
Detecting Undetectable Metamorphic Viruses

Sujandharan Venkatachalam1 and Mark Stamp1

1Department of Computer Science, San Jose State University, San Jose, California, USA

Abstract— Signature-based detection provides a relatively
simple and efficient method for detecting known viruses. At
present, most antivirus systems rely primarily on signature
detection.

Metamorphic viruses are potentially one of the most
difficult types of viruses to detect. Such viruses change
their internal structure, which provides an effective means
of avoiding signature detection. Previous work has shown
that a specific and straightforward metamorphic engine can
generate viruses for which reliable detection using “static
analysis” is NP-complete. In this paper, we implement this
metamorphic engine and show that, as expected, popular
antivirus scanners fail to detect the resulting viruses. Finally,
we analyze these same viruses using a previously developed
detection approach based on hidden Markov models (HMM).
This HMM-based detector, which by most definitions would
be considered a static approach, easily detects the viruses.

Keywords: malware, metamorphic, static analysis, hidden
Markov models

1. Introduction
Since the advent of malware, virus creation techniques

and detection methodologies have evolved in an ongoing
“arms race” [3]. Virus writers want their handiwork to evade
detection and since signature detection is the most popular,
considerable effort has gone towards hiding or obfuscating
signatures.

Metamorphic viruses rely on code morphing to prevent
signature detection [12]. While metamorphism can effec-
tively obfuscate signatures, the paper [16] shows that meta-
morphic viruses produced by the hacker community are gen-
erally not very effective, and of those tested, even the most
highly metamorphic are detectable using machine learning
techniquesÑspecifically, hidden Markov models (HMMs).

The authors of [4] claim to have obtained the following
intriguing result:

In particular, we prove that reliable static detection
of a particular category of metamorphic viruses
is an NP-complete problem. Then we empirically
illustrate our result by constructing a practical
obfuscator which could be used by metamorphic
viruses in the future to evade detection.

Note that the authors of [4] appear to have the usual
concept of “static analysis” in mind, as indicated by the
following quote:

Here, static analysis is conceived as a process
whose goal is to extract the semantics of a given
program without any help of code execution.

It is well known that, in theory, metamorphic virus writers
have an insurmountable advantage [6], [10], [17]. However,
it is a curious fact that relatively few metamorphics have
appeared in the wild and, furthermore, very few of these
provide strong metamorphism and, in any case, none has
proven particularly difficult to deal with in practice. This
suggests that there are many practical difficulties for virus
writers to overcome if they want to take advantage of
metamorphism. When viewed in this light, it might seem
that the most impressive result in [4] is its claim to provide a
simple and practical design for a metamorphic generator that
yields viruses that cannot be reliably detected using “static
analysis.”

In this paper, we have implemented a stand-alone meta-
morphic generator that satisfies the conditions in [4] and
we have applied it to selected viruses. We show that, as
expected, the resulting morphed viruses are not detected
using popular signature-based antivirus software. However,
we also show that these metamorphic viruses are, in fact,
easily detected using the machine learning technique de-
veloped in [16]. Note that the detection method in [16]
would generally be considered a static approach, since it only
relies on extracted opcode sequences—no code execution or
emulation is used. Indeed, this would seem to fit the informal
description of static analysis given in [4], as quoted above.

The work presented in this paper demonstrates that
metamorphic viruses generated following [4] would not
be particularly difficult to detect in practice, even if we
restrict ourselves to static analysis, as the term is generally
understood. The loophole here is that the formal definition of
“static analysis” in [4] is extremely narrow—much narrower
than suggested by the informal discussion in the paper itself.

The organization of this paper is as follows. In Section 2
we briefly discuss the evolution of metamorphic viruses.
Then in Section 3 we consider elementary code obfuscation
techniques used in metamorphic generators, and in Section 4
we briefly discuss the use of HMMs for metamorphic de-
tection. In Section 5 we provide details of the metamorphic
generator that we have developed—a generator that satisfies
the conditions given in the paper [4]. Section 6 summarizes
our experimental results. Finally, Section 7 concludes the
paper.



2. Evolution of Metamorphic Viruses
Early on in the Titanic struggle between the forces of

good and evil (code, that is), signatures became the pre-
ferred means of detecting malware. Predictably, virus writers
reacted by developing new techniques designed to evade
signature detection. Here, we briefly outline the evolution of
virus development and the parallel history of virus detection.

As the name indicates, encrypted viruses try to bypass
virus detection by self-encryption. The code encryption
implemented in such viruses effectively hides the signature
of the underlying virus. However, the virus body must be
decrypted before it can execute, and the decryption code is
susceptible to signature scanning [3].

Like encrypted viruses, polymorphics try to bypass detec-
tion by self-encryption. However, unlike encrypted viruses,
these viruses mutate the decryptor code, making scanning
much more challenging [12]. Figure 1 illustrates different
variants of a polymorphic virus. Note that the decrypted
body is the same in each case.

Fig. 1: Polymorphic viruses [12]

Polymorphic viruses are often detected using emulation—
if the emulated code is actually a virus, it will eventually
decrypt itself, at which point standard signature scanning
can be applied [3].

Metamorphic viruses modify their entire code in such
a way that each copy is functionally the same, but struc-
turally different [3]. If the copies are sufficiently different,
no common signature will be present. Figure 2 illustrates
different generations of a metamorphic virus. Note that the
code structure differs in each case, yet the viral copies all
have the same function.

It is intuitively clear that well designed metamorphic code
cannot be effectively detected via signature-based methods—
a fact that is made rigorous in [4]. However, it has previously

Fig. 2: Metamorphic viruses [12]

been shown that metamorphic viruses produced by the
hacker community can be detected using machine-learning
techniques [16]. Below, we have more to say about the
approach used in [16].

3. Code Obfuscation
Metamorphic viruses use one or more obfuscation tech-

niques to produce structurally different versions of the
same virus, while not altering the function of the code.
The primary goal of the obfuscation is to avoid signature
detection—if the viruses are sufficiently different, no com-
mon signature will exist and, ideally, no fixed signature will
detect any significant percentage of the viruses. Below, we
briefly discuss a few of the most common code morphing
techniques. The code obfuscation techniques implemented
in several hacker-produced metamorphics are summarized
in Table 1.

Table 1: Code obfuscation techniques [4]
Evol Zmist Zperm Regswap MetaPHOR
2000 2001 2000 2000 2001

Substitution X
Permutation X X X

Garbage code X X X
Variable substitution X X X X

Alter control flow X X X

Inserting garbage instructions between useful code blocks
is a simple obfuscation technique used in all of the virus
generators listed in Table 1. Garbage instructions do not alter
the functionality but will tend to increase the size of the
code. Viruses that contain garbage instructions are harder to



detect using signatures since these instructions tend to break
up predetermined signatures.

Instruction reordering is another common metamorphic
technique. In this method, the instructions in the virus
code are shuffled, with the control flow adjusted (via jump
statements, for example) to make the code execute in the
appropriate order. Thus, the instructions are reordered within
the code without altering the actual control flow. This
method can also effectively break signatures. However, if too
many jump instructions are inserted, this could be used as a
heuristic for detecting malware. Figure 3 shows an example
of code reordering. Subroutine reordering is a special case of
code reordering. Reordering subroutines in the virus does not
change the control flow but could make signature detection
more difficult.

Instruction interchange is another useful obfuscation tech-
nique. In this method, instructions are replaced with equiva-
lent instructions. Then metamorphic versions of a given base
virus will have different patterns of opcodes that perform the
same function.

Fig. 3: Code reordering [13]

Register swapping, where different registers are used for
equivalent operations, is a simple special case of inter-
changing instructions. Again, the idea is to change the
opcode pattern and thereby bypass signature detection. This
technique was the primary means of obfuscation used in one
of the first metamorphic viruses, W95/Regswap. Register
swapping is a particularly weak form of metamorphism,
since it is subject to signature detection using wildcards [13].

Of the hacker-produced metamorphic generators tested
in [16], the most advanced is the Next Generation Virus
Construction Kit (NGVCK) [14]. Table 2 provides examples
of code from NGVCK viruses.

4. HMMs for Virus Detection
Machine learning techniques have been successfully ap-

plied to the problem of detecting metamorphic viruses [16].
These techniques extract statistical information from training
data and the resulting model can then be used to test any
input file for similarity to the training data.

A hidden Markov model (HMM) is a state machine that
attempts to model a Markov process. The Markov process
is hidden, in the sense that it cannot be directly observed.
The actual observations are probabilistically related to the
hidden process. In the context of metamorphic viruses, an
HMM is trained to detect a specific metamorphic family. The

training data consists of a sequence of opcodes derived from
viruses, all of which were produced by a single metamorphic
engine. Once the model is trained, it can be used to score
an unknown file, using an extracted opcode sequence, to
determine its similarity to the metamorphic family. For more
details on the use of HMMs for metamorphic virus detection,
see [16]; for related work involving profile HMMs see [2];
for additional background on HMMs in general, see [11]
or [9].

5. Metamorphic Generator
We have implemented a metamorphic virus generator that

satisfies the conditions given in [4]. Recall that the paper [4]
provides a rigorous proof that viruses generated using their
approach cannot be efficiently detected using static analysis
(as they define the term). Next, we briefly discuss the
details of our metamorphic generator, which implements the
practical generator given in [4].

A seed virus is input to our metamorphic generator. The
seed virus assembly code is split into small blocks, which
are then reordered using conditional jump instructions and
labels. The number of instructions in each block is variable
and for the experiments described here is set to an average
value of six. The virus code is split into blocks, respecting
the conditions given in [4], namely, code blocks cannot end
with a label, jump, or a NOP instruction. A precondition on
the seed virus is that the entire code must appear in the code
section of the assembly file, which implies that viruses that
hide code in their data section cannot be used.

After splitting the code into blocks, the blocks are ran-
domly shuffled. Then labels are inserted and conditional
jump instructions are used so as to maintain the original
control flow. Optionally, garbage code insertion is applied for
additional code obfuscation. In summary, our metamorphic
engine performs the following steps:

1) Input a base virus file
2) Blocks are identified subject to the following condi-

tions:
a) The first and last block of the code are fixed
b) The last instruction of a block is not a label,

jump, or NOP
3) Blocks are randomly permuted and labels and condi-

tional jumps are inserted
4) Garbage instructions are randomly inserted according

to a threshold value
5) Write the morphed output file

The garbage insertion is optional and the amount of
garbage inserted is adjustable. The garbage instructions
include various copy instructions and opaque predicates,
with the garbage inserted between pairs of code blocks, after
the block shuffling is completed. Our generator has been
successfully tested with several virus families. A typical test



Table 2: Code obfuscation in NGVCK
Base Version Morphed Version 1 Morphed Version 2
call delta call delta add ecx, 0031751B ; junk
delta: pop ebp delta: sub dword ptr[esp], offset delta call delta
sub ebp, offset delta pop eax delta: sub dword ptr[esp], offset delta

mov ebp, eax sub ebx,00000909 ; junk
mov edx, [esp]
xchg ecx, eax ; junk
add esp, 00000004
and ecx, 00005E44 ; junk
xchg edx, ebp

HEX equivalent: HEX equivalent: HEX equivalent:
E8000000005D81ED05104000 E800000000812C2405104000588BE8 *812C240B104000*8B1424*83C404*87EA

case is discussed in the next section; for more examples,
see [15].

Next, we applied an HMM virus detection technique to
our metamorphic viruses. Here, we mimic the training and
scoring methodology used in [16]. To train an HMM model,
200 distinct metamorphic copies of a given seed virus were
created using our metamorphic engine. The metamorphic
engine generates ASM files, each of which yields executable
code having the same functionality as the seed virus. These
200 files were assembled using the Borland Turbo TASM 5.0
assembler and linked using the Borland Turbo TLINK 7.1
linker to produce EXE files. The EXE files thus obtained
were then disassembled using IDA Pro [7] and opcode
sequences were extracted. The steps performed in preparing
the test data are summarized in Figure 4.

Fig. 4: Test data preparation

Note that disassembled files obtained from EXE files were
used for training and testing. Consequently, our training and
testing is realistic in the sense that only EXE files would be
available to antivirus software.

We performed 5-fold cross validation, that is, we split the
200 metamorphic virus files into 5 subsets of 40 viruses each.
From among these five subsets, four were used for training
and the remaining one was reserved to test the trained HMM
model. This process was repeated five times, once for each
distinct 4-subset collection of morphed files. In each case,
40 metamorphic files were scored along with 40 “normal”
files. For the normal files, we used Cygwin utility files, since
these files were also used as the representative normal files
in [16] and [8].

6. Experimental Results
For the test case considered in this paper, the Next

Generation Virus Creation Kit (NGVCK) was used to create
the seed viruses. Other viruses were considered, with equally

strong results obtained in each case; see [15] for more details
on these other experiments.

In each case, popular antivirus scanners could detect the
seed virus, but not the viruses produced by our metamorphic
generator. That is, our metamorphic generator is able to suc-
cessfully bypass signature detection, as expected. However,
regardless of the seed virus used, the HMM engine was able
to distinguish the morphed viruses from normal code, as
discussed below.

Virus creation, analysis and testing experiments were
conducted using the platform and tools listed in Table 3.
Again, the procedure followed here follows that used in [16].

Table 3: Experimental setup [15]
Platform: Windows XP/VMware

Language: Perl5
Disassemblers: OllyDbg v1.10 and IDA Pro 4.9

Assembler: Borland Turbo Assembler 5.0
Linker: Borland Turbo Linker 7.1

Virus generators: MPCGEN (Phalcon/Skism Mass Code Generator)
G2 (Generation 2 Virus Generator)
VCL32 (Virus Creation Lab for Win32)
NGVCK (Next Generation Virus Creation Kit)

Virus scammers: Avast Home Edition 4.8
McAfee Antivirus 2009

As mentioned above, the seed viruses were detected by
commercial antivirus software. For example, Figure 5 shows
a screenshot of the security alert displayed by McAfee
antivirus when it scanned one of our seed viruses.

Next, we present the results from one typical experiment.
In this example, we used our engine to generate 200 meta-
morphic variants of an NGVCK seed virus. The parameters
were set to generate variants with a threshold of two garbage
instructions. Snippets of code from two of the resulting
metamorphic variants appear in Figure 6.

The metamorphic viruses were then assembled and the
resulting morphed executables scanned using popular an-
tivirus scanners by McAfee and Avast [1]. As expected, these
scanners were not able to identify the morphed executables
as viruses.



Fig. 5: Seed virus scanned with McAfee

Fig. 6: Sample metamorphic code

Using 5-fold cross validation, HMM models were trained
using this set of 200 metamorphic viruses. The number of
distinct observation symbols (i.e., opcodes) ranged from 40
to 42 and the total number of observations ranged from
41,472 to 42,151. The resulting model was then used to
score 40 viruses and 40 normal files. A typical HMM score
graph appears in Figure 7, where the scores are given as
log likelihood per opcode (LLPO). That is, the scores were
computed based on log odds, then normalized on a per
opcode basis. In every case, a threshold could easily be
set that would provide flawless detection, that is, no false
positives or false negatives would occur. In fact, the score
differences are quite large given that the scores are computed
on a per opcode basis.

Figure 8 shows a similar graph as that which appears
in Figure 7, but with 40 additional, non-family viruses
included. Note that some of the non-family viruses score
significantly higher than any of the normal files. However,
we can still set a threshold that results in no false positives
or false negatives. The fact that other viruses have relatively
high scores is not too surprising, and might be considered
beneficial, since we could adjust the threshold and thereby
detect some additional related malware.

Fig. 7: HMM scores

Fig. 8: HMM scores including non-family viruses

7. Conclusions and Future Work
In this paper, we analyzed a metamorphic generator satis-

fying the conditions given in [4]. The paper [4] provides
a rigorous proof that such viruses cannot be efficiently
detected using “static analysis,” according to their definition
of the term. As expected, these metamorphic viruses are
not susceptible to signature detection. However—and per-
haps surprisingly—these viruses are detected via a machine
learning approach. Specifically, we trained HMM models to
detect such viruses. While the work presented here does not
directly contradict [4], it does call into question the utility of
relying on such a narrow definition of “static analysis” since,
by most accounts, our HMM approach would be considered
a static technique.

At this point, a natural question to ask is whether a prac-
tical metamorphic generator can be produced that will evade
both signature detection and our HMM-based detector. The
paper [5] was a first attempt to settle this question while [8]
shows conclusively that a practical metamorphic generator
can evade both signature detection and the HMM based
approach used in this paper. However, it is not yet entirely
clear where, in a practical sense, the ultimate balance of



power lies between metamorphic virus writers and detection.
At first blush, the results in [4] seem to prove that in a very

practical and real sense, metamorphic virus writers have an
insurmountable advantage, at least from the perspective of
static analysis. However, the results in this paper show that
the reality of the situation is considerably more nuanced.

References
[1] Avast Antivirus, http://www.avast.com/
[2] S. Attaluri, S. McGhee and M. Stamp, Profile hidden Markov models

and metamorphic virus detection, Journal in Computer Virology,
vol. 5, no. 2, May 2009, pp. 151–169

[3] J. Aycock, Computer Viruses and Malware, Springer, 2006
[4] J. Borello and L. Me, Code obfuscation techniques for metamorphic

viruses, Journal in Computer Virology, vol. 4, no. 3, August 2008,
pp. 211–220

[5] P. Desai, Towards an undetectable computer virus, MasterÕs project
report, Department of Computer Science, San Jose State University,
2008, http://www.cs.sjsu.edu/faculty/stamp/

students/Desai_Priti.pdf
[6] E. Filiol, Metamorphism, Formal grammars and undecidable code

mutation, World Academy of Science, Engineering and Technology,
vol. 26, 2007

[7] IDA Pro, http://www.hex-rays.com/idapro/
[8] D. Lin and M. Stamp, Hunting for undetectable metamorphic viruses,

to appear in Journal in Computer Virology
[9] L. R. Rabiner, A tutorial on hidden Markov models and selected

applications in speech recognition, Proceedings of the IEEE, vol. 77,
no. 2, 1989

[10] D. Spinellis, Reliable identification of bounded-length viruses is NP-
complete, IEEE Transactions on Information Theory, vol. 49, no. 1,
January 2003, pp. 280–284

[11] M. Stamp, A revealing introduction to hidden Markov models, January
2004, http://www.cs.sjsu.edu/faculty/stamp/RUA/

HMM.pdf
[12] P. Szor and P. Ferrie, Hunting for metamorphic, Symantec Security

Response, http://www.symantec.com/avcenter/
reference/hunting.for.metamorphic.pdf

[13] P. Szor, The Art of Computer Virus Defense and Research, Symantec
Press, 2005

[14] VX Heavens, http://vx.netlux.org/
[15] S. Venkatachalam, Detecting undetectable computer viruses, MasterÕs

project report, Department of Computer Science, San Jose State Uni-
versity, 2010, http://www.cs.sjsu.edu/faculty/stamp/

students/venkatachalam_sujandharan.pdf
[16] W. Wong and M. Stamp, Hunting for metamorphic engines, Journal

in Computer Virology, vol. 2, no. 3, December 2006, pp. 211–229
[17] P. Zbitskiy, Code mutation techniques by means of formal grammars

and automatons, Journal in Computer Virology, vol. 5, no. 3, August
2009, pp. 199–207


