Propositions as Types *

Philip Wadler

University of Edinburgh
wadler@inf.ed.ac.uk

1. Introduction

Powerful insights arise from linking two fields of study previously
thought separate. Examples include Descartes’s coordinates, which
links geometry to algebra, Plank’s Quantum Theory, which links
particles to waves, and Shannon’s Information Theory, which links
thermodynamics to communication. Such a synthesis is offered
by the principle of Propositions as Types, which links logic to
computation. At first sight it appears to be a simple coincidence—
almost a pun—but it turns out to be remarkably robust, inspiring
the design of theorem provers and programming languages, and
continuing to influence the forefronts of computing.

Propositions as Types is a notion with many names and many
origins. It is closely related to the BHK Interpretation, a view of
logic developed by the intuitionists Brouwer, Heyting, and Kol-
mogorov in the 1930s. It is often referred to as the Curry-Howard
Isomorphism, referring to correspondence observed by Curry in
1958 and refined by Howard in 1969 (though not published until
1980, in a Festschrift dedicated to Curry). Others draw attention to
the significant contributions from de Bruijn’s Automath and Mar-
tin Lof’s Type Theory in the 1970s. Many variant names are found
in the literature, including Formulae as Types, Curry-Howard-de
Bruijn Correspondence, Brouwer’s Dictum, and others.

Propositions as Types is a notion with depth. It describes a cor-
respondence between a given logic and a given programming lan-
guage, for instance, between Gentzen’s intuitionistic natural deduc-
tion and Church’s simply-typed lambda calculus. At the surface, it
says that for each proposition in the logic there is a corresponding
type in the programming language—and vice versa. Thus we have

propositions as types.

But it goes deeper, in that for each proof of a given proposition,
there is a program of the corresponding type—and vice versa. Thus
we also have

proofs as programs.

And it goes deeper still, in that for each way to normalise a proof
there is a corresponding way to evaluate a program—and vice
versa. Thus we further have

normalisation of proofs as evaluation of programs.

Hence, we have not merely a shallow bijection between proposi-
tions and types, but a true isomorphism preserving the deep struc-
ture of proofs and programs, normalisation and evaluation.
Propositions as Types is a notion with breadth. It applies to a
range of logics including propositional, predicate, second-order, in-
tuitionistic, classical, and linear. It underpins the foundations of
functional programming, explaining features including functions,
products, sums, parametric polymorphism, data abstraction, con-
tinuations, linear types, and session types. It has inspired theorem

* Submitted for publication. Apologies for the use of numerical references,
which are required by the venue; I normally use date-name. Copyright
Philip Wadler ©2014.

provers and programming languages including Agda, Automath,
Coq, Epigram, F#, F*, Haskell, LF, ML, NuPRL, Scala, Singular-
ity, and Trellys. Applications include CompCert, a certified com-
piler for the C programming language verified in Coq, a computer-
checked proof of the four-colour theorem also verified in Coq, parts
of the Ensemble distributed system verified in NuPRL, and ten
thousand lines of browser plug-ins verified in F*.

Propositions as Types is a notion with mystery. Why should it
be the case that intuitionistic natural deduction, as developed by
Gentzen in the 1930s, and simply-typed lambda calculus, as devel-
oped by Church around the same time for an unrelated purpose,
should be discovered forty years later to be essentially identical?
And why should it be the case that the same correspondence arises
again and again? The logician Girard and the computer scientist
Reynolds independently developed the same calculus, now dubbed
Girard-Reynolds. The logician Hindley and the computer scientist
Milner independently developed the same type system, now dubbed
Hindley-Milner. Curry-Howard is a double-barreled name that en-
sures the existence of other double-barreled names. Those of us
that design and use programming languages may often feel they
are arbitrary, but Propositions as Types assures us some aspects of
programming are absolute.

2. Church, and the origins of computation

The origins of logic lie with Aristotle and the stoics in classi-
cal Greece, Ockham and the scholastics in the middle ages, and
Leibniz’s vision of a calculus ratiocinator at the dawn of the en-
lightenment. Our interest in the subject lies with formal logic,
which emerged from the contributions of Boole, De Morgan, Frege,
Peirce, Peano, and others in the 19th century.

As the 20th century dawned, the leading proponents of formal
logic were Hilbert and his colleagues at Gottingen. Hilbert’s pro-
gram was to develop a formal logic that could express in symbols
any mathematical statement, a vision that was largely realised by
Whitehead and Russell’s Principia Mathematica [42].

One goal of Hilbert’s Program was to solve the Entschei-
dungsproblem (decision problem), that is, to develop an “effec-
tively calculable” procedure to determine the truth or falsity of any
statement. The problem presupposes completeness: that for any
statement, either it or its negation possesses a proof. In his ad-
dress to the 1930 Mathematical Congress in Konigsberg, Hilbert
affirmed his belief in this principle, concluding “Wir miissen wis-
sen, wir werden wissen” (“We must know, we will know”), words
later engraved on his tombstone. Perhaps a tombstone is an ap-
propriate place for those words, given that any basis for Hilbert’s
optimism had been undermined the day before, when at the self-
same conference Godel [19] presented his proof that arithmetic is
incomplete.

While the goal was to satisfy Hilbert’s program, no precise def-
inition of “effectively calculable” was required. It would be clear
whether a given procedure was effective or not, like Justice Stew-
art’s characterisation of obscenity, “I know it when I see it”. But

to show the Entscheidungsproblem undecidable required a formal
definition of “effectively calculable”.

One can find allusions to the concept of algorithm in the work of
Euclid and, eponymously, al-Khwarizmi, but the concept was only
formalised in the 20th century, and then simultaneously received
three independent definitions by logicians. Like busses: you wait
two thousand years for a definition of “effectively calculable”, and
then three come along at once. The three were lambda calculus,
published May 1935 by Alonzo Church [7], recursive functions,
proposed by Godel at lectures in Princeton in 1934 and published
July 1935 by Stephen Kleene [26], and Turing machines, published
May 1936 by Alan Turing [37].

Lambda calculus was introduced by Church at Princeton, and
further developed by his students Rosser and Kleene. At this time,
Princeton rivalled Géttingen as a center for the study of logic. The
Institute for Advanced study was co-located with the mathematics
department in Fine Hall. In 1933, Einstein and von Neumann joined
the Institute, and Godel arrived for a visit.

Logicians have long been concerned with the idea of function.
Lambda calculus provides a compact notation for defining func-
tions, including “first-class” functions that accept functions as argu-
ments or return functions as results. It is remarkably compact, con-
taining only three constructs: variables, function abstraction, and
function application. Church [6] at first introduced lambda calculus
as a way to define compact notations for logical formulas (almost
like a macro language) in a new presentation of logic. All forms
of bound variable could be subsumed to lambda binding. (For in-
stance, instead of Jz. A[z], Church wrote X(Az. A[z]).) However,
it was later discovered by Kleene and Rosser that Church’s sys-
tem was inconsistent. By this time, Church and his students had
realised that the system was of independent interest. Church had
foreseen this possibility in his first paper on the subject, where he
wrote “There may, indeed, be other applications of the system than
its use as a logic.”

Church discovered a way of encoding numbers as terms of
lambda calculus. The number n is represented by a function that
accepts a function f and a value x, and applies the function to the
value n times. (For instance, three is Af. Az. f(f(f(x))).) With
this representation, it is easy to encode lambda terms that can add
or multiply, but it was not clear how to encode the predecessor func-
tion, which finds the number one less than a given number. One day
in the dentist’s office, Church’s student Kleene suddenly saw how
to define predecessor [25]. When Kleene brought the result to his
supervisor, Church confided that he had nearly convinced himself
that representing predecessor in lambda calculus was impossible.
Once this hurdle was overcome, Church and his students soon be-
came convinced that any “effectively calculable” function of num-
bers could be represented by a term in the lambda calculus.

Church proposed A-definability as the definition of “effec-
tively calculable”, what we now know as Church’s Thesis, and
demonstrated that there was a problem whose solution was not A-
definable, that of determining whether a given A-term has a normal
form, what we now know as the Halting Problem [7]. A year later,
he demonstrated there was no \-definable solution to the Entschei-
dungsproblem.

In 1933, Godel arrived for a visit at Princeton. He was un-
convinced by Church’s contention that every effectively calcula-
ble function was A-definable. Church responded by offering that
if Godel would propose a different definition, then Church would
“undertake to prove it was included in A-definability”. In a series
of lectures at Princeton in 1934, based on a suggestion of Her-
brand, Godel proposed what came to be known as “general recur-
sive functions” as his candidate for effective calculability. Church
and his students soon determined that the two definitions are equiv-
alent: every general recursive function is A-definable, and vice-

versa. Rather than mollifying Godel, this result caused him to doubt
that his own definition was correct. Things stood at an impasse.

Meanwhile, at Cambridge, Alan Turing, a student of Max New-
man, independently formulated his own notion of “effectively cal-
culable” in the form of what we now call a Turing Machine, and
used this to show the Entscheidungsproblem undecidable. Before
the paper was published, Newman was dismayed to discover that
Turing had been scooped by Church. However, Turing’s approach
was sufficiently different from Church’s to merit independent pub-
lication. Turing hastily added an appendix sketching the equiva-
lence of \-definability to his machines, and the paper appeared in
print a year after Church [37], when Turing was 23. Newman ar-
ranged for Turing to travel to Princeton, where he completed a doc-
torate under Church’s supervision.

Turing’s most significant difference from Church was not in
logic or mathematics but in philosophy. Whereas Church merely
presented the definition of A-definability and baldly claimed that it
corresponded to effective calculability, Turing undertook an anal-
ysis of the capabilities of a “computer”—at this time, the term re-
ferred a human performing a computation assisted by paper and
pencil. Turing argued that the number of symbols must be finite (for
if infinite, some symbols would be arbitrarily close to each other
and undistinguishable), that the number of states of mind must be
finite (for the same reason), and that the number of symbols under
consideration at one moment must be bounded (““We cannot tell at a
glance whether 9999999999999999 and 999999999999999 are the
same”). Later, Gandy [14] would point out that Turing’s argument
amounts to a theorem asserting that any computation a human with
paper and pencil can perform can also be performed by a Turing
Machine. It was Turing’s argument that finally convinced Godel,
since A-definability, recursive functions, and Turing machines had
been proved equivalent, he now accepted that all three defined “ef-
fectively calculable”.

As mentioned, Church’s first use of lambda calculus was to
encode formulas of logic, but this had to be abandoned because
it led to inconsistency. This was for a reason much the same as
Russell’s paradox, namely that it allowed a predicate to act on itself,
and so he adapted a solution similar to Russell’s, of classifying
terms according to types. Church’s simply-typed lambda calculus
ruled out self-application, permitting lambda calculus to support a
consistent logical formulation [8].

These two uses of lambda calculus are rather different in na-
ture. If a notion of computation is powerful enough to represent
any effectively calculable procedure, then that notion is not power-
ful enough to solve its own Halting Problem: there is no effectively
calculable procedure to determine whether a given effectively cal-
culable procedure terminates. However, to show the consistency of
a logic based on simply-typed lambda calculus, it is necessary to
guarantee that every simply-typed lambda term has a normal form.
So the application of lambda calculus for general computation re-
quires that the halting problem is not solved, while the application
of lambda calculus to logic requires every program halt.

Simply-typed lambda calculus has the property that it is strongly
normalising; every reduction sequence terminates, and hence, un-
like the original untyped lambda calclus, it cannot represent ev-
ery effectively calculable function. However, it is straightforward
to add recursion as an additional construct (sometimes called the
fixpoint operator). Both untyped lambda calculus and simply-typed
lambda calculus with recursion have the power to define every ef-
fectively calculable function, at the cost of losing strong normalisa-
tion. All three systems have their uses, depending on what tradeoff
one prefers.

3. Gentzen, and the origins of logic

A second goal of Hilbert’s program was to establish the consistency
of various logics. If a logic is inconsistent, then it can derive any
formula, rendering it useless.

In 1935, at the age of 25, Gerhard Gentzen published his doc-
toral thesis. It introduced not one but two new formulations of logic,
natural deduction and sequent calculus, which became established
as the two major systems for formulating a logic, and remain so to
this day. It showed how to normalise proofs to ensure they were not
“roundabout”, yielding a new proof of the consistency of Hilbert’s
system. And, to top it off, to match the use of 3 for the existential
quantification introduced by Peano, Gentzen introduced V to denote
universal quantification.

Gentzen’s insight was that proof rules should come in pairs,
a feature that had not been present in earlier systems such as
Hilbert’s. In natural deduction, these are introduction and elimina-
tion pairs. An introduction rule specifies under what circumstances
one may assert a formula with a logical connective (for instance, to
prove A D B one may assume A and then must prove B), while
the corresponding elimination rule shows how to use that logical
connective (for instance, from a proof of A O B and a proof of A
one may deduce B, a property dubbed modus ponens in the middle
ages). As Gentzen notes, “The introductions represent, as it were,
the ‘definitions’ of the symbols concerned, and the eliminations are
no more, in the final analysis, than the consequences of these defi-
nitions.”

A consequence of this insight was that any proof could be
normalised to one that is not “roundabout”, where “no concepts
enter into the proof other than those contained in the final result”.
For example, in a normalised proof of the formula A & B, the only
formulas that may appear are itself and its subformulas, A and B.
No other formula, such as (B& A) D (A& B) or AV B, may appear;
this is called the Subformula Property. An immediate consequence
was consistency. The only way to derive a contradiction (that is,
to prove false, written L), is to prove, say, both A D A and A for
some formula A. But given such a proof, one could normalise it
to one containing only subformulas of its conclusion, A. But A
has no subformulas! It is like the old saw, “What part of no don’t
you understand?” Logicians became interested in normalisation of
proofs because of its role in establishing consistency.

Gentzen preferred the system of Natural Deduction because it
was, in his view, more natural. He introduced Sequent Calculus as
a technical device for proving the Subformula Property. Sequent
Calculus had two key properties. First, every proof in Natural De-
duction can be converted to a proof in Sequent Calculus, and con-
versely, so the two systems are equivalent. Second, unlike Natural
Deduction, every rule save one has the property that its hypothe-
ses only involve subformulas of those that appear in its conclusion.
The one exception, the Cut rule, can always be removed by a pro-
cess called Cut Elimination. Hence every proof had an equivalent
normal form satisfying the Subformula Property. Gentzen’s main
interest in Sequent Calculus was to prove the Subformula Prop-
erty, although Sequent Calculus has features of independent inter-
est, such as providing a more symmetric presentation of classical
logic.

It is an irony that Gentzen was required to introduce Sequent
Calculus in order to prove the Subformula Property for Natural
Deduction. He needed a roundabout proof to show the absence of
roundabout proofs! Later, in 1965, Prawitz showed how to prove
the Subformula Property directly, by introducing a way to simplify
Natural Deduction proofs. We will return to this point later, also.

4. Propositions as Types

In their textbook, Curry and Feys [11] observed a curious fact,
relating a theory of functions to a theory of implication. Every
type of a function (A — B) could be read as a proposition (A D
B), and under this reading the type of any given function would
always correspond to a provable proposition. Conversely, for every
provable proposition there was a function with a corresponding
type.

In 1969, Howard circulated a mimeographed manuscript. It was
not published until 1980, where it appeared in a Festschrift ded-
icated to Curry [24]. Motivated by Curry’s observation, Howard
points out that there is a similar correspondence between natural
deduction, on the one hand, and simply-typed lambda calculus on
the other, and (unlike Curry) he makes explicit the third and deep-
est level of the correspondence as described in the introduction,
that normalisation of proofs corresponds to evaluation of programs.
Howard shows the correspondence extends to the other logical con-
nectives, conjunction and disjunction, by extending his lambda cal-
culus with constructs that represent pairs and disjoint sums. Just as
proof rules come in introduction and elimination pairs, so do typing
rules: introduction rules correspond to ways to define or construct
a value of the given type, and elimination rules correspond to ways
to use or deconstruct values of the given type.

We can describe Howard’s observation as follows:

e Conjunction A & B corresponds to cartesian product A x B,
that is, a record with two fields, also known as a pair. A proof
of the proposition A & B consists of a proof of A and a proof of
B. Similarly, a value of type A X B consists of a value of type
A and a value of type B.

Disjunction A V B corresponds to a disjoint sum A + B, that
is, a variant with two alternatives. A proof of the proposition
AV B consists of either a proof of A or a proof of B, including
an indication of which of the two has been proved. Similarly, a
value of type A + B consists of either a value of type A or a
value of type B, including an indication of whether this is a left
or right summand.

Implication A D B corresponds to function space A — B. A
proof of the proposition A D B consists of a procedure that
given a proof of A yields a proof of B. Similarly, a value of
type A — B consists of a function that when applied to a value
of type A returns a value of type B.

This reading of proofs goes back to the intuitionists, and is often
called the BHK interpretation, named for Brouwer, Heyting, and
Kolmogorov. Brouwer founded intuitionism, and Heyting and Kol-
mogorov formalised intuitionistic logic, and developed the inter-
pretation above, in the 1920s and 1930s.

Given the intuitionistic reading of proofs, it hardly seems sur-
prising that intuitionistic natural deduction and lambda calculus
should correspond so closely. But recall that Gentzen invented Se-
quent Calculus because he could not find a direct proof of the Sub-
formula Property for Natural Deduction, and the direct proof was
not published until three decades later, by Prawitz. As noted by
Howard, Prawitz’s technique for normalising a proof corresponds
exactly to reduction of lambda terms. Gentzen, Church, and Prawitz
never drew these parallels. Certainly Howard was proud of the con-
nection he drew, citing it as one of the two great achievements of
his career [35]. While the connection may be obvious in retrospect,
it was far from obvious in prospect!

Howard’s paper divides into two halves. The first half explains a
correspondence between two well-understood concepts, the propo-
sitional connectives &, V, D on the one hand and the computational
types X, +, — on the other hand. The second half extends this
analogy, and for well-understood concepts from logic proposes new

concepts for types that correspond to them. In particular, Howard
proposes that the predicate quantifiers V and 3 corresponds to new
types that we now call dependent types.

With the introduction of dependent types, every proof in predi-
cate logic can be represented by a term of a suitable typed lambda
calculus. Mathematicians and computer scientists proposed numer-
ous systems based on this concept, including de Bruijn’s Automath
[13], Martin Lof’s type theory [28], Bates and Constable’s PRL and
nuPRL, [2], and Coquand and Huet’s Calculus of Constructions [9].
The last of these developed into the Coq proof assistant, which was
later used by Gonthier to validate the proof of the four-color the-
orem [20], and by Leroy to verify the correctness of a C compiler
[27].

5. Intuitionistic logic

In Gilbert and Sullivan’s The Gondoliers, Casilda is told that as an
infant she was married to the heir of the King of Batavia, but that
due to a mix-up no one knows which of two individuals, Marco or
Giuseppe, is the heir. Alarmed, she wails “Then do you mean to say
that I am married to one of two gondoliers, but it is impossible to
say which?” To which the response is “Without any doubt of any
kind whatever.”

Logic comes in many varieties, and one distinction is between
classical and intuitionistic. Intuitionists, concerned by cavalier as-
sumptions made by some logicians about the nature of infinity, in-
sist upon a constructionist notion of truth. In particular, they insist
that a proof of AV B must show which of A or B holds, and hence
they would reject the claim that Casilda is married to Marco or
Giuseppe until one of the two was identified as her husband. Per-
haps Gilbert and Sullivan anticipated intuitionism, for their story’s
outcome is that the heir turns out to be a third individual, Luiz, with
whom Casilda is, conveniently, already in love.

Intuitionists also reject the law of the excluded middle, which
asserts A V —A for every A, since the law gives no clue as to
which of A or = A holds. Heyting formalised a variant of Hilbert’s
classical logic that captures the intuitionistic notion of provability.
In particular, the law of the excluded middle is provable in Hilbert’s
logic, but not in Heyting’s. Further, if the law of the excluded
middle is added as an axiom to Heyting’s logic, then it becomes
equivalent to Hilbert’s. Kolmogorov showed the two logics were
closely related: he gave a double-negation translation, such that a
formula is provable in classical logic if and only if its translation is
provable in intuitionistic logic.

Propositions as Types was first formulated for intuitionistic
logic. It is a perfect fit, because in the intuitionist interpretation
the formula A V B is provable exactly when one exhibits either a
proof of A or a proof of B, so the type corresponding to disjunction
is a disjoint sum.

6. Other logics, other computation

The principle of Propositions as Types would be remarkable even
if it applied only to one variant of logic and one variant of compu-
tation. How much more remarkable, then, that it applies to a wide
variety of logics and of computation.

Quantification over propositional variables in second-order
logic corresponds to type abstraction in second-order lambda cal-
culus. A consequence of this correspondence is that a principal
type inference algorithm was discovered twice, once by the logi-
cian Roger Hindley [22] and once by the computer scientist Robin
Milner [29]. For the same reason, a related but more powerful sys-
tem, the second-order lambda calculus, was also discovered twice,
once by the logician Jean-Yves Girard [18] and once by the com-
puter scientist John Reynolds [34]. The type systems of functional
languages including ML and Haskell is based upon the Hindley-

Milner system, while the design of generic types in Java and C#
draws directly upon the Girard-Reynolds system. Subequently,
Mitchell and Plotkin [30] observed that existential quantification
in second-order logic corresponds precisely to data abstraction, an
idea that now underpins much reseach in the semantics of program-
ming languages. Philosophers might argue as to whether mathe-
matical systems are ‘discovered’ or ‘devised’, but the same system
arising in two different contexts argues that here the correct word
is ‘discovered’.

Two major variants of logic are intuitionistic and classical.
Howard’s original paper observed a correspondence with intu-
itionistic logic. Not until a decade later was the correspondence
extended to also apply to classical logic, when Tim Griffin [21]
observed that Peirce’s Law in classical logic provides a type for
the call/cc operator of Scheme. Chet Murthy [32] went on to
note that Kolmogorov and Go6del’s double-negation translation,
widely used to relate intuitionistic and classical logic, corresponds
to the continuation-passing style transformation widely used both
by semanticists and implementors of lambda calculus. Parigot [33],
Curien and Herbelin [10], and Wadler [40] introduced various com-
putational calculi motivated by correspondences to classical logic.

Another variant of logic is modal logic, where propositions can
be labelled as ‘necessarily true’ or ‘possibly true’. Eugenio Moggi
[31] introduced monads as a technique to explain the semantics of
important features of programming languages such as state, excep-
tions, and input-output, and monads became widely adopted in the
functional language Haskell, later migrating into other languages
including Clojure, Scala, F#, and C#. Benton, Bierman, and de
Paiva [3] observed one form of ‘possibility’ in modal logic cor-
responds precisely to monads.

In classical, intuitionistic, and modal logic any hypothesis can
be used an arbitrary number of times—zero, once, or many. Linear
logic, introduced in 1987 by Girard [17], requires that each hypoth-
esis is used exactly once. Linear logic is ‘resource concious’ in that
facts may be used up and superceded by other facts, suiting it for
reasoning about a world where situations change. From its incep-
tion, linear logic was suspected to apply to problems of importance
to computer scientists, and its first publication was not in Annals of
Mathematics but in Theoretical Computer Science. Computational
aspects of linear logic are discussed by Abramsky [1] and Wadler
[39], among many others, and applications to quantum computing
are surveyed by Gay [15]. Most recently, Caires and Pfenning [4]
have applied Propositions as Types to explain Session Types, a way
of describing communication protocols introduced by Honda [23],
inspiring a new view of Propositions as Sessions [41].

7. Natural deduction

We now turn to a more formal development, presenting a fragment
of natural deduction and a fragment of typed lambda calculus in a
style that makes clear the connection between the two.

We begin with the details of natural deduction as defined by
Gentzen [16]. The proof rules are shown in Figure 1. To simplify
our discussion, we consider just two of the connectives of natural
deduction. We write A and B as placeholders standing for arbitrary
formulas. Conjunction is written A & B and implication is written
ADB.

We represent proofs by trees, where each node of the tree is
an instance of a proof rule. Each proof rule consists of zero or
more formulas written above a line, called the premises, and a
single formula written below the line, called the conclusion. The
interpretation of a rule is that when all the premises hold, then the
conclusion follows.

The proof rules come in pairs, with rules to introduce and to
eliminate each connective, labeled -1 and -E respectively. As we
read the rules from top to bottom, introduction and elimination

rules do what they say on the tin: the first introduces a formula
for the connective, which appears in the conclusion but not in the
premises; the second eliminates a formula for the connective, which
appears in a premise but not in the conclusion. An introduction rule
describes under what conditions we say the connective holds—
how to define the connective. An elimination rule describes what
we may conclude when the connective holds—how to use the
connective.

The introduction rule for conjunction, &-I, states that if formula
A holds and formula B holds, then the formula A & B must hold
as well. There are two elimination rules for conjunction. The first,
&-Ey, states that if the formula A & B holds, then the formula A
must hold as well. The second, &-E; concludes B rather than A.

The introduction rule for implication, D-I, states that if from
the assumption that formula A holds we may derive the formula B,
then we may conclude that the formula A D B holds and discharge
the assumption. To indicate that A is used as an assumption zero,
once, or many times in the proof of B, we write A in brackets and
tether it to B via a chain of ellipses. A proof is complete only when
every assumption in it has been discharged by a corresponding use
of D-I, which is indicated by writing the same name (here x) as
a superscript on each instance of the discharged assumption and
on the discharging rule. The elimination rule for implication, D-E,
states that if formula A D B holds and if formula A holds, then
we may conclude formula B holds as well. In the middle ages,
logicians dubbed this last rule modus ponens.

Critical readers will observe that we use similar language to
describe rules (‘when-then’) and formulas (‘implies’). The same
idea applies at two levels, the meta level (rules) and the object
level (formulas), and in two notations, using a line with premises
above and conclusion below for implication at the meta level, and
the symbol D with premise to the left and conclusion to the right
at the object level. It is almost as if to understand implication one
must first understand implication! This Zeno’s paradox of logic was
wrily observed by Lewis Carroll [5]. We need not let it disturb us;
everyone possesses a good informal understanding of implication,
which may act as a foundation for its formal description.

A proof of the formula

(B& A) D (A& B).

is shown in Figure 2. In other words, if B and A hold then A and B
hold. This may seem so obvious as to be hardly deserving of proof!
However, the formulas B D A and A D B have meanings that differ,
and we need some formal way to conclude that the formulas B & A
and A & B have meanings that are the same. This is what our proof
shows, and it is reassuring that it can be constructed from the rules
we posit.

The proof reads as follows. From B & A we conclude A, by
&-E1, and from B & A we also conclude B, by &-Ey. From A and
B we conclude A& B, by &-I. That is, from the assumption B & A
(used twice) we conclude A & B. We discharge the assumption
and conclude (B & A) D (A & B) by D-1, linking the discharged
assumptions to the discharging rule by writing z as a superscript on
each.

Now consider a larger proof built from this smaller proof, as
shown at the top of Figure 4. This proof makes two assumptions,
[B] and [A], and concludes with the formula A & B. However,
rather than concluding it directly we derive the result in a round-
about way, in order to illustrate an instance of D-E, modus ponens.
The proof reads as follows. On the left is the proof given previously,
concluding in (B & A) D (A& B). On the right, from B and A we
conclude B & A by &-1. Combining these yields A & B by D-1.

This proof is unnecessarily roundabout. We may simplify it by
applying the rewrite rules of Figure 3. These rules specify how to
simplify a proof when an introduction rule is immediately followed

A B A& B A& B
— &1 &-Eo — &-E;
A& B A B
(A"
: ADB A
: - DE
B
oI B
ADB

Figure 1. Gerhard Gentzen (1935) — Natural Deduction

[B & A)? [B & A)*
— &'El — &'EO
A B
&-1
A& B
D-I*

(B& A)D (A& B)

Figure 2. A proof

B : A

O-E = B

Figure 3. Simplifying proofs

(B & AJ? (B & A
— &E — &E
A B
&1
A& B B (A
5IF R
(B& A) > (A& B) B& A
D-E
A& B
)
(B]Y [A]z& (BlY (A
B& A B&A
— 0 o — &
A B
&1
A& B
l
A [B)Y
A B
A& B

Figure 4. Simplifying a proof

by the corresponding elimination rule. Each rule shows two proofs
connected by an arrow, indicating that the redex (the proof on the
left) may be rewritten, or simplified, to yield the reduct (the proof
on the right). Rewrites always take a valid proof to another valid
proof.

For &, the redex consists of a proof of A and a proof of B,
which combine to yield A & B by &-I, which in turn yields A by
&-Ejg. The reduct consists simply of the proof of A, discarding the
unneeded proof of B. There is a similar rule, not shown, to simplify
an occurrence of &-I followed by &-E;.

For D, the redex consists of a proof of B from assumption A,
which yields A D B by D-I, and a proof of A, which combine to
yield B by D-E. The reduct consists of the same proof of B, but
now with every occurrence of the assumption A replaced by the
given proof of A. The assumption A may be used zero, once, or
many times in the proof of B in the redex, so the proof of A may
be copied zero, once, or many times in the proof of B in the reduct.
For this reason, the reduct may be larger than the redex, but it will
be simpler in the sense that it has removed an unnecessary detour
via the subproof of A D B.

We can think of the assumption of A in D-I as a debt which
is discharged by the proof of A provided in D-E. The proof in the
redex accumulates debt and pays it off later; while the proof in the
reduct pays directly each time the assumption is used. Proof debt
differs from monetary debt in that there is no interest, and the same
proof may be duplicated freely as many times as needed to pay off
an assumption, the very property which money, by being hard to
counterfeit, is designed to avoid!

Figure 4 demonstrates use of these rules to simplify a proof.
The first proof contains an instance of D-I followed by D-E, and is
simplified by replacing each of the two assumptions of B & A on
the left by a copy of the proof of B & A on the right. The result is
the second proof, which as a result of the replacement now contains
an instance of &-I followed by &-E1, and another instance of &-I
followed by &-Eo. Simplifying each of these yields the third proof,
which derives A & B directly from the assumptions A and B, and
can be simplified no further.

It is not hard to see that proofs in normal form satisfy the Sub-
formula Property: every formula of such a proof must be a sub-
formula of one of its undischarged assumptions or of its conclu-
sion. The proof in Figure 2 and the final proof of Figure 4 both sat-
isfy this property, while the first proof of Figure 4 does not, since
(B & A) D (A & B) is not a subformula of A & B.

8. Lambda calculus

We now turn our attention to the simply-typed lambda calculus of
Church [6, 8]. The type rules are shown in Figure 5. To simplify
our discussion, we take both products and functions as primitive
types; Church’s original calculus contained only function types,
with products as a derived construction. We now write A and B
as placeholders for arbitrary types, and L, M, N as placeholder
for arbitrary terms. Products are written A x B and functions are
written A — B.

We represent type derivations by trees. Now instead of formulas,
our premises and conclusions are judgments of the form

M:A

indicating that term M has type A.

We represent type derivations by trees, where each node of the
tree is an instance of a type rule. Each type rule consists of zero
or more formulas written above a line, called the premises, and a
single formula written below the line, called the conclusion. The
interpretation of a rule is that when all the premises hold, then the
conclusion follows.

M: A N :B L:AxB L:AxB
—_ x-I —— x-Eo — X-E;
(M,N): Ax B Lo: A L,:B
[x: A7
. L:A— B M: A
. —E
N:B . LM:B
S |
A.N:A— B

Figure 5. Alonzo Church (1935) — Lambda Calculus

[z: B x AP [z: Bx A]?
— x-E; — x-Eg
zZ1 - A z0 - B
x-I
(z1,20) : AX B
—-I7

AZ. <21,Z[)> : (B X A) — (A X B)

Figure 6. A program

M:A N:B

x-1 :
(M,N): Ax B .
— x-Ey = M:A
<Z\[. N>0 DA

[z : A"

N:B . : M:A
_ & I" . :
AM.N:A— B M: A .

—-E = N[M/z]: B
(A.N)M : B
Figure 7. Simplifying programs
[z: B x AJ? [z: B x AJ?
x-E1 x-Eg
z1: A z0: B
x-I
(z1,20) : AX B ly: Bz : A]®
—-I7 x-1
Az.(z1,20) : (B x A) — (A X B) (y,z) : Bx A
—-E
(Az.(z1,20)) (y,x) : AXx B
U
[y: Bz : A]® [y: Bz : A]®
— x-I — x-I
(y,z) : Bx A (y,z) : Bx A
—— x-E;, ——— X-Ep
(y,2)1: A (y,z)o: B

<<y7a7>17 <y‘17>0> tAx B
J
[: A" [y:BJ)Y
_ X
(r,y): AX B

-1

Figure 8. Simplifying a program

Type rules, like proof rules, come in pairs. An introduction rule
describes how to define or construct a term of the given type, while
an elimination rule describes how to use or deconstruct a term of
the given type.

The introduction rule for products, x-I, states that if term M
has type A and term N has type B, then we may form the pair
term (M, N of product type A x B. There are two elimination
rules for products. The first, X-Eo, states that if term L has type
A x B, then we may form the term L of type A, which selects the
first component of the pair. The second, X-E; is similar, save that
it forms the term L, of type B.

The introduction rule for functions, —-I, states that if given a
variable x of type A we may form a term IV of type B, then we
may form the lambda term Az. N of function type A — B. The
variable x appears free in N and bound in Az. N. Undischarged as-
sumptions correspond to free variables, while discharged assump-
tions correspond to bound variables. To indicate that the variable
T may appear zero, once, or many times in the term N, we write
x : A in brackets and tether it to IV : B via a chain of ellipses.
A term is closed only when every variable in it is bound by a cor-
responding A term. The elimination rule for functions, —-E, states
that given term L of type A — B and term M of type A we may
form the application term L M of type B.

For natural deduction, we noted that there might be confusion
between implication at the meta level and the object level. For
lambda calculus the distinction is clearer, as we have implication
at the meta level (if terms above the line are well typed so are terms
below) but functions at the object level (a function has type A — B
because if it is passed a value of type A then it returns a value
of type B). What previously had been discharge of assumptions
(perhaps a slightly diffuse concept) becomes binding of variables
(a concept understood by most computer scientists).

The reader will by now have observed a striking similarity
between Gentzen’s rules from the preceding section, and Church’s
rules from this section: ignoring the terms in Church’s rules then
they are identical, if one replaces & by x and D by —. The coloring
of the rules is chosen to highlight the similarity.

A program of type

(Ax B) — (B x A)

is shown in Figure 6. Whereas the difference between A & B and
B & A appears a mere formality, the the difference between A x B
and B x A is easier to appreciate: converting the latter to the former
requires swapping the elements of the pair, which is precisely the
task performed by the program corresponding to our former proof.

The program reads as follows. From variable z of type B x A
we form term z; of type A by x-E; and also term zg of type B by
x-Eo. From these two we form the pair (z1, zo) of type A x B by
x-1. Finally, we bind the free variable z to form the lambda term
Az. (z1, z0) of type (A x B) — (B x A) by —-I, connecting the
bound typings to the binding rule by writing z as a superscript on
each. The function accepts a pair and swaps its elements, exactly as
described by its type.

Now consider a larger program built from this smaller program,
as shown at the top of Figure 8. This program has two free vari-
ables, y of type B and x of type A, and constructs a value of
type A x B. However, rather than constructing it directly we reach
the result in a roundabout way, in order to illustrate an instance
of —-E, function application. The program reads as follows. On
the left is the program given previously, forming a function of type
(B x A) — (A x B). On the right, from B and A we form the
pair (y, x) of type B x A by x-1. Applying the function to the pair
forms a term of type A X B by —-1.

This program is not in normal form. We may simplify it by ap-
plying the rewrite rules of Figure 7. These rules specify how to

simplify a term when an introduction rule is immediately followed
by the corresponding elimination rule. Each rule shows two deriva-
tions connected by an arrow, indicating that the redex (the term on
the left) may be rewritten, or simplified, to yield the reduct (the
term on the right). Rewrites always take a valid type derivation to
another valid type derivation, ensuring that rewrites preserve types,
a property known as subject reduction or type soundness.

For x, the redex consists of term M of type A and term N
of type B, which combine to yield term (M, N) of type A x B
by x-I, which in turn yields term (M, N)o of type A by x-Eq.
The reduct consists simply of term M of type A, discarding the
unneeded term N of type B. There is a similar rule, not shown, to
simplify an occurrence of x-I followed by x-E;.

For —, the redex consists of a derivation of term N of type B
from variable x of type A, which yields the lambda term Az. N
of type A — B by —-I, and a derivation of term M of type A,
which combine to yield the application (Az. N) M of type B by
—-E. The reduct consists of the term N[M /x] that replaces each
free occurrence of the variable in term N by term M. Further,
replacing each assumption that = has type A in the derivation that
N has type B by the derivation that M has type A gives a derivation
showing that N[M /z] has type B. Since the variable x may appear
zero, once, or many times in the term NV, the term M may be copied
zero, once, or many times in the reduct N[M /z]. For this reason,
the reduct may be larger than the redex, but it will be simpler in
the sense that is has removed a subterm of type A — B. Thus,
discharge of assumptions corresponds to applying a function to its
argument.

Figure 8 demonstrates use of these rules to simplify a program.
The first program contains an instance of —-I followed by —-E,
and is simplified by replacing each of the two occurences of z of
type B X A on the left by a copy of the term (y, x) of type B x A
on the right. The result is the second program, which as a result
of the replacement now contains an instance of x-I followed by
x-E1, and another instance of x-I followed by x-Eq. Simplifying
each of these yields the third proof, which derives the term (z, y) of
type A x B, and can be simplified no further. Hence, simplification
of proofs corresponds exactly to evaluation of programs, in this
instance demonstrating that applying the function to the pair indeed
swaps its elements.

9. Conclusion

Proposition as Types informs our view of the universality of certain
programming languages.

The Pioneer spaceship contains a plaque designed to communi-
cate with aliens, if any should ever intercept it (see Figure 9). They
may find some parts of it easier to interpret than others. A radial di-
agram shows the distance of fourteen pulsars and the center of the
galaxy from Sol. Aliens are likely to determine that the length of
each line is proportional to the distances to each body. Another di-
agram shows humans in front of a silhoutte of Pioneer. If Star Trek
gives an accurate conception of alien species, they may respond
“They look just like us, except they lack pubic hair”” However, if
the aliens’s perceptual system differs greatly from our own, they
may be unable to decipher these squiggles.

What would happen if we tried to communicate with aliens by
transmitting a computer program? In the movie Independence Day,
the heroes destroy the invading alien mother ship by infecting it
with a computer virus. Close inspection of the transmitted program
shows it contains curly braces—it is written in a dialect of C! It is
unlikely that alien species would program in C, and doubtful that
aliens could decipher a program written in C if presented with one.

What about lambda calculus? Propositions as Types tell us that
lambda calculus is isomorphic to natural deduction. It seems diffi-
cult to conceive of alien beings that do not know the fundamentals

Figure 9. Plaque on Pioneer Spaceship

of logic, and we might expect the problem of deciphering a pro-
gram written in lambda calculus to be closer to the problem of un-
derstanding the radial diagram of pulsars than that of understanding
the image of a man and a woman on the Pioneer plaque.

We might be tempted to conclude that lambda calculus is uni-
versal, but first let’s ponder the suitability of the word ‘universal’.
These days the multiple worlds interpretation of quantum physics
is widely accepted. Scientists imagine that in different universes
one might encounter different fundamental constants, such as the
strength of gravity or the Planck constant. Such constants appear
finely-tuned to values conducive to the formation of stars, and
hence life. Some explain this by saying we must be in a universe
where the constants are so tuned, else there could be no living
things to observe the result [12]. But easy as it may be to imag-
ine a universe where gravity differs, it is difficult to conceive of a
universe where fundamental rules of logic fail to apply. Natural de-
duction, and hence lambda calculus, should not only be known by
aliens throughout our universe, but also throughout others. So we
may conclude it would be a mistake to characterise lambda calculus
as a universal language, because calling it universal is too limiting.

Acknowledgements. Thanks to John Hughes, Simon Peyton-
Jones, and Benjamin Pierce for comments on an earlier draft, to
Moshe Vardi for kibitzing, and to Daniel Marsden and Gabor Greif
for spotting typos.

References

[1] S. Abramsky. Computational interpretations of linear logic.
Theoretical Computer Science, 111(1&2):3-57, 1993.

[2] J. L. Bates and R. L. Constable. Proofs as programs. Transactions on
Programming Languages and Systems, 7(1):113-136, Jan. 1985.

[3] P. N. Benton, G. M. Bierman, and V. de Paiva. Computational types
from a logical perspective. Journal of Functional Programming,
8(2):177-193, 1998.

[4] L. Caires and F. Pfenning. Session types as intuitionistic linear
propositions. In CONCUR, pages 222-236, 2010.

[5] L. Carroll. What the Tortoise said to Achilles. Mind, 4(14):278-280,
April 1895.

[6] A. Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 33(2):346-366, 1932.

[7]1 A. Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58:345-363, 1938. Presented

to the American Mathematical Society, 19 April 1935; abstract in
Bulletin of the American Mathematical Society, 41, May 1935.

[8] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5(2):56—68, June 1940.

[9] T. Coquand and G. P. Huet. The calculus of constructions.
Information and Computation, 76(2/3):95-120, 1988.

[10] P-L. Curien and H. Herbelin. The duality of computation. In
International Conference on Functional Programming (ICFP), pages
233-243, 2000.

[11] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, 1958.

[12] P. Davies. The Goldilocks Engima: Why Is the Universe Just Right
for Life? Houghton Mifflin Harcourt, 2008.

[13] N. G. de Bruijn. The mathematical language Automath, its usage, and
some of its extensions. In Symposium on Automatic Demonstration,
volume 125 of Lecture Notes in Computer Science, pages 29-61.
Springer-Verlag, 1968.

[14] R. Gandy. The confluence of ideas in 1936. In R. Herken, editor, The
Universal Turing Machine: a Half-Century Survey, pages 51-102.
Springer, 1995.

[15] S. Gay. Quantum programming languages: survey and bibliography.
Mathematical Structures in Computer Science, 16(4):581-600, 2006.

[16] G. Gentzen. Untersuchen iiber das logicsche SchlieBen. Mathematis-
che Zeitschrift, 39:176-210, 405431, 1935. Reprinted in [36].

[17] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

[18] J.-Y. Girard. Interprétation functionelle et élimination des coupures
dans Iarithmétique d’ordre supérieure. PhD thesis, Université Paris
VII, 1989.

[19] K. Godel. Uber formal unterscheidbare Sitze der Principia
Mathematica und verwandter Systeme 1. Monatshefte fiir Mathematik
und Physik, 38:173-198, 1931. Reprinted in [38].

[20] G. Gonthier. Formal proof-the four-color theorem. Notices of the
AMS, 55(11):1382-1393, 2008.

[21] T. Griffin. A formulae-as-types notion of control. In Principles of
Programming Languages (POPL), pages 47-58. ACM, Jan. 1990.

[22] R. Hindley. The principal type scheme of an object in combinatory
logic. Transactions of the American Mathematical Society, 146:29—
60, Dec. 1969.

[23] K. Honda. Types for dyadic interaction. In CONCUR, pages 509-523,
1993.

[24] W. A. Howard. The formulae-as-types notion of construction. In 7o
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism, pages 479—491. 1980. The original version was circulated
privately in 1969.

[25] S. Kleene. Origins of recursive function theory. Annals of the History
of Computing, 3(1):52-67, 1981.

[26] S. C. Kleene. General recursive functions of natural numbers
(abstract). Bulletin of the American Mathematical Society, July
1935.

[27] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107-115, 2009.

[28] P. Martin-Lof. Intuitionistic type theory. Bibliopolis Naples, Italy,
1984.

[29] R. Milner. A theory of type polymorphism in programming. J.
Comput. Syst. Sci., 17(3):348-375, 1978.

[30] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type.
Transactions on Programming Languages and Systems, 10(3):470—
502, July 1988.

[31] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55-92, 1991.

[32] C. Murthy. An evaluation semantics for classical proofs. In Logic in

Computer Science (LICS), pages 96—-107, 1991.

[33] M. Parigot. Ap-calculus: an algorithmic interpretation of classical
natural deduction. In Logic programming and automated reasoning,
volume 624 of Lecture Notes in Computer Science, pages 190-201.
Springer-Verlag, 1992.

[34] J. C. Reynolds. Towards a theory of type structure. In Symposium
on Programming, volume 19 of Lecture Notes in Computer Science,
pages 408-423, 1974.

[35] A. E. Shell-Gellasch. Reflections of my advisor: Stories of
mathematics and mathematicians. The Mathematical Intelligencer,
25(1):35-41, 2003.

[36] M. E. Szabo, editor. The collected papers of Gerhard Gentzen. North
Holland, 1969.

[37] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical
Society, May 1936.

[38] J. van Heijenoort. From Frege to Gddel: a sourcebook in mathemati-
cal logic, 1879-1931. Harvard University Press, 1967.

[39] P. Wadler. A taste of linear logic. In Mathematical Foundations of
Computer Science (MFCS), volume 711 of LNCS, pages 185-210.
Springer-Verlag, 1993.

[40] P. Wadler. Call-by-value is dual to call-by-name. In International
Conference on Functional Programming (ICFP), pages 189-201.
ACM, 2003.

[41] P. Wadler. Propositions as sessions. In International Conference on
Functional Programming (ICFP), pages 273-286. ACM, 2012.

[42] A.N. Whitehead and B. Russell. Principia mathematica. University
Press, 1912.

