
Silencing Hardware Backdoors
Adam Waksman

Computer Architecture and Security Technology Lab
Department of Computer Science

Columbia University
New York, USA

waksman@cs.columbia.edu

Simha Sethumadhavan
Computer Architecture and Security Technology Lab

Department of Computer Science
Columbia University
New York, USA

simha@cs.columbia.edu

Abstract—Hardware components can contain hidden back-
doors, which can be enabled with catastrophic effects or for
ill-gotten profit. These backdoors can be inserted by a malicious
insider on the design team or a third-party IP provider. In this
paper, we propose techniques that allow us to build trustworthy
hardware systems from components designed by untrusted
designers or procured from untrusted third-party IP providers.
We present the first solution for disabling digital, design-

level hardware backdoors. The principle is that rather than try
to discover the malicious logic in the design – an extremely
hard problem – we make the backdoor design problem itself
intractable to the attacker. The key idea is to scramble inputs
that are supplied to the hardware units at runtime, making it
infeasible for malicious components to acquire the information
they need to perform malicious actions.
We show that the proposed techniques cover the attack space

of deterministic, digital HDL backdoors, provide probabilistic
security guarantees, and can be applied to a wide variety of
hardware components. Our evaluation with the SPEC 2006
benchmarks shows negligible performance loss (less than 1%
on average) and that our techniques can be integrated into
contemporary microprocessor designs.
Index Terms—hardware, security, performance, backdoors,

triggers

I. INTRODUCTION
Malicious modifications to hardware from insiders pose a

significant threat today [1, 4, 6, 7, 11, 22, 25, 26, 27]. The
complexity of hardware systems and the large number of
engineers involved in the designing of them pose a security
threat because it is easy for one malicious individual to alter
one tiny piece of the system. Although this behavior is very
risky, it can be very profitable for an attacker because a
hardware backdoor provides a foothold into any sensitive or
critical information in the system [13]. Such attacks can be
especially devastating to security-critical domains, such as
military and financial institutions. Hardware, as the root of
the computing base, must be trustworthy, but this trust is
becoming harder and harder to assume.
A malicious modification or a backdoor can find its way

into a design in several ways. The modification could come
from a core design component, e.g., a few lines of Hardware
Design Language (HDL) core code can be changed to cause
malicious functionality. The use of third-party intellectual
property (IP) provides another opportunity. Today’s hardware
designs use an extensive array of third party IP components,
such as memory controllers, microcontrollers, display con-
trollers, DSP and graphics cores, bus interfaces, network

controllers, cryptographic units, and an assortment of build-
ing blocks, such as decoders, encoders, CAMs and memory
blocks. Often these units are acquired from vendors as
HDL implementations and integrated into designs only after
passing validation tests without code review for malicious
modifications. Even if complete code reviews are possible,
they are extremely unlikely to find carefully hidden back-
doors, as evidenced by the fact that non-malicious modern
designs ship with many bugs today.
A key aspect of hardware backdoors that makes them so

hard to detect during validation is that they can lie dormant
during (random or directed) testing and can be triggered to
wake up at a later time. Verification fails because designs
are too large to formally verify, and there are exponentially
many different ways to express a hardware backdoor.
However, even if we cannot find the malicious logic, we

claim and show that it is still possible to disable backdoors.
Our key insight is that while validation testing is incom-

plete, it provides a strong foundation that can be leveraged
to increase trustworthiness. Specifically, validation demon-
strates that the hardware functions in a certain way for a
subset of the possible inputs. We leverage the fact that since
the hardware passes validation tests (which it must in order
to make it to market), any malicious logic must be dormant
for the entire testing input space, waiting for something to
trigger it. If we can silence those triggers, we can prevent
the backdoors from turning on without having to explicitly
detect the backdoor logic.
Waksman and Sethumadhavan previously observed that

there are finitely many types of deterministic, digital back-
door triggers that can be injected by an inside designer [26].
We leverage this observation and devise methods to disable
all of these types of triggers by obfuscating or scrambling
inputs supplied to the hardware units in order to prevent those
units from recognizing triggers. These techniques must alter
inputs in a benign way so that after validation testing, hard-
ware can never receive inputs that appear distinct from what
was already tested but can also produce correct outputs with
minimal changes to the design. We describe three techniques
(Figure 1) that, in concert, disable backdoor triggers.

• Power Resets The first technique prevents untrusted units
from detecting or computing how long they have been active,



 














 

 

 











   

  

Fig. 1. Obfuscation techniques to disable backdoor triggers. The left picture shows power resets. The middle picture shows data obfuscation, both for
computational and non-computational units. The right picture shows sequence breaking by reordering. Legend: E: Encryption Unit, D: Decryption Unit,
R: Reordering Unit. These units are trusted and small enough to be formally verified.

thus preventing time-based attacks.
• Data Obfuscation The second technique encrypts input
values to untrusted units to prevent them from receiving
special codes, thus preventing them from recognizing data-
based triggers.
• Sequence Breaking The final technique pseudo-randomly
scrambles the order of events entering untrusted units to
prevent them from recognizing sequences of events that can
serve as data-based triggers.
Our solutions are broadly applicable to many types of

digital hardware, but in this paper we study the feasibility
of our techniques using the OpenSPARC T2 muticore chip
from Oracle (formerly Sun Microsystems). Our feasibility
study shows that the three techniques presented in the paper,
taken together, provide coverage against all known types
of digital hardware design backdoors for many on-chip
hardware modules in the openSPARC design. This coverage
can further be expanded with a small amount of duplication.
Based on simulation of SPEC 2006 benchmarks, an industry
standard benchmark suite for measuring performance of pro-
cessors, we also show that these techniques incur negligible
performance losses.
The rest of the paper is organized as follows: Section II dis-

cusses related work. Section III outlines our framework and
model of hardware. Section IV outlines our threat model and
assumptions. Section V describes our solutions and discusses
applicability and implementation details. Section VI provides
arguments for the security and coverage of our solutions.
Section VII describes our experimental infrastructure, results
and coverage. We summarize and conclude in Section VIII.

II. RELATED WORK

Hardware backdoor protection is a relatively new area
of research that protects against a serious threat. Recently,
some attention has been given to protecting hardware designs
from hardware backdoors implanted by malicious insiders,
but there are currently only two known solutions that have
been proposed. Hicks et al. designed a method for statically
analyzing RTL code for potential backdoors, tagging suspi-
cious circuits, and then detecting predicted malicious activity
at runtime[11]. This hardware/software hybrid solution can
work for some backdoors and even as a recovery mechanism.
Its admitted weaknesses are that the software component
is vulnerable to attack and additionally that the software

emulator must itself run on some hardware, which can lead
to infinite loops and DOS (denial of service).
Waksman and Sethumadhavan proposed a different method

that detects unusual hardware behavior at runtime using a
self-monitoring on-chip network[26]. This method, like the
previous one, focusses on detection (as opposed to preven-
tion). Unlike the previous solution, this is a purely hardware
solution and thus not vulnerable to software deficiencies.
However, it has admittedly incomplete coverage, as it applies
to specific types of backdoor payloads and invariants.
A fundamental difference between this paper and previous

work is that since we disable the backdoor at its origination
point — the trigger — we provide a much more general
solution than previous approaches. Both previous solutions
use deterministic methods to protect against a subset of the
attack space. Our methods, by contrast, provide probabilistic
guarantees against all deterministic, digital backdoor triggers.
Unlike other methods, our scheme can prevent DOS attacks.
There has been prior work in tangentially related areas

of hardware protection, usually leveraging a trusted piece
of the design or design process. Significant work has been
done (mainly in the fabrication phase) toward detecting active
backdoors [5], analyzing side-channel effects [20], detecting
suspicious path delays [12] and detecting backdoors added at
the fabrication level[2, 3, 4, 7, 15, 18, 27]. However, all of
this prior work assumes that the properties of the backdoors
are limited and that there is a golden netlist (trusted RTL
description). The reason for this common assumption of a
trusted front end code base is that code is often written by in-
siders whereas the manufacturing process is often outsourced.
However, increasing design team sizes and increasing use of
third party IP on-chip are making this assumption about the
front end less realistic.

III. FRAMEWORK FOR MODELS AND SOLUTIONS
Our model for digital hardware is an interconnected set of

modules, which are connected via interfaces. Since hardware
is usually composed of several small modules, and since
communication happens via interfaces, we enforce security
at the interface level. If we can ensure that trigger payloads
cannot be delivered through any interface then we can be
assured that backdoors cannot be triggered in hardware.
The interfaces to digital hardware modules can be broken

down into five categories (Figure 2).
• Global Interfaces: A global interface is a set of signals

2













































































 

 



Fig. 2. Any hardware module will have at most four types of input interfaces. A backdoor can only be triggered by malicious inputs on one of these
input interfaces. The code on the right hand side shows the Verilog template for a module.

that is provided to all modules. This usually includes a clock
signal, a reset signal, and power signals.
• Control Interfaces: An interface of this type is one or more
wire groups that control how the unit operates. Examples
include inputs that control transitions in a state machine and
input bits that indicate validity of data supplied to the unit.
• Data Interfaces: An interface of this type represents a
single value that is used as such in a module. For example,
an integer being fed into an ALU or an address being passed
into a memory controller are both data interfaces.
• Test Interfaces: A test interface is an interface that is only
used for post-manufacture testing and serves no purpose after
deployment. An example of this is a scan chain interface.
• Output Interfaces: These are the interfaces for the signals
coming out of a module. They can potentially feed into any
of the four types of input interfaces (data, control, global,
test). In the common case, these will either feed into data or
control interfaces.
For any given attack, one can pinpoint the interfaces that

first violate specification, i.e. the first one to yield an incorrect
result or cause an erroneous state transition. While an attack
may be complex and involve coordination between several
hardware modules, if each individual interface is forced to
behave correctly, then the attack cannot be executed. Thus
to prevent hardware backdoor triggers we examine hardware
interfaces on a module by module basis to suggest security
modifications. Further, there are only a limited number of
ways in which attacks on these interfaces can be triggered
(discussed in Section IV), which leads to few simple security
methods (discussed in Section V).

IV. THREAT MODEL

A. Attack Space and Vectors
Our threat model allows for any insider to modify the

HDL specification of digital hardware. The attack space is
the set of all input interfaces for all modules that constitute
the hardware design. We focus only on the input interfaces
(global, test, control, data) because if all input interfaces are

secured and the unit’s functionality has been validated, then
the outputs can be trusted. Our attack vectors include two
different types digital triggers — data and time. We build
on the earlier taxonomy [26] by breaking data triggers into
two further sub-types — sequence and single-shot. Next, we
describe each of the three trigger types and explain how they
are coupled with types of input interfaces.
• Ticking Timebombs: A malicious HDL designer can
program a timebomb backdoor into HDL code so that a
backdoor automatically triggers a fixed amount of time after
the unit powers on. For example, a microcontroller can
be programmed to fail after a pre-determined number of
clock cycles. This type of attack poses a serious threat to
many high security areas. Even if the hardware is used in a
secure, tamper-free environment, running only trusted code,
a timebomb can undermine the security of the system or
function as a ‘kill switch’. Additionally, this type of attack
does not require the adversary to have any access to the
machine under attack.
One aspect of ticking timebombs that makes them so

dangerous is that they are completely undetectable by any
validation techniques. Even a formal validation technique
that verifies all possible input values cannot prove that a
timebomb will never go off (since validation lasts only a
finite amount of time, one can never know if validation has
run for a long enough period of time). Thus a well-placed
timebomb can be inserted by a designer, evade all validation
techniques, and trigger at any time, without warning.
Ticking timebombs are associated with global interfaces.

This is because the digital clock signal is the only way to
monitor the passage of time in synchronous digital designs.
Other information can serve as a way of keeping track of
or estimating the passage of time, e.g., turn on backdoor
after a million cache misses. However, as we describe in
Section V, these timebombs ultimately depend on the clock
signal to record passage of time and thus can be protected
by protecting the global interface.
• Cheat Codes: Backdoors that are triggered by data values

3








Fig. 3. Hardware backdoor trigger classification.

are called cheat codes. A cheat code is a special input (or
sequence of inputs) that functions as a key to open up or
‘turn on’ malicious hardware. A cheat code can be thought of
as secret information that the attacker uses to identify his or
her self to the hardware backdoor logic. This identity must be
unique to avoid being accidentally provided during validation
tests. In contrast to timebombs this type of attack requires an
additional attack vector: in addition to the malicious designer
programming a backdoor into the HDL design, there must be
a user who can execute code on the malicious hardware in
order to provide the cheat code key.

There are two ways to communicate cheat codes. One way
is to send a single data value containing the entire cheat code.
We will call this a single-shot cheat code. A single-shot cheat
code usually arrives at an interface as a large piece of data,
such as an address. For example, the address 0xdecafbad
could be the secret trigger that turns on the backdoor. In
theory, single-shot cheat codes can be passed to the backdoor
through control or data interfaces.

The other way to communicate a large cheat code is in
multiple pieces. We will call this a sequence cheat code. This
type of cheat code arrives in small pieces over multiple cycles
or multiple inputs. Just like the single-shot codes, these cheat
codes can be supplied through the data or control interfaces.
For example, if the secret trigger is 0xdecafbad, and the
malicious unit has a data interface big enough for a hex
character, the attacker might pass the hex values 0xd, 0xe,
0xc, 0xa, 0xf, 0xb, 0xa, 0xd over eight different cycles
(or inputs). Similarly, one could imagine an unusual series
of loads and stores conveying a cheat code to a memory
controller as a sequence through the control interface.

We note here that the inputs that compose a sequence cheat
code do not necessarily have to arrive in consecutive cycles.
They can arrive in a staggered fashion or over a long period
of time. As long as the timing and the ordering is defined
by the attacker and recognized in the backdoor trigger logic,
the individual bits that together comprise the sequence cheat
code can come in almost any arrangement, limited only by
the creativity of the attacker.

To summarize the relationship between interfaces and trig-
gers, data and control interfaces may be prone to cheat code
attacks (either sequence or single-shot). Global interfaces
are only open to timebomb attacks i.e. clock and reset can
only take on two values and thus cannot serve as cheat
codes. Output interfaces are not vulnerable so long as all

input interfaces have been protected 1. We do not handle test
interfaces in this paper. One simple solution for test interfaces
— if they are considered threatened — is to burn out
those interfaces using programmable electronic fuses before
deployment, since they are not needed post-deployment.
B. Attack Possibilities
We have two different attack settings that depend on how

privileged the attacker(s) are. If the attacker has privileged
access to the machine after it has been deployed (e.g., the
attacker is a user as well as designer) then we must defend
against cheat codes that might be inserted by malicious
programs. If not, then we only have to protect against ticking
timebombs because these are the only triggers that can be
used by a malicious designer without the aid of an user. An
example of this latter setting might occur if one organization
or nation-state procures hardware from another nation-state
but allows the hardware to be used only by trusted operatives.
C. Assumptions

• Assumption #1: Triggers We assume that a hardware back-
door, by design, needs to escape validation testing. Therefore,
it cannot be always active and must have some way of being
triggered at a point in time after validation testing has been
completed. We further assume that this trigger is a digital
signal that can be designed into the HDL (as opposed to
an internal analog circuit or any external factor, such as
temperature). This is a reasonable assumption because at
the HDL design level it is hard to program analog undriven
circuits that pass validation. Nevertheless, one can imagine
backdoors in analog circuitry or induced by external side
channels. We leave these cases for future work.
• Assumption #2: Trust in Validation Our solutions leverage
the fact that we can use validation to determine that a compo-
nent or a third party IP unit functions correctly and does not
exfiltrate information for some finite numberN cycles (where
N is a typical validation epoch, e.g., a few million). This is
typical practice when third party IP is procured. In the case
that we are concerned about malicious insiders (as opposed to
third party entities), validation engineers do not pose the same
threat as a designer. This is because a single designer can
insert a malicious backdoor that can circumvent the whole
validation process, but validation teams tend to be large, and
a single unit goes through multiple levels of validation tests
(module, unit, core, chip, etc.), so it would take a conspiracy
of almost the entire validation team to violate this trust.
• Assumption #3: Unprotected units We leverage trust in
small, manually or formally verifiable units. This includes
small circuits we include to implement our security measures.
We do not externally protect these units.
1Results from a recent hardware backdoor programming competition [19]

provide evidence that our taxonomy is reasonable. Not all competitors chose
to implement digital HDL attacks. Of the ones that did, there were no attacks
that did not fit neatly within our taxonomy. Three of the 19 digital attacks in
that competition were timebombs. Five attacks used sequence cheat codes
on small interfaces, such as one that caused the unit to break if the ASCII
characters “new haven” were sent as inputs in that order. A majority of the
attacks (eleven) used single-shot cheat codes directly against data interfaces
by having one particular input turn on a malicious mode.

4

V. SOLUTION
Our general approach is to introduce enough randomness

into each hardware unit that a backdoor trigger cannot be
reliably recognized by malicious circuitry. The objective of
malicious circuitry is to detect unique or unusual inputs
that are meant to trigger a backdoor, and if the inputs to
the malicious logic are scrambled or encrypted, the act of
detection becomes too difficult.
As described in Section IV, there are three different

triggers we are concerned with — timebombs, single-shot
cheat codes, and sequence cheat codes. A timebomb can be
delivered only through the global interface (the clock signal),
and the two types of cheat codes can be delivered through
control or data interfaces. Each of these three triggers requires
its own protection scheme. We discuss and present solutions
for each of these three categories, as well as applicability,
adaptation to modern microprocessors, and limitations.

A. Power Resets
The first category we consider is the time-based category

— ticking timebombs. The power reset technique protects
untrusted units from these timebomb triggers and is generally
applicable to any digital hardware. The key to our strategy is
to prevent untrusted logic from knowing that a large amount
of time has passed since start-up. In other words, every
untrusted hardware unit — regardless of whether it is in a
core, memory system, off-chip, etc. — will at all times be in
a state where it has only recently been turned on. We ensure
this by frequently powering off and on each unit, causing
data in local state (such as registers) to be lost.
The circuit for power resets is very simple. It is a counter

that counts down from some preset value to zero. This value
has to be smaller than the length of the validation epoch
because the validation engineers need to validate that the
hardware reaches a power reset without a timebomb going
off. The validation epoch can vary, but it is a known value
for any particular setting. The Verilog Hardware Description
Language code that can issue this power reset is shown below
(using as an example a validation epoch of 220 = 1, 048, 576
cycles). As can be seen from the implementation, it can be
easily manually verified to be free of backdoors.

module r e s e t (c lk , r s t , ou t) ;
input c l k ;
input r s t ;
output ou t ;
reg [1 9 : 0] countdown ;
always @(posedge c l k) begin
i f (r s t) countdown <= 20 ’ b0 − 1 ’ b1 ;
e l s e countdown <= countdown − 1 ’ b1 ;

end
a s s i gn ou t = (countdown == 0) ;

endmodule

Naturally, hardware will need to have some continuity
across epochs. For example, in the case of microprocessors,
users will want to run programs that take much longer than

the validation epoch. We get around this problem by using
a lightweight version of context saving and restoring so
that program execution is not disrupted by power resets.
Each time we approach the validation epoch, we write the
current instruction pointer(s) to memory, flush the pipeline,
and power off the hardware units for one or a few cycles.
This wipes all internal, volatile state and resets all registers,
including both helpful ones (such as branch history tables)
and malicious ones (such as ticking timebombs). The pro-
gram then picks up where it left off.
Several practical issues may arise when applying this

method to various real-world components.
• Main Memory Writes: One security question that might
arise is: Since main memory stays on, and since we write
the instruction pointer to memory, how come the timebomb
counter cannot be written to main memory?
Recall that by assumption, the microprocessor executes

correctly during the validation epoch. This means that there
cannot be any incorrect writes to main memory before the
first power reset. Therefore, a trigger cannot be spread across
multiple validation epochs.
• Devices: Resetting various devices may require fine-
grained management in device drivers. The device drivers
may need support to replay transactions when peripherals
power-cycle in the middle of a transaction. Prior work
on handling transient peripheral failures through intelligent
device driver architectures can be used to provide this sup-
port [23, 24].
• Non-Volatile Memory: Another security issue that arises
is non-volatile memory. Powering off wipes clean volatile
memory and registers, but we may not be able to assume
that all on-chip memory is volatile, as it may be possible to
include a small amount of malicious on-chip flash or some
other non-volatile memory.
This brings up the question: Given a unit that we do

not want to have hidden, non-volatile memory, how can we
ensure that it has none? One way to do this is to burn out the
memory. Many non-volatiles memories, such as flash, have
limited write endurance. If a unit may have been maliciously
configured to write a value to an internal piece of flash every
time it is about to be powered off, then we can hook the clock
up to the power signal of the hardware unit that is suspected
to contain flash, causing the unit to turn off and back on
repeatedly until the burn-out threshold, thus destroying any
flash that might be inside. This procedure could be done very
easily post-tapeout. Another strategy would be to take a few
copies of the manufactured unit and visually inspect them to
confirm that there is no non-volatile memory [10].
• Unmaskable Interrupts: Even while powered off for a few
cycles, it is possible that the microprocessor will receive an
unmaskable interrupt from an external unit that is on. This
signal should not be lost. In order to preserve correctness,
a slight adjustment is required for off-chip components that
can send unmaskable interrupts. These signals must go into
a small FIFO and wait for acknowledgement. If power is off,
this acknowledgement will not come until a few cycles after

5

they are issued.
• Performance Counters: Some modern microprocessors
include built-in performance counters that track certain per-
formance statistics, such as clock cycles or cache misses. It is
desirable for these counters to not be reset. However, this is a
somewhat fundamental issue, because a performance counter
is essentially a benign ticking timebomb trigger. Therefore,
there is a trade-off between the ability to do easy performance
tracking in hardware and the ability to be secure against
ticking timebomb attacks. Our solution to this problem is
to make use of a very small amount of trusted hardware
(if logic is trivial enough it can be formally verified or
checked by code review). This small hardware unit keeps
track of the performance counters and keeps power during the
resets. By keeping this unit trivial and allowing it only one
output interface, we can make sure this unit is not sending
information to other on-chip units or otherwise exfiltrating
timing information.
• Performance: Another practical issue is performance. If we
periodically flush the pipeline and wipe out volatile memory,
this can cause a performance hit. We salvage most of this
performance by keeping power on to large, standard RAMs
(e.g., caches, memory). We still lose various smaller pieces
of state, such as branch history tables and information in
prefetchers. In our experimental evaluation section, we study
the effect on performance of power resets.
• Applicability and Limitations: The power reset method
is universally applicable to any digital logic. It provides
complete coverage against ticking timebombs, which is the
more dangerous of the two general types of digital hardware
backdoor triggers. More formal arguments as to why our
solution is complete are provided in Section VI.

B. Data Obfuscation

The second category of attacks we consider are single-
shot cheat codes. The insight behind our solution is that the
attacker is expecting a particular input value to trigger the
attack. If we obfuscate the inputs, then the attacker’s unit
can be deceived and fail to recognize the trigger.
The specific method for obfuscating the inputs depends on

the type of hardware unit. We categorize hardware units into
two general types — computational and non-computational
— and discuss our solution for each type respectively.
• Non-computational units: These units do not operate on
data values; they only move them around. Many common
units in real microprocessors fit this category. For example,
a memory controller accepts a large address and a large data
write value, but it often does not perform any logical opera-
tions on these. Similarly, many buses, interconnects, routers,
etc. move around data without performing computation on
the data. Obfuscating inputs to non-computational units is
simple. We use any encryption scheme to obfuscate the data
before it enters the unit.
We can use very low overhead, simple encryption schemes

to implement obfuscation. Since the value has to remain
secret only for one or a few clock cycles, it does not have to

be strong in the sense that software-based encryption schemes
generally are. In the context of hardware backdoors, the
attacker has very limited capabilities because of the restricted
hardware budget and processing time to deploy an attack
against the encryption scheme.
Some examples of simple encryption schemes include

XOR or addition by a random value. For instance, a bit-
wise XOR encryption scheme is provably secure when the
ciphertext and plaintext cannot be simultaneously known or
guessed. Using a hardware random number generator or a
PUF, a random and secure key can be generated that only
needs to be used and stored for a short time. This process
can be orchestrated by encrypting the inputs to the unit
with a small (manually or formally verifiable) circuit and
decrypting the outputs from the unit with a similar circuit.
From the perspective of the outside world, the hardware unit
is unchanged. However, the hardware unit never sees any of
the original data.
To take a simple and effective example of this hardware

encryption or obfuscation, we can protect a black-box non-
computational module called BLACK BOX with the follow-
ing short, manually verifiable wrapper:

module b l ack box wrappe r (c lk , r s t , da t a ,
c o n t r o l , random , ou t) ;

input c lk , r s t , da t a , c o n t r o l , random ;
wire u n t r u s t e d o u t ;
output ou t ;
BLACK BOX u n t r u s t e d (. c l k (c l k) ,

. r s t (r s t) ,

. d a t a (d a t a xor random) ,

. c o n t r o l (c o n t r o l) ,

. ou t (u n t r u s t e d o u t)) ;
a s s i gn ou t = u n t r u s t e d o u t xor random ;

endmodule

• Computational units: Data encryption for computational
units is more complex and must be done to some degree on
a unit-by-unit basis. In a few cases, the complexity may be
so great that duplication is more efficient, and duplication
serves as a fall-back strategy.
Our method for obscuring these cheat codes is motivated

by homomorphic encryption schemes from the realm of
software. We call an operation f homomorphic with respect
to another operation g if f(g(x), g(y)) = g(f(x, y)). One
simple example of this is when f is multiplication and g is
the squaring function. Explicitly,

x2y2 = (xy)2

If the functionality required of a (toy example) untrusted
unit is to compute the square of a value, we can obfuscate the
input x to that unit by multiplying it by a random value y.
The unit then computes the square (xy)2, which is the same
as x2y2. To decrypt, we only have to divide by the constant
y2 to get back x2.
More generally, if our obfuscation function is homomor-

phic over the computational function, then the computation

6

can be done on the data while it is encrypted, and thus the
computational unit does not have to be trusted. Such schemes
have been implemented at the software level, in theory by
Gentry [9] and in practice by Osadchy et al. [17]. Any circuit
can be obfuscated by a homomorphic function, but the cost
can in theory be unacceptably large.
In the hardware context, we can place small encryption and

decryption units (small enough to be manually or formally
verified) between hardware components so that the compo-
nent sees only encrypted values. In the non-computational
case, since the internal function is the identity (i.e. nothing),
we can use any invertible function. For units containing
ALUs or other non-trivial logic, we require less trivial
solutions. While a large portion of the units in real micro-
processors are currently non-computational, especially units
involved in memory subsystems and on-chip interconnects
and routers, there is also an increasing use of accelerators
and small functional units that use non-trivial logic.
• Case Study: As a case study of this method for protecting
computational units against single-shot cheat codes on data
interfaces, we discuss how one can apply a simple obfusca-
tion function to the inputs of a cryptographic unit, such that
the obfuscation function is homomorphic over the crypto-
graphic function. Cryptographic units are an interesting case
because they are the tool we normally use for encryption, but
they see confidential data in unencrypted form and are thus
profitable units to attack. Additionally, these units — and
many other on-chip functional units — are often procured
as third party IP. However, cryptographic units tend to use
well known cryptographic schemes for which we can design
homomorphic obfuscation functions. Take for example the
RSA algorithm. For any data values x and y,

RSA(xy) = RSA(x)RSA(y)

If we want to encrypt a data value x using RSA on a special
purpose RSA unit (as opposed to doing this with general
purpose ISA instructions), we can perform the following
algorithm.
1. Use hardware to generate a random value y.
2. Compute the product z = xy using a regular, trusted

ALU, where x is the value to be encrypted.
3. Ship z off to the cryptographic unit. That unit returns

RSA(z) = RSA(xy) = RSA(x)RSA(y).
4. Ship y off to the cryptographic unit to get RSA(y).
5. Using the regular ALU, divide RSA(z) by RSA(y) to

get RSA(x).
We have used the untrusted cryptographic unit to encrypt

the sensitive data x without allowing the unit to see the value
of x. A potential weakness is that if this scheme is known
and deterministic, the untrusted unit could divide alternating
values by each other to derive x. Therefore, these values
should be sent in a pseudo-random order. While this might
leave a relatively small number of permutations (only a few
million) to exhaust over, this scheme is perfectly good in
this setting, because a hardware unit lacks the computational

power to exhaust over millions of permutations each cycle.

• Alternate Protection Schemes: Although homomorphic
encryption can be applied to any circuit, some circuits are
more difficult than others[9]. Units that perform complex
logical or arithmetic operations cannot usually be obfuscated
using simple operations like XOR or multiplication because
their custom logic is unlikely to have the right mathematical
properties. For example, ALUs and decoders perform specific
operations that cannot be trivially obfuscated. However, the
code for this type of unit tends to be very small and can
often be manually or formally verified. A final fall-back
solution that can be applied if none of these techniques work
is duplication, where n versions of the untrusted unit are
designed by n different designers, and results are checked
on a cycle by cycle basis. Duplication has a high area and
power overhead, while the other techniques proposed are far
more efficient and should be used whenever possible (if not
100% of the time).

• Hardware Support: Encryption schemes at the on-
chip inter-unit level require the efficient generation of truly
random bits. This can be done realistically due to recent
innovations in the design of physical unclonable functions
(PUFs), which can efficiently generate physically random
bits[8, 14, 21, 28]. One simple way to obfuscate inputs once
we have a PUF is to bitwise XOR the input value with the
PUF going into an untrusted unit. Coming out of that unit, the
data can be XOR’d again with the same PUF to get back the
original value since DATA xor PUF xor PUF =
DATA. Key storage for this mechanism should be handled
by a few trusted bytes of data storage that should be invisible
to the rest of the architecture.

• Control Interfaces:We do not apply obfuscation to inputs
to control interfaces in our implementation. Generally control
interfaces are very small (one or a few bits), and they can-
not be scrambled without altering the operations performed
within the unit. One of our assumptions is that control inter-
faces are small enough to be verified by validation engineers
against single-shot cheat codes. For example, if a control
interface is four bits wide, all 16 possibilities can be checked.
This assumption worked fine for our analysis of OpenSPARC
T2, discussed in Section VII. However, there are possible
other settings where this would pose a problem. Given many
small control interfaces, we are able to individually validate
them. Doing so is sufficient to assure there is not a single-
shot cheat code on the control interfaces, because a single-
shot cheat code that combined bits from multiple separate
control interfaces would be easily detectable automatically
(by noticing that unrelated bits from separate controls are
being fed into extraneous logic). However, this only works
for designs where the source is viewable. A closed source
third party IP unit with a large control interface or a very
large number of control interfaces, for which we have no
source visibility, could pose a problem. We discuss this as
an item for future work in Section VIII.

7

C. Sequence Breaking
The last type of backdoor trigger in our complete taxon-

omy of triggers is the sequence cheat code. We protect against
these cheat codes with a method called sequence breaking.
The purpose of sequence breaking is to prevent cheat codes
from being sent piecemeal. For example, if a unit receives T
bits of information over a period of time from many packets,
this is similar to receiving the T bits of information from
one big packet as a single-shot cheat code. Therefore, we
need to obfuscate the sequence of inputs to an untrusted unit,
similarly to how we obfuscate the inputs themselves when we
handle single-shot cheat codes.
Our solution is to benignly reorder sequences of inputs

so as to preserve correctness but to prevent sequences from
being deterministically supplied by a malicious user. If the
attacker cannot determine the order in which events will
occur, the attacker cannot with significant probability trigger
a backdoor with a sequence cheat code. Even if the pieces of
the trigger sequence are spread across multiple interfaces or
over time, the attacker is unable to send the trigger, because
the arrival times and order of arrival will always be mutated.
For a simple example, consider a memory controller with

a backdoor that is triggered by a particular sequence of fifty
loads and stores that must come in a pre-chosen order. We
must make sure it is impossible (or extremely unlikely) for
that particular sequence to be supplied by a malicious user.
For the example of the memory controller, we can change

the order of those fifty loads and stores to prevent the se-
quence from looking like the cheat code. By adding physical
randomness to the reordering scheme, we can provide strong
likelihood (nearly 100%) that a specific malicious sequence
will not occur.
It may not always be possible to reorder inputs to a unit.

For example, a particular sequence of inputs to a memory
controller may not be reorderable without violating sequential
consistency or other consistency models. A smart, malicious
user may be able to concoct such a sequence. Therefore,
in addition to randomly reordering events, we need the
ability to add dummy events in the case that reordering is
impossible. For example, if we recognize a long stream of
loads and stores that cannot be reordered, we can insert a few
dummy loads (extra loads to pseudo-randomly chosen places
in memory) into the stream to break up the sequence. As long
as the unit never receives a sequence in the user-provided
order (or in an order that could be deterministically predicted
by the malicious user), the user cannot trigger the backdoor.
A lot of the functionality for this sequence breaking already
exists in modern microprocessors and can be integrated for
this purpose with very minor changes.

VI. PROBABILISTIC SECURITY GUARANTEES
In this section, we describe the probabilistic security guar-

antees that our methods provide. Our three methods (power
resets, data encryption, and data reordering/insertion) are able
to provide probabilistic guarantees against the three types of
attacks (timebombs, single-shot cheat codes, and sequence
cheat codes). By adjusting the parameters in our methods,

we can adjust the attacker’s probability of success, at the
cost of performance. Specific cost vs. security trade-offs are
measured in Section VII-A.
The attacker’s goal is to have a significant chance of

triggering an attack while causing the validation engineers
to have a significant chance of not triggering the attack
during testing. If a validation engineer happens to trigger the
backdoor, then the attacker’s attempt to hide the backdoor is
considered to have failed.
We first consider the case of a ticking timebomb. A ticking

timebomb goes off after a fixed amount of time (or number
of cycles) has passed. If power resets are implemented for
every unit, then the attacker is forced to have the timebomb
go off during the validation epoch, thus giving the validation
engineer a 100% chance of catching the attack. Therefore,
if the attacker wants a non-zero chance of success, he or
she must allow the validation engineer a 100% chance of
catching the attack. So the attacker cannot succeed.2
Second we consider a single-shot data trigger attack. If

a unit has a large data interface and is covered by data
obfuscation (i.e. the data is encrypted) then, assuming a
reasonable encryption scheme, a correlation cannot be de-
tected between the input data and the encrypted data received
by the unit. This limitation results from the fact that the
hardware unit must receive an input every cycle or every
few cycles, and one or a few clock cycles is too little to
break any reasonable encryption scheme. If the attacker wants
to achieve a significant probability of the backdoor turning
on when a piece of encrypted data is received, then the
probability of the backdoor turning on for any random piece
of data must be significant, meaning the probability of the
validation engineer turning on the backdoor will be similarly
high on each test instruction. Therefore, if the attacker wants
a non-zero chance of success, he or she essentially guarantees
that the validation engineer catches the attacker. For example,
if the attackers wants a 1% chance of success, even if the
validation epoch is only 10,000 cycles, the probability of the
backdoor escaping detection is less than 10−43.
Lastly we consider the sequence data trigger category.

In this case the attacker wants to come up with a special
sequence of inputs that the validation engineer is unlikely
to supply in random testing. The sequence must be long
or else the validation engineer can simply exhaust over all
possible sequences of inputs. We will define 2T to be the
number of different sequences that a validation engineer
can exhaustively search through. If a unit’s interfaces are
protected by reordering or insertion so that it never receives
more than T input bits in the order specified by the user, then
the attacker is out of luck because the validation engineer
can exhaust through all 2T possible combinations of inputs.
If the attacker makes the secret sequence code less than or
equal to T input bits long, then the validation engineer will
trigger the backdoor while performing this search. Therefore,
the attacker is forced to make the backdoor longer than T

2As discussed in Section VIII, it may be possible for analog circuitry or
sources of true randomness to trigger randomized timebombs at uncontrolled
times.

8

input bits long. This guarantees that the input bits will arrive
at the hardware module scrambled and containing dummies.
Each extra bit in the backdoor cheat code exponentially
increases the number of possible permutations and dummies
that must be recognized by the backdoor circuitry. This
also exponentially increases the likelihood of the validation
engineers tests triggering the backdoor.
For a tangible example, imagine the validation engineer

can exhaustively test 220 test cases but not more. The attacker,
knowing this fact in advance, decides to use a length 21
sequence cheat code in the design and allows in the trigger
detection logic that there can be one extra (wrong) input in
the sequence (since 21 consecutive inputs cannot get through
without obfuscation). There are 22 different places a dummy
input can be inserted into the length 21 sequence, and the
attacker must accept all 22 of these in order to have a chance
of success. In that case, even though the validation engineer
cannot exhaust over all 221 test cases, he or she has less than
a one in a billion chance of missing the backdoor when doing
normal validation of 220 random test cases. The intuitive
reason for this is that the attacker has to allow for any
possible reordering of his or her cheat code sequence, which
is an exponential explosion of permutations (exponential in
the number of dummies and reordering that occur). If we
factor into account reordering in addition to dummy inserts,
this probability gets even worse for the attacker. The amount
of insertion and reordering can be tuned to achieve a desired
probability, be it one in a billion, one in a trillion, etc.
The overall effect of our schemes is that an attacker

cannot achieve a significant chance of triggering a backdoor
without giving the validation engineers a chance of catching
the backdoor, and this chance can be parametrized to be
exponentially close to 100%. We believe this is the best
guarantee that can be provided by a trigger prevention scheme
of this nature.
Regardless of how we parameterize our methods, an at-

tacker could use a source of true randomness to create a
randomized timebomb that might or might not go off at
anytime. The attacker and the validator would have equally
small chances of setting it off at any time, and if the attacker
gets lucky enough, it might go off at an opportune time.
Since it is truly random, it doesn’t matter if we reset power
or scramble inputs. Future work may uncover alternative
methods to prevent against non-digital, non-deterministic
attacks, and we discuss this briefly in Section VIII.

VII. EVALUATION
Our goals in evaluation are two-fold:
1) to determine what the performance impacts of our

mechanisms are on typical programs.
2) to understand trade-offs between strength of security

and cost/performance.
We implemented each of the three security mechanisms in

the Zesto x86 simulator [16]. We describe our implementa-
tion and trade-offs we wish to study below:
• Power Resets: To emulate power resets, we added a
mechanism that flushes the processor state at parameterizable

time intervals. Flushing the processor state cancels all in-
flight instructions, including pending memory requests, and
wipes the local state of the core, such as branch prediction
tables and other speculative structures, but leaves data in the
caches and memory untouched, since we do not wipe out
large, standardized structures.
• Data Obfuscation: To emulate our data obfuscation tech-
niques, we added to the caches and memory controller the
ability to stall for a parameterizable number of cycles on each
access. This simulates the effect of adding an encryption step
before each access.
• Reordering and Insertion: To emulate sequence breaking
by reordering and insertion, we simulated a common memory
controller and RAM that we found with publicly available
specifications (a 4GB DDR3 SDRAM memory module from
Kingston Hyper) and added the ability to stall pending mem-
ory accesses in the memory controller before sending them
out to RAM. We additionally added the ability to psuedo-
randomly reorder two memory accesses before the requests
go out. We also added the ability to insert dummy loads
to pseudo-randomly generated addresses into the memory
controller. These loads are loads to random locations that
look real to the memory controller (upper order bits make
them look like loads to relevant parts of memory) but have
no program relevance. Their results are thrown away rather
than given back to the pipeline. The effects of hardware
random number generation (e.g., PUFs) were emulated with
a pseudo-random number generator with fixed seed (for
reproducibility).
Our baseline microarchitecture includes a 64KB, 8-way

associative L1 instruction cache with 1 R/W port, a 2KB L-
TAGE branch predictor, 6-way issue, out-of-order execution
with speculation and prefetching support, 96-entry ROB, a
64KB, 8-way associative level 1 data cache with 1 R/W
port, 256KB, 12-way associative unified L2 cache, and a
detailed memory controller model. We simulated pinpoint
representative regions of seven benchmarks from the SPEC
CPU 2006 suite (representative regions generated with the
ref input set).
Rather than make assumptions about how much delay

to add for each of our modifications, we repeated these
simulations with various delays, ranging from very optimistic
to very conservative.

A. Experimental Results
Figure 4 shows the average slowdowns of each of our tech-

niques. None of them caused more than a 1% performance hit
on average. The highest bar (called ‘Everything’) is the result
of a test with all of the techniques implemented together. The
slowdown of all together was less than the sum of the parts,
which we attribute to the fact that some of the slowdowns oc-
cur concurrently with each other. With all of these techniques
together, our benchmarks slowed by an average of just under
0.9%. This figure also displays a breakdown of how each
method affected each benchmark. The amount of effect of
each method varied somewhat from benchmark to benchmark
depending on program characteristics. The two benchmarks

9

Fig. 4. This figure displays the average normalized runtimes (1 is the runtime on unmodified hardware) of some of our methods with default parameters,
averaged over all of our 100 million instruction checkpoints, as well as breakdowns by benchmark. The reordering and insertion based schemes allowed a
maximum of 20 bits of information before taking action. Our encryption schemes used one cycle of delay each. Our reset frequency was every 10 million
instructions. The ‘everything’ test used all of these hardware modifications together.

that were affected the most were NAMD and ASTAR. We
noticed that these two benchmarks had unusually high IPC,
which we believe is why they were slightly more affected by
our methods. The largest slowdown on any benchmark by
any method was about 3.4%.
We can see that some of the techniques, such as power

resets, memory reordering and memory insertion, had no
significant effect on any of the benchmarks. These results fit
our expectations. The power reset method is similar to caus-
ing a branch misprediction every 10 million cycles, which is
fairly insignificant. The memory reordering in the memory
controller, while it does alter the traffic patterns slightly, does
not impact performance much because it does not increase
overall bandwidth usage. The memory insertion method does
increase bandwidth usage slightly, but we expected situations
where this actually stalled the processor to be rare, and
our results support this. For example, the checkpoint that
experienced the highest impact from memory insertion only
had about 23 misses per thousand instructions at the last
level cache and thus was not too often bandwidth limited.
Additionally, even for execution pieces that are bandwidth
limited, these areas tend to come in bursts, thus allowing the
overall performance hit of memory insertion to be amortized.
For a hypothetical program that missed the last level cache on
every single instruction, it would probably be best to use the
memory reordering scheme, which does not increase overall
bandwidth usage.
On the other hand, some techniques, especially data cache

stalling, had larger effects. This was to be expected because
adding a one cycle delay to every data cache access is
significant and is likely to reduce pipeline throughput. This
one cycle delay is our conservative measure of the impact of
encryption. It is easy to implement the encryption as an extra
step that takes one extra cycle before the operation reaches

the cache. In reality, it is possible that this encryption, which
can be as little as a one or two gate delay, can be squeezed
into already existing steps and not cause this one cycle delay.
Our results support that doing this may be desirable as the
data cache stalling was the most significant performance
impact of any of our methods.
Figure 5 shows the results from three experiments. The

chart on the left elaborates on the trade-off between the
power reset frequency and the performance loss that results.
Recall that the power reset frequency needs to be less than
the validation epoch. Our default frequency of 10 million
cycles showed an insignificant performance loss. Pushing the
frequency to 1 million cycles increased this performance loss
to about 0.3%.
In the chart in the middle, we see the trade-off between

memory insertion frequency and runtime performance. This
frequency is determined by the maximum number of bits of
information we allow to go through the memory controller
before we insert a dummy load (dummy loads happen sooner
depending on the random bits generated in the hardware. This
value is the maximum that can possibly go through before a
dummy must happen. The average time between dummies is
about half this). Using a maximum of four inputs, we see just
under a 1% performance hit on average. Using our default of
20 inputs, we get a little less than a 0.2% performance hit.
Naturally, reducing the frequency of these insertions lessens
the performance hit on average (with some degree of noise).
The trade-off between performance and the amount of

memory reordering performed in the memory controller is
displayed in the chart on the right. While we randomly re-
order (benignly) memory accesses in the memory controller,
we enforce that no more than a certain number of operations
can go through without a reordering occuring. Using the
low maximum of once every four, we see about a 0.6%

10

Fig. 5. These three charts show the trade-offs between performance and various parameters. The chart on the left shows the frequency of power resets.
The chart in the middle shows the frequency of memory insertions. The one on the right shows the frequency of memory reordering. Higher frequencies
tend to cause larger performance impacts.

performance hit. Using our default of once every twenty
inputs, we got about a little under a 0.2% performance hit.
This method appears to be a slight optimization over the
method of simply inserting dummy operations, but not a very
significant one.

B. Coverage against Illinois Malicious Processors
One of the earliest set of published HDL attacks came in

the ‘Illinois Malicious Processor’ (IMP) [13]. This processor
has components that can run in benign mode or malicious
mode, and malicious mode can be triggered by certain
deterministic events. Our defensive mechanisms in the core
and memory system are enough to prevent all attacks that
leverage the malicious circuitry in this processor.
There are two general mechanisms IMP can leverage to

support an attack. The first - malicious memory access -
allows any running program to access privileged portions of
memory. The malicious user can trigger this backdoor by
placing a sequence of (otherwise benign) bytes on the data
bus. This attack cannot succeed against our defenses because
we never allow a long enough series of bytes to reach the
bus without reordering or insertion.
The second mechanism of IMP is called shadow mode.

Shadow mode is a generic scheme for executing any soft-
ware based attack as hidden or ‘shadow’ instructions. This
shadow mode is turned on by a ‘bootstrap trigger,’ which is
basically a special network packet that tells the hardware
to initialize shadow mode. This is precisely a single-shot
cheat code and would be prevented by our data obfuscation
techniques since these packets can be trivially obfuscated (i.e.
they are not needed for ALU computation in the unit that
recognizes the trigger). Without changing much HDL code,
IMP can be reconfigured to use a ticking timebomb to turn on
shadow mode, but we would prevent this with our rapid reset
technique. Therefore, we provide full guaranteed prevention
against the IMP.

C. Coverage and Practicality for OpenSPARC T2
In order to assess our coverage for a real microprocessor,

we analyzed the HDL source code for the OpenSPARC T2
microprocessor. The purpose of this analysis was to measure
the practicality of implementing our mechanisms in a real
microprocessor. Specifically, we were interested in (a) finding
out if power resets can protect all on-chip modules, (b)
sizes of the control interfaces to estimate the practicality of

exhaustively testing control interfaces and (c) the number
of data interfaces that need homomorphic encryption or
duplication.
Timebombs are activated through the global interfaces, and

we verified that in the OpenSPARC T2 core and memory sub-
systems, the modules are clocked and synchronous and hence
can be protected with power resets. For the remaining two
questions, we present first our analysis of the processor core
code and then our analysis for the rest of the chip.
The results of manual analysis of an OpenSPARC T2 core

are presented in Table I. We analyzed the code defining
the interfaces for each module (roughly 5,840 inputs in
total). Since the control interfaces are small, they can be
exhaustively validated, thus negating the possibility of single-
shot cheat codes against control interfaces. The number of
cases required to protect control interfaces by exhaustion is
less than 50,000 on average. The largest control interface
requires exhausting through 262,144 cases during validation,
which is very reasonable because it is common for validation
to go for millions of cycles. Therefore, for the OpenSPARC
T2 cores, all control interfaces can be validated individually,
thus not requiring obfuscation.
Our analysis also reveals that most of the core would not

be difficult to protect from single-shot data triggers. Of the
eleven top level modules, only three of them perform non-
trivial computations on their data interfaces. The rest can
be protected by simple obfuscation schemes, such as XOR.
The three difficult modules (Decoder, Execution, Floating
Point/Graphics) can be protected with duplication. If design
complexity is to be avoided, we can still protect the whole
core while only duplicating a fraction of it.
We performed similar analysis on the top level interfaces

for the modules in the memory system and the rest of the
system-on-chip for the OpenSPARC T2. The results of this
analysis are shown in Table II. Unsurprisingly, we found that
nearly all of the data values moving through memory system
and the rest of the system-on-chip are transported around
but not operated upon arithmetically or logically. The only
exception is the level 2 cache tag management unit, which
would need to have one of its data interfaces duplicated or
cleverly obfuscated (a routing packet that is fed into non-
trivial logic for format parsing and ECC). For the rest of
the modules, the only work done with data is queueing
(mathematically the identity), equality checks (can be done

11

with the encrypted data), and parity checks (can be done with
the encrypted data). So nearly all of the system-on-chip can
be protected without duplication or homomorphic functions.
Additionally, the control interfaces are not vulnerable to
single-shot cheat codes, as they average only 10,432 cases
for exhaustion. So the control interfaces can be protected by
only using sequence breaking. Therefore, the OpenSPARC
T2 microprocessor can be practically and efficiently defended
with our mechanisms.
A convenient feature of this methodology is that we were

able to perform this analysis without having to inspect all
the code by just focusing on interfaces. For the core, the
analysis was possible by reading only a fraction of the HDL
code (roughly 5000 lines of Verilog code out of the overall
roughly 290,000 lines). Similarly for the full system-on-chip,
the analysis was performed by reading only roughly 24,000
lines of Verilog code out of the total roughly one million
lines.

VIII. CONCLUSIONS AND OPEN PROBLEMS
In this paper we answer the question: Given an untrusted

hardware component, are there architectural solutions that
prevent backdoor logic from turning on?
Our solution is to obfuscate and randomize the inputs to

hardware units to deceive the malicious logic and prevent
it from recognizing triggers. We propose three methods of
hardware randomization that correspond to the three types of
digital backdoor triggers. Power resets obfuscate timing in-
formation to prevent units from detecting how long they have
been powered on. Data obfuscation deceives malicious units
by encrypting inputs. Sequence breaking reorders microar-
chitectural events, providing resilience against backdoors
triggered by control information, e.g., event types. These
techniques, in concert, prevent malicious hardware logic from
detecting trigger signals, thus preventing malicious designers
from enabling ‘kill switches’ or other malicious modifications
into hardware designs.
Our simulations show that our methods can be imple-

mented with little performance impact (less than 1% on aver-
age). We also discuss how our methods can be parameterized
to trade-off performance against probabilistic security.
We believe that our solutions are a significant step toward

certifiably trustworthy hardware designs and set the stage for
further exploration in this area. Next we outline some open
problems in the area of hardware design backdoors.
• Scalable Unintrusive Backdoor Protection Two of the
three input interfaces (global and data) can be protected
without any insights into the inner workings of the design
(except for the analysis required to identify these interfaces).
However, protecting the control interface currently requires
some insight into the design. To see why, consider a very
large third party IP module (e.g., a GPU) that is not open
source. Such a unit may have a large number of small control
interfaces which could be wired together to create a single-
shot cheat code that would escape individual exhaustive
validation of each interface. Without access to the source
code to perform coverage testing or some other way to tell

which control signals are combined together, it is currently
not obvious how to distinguish the different control interfaces
and decide which subset of them requires exhaustive valida-
tion. Techniques to relax this requirement would be highly
valuable.
• Attacks and Defenses against Non-deterministic Back-
doors As discussed previously, an analog circuit embedded
inside a module at design time can be used to randomly
trigger a backdoor. While the benefit of such a mechanism is
unclear at this point, a deeper investigation on real hardware
is required to understand the significance of this threat, and
if necessary, devise mechanisms to catch such backdoors.
• Attacks and Defenses for Side-channel Induced Back-
doors This work assumes that triggers can only be delivered
through one or more of the valid input interfaces for a
module. It may be possible to deliver triggers through side
channels. Devising such a delivery mechanism for triggers
and the receiving backdoor circuit, as well as protecting
against such attacks, presents a significant challenge.
• Design Guidelines for Trustworthiness Certification As
a result of our analysis, we uncovered a few properties that
specifications should have in order to be easily protected
against backdoors. Future security measures may either ren-
der these requirements unnecessary or add further to this list.
1) Untrusted modules should not be allowed to contain
non volatile memory as they complicate the power reset
process.

2) Untrusted modules should not be allowed internal ana-
log components, as these may be used as a source of
randomness to allow for randomized timebomb attacks.

3) If a source of true randomness is required in a design,
that source should be contained within a small, trusted
module.

4) Untrusted modules should not contain control inter-
faces that cannot be exhaustively validated.

• Evaluating Applicability We leave open for future work
the endeavor to implement these solutions directly into real
hardware. Based on our systematic classification of hardware
interfaces and manual analysis of the OpenSPARC, we
believe our solution to be practical. However, real world
prototyping on a wide variety of hardware is essential to
supplement this analysis.
The area of hardware backdoor protection poses many

exciting and interesting challenges for security researchers.
Solving these problems can lay the foundation for the future
development of certifiably trustworthy hardware, a critical
need for high security domains.

IX. ACKNOWLEDGEMENTS
We thank anonymous reviewers and members of the Com-

puter Architecture and Security Technology Lab (CASTL)
for their valuable feedback. Research conducted at CASTL is
funded by grants from DARPA, AFRL (FA8750-10-2-0253,
FA9950-09-1-0389), the NSF CAREER program, gifts from
Microsoft Research and Columbia University, and infrastruc-
ture donations from Xilinx and Wind River Corp.

12

Fig. 6. Green indicates a module that can be easily protected. Yellow indicates some challenges. Red indicates a highly challenging module, possibly
requiring duplication.

13

Fig. 7. Green indicates a module that can be easily protected. Yellow indicates some challenges. Red indicates a highly challenging module, possibly
requiring duplication.

14

REFERENCES

[1] S. Adee. The hunt for the kill switch. IEEE Spectrum
Magazine, 45(5):34–39, 2008.

[2] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and
B. Sunar. Trojan detection using ic fingerprinting. In
Security and Privacy, 2007. SP ’07. IEEE Symposium
on, pages 296–310, May 2007.

[3] M. Banga, M. Chandrasekar, L. Fang, and M. S. Hsiao.
Guided test generation for isolation and detection of
embedded trojans in ics. In GLSVLSI ’08: Proceedings
of the 18th ACM Great Lakes symposium on VLSI, pages
363–366, New York, NY, USA, 2008. ACM.

[4] M. Banga and M. Hsiao. A region based approach for
the identification of hardware trojans. In Hardware-
Oriented Security and Trust, 2008. HOST 2008. IEEE
International Workshop on, pages 40–47, June 2008.

[5] M. Banga and M. S. Hsiao. A region based approach
for the identification of hardware trojans. In Hardware-
Oriented Security and Trust, 2008. HOST ’08. IEEE
International Workshop on, June 2008.

[6] E. Brown. New nist report advises: Securing critical
computer systems begins at the beginning.

[7] R. Chakraborty, S. Paul, and S. Bhunia. On-demand
transparency for improving hardware trojan detectabil-
ity. In Hardware-Oriented Security and Trust, 2008.
HOST 2008. IEEE International Workshop on, pages
48–50, June 2008.

[8] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas.
Silicon physical random functions. In ACM Conference
on Computer and Communications Security, pages 148–
160, New York, NY, USA, 2002. ACM Press.

[9] C. Gentry. Computing arbitrary functions of encrypted
data. Commun. ACM, 53(3):97–105, 2010.

[10] J. Grand. Advanced hardware hacking techniques.
[11] M. Hicks, S. T. King, M. M. K. Martin, and J. M. Smith.

Overcoming an untrusted computing base: Detecting
and removing malicious hardware automatically. In
Proceedings of the 31st IEEE Symposium on Security
and Privacy, 2010.

[12] Y. Jin and Y. Makris. Hardware trojan detection
using path delay fingerpring. In Hardware-Oriented
Security and Trust, 2008. HOST ’08. IEEE International
Workshop on, June 2008.

[13] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and
Y. Zhou. Designing and implementing malicious hard-
ware. In Proceedings of the 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats, pages 5:1–
5:8, Berkeley, CA, USA, 2008. USENIX Association.

[14] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk,
and S. Devadas. A technique to build a secret key in
integrated circuits for identification and authentication
application. In Proceedings of the Symposium on VLSI
Circuits, pages 176–159, 2004.

[15] J. Li and J. Lach. At-speed delay characterization for ic
authentication and trojan horse detection. In Hardware-
Oriented Security and Trust, 2008. HOST 2008. IEEE

International Workshop on, pages 8–14, June 2008.
[16] G. Loh, S. Subramaniam, and Y. Xie. Zesto: A cycle-

level simulator for highly detailed microarchitecture
exploration. pages 53 –64, apr. 2009.

[17] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovitch.
Scifi - a system for secure computation of face identifi-
cation. In Proceedings of the 31st IEEE Symposium on
Security and Privacy, 2010.

[18] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic.
Power supply signal calibration techniques for improv-
ing detection resolution to hardware trojans. In ICCAD
’08: Proceedings of the 2008 IEEE/ACM International
Conference on Computer-Aided Design, pages 632–639,
Piscataway, NJ, USA, 2008. IEEE Press.

[19] J. Rajendran. The alpha platform. CSAW Conference.
2nd Embedded Systems Challenge., 2008.

[20] H. Salmani, M. Tehranipoor, and J. Plusquellic. New
design strategy for improving hardware trojan detection
and reducing trojan activation time. In Hardware-
Oriented Security and Trust, 2009. HOST ’09. IEEE
International Workshop on, pages 66 –73, july 2009.

[21] G. E. Suh and S. Devadas. Physical unclonable func-
tions for device authentication and secret key genera-
tion. In Design Automation Conference, pages 9–14,
New York, NY, USA, 2007. ACM Press.

[22] M. Swanson, N. Bartol, and R. Moorthy. Piloting supply
chain risk management practices for federal information
systems.

[23] M. M. Swift, B. N. Bershad, and H. M. Levy. Im-
proving the reliability of commodity operating systems.
In Proceedings of the nineteenth ACM symposium on
Operating systems principles, SOSP ’03, pages 207–
222, New York, NY, USA, 2003. ACM.

[24] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers.
Nooks: an architecture for reliable device drivers. In
Proceedings of the 10th workshop on ACM SIGOPS
European workshop, EW 10, pages 102–107, New
York, NY, USA, 2002. ACM.

[25] United Stated Department of Defense. High perfor-
mance microchip supply, February 2005.

[26] A. Waksman and S. Sethumadhavan. Tamper evident
microprocessors. In Proceedings of the 31st IEEE
Symposium on Security and Privacy, 2010.

[27] X. Wang, M. Tehranipoor, and J. Plusquellic. Detecting
malicious inclusions in secure hardware: Challenges
and solutions. In Hardware-Oriented Security and
Trust, 2008. HOST 2008. IEEE International Workshop
on, pages 15–19, June 2008.

[28] M.-D. M. Yu and S. Devadas. Secure and robust error
correction for physical unclonable functions. 27(1):48–
65, Jan.-Feb. 2010.

15

