintmaxn−y uadd-overflow(x,y)
x >u uintmaxn /uy umul-overflow(x,y)
x >u N/uy x2n ×u y2n > N

Figure 13: Bounds checking idioms that KINT recognizes and simpli-
fies. Here x,y are n-bit unsigned integers, and x2n,y2n denote their
2n-bit zero-extended values, respectively. Both uadd-overflow and
umul-overflow are LLVM intrinsic functions for overflow detection.

intrinsic functions that check for overflow. This helps
KINT produce simpler constraints to improve solver per-
formance.

Simplifying pointer arithmetic. KINT represents each
pointer or memory address as a symbolic expression [33],
and tries to simplify it if possible. KINT considers a
pointer expression that it fails to simplify as an uncon-
strained integer, which can be any value within its range.
Consider the following code snippet:

struct pid_namespace {
int kref;
struct pidmap pidmap[PIDMAP_ENTRIES];
...

};
struct pid_namespace *pid_ns = ...;
unsigned int last = ...;
struct pidmap *map =

&pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
int off = map - pid_ns->pidmap;

Assume that the offset into the structure field pidmap[]
is 4 bytes, and the size of its element is 8 bytes. The
symbolic expression for map and pid_ns->pidmap would
be pid_ns+4+ i×8 and pid_ns+4 respectively, where
the array index i = (last+1)/uBITS_PER_PAGE.

Thus, the value of off, the subtraction of the two point-
ers, can be reduced to (pid_ns+ 4+ i× 8)− (pid_ns+
4) = i×8, which is independent from the value of pointer
pid_ns. Without this rewriting, KINT would have con-
sidered off to be the result of a subtraction between two
unconstrained integers, and would have flagged an error.

Merging memory loads. KINT employs a simple memory
model: a value returned from a load instruction is uncon-
strained (unless the value has a range annotation). KINT
further merges load instructions to reduce false errors.
Consider the example below.

/* arg is a function parameter */
if (arg->count < 1 || arg->count > 128)

return -EINVAL;
int *klist = kmalloc(arg->count * sizeof(int), ...);
if (!klist)

return -ENOMEM;
ret = copy_from_user(klist, user_ptr,

arg->count * sizeof(int));
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The code correctly limits arg->count to prevent a mul-
tiplication overflow in arg->count * sizeof(int). To
avoid reporting false errors, KINT must know that
the value loaded from arg->count that appears in the
copy_from_user call is the same as in the earlier if check.

For this purpose, KINT aggressively merges these loads
of arg->count. It adopts an unsafe assumption that a
pointer passed to a function argument or a global variable
points to a memory location that is distinct from any other
pointers [23]. By assuming that kmalloc cannot hold a
pointer to arg, KINT concludes that the call to kmalloc
does not modify arg->count, and merges the two loads.

Eliminating checks using compiler optimizations. As the
last step in code rewriting, KINT invokes LLVM’s opti-
mizer. For each call to kint_bug_on which KINT inserted
for bounds checking, once the optimizer deduces that the
argument always evaluates to false, KINT removes the call.
Eliminating these calls using LLVM’s optimizer helps
avoid subsequent invocations to the constraint solver.

5.5 Range analysis
One limitation of per-function analysis is that it cannot
capture invariants that hold across functions. Generating
constraints based on an entire large system such as the
Linux kernel could lead to more accurate error reports, but
constraint solvers cannot scale to such large constraints.
To achieve more accurate error reports while still scaling
to large systems such as the Linux kernel, KINT employs
a specialized strategy for capturing certain kinds of cross-
function invariants. In particular, KINT’s range analysis
infers the possible ranges of values that span multiple
functions (i.e., function parameters, return values, global
variables, and structure fields). For example, if the value
of a parameter x ranges from 1 to 10, KINT generates the
range x ∈ [1,10].

KINT keeps a range for each cross-function entity in
a global range table. Initially, KINT sets the ranges of
untrusted entities (i.e., the programmer-annotated sources
described in §5.2) to full sets and the rest to empty. Then
it updates ranges iteratively, until the ranges converge, or
sets the ranges to full after a limited number of rounds.

The iteration works as follows. KINT scans through
every function of the entire code base. When encountering
accesses to a cross-function entity, such as loads from a
structure field or a global variable, KINT retrieves the
entity’s value range from the global range table. Within
a function, KINT propagates value ranges using range
arithmetic [18]. When a value reaches an external sink
through argument passing, function returns, or stores to
structure fields or global variables, the corresponding
range table entry is updated by merging its previous range
with the range of the incoming value.

To propagate ranges across functions, KINT requires a
system-wide call graph. To do so, KINT builds the call

graph iteratively. For each indirect call site (i.e., function
pointers), KINT collects possible target functions from
initialization code and stores to the function pointer.

KINT’s range analysis assumes strict-aliasing rules;
that is, one memory location cannot be accessed as two
different types (e.g., two different structs). Violations of
this assumption can cause the range analysis to generate
incorrect ranges.

After the range table converges or (more likely) a fixed
number of iterations, the range analysis halts and outputs
its range table, which will be used by constraint genera-
tion to generate more precise constraints for the solver.

5.6 Taint analysis
To help programmers focus on the highest-risk reports,
KINT’s taint analysis classifies error reports by indicat-
ing whether each error involves data from an untrusted
input (source), or is used in a sensitive context (sink).
KINT propagates untrusted inputs across functions using
an iterative algorithm similar to the range analysis which
we discussed in the previous subsection.

KINT hardcodes one sensitive context: tautological
comparisons. Other sensitive sinks are specified by the
programmer, as described in §5.2.

5.7 Constraint generation
To detect integer errors, KINT generates error constraints
based on the IR as modified and annotated by the previous
three analyses. For integer errors represented by calls
to kint_bug_on, KINT reports an error if the argument
to kint_bug_on may be true. To detect integer errors
that lead to tautological comparisons, KINT derives an
error constraint from each comparison operation used for
control flow: if the expression is always true or always
false, KINT reports an error.

For every integer error, KINT must also verify that the
error can be triggered in the program’s execution; oth-
erwise, KINT would produce false error reports. To do
this, KINT generates a path constraint for each integer
operation, which encodes the constraints on the variables
that arise from preceding operations in the function’s con-
trol flow, similar to Saturn [37]. These constraints arise
from two sources: assignments to variables by preceding
operations, and conditional branches along the execution
path. Satisfying the path constraint with a set of variable
assignments means that the integer operation is reachable
from the beginning of the function with the given variable
values. The path constraint filters out integer errors that
cannot happen due to previous statements in a function,
such as assignments or explicit overflow checks.

Consider loop-free programs first, using the code in
Figure 12 as an example. The control flow of the code
is shown in Figure 14. There are two sanity checks on
optlen before it reaches the call to copy_from_user. For
clarification purposes, optlen is renumbered every time it
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char devname[IFNAMSIZ];

if (optlen0 < sizeof(int))

if (optlen0 > IFNAMSIZ)

IF-TRUE:
optlen1 = IFNAMSIZ;

IF-FALSE:
optlen1 = optlen0;

copy_from_user(devname,optval,optlen1);
...

EXIT

¬(optlen0 <u 4)

optlen0 >s 16 ¬(optlen0 >s 16)

optlen1 = 16 optlen1 = optlen0

Figure 14: The control flow of the code snippet in Figure 12.

is assigned a new value [28, §8.11]. Our goal is to evaluate
the path constraint for the call to copy_from_user.

The basic algorithm works as follows. Since there is
no loop, the path constraint of the call to copy_from_user
is simply the logical OR of the constraints from each of
its predecessors, namely IF-TRUE and IF-FALSE. For
each of those two blocks, the constraint is a logical AND
of three parts: the branching condition (for the tran-
sition from that block to copy_from_user), the assign-
ment(s) in that block, and the path constraint of that block.
Both IF-TRUE and IF-FALSE unconditionally jump to
copy_from_user, so their branching conditions are simply
true, which can be ignored. Now we have the following
path constraint:

((optlen1 = 16)∧PathConstraint(IF-TRUE))

∨((optlen1 = optlen0)∧PathConstraint(IF-FALSE)).

By recursively applying the same algorithm to IF-TRUE
and IF-FALSE, we obtain the fully expanded result:

((optlen1 = 16)∧ (optlen0 >s 16)∧¬(optlen0 <u 4))
∨((optlen1 = optlen0)∧¬(optlen0 >s 16)

∧¬(optlen0 <u 4)).

After computing the path constraint, KINT feeds the
logical AND of the path constraint and the error con-
straint (i.e., optlen1 <s 0) into the solver to determine
whether the integer operation can have an error. In this
case, the solver will reply with an assignment that triggers
the error: for example, optlen0 =−1.

For programs that contain loops, the path constraint
generation algorithm unrolls each loop once and ignores
branching edges that jump back in the control flow [37].

function PATHCONSTRAINT(blk)
if blk is entry then

return true
g ← false
for all pred ∈ blk’s predecessors do

e ← (pred,blk)
if e is not a back edge then

br ← e’s branching condition
as ←

∧

i(xi = yi) for all assignments along e
g ← g∨ (PATHCONSTRAINT(pred)∧br∧as)

return g

Figure 15: Algorithm for path constraint generation.

This approach limits the growth of complexity of the path
constraint, and thus sacrifices soundness for performance.
The complete algorithm is shown in Figure 15.

To alleviate missing constraints due to loop unrolling,
KINT moves constraints inside a loop to the outer scope
if possible. Consider the following loop:

for (i = 0; i < n; ++i)
a[i] = ...;

KINT generates an error constraint i <s 0 since i is used as
an array index. Simply unrolling the loop once (i.e., i = 0)
may miss a possible integer error (e.g., if the code does
not correctly limit n). KINT will generate a new constraint
n <s 0 outside the loop, by substituting the loop variable
i with its exit value n in the constraint i <s 0.

Finally, the Boolector constraint solver provides an API
for constructing efficient overflow detection constraints [5,
§3.5]. KINT invokes this API to generate constraints for
additive and multiplicative operations, which reduces the
solver’s running time.

5.8 Limitations
KINT will miss the following integer errors. KINT only
understands code written in C; it cannot detect integer
errors written in assembly language. KINT will miss
conversion errors that are not caught by existing invari-
ants (see §5.4.1). KINT merges loads in an unsafe way
and thus may miss errors due to aliasing. KINT analyzes
loops by unrolling them once, so it will miss integer errors
caused by looping, for example, an addition overflow in
an accumulation. Finally, if the solver times out, KINT
may miss errors corresponding to the queried constraints.

6 Evaluation of KINT

The evaluation answers the following questions:

• Is KINT effective in discovering new integer errors in
systems? (§6.1)

• How complete are KINT’s reports? (§6.2)

• What causes KINT to generate false error reports, and
what annotations can a programmer provide to avoid
these reports? (§6.3)
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Caught in original? Cleared in patch?

CVE-2011-4097 � page semantics
CVE-2010-3873 � CVE-2010-4164
CVE-2010-3865 accumulation �
CVE-2009-4307 � bad fix (§3.3.4)
CVE-2008-3526 � bad fix (§3.3.3)
All 32 others (�) � �

(�) CVE-2011-4077, CVE-2011-3191, CVE-2011-2497,
CVE-2011-2022, CVE-2011-1770, CVE-2011-1759,
CVE-2011-1746, CVE-2011-1745, CVE-2011-1593,
CVE-2011-1494, CVE-2011-1477, CVE-2011-1013,
CVE-2011-0521, CVE-2010-4649, CVE-2010-4529,
CVE-2010-4175, CVE-2010-4165, CVE-2010-4164,
CVE-2010-4162, CVE-2010-4157, CVE-2010-3442,
CVE-2010-3437, CVE-2010-3310, CVE-2010-3067,
CVE-2010-2959, CVE-2010-2538, CVE-2010-2478,
CVE-2009-3638, CVE-2009-3280, CVE-2009-2909,
CVE-2009-1385, CVE-2009-1265.

Figure 16: The result of applying KINT to integer errors in Linux kernel
from the CVE database. For each case, we show whether KINT catches
the expected bugs in the original code, and whether KINT determines
that the bug is fixed in the patched code.

• How long does it take KINT to analyze a large system
such as the Linux kernel? (§6.4)

• How important are KINT’s techniques to reducing the
number of error reports? (§6.5)

All the experiments were conducted on a 64-bit Ubuntu
Linux machine with an Intel Core i7-980 3.3 GHz CPU
and 24 GB of memory. The processor has 6 cores, and
each core has 2 hardware threads.

6.1 New bugs
We periodically applied KINT to the latest Linux kernel
from November 2011 (v3.1) to April 2012 (v3.4-rc4),
and submitted patches according to KINT’s reports. As
discussed in §3, Linux kernel developers confirmed and
fixed 105 integer errors. We also applied KINT to two
popular user-space applications, lighttpd and OpenSSH;
the developers fixed respectively 1 and 5 integer errors
reported by KINT. The results show that KINT is effec-
tive in finding new integer errors, and the developers are
willing to fix them.

6.2 Completeness
To evaluate KINT’s completeness, we collected 37
known integer errors in the Linux kernel from the CVE
database [1] over the last three years (excluding those
found by KINT). As shown in Figure 16, KINT is able to
catch 36 out of the 37 integer errors.

KINT misses one case, CVE-2010-3865, an addition
overflow that happens in an accumulation loop. KINT
cannot catch the bug since it unrolls the loop only once.

6.3 False errors
To understand what causes KINT to generate false error
reports, we performed three experiments, as follows.

CVE experiment. We first tested KINT on the patched
code of the CVE cases in §6.2, expecting that ideally
KINT would not report any error. The results are also
shown in Figure 16. KINT reports no bugs in 33 of the 37
cases, and reports errors in 4 cases. One case, the patched
code of CVE-2010-3873, contains additional integer er-
rors that are covered by CVE-2010-4164, which KINT
correctly identified; two cases contain incorrect fixes as
we have shown in §3.3.3 and §3.3.4. One case is a false
error in CVE-2011-4097, as detailed below.

long points; /* int points; */
points = get_mm_rss(p->mm) + p->mm->nr_ptes;
points += get_mm_counter(p->mm, MM_SWAPENTS);
points *= 1000;
points /= totalpages;

The code computes a score proportional to process p’s
memory consumption. It sums up the numbers of different
memory pages that p takes, divides the result by the total
number of pages to get a ratio, and scales it by 1000.
When the whole system is running out of memory, the
kernel kills the process with the highest score.

The patch changes the type of points from int to long
because points could be large on 64-bit systems; multi-
plying it by 1000 could overflow and produce an incorrect
score, causing an innocent process to be killed.

There is an implicit rule that the sum of these numbers
of pages (e.g., from get_mm_rss) is at most totalpages,
so the additions never overflow. KINT’s automated anal-
yses are unaware of the rule and reports false errors for
these additions, although a programmer can add an ex-
plicit annotation to specify this invariant.

Whole-kernel report analysis. For the whole Linux ker-
nel, KINT reported 125,172 warnings in total. After fil-
tering for sensitive sinks, 999 are related to memory al-
location sizes, 741 of which are derived from untrusted
inputs.

We conducted two bug review “marathons” to inspect
reports related to allocation sizes in detail. The first in-
spection was in November 2011: one author applied an
early version of KINT to Linux kernel 3.1, spent 12 hours
inspecting 97 bug reports and discovered the first batch
of 6 exploitable bugs. The 97 reports were selected by
manually matching function names that contained “ioctl,”
since range and taint analyses were not yet implemented.

The second inspection was in April 2012: another au-
thor applied KINT to Linux kernel 3.4-rc1, spent 5 hours
inspecting 741 bug reports, and found 11 exploitable bugs.
All these bugs have been confirmed by Linux kernel de-
velopers, and the corresponding patches we submitted
have been accepted into the Linux kernel. This shows that
KINT’s taint-based classification strategy is effective in
helping users focus on high-risk warnings.
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Single module analysis. To understand in detail the
sources of false errors that KINT reports, and how many
annotations are required to eliminate all false errors (as-
suming developers were to regularly run KINT against
their source code), we examined every error report for
a single Linux kernel module, the Unix domain sockets
implementation. We chose it because its code is mature
and we expected all the reports to be false errors (although
we ended up finding one real error).

Initially, KINT generated 43 reports for this module.
We found that all but one of the reports were false errors.
To eliminate the false reports, we added 23 annotations;
about half of them apply to common Linux headers, and
thus are reusable by other modules. We describe a few
representative annotations next.

The ranges of five variables are determined by a com-
putation. Consider the following example:

static u32 ordernum = 1 __range(0, 0xFFFFF);
...
ordernum = (ordernum+1)&0xFFFFF;

Since the result is masked with 0xFFFFF, the value
of ordernum is up to the mask value. We specified
this range using the annotation __range(min,max) as
shown. We used this same annotation to specify the
ranges of two structure fields that have ranges de-
fined by existing macros, to specify the lower bound
for struct sock’s sk_sndbuf, and to specify the upper
bound of struct sk_buff’s len. In one case of a ref-
erence counter (struct dentry’s d_count), we are not
certain whether it is possible for an adversary to overflow
its value. Using __range we specified a “workaround”
range to suppress related warnings.

For ranges that cannot be represented by constant in-
tegers on structure fields or variables, we added assump-
tions using a special function kint_assume, similar to
KLEE [7]. An example use is as follows:

int skb_tailroom(const struct sk_buff *skb)
{

kint_assume(skb->end >= skb->tail);
return skb_is_nonlinear(skb)

? 0 : skb->end - skb->tail;
}

Some of these annotations could be inferred by a better
global analysis, such as an extension of our range analysis.
However, many annotations involve complex reasoning
about the total number of objects that may exist at once,
or about relationships between many objects in the sys-
tem. These invariants are likely to require programmer
annotations even with a better tool.

6.4 Performance
To measure the running time of KINT, we ran KINT
against the source code of Linux kernel 3.4-rc1, with
all modules enabled. We set the timeout for each query to

Technique Time (s) Queries Reports

Strawman (§6.5) 834 770,445 231,003
+ Observability (§5.4.1) 801 738,723 201,026
+ Code rewriting (§5.4.2) 584 408,880 168,883
+ Range analysis (§5.5) 1,124 420,742 125,172
+ Taint analysis (§5.6) 2,238 420,742 85,017

Figure 17: Effectiveness of techniques in KINT, enabling each of them
one by one in order. The time is for constraint generation and solving
only. The compilation time is 33 minutes for all techniques. Range and
taint analyses themselves take additional 87 minutes, if enabled.

the constraint solver to 1 second. KINT analyzed 8,916
files within roughly 160 minutes: 33 minutes for compila-
tion using Clang, 87 minutes for range and taint analyses,
and 37 minutes for generating constraints and solving
420,742 queries, of which 3,944 (0.94%) queries timed
out. The running time for other analyses was negligible.
The results show that KINT can analyze a large system in
a reasonable amount of time.

6.5 Technique effectiveness
To evaluate the effectiveness of KINT’s techniques, we
measured the running time, the total number of queries,
and the number of error reports for different configura-
tions of KINT when analyzing the Linux kernel. We
start with a strawman design which generates a constraint
for each integer expression as shown in Figure 11, feeds
this constraint (combined with the path constraint) to the
solver, and reports any satisfiable constraints as errors.
We then evaluate KINT’s techniques by adding them one
at a time to this strawman: observability-based bounds
checking (§5.4.1), code rewriting (§5.4.2), range analy-
sis (§5.5), and taint analysis (§5.6), using the annotations
described in §5.2 and discarding reports with no source
or sink classifications.

Figure 17 shows the results, which suggest that all of
KINT’s techniques are important for analyzing a large
system such as the Linux kernel.

7 NaN integer semantics
§3 shows that writing correct overflow checks is tricky
and error-prone, yet KINT generates many error reports,
which makes it difficult for programmers to examine every
one of them to ensure that no integer overflows remain.
To help programmers nonetheless write correct code, we
propose a new integer family with NaN (not-a-number)
semantics: once an integer goes out of bounds, its value
enters and stays in a special NaN state.

We demonstrate the use of NaN integers using an ex-
ample from the Linux perf tools, which contains the two
verbose overflow checks, as shown in Figure 18. Be-
fore this correct version, the developers proposed three
incorrect checks [31], as we discussed in §3.3.2.
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size_t symsz = /* input */;
size_t nr_events = /* input */;
size_t histsz, totalsz;
if (symsz > (SIZE_MAX - sizeof(struct hist))

/ sizeof(u64))
return -1;

histsz = sizeof(struct hist) + symsz * sizeof(u64);
if (histsz > (SIZE_MAX - sizeof(void *))

/ nr_events)
return -1;

totalsz = sizeof(void *) + nr_events * histsz;
void *p = malloc(totalsz);
if (p == NULL)

return -1;

Figure 18: Preventing integer overflows using manual checks, which
are verbose and error-prone [31].

nan size_t symsz = /* input */;
nan size_t nr_events = /* input */;
nan size_t histsz, totalsz;
histsz = sizeof(struct hist) + symsz * sizeof(u64);
totalsz = sizeof(void *) + nr_events * histsz;
void *p = malloc(totalsz);
if (p == NULL)

return -1;

Figure 19: Preventing integer overflows using NaN integers (see Fig-
ure 18 for a comparison).

With NaN integers, the developers can simplify this
code by declaring the appropriate variables using type
nan size_t and removing the overflow checks, as in Fig-
ure 19. If any computation overflows, totalsz will be in
the NaN state. To catch allocation sizes that are in the
NaN state, we modify malloc as follows:

void *malloc(nan size_t size)
{

if (isnan(size))
return NULL;

return libc_malloc((size_t) size);
}

The modified malloc takes a nan size_t as an argument
and uses the built-in function isnan(x) to test if the argu-
ment is in the NaN state. If so, malloc returns NULL.

To help programmers insert checks for the NaN state,
the type conversion rules for NaN integers are as follows:

• An integer of type T will be automatically promoted
to nan T when used with an integer of type nan T .

• The resulting type of an arithmetic or comparison op-
eration with operands of type nan T is also nan T .

• An integer of type nan T can be converted to T only
with an explicit cast.

We implemented NaN integers by modifying the Clang
compiler. The compiler inserts overflow checks for every
arithmetic, conversion, and comparison operation of type
nan T , and sets the result to NaN if any source operand
is in the NaN state, or if the result went out of bounds;
otherwise the operation follows standard C rules. Cur-
rently we support only unsigned NaN integers. We chose

w/o malloc w/ malloc

No check 3.00±0.01 79.03±0.01
Manual check 24.01±0.01 104.04±0.03
NaN integer check 4.05±0.17 82.03±0.05

Figure 20: Performance overhead of checking for overflow in x×u y
using a manual check (x != 0 && y > SIZE_MAX / x) and using NaN
integers, with and without a malloc call using the result, in cycles per
operation over 106 back-to-back operations, averaged over 1,000 runs.

the maximum value 2n −1 to represent the NaN state for
n-bit unsigned integers; isnan(x) simply compares x with
the maximum value. This choice requires programmers
to not store 2n −1 in a NaN integer.

The runtime overhead of NaN integers is low, since the
compiler generates efficient overflow detection instruc-
tions for these checks. On x86, for example, the compiler
inserts one jno instruction after the multiplication, which
jumps in case of no overflow.

We compare the cost of a single multiplication x×u y, as
well as a multiplication followed by a malloc call, in three
scenarios: with no overflow check, with a manual over-
flow check using (x != 0 && y > SIZE_MAX / x), and
with an overflow check using NaN integers. Figure 20
shows the results. With a single multiplication, overflow
checking using NaN integers adds 1–3 cycles on average,
and manual overflow checking adds 21–25 cycles. Given
the negligible overhead, we believe that it is practical to
replace manual overflow checks with NaN integers.

8 Conclusion
This paper describes the design and implementation of
KINT, a tool that uses scalable static analysis to iden-
tify integer errors. It aided in fixing more than 100 in-
teger errors in the Linux kernel, the lighttpd web server,
and OpenSSH. KINT introduces several automated and
programmer-driven techniques that help reduce the num-
ber of false error reports. The error reports highlight that a
common integer error is unanticipated integer wraparound
caused by values from untrusted inputs, and this paper
also proposes NaN integers to mitigate this problem in
the future. All KINT source code is publicly available at
http://pdos.csail.mit.edu/kint/.
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