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Abstract

Light transport algorithms generate realistic images by simulating the emission and scatter-
ing of light in an artificial environment. Applicationsinclude lighting design, architecture,
and computer animation, whilerelated engineering disciplinesinclude neutron transport and
radiative heat transfer. The main challenge with these algorithmsis the high complexity of
the geometric, scattering, and illumination models that are typically used. In this disserta-
tion, we develop new Monte Carlo techniques that greatly extend the range of input models
for which light transport simulations are practical. Our contributionsinclude new theoreti-
cal models, statistical methods, and rendering algorithms.

We start by developing arigorous theoretical basis for bidirectional light transport al-
gorithms (those that combine direct and adjoint techniques). First, we propose alinear op-
erator formulation that does not depend on any assumptions about the physical validity of
the input scene. We show how to obtain mathematically correct results using a variety of
bidirectional techniques. Next we derive a different formulation, such that for any physi-
cally valid input scene, the transport operators are symmetric. This symmetry isimportant
for both theory and implementations, and is based on a new reciprocity condition that we
derivefor transmissive materials. Finally, we show how light transport can be formulated as
anintegral over aspace of paths. Thisframework allowsnew sampling and integration tech-
niquesto be applied, such as the Metropolis sampling algorithm. We also use this model to
investigate the limitations of unbiased Monte Carlo methods, and to show that certain kinds
of paths cannot be sampled.

Our gdtatistical contributions include a new technique called multiple importance sam-
pling, which can greatly increase the robustness of Monte Carlo integration. It uses more
than one sampling technique to evaluate an integral, and then combines these samplesin a
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way that is provably close to optimal. Thisleads to estimators that have low variance for
a broad class of integrands. We also describe a new variance reduction technique called
efficiency-optimized Russian roulette.

Finally, we link these ideas together to obtain new Monte Carlo light transport algo-
rithms. Bidirectional path tracing uses a family of different path sampling techniques that
generate some path vertices starting from a light source, and some starting from a sensor.
We show that when these techniques are combined using multiple importance sampling, a
largerange of difficult lighting effects can be handled efficiently. The algorithmisunbiased,
handles arbitrary geometry and materials, and is relatively simple to implement.

The second algorithm we describe is Metropolis light transport, inspired by the Me-
tropolis sampling method from computational physics. Paths are generated by following a
random walk through path space, such that the probability density of visiting each path is
proportional to the contribution it makesto the ideal image. The resulting algorithm is un-
biased, uses little storage, handles arbitrary geometry and materials, and can be orders of
magnitude more efficient than previous unbiased approaches. It performs especialy well
on problems that are usually considered difficult, e.g. those involving bright indirect light,
small geometric holes, or glossy surfaces. To our knowledge, thisisthe first application of
the Metropolis method to transport problems of any kind.
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Chapter 1
| ntroduction

The goal of this dissertation is to develop robust, general-purpose algorithms for solving
light transport problems. To meet our goal of generality, we concentrate on Monte Carlo
methods. Currently, only Monte Carlo approaches can handle the wide range of surface ge-
ometries, reflection models, and lighting effectsthat occur inreal environments. By arobust
algorithm, we mean one that produces an acceptably accurate output for as wide arange of
inputs as possible. In this dissertation, we make substantial progress toward these goals,
by developing new theoretical models, statistical methods, and rendering algorithms. We
aso investigate what cannot be achieved — the inherent limitations of certain approaches
to light transport.

Despiteagreat deal of research, current light transport methodsarefairly limitedintheir
capabilities. They are optimized for avery restricted class of input models, and typically re-
quire a huge increase in resources to handle other types of inputs. For example, they often
have problems on scenes with strong indirect lighting, or scenes where most surfaces are
non-diffuse. These are not pathol ogical examples by any means, and in fact thereis consid-
erable interest in solving these cases well (e.g. in architectural applications).

For light transport algorithmsto be widely used, it isimportant to find techniques that
arelessfragile. Rendering algorithms must run within acceptabl e time bounds on real mod-
els, yielding images that are physically plausible and visually pleasing. They must support
complex geometry, materials, and illumination, since these are all important components of
real environments.



2 CHAPTER 1. INTRODUCTION

In our research, we seek to devel op algorithmswith reasonabl e, predictabl e performance
over the widest possible range of real models. Because we have chosen to focus on Monte
Carlo approaches, which support complex geometry and materials with relative ease, our
maininterest isto develop algorithmsthat can handle complex illumination efficiently. This
includes features such as glossy surfaces, concentrated indirect lighting, small geometric
objects, and caustics, all of which cause problems for awide variety of current rendering
algorithms. Our goal isto find general-purpose algorithms that handle these difficult cases
well, without special treatment; in other words, light transport algorithmsthat are robust.

In the following sections, we start with an overview of the light transport problem and
why it isimportant. We also discuss our assumptions about the transport model (discussed
in more detail in Section 1.5). After thisbrief introduction, we summarize the original con-
tributions of this dissertation, and outline its organization.

Intherest of the chapter, we step back to see how theseresultsfitinto alarger context. In
Section 1.4 we give ahigh-level view of the varioustypes of light transport algorithmsused
in graphics, and explain the advantages of unbiased Monte Carlo algorithms. 1n Section 1.5,
we consider the various phenomenathat occur with real light (such as diffraction), and the
reasons why these phenomena are easy or difficult to ssimulate. Finally, in Section 1.6 we
look at problems from physics and engineering that are closely related to light transport.
The viewpoints in these other fields are often quite different from one another, which has
led to avariety of different solution techniques for problemsthat are actually quite similar.

1.1 Thelight transport problem

In computer graphics, the ssmulation of light transport is a tool that helps usto create con-
vincing images of an artificial world. We are given a description of the environment, in-
cluding the geometry and scattering properties of the surfaces. We are aso given a descrip-
tion of the light sources, and the viewpoints from which images should be generated. Light
transport algorithms then simulate the physics of this world, in order to generate redlistic,
accurate images.
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1.1.1 Why light transport isimportant

One of the main goals of light transport algorithms is to increase human efficiency in the
modeling of realistic virtual environments. In computer animations, for example, a great
deal of effort is currently spent on designing realistic lighting. The main problem isthat the
algorithms used for production work (such as scan-line rendering and ray tracing) do not
have the ability to simulate indirect lighting. Thus indirect illumination does not happen
automatically when lights are placed: instead, it must be imitated by carefully placing ad-
ditional lights. If we could find robust light transport algorithms, then the indirect lighting
could be computed automatically, which would make the lighting task far easier.

Another important application of light transport is predictive modeling, where we wish
to predict the appearance of objects before they are built. This idea has obvious uses in
architecture and product design. For these applications, it isimportant that the results be
objectively accurate, as well as visually pleasing.

Finally, better techniques for light transport in graphics may lead to better methods in
physics and engineering, because light transport has a structure that is similar to radiation
and particle transport problems. Section 1.6 discusses these possibilitiesin detail.

If robust light transport algorithms can be found, it seems inevitable that they will be
widely used. This would continue a trend for computer software in general, whereby al-
gorithmsthat are ssmpler or more powerful are eventually favored over those designed for
efficiency in special cases. We feel that the benefits of accurate light transport simulations
will soon outweigh their moderate computational costs.

1.1.2 Assumptions about the transport model

Light transport algorithms do not simulate the behavior of light in every detail, since this
is not necessary for most applications.! From a graphics standpoint, physical opticsis best
thought of as a menu of options. For each application, we decide which optical effects are
important, and choose an algorithm that can simulate them.

1strictly speaking, it is not even possible, since the laws of physics are not completely known. However,
the theory of light and its interaction with matter is one of the best that physics has to offer, and can predict
virtually every observed phenomenon with great accuracy [Feynman 1985]. For the purposes of computer
graphics, we can assume that these laws are completely understood.
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In our work, we generally assume ageometric opticsmodel. Light isemitted, scattered,
and absorbed only at surfaces, and travelsalong straight lines between these surfaces. Thus,
we do not allow participating media such as clouds or smoke, or mediawith a continuously
varying index of refraction (e.g. heated air). We also ignore most properties of light that
depend on awave or quantum model for their explanation (e.g. diffraction or fluorescence).
In particular, we ignore the possibility of interference between light beams, i.e. light is as-
sumed to be perfectly incoherent.

In normal environments, the effects we haveignored are not very significant. Geometric
opticsisadequate to model almost everything we see around us, to ahigh degree of accuracy.
For thisreason, virtually all light transport algorithmsin graphics are based on assumptions
similar to those above. Later in this chapter, we will investigate some of the other choices
that could have been made (see Sections 1.5 and 1.6).

1.2 Summary of original contributions

Our contributionsfall into three areas: new theoretical models, new statistical methods, and
new rendering algorithms. We give an overview of each of these areas, and then discuss our
resultsin detail.

The first part of this dissertation investigates the theory of bidirectional light transport
algorithms. We have developed light transport modelsthat are simple, mathematically pre-
cise, and reveal the structure of the light transport problem in useful ways. In particular we
have studied the rel ationshi ps between different bidirectional solution techniques(e.g. those
based on light and importance) under different assumptions about the physical validity of
the scene model. These new light transport formulations have led directly to new insights
and rendering techniques.

Statistical methods are another vital component of Monte Carlo algorithms. In the pro-
cess of investigating light transport algorithms, we have developed new general-purpose
methods for variance reduction. We isolated these techniques and presented them in an ab-
stract setting, since we believe that they will be useful in other contexts.
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Finally, our main contribution has been the development of robust light transport algo-
rithms. The principa advantage of these algorithmsis their ability to handle complex illu-
mination efficiently. Because of their Monte Carlo nature, they also support complex scat-
tering models and surface geometries. The combination of these properties allows awide
variety of realistic scenesto be rendered in a reasonable, predictable amount of time, even
when there is difficult indirect illumination.

1.2.1 Bidirectional light transport theory in computer graphics

A general linear operator formulation. We present a ssmple light transport model based
on linear operators, extending the work of Arvo [1995]. Thisnew formulation unifieslight
transport, importance transport, and particletracing, and concisely summarizestherel ation-
shipsamong them. We do not make any assumptionsabout the physical validity of the scene
model, which gives our framework aricher structure than previous approaches.

New examples of non-symmetric scattering. Certain materials must be treated specially
inlight transport al gorithms, namely those whose bidirectional scattering distribution func-
tion (BSDF) isnot symmetric. We discusstwo common examples of thisthat have not been
previously recognized. Specifically, we show that non-symmetric scattering occurs when-
ever light isrefracted, and also whenever shading normals are used. We derive the transfor-
mations required to handle these situations correctly in bidirectional algorithms. We also
show that if these new transformations are not used, there can be substantial errors and im-
age artifacts.

A reciprocity principlefor general materials. It iswell known that the reflection of light
from physically valid materials is described by a symmetric BSDF. We derive a general-
ization of this condition that holds for arbitrary materias (i.e. for transmission as well as
reflection). We establish this new reciprocity principle using the laws of thermodynamics,
in particular Kirchhoff’slaws and the principle of detailed balance. We al so discussthe his-
torical originsof reciprocity principles, the subtletiesinvolved in their justification, and the
conditions under which they are valid.
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A self-adjoint operator formulation. Taking advantage of this new reciprocity principle,
we propose thefirst light transport formulation in which the linear operators are self-adjoint
(symmetric) for all physically valid scenes. We show that this simplifies both the theory and
implementation of bidirectional light transport algorithms.

Thepathintegral formulation. Usually thelight transport problemisexpressed intermsof
integral equationsor linear operators. Instead, we show how to formulateit asan integration
problem over aspace of paths. Thisviewpoint allows new solution techniquesto be applied,
such as multiple importance sampling, or the Metropolis sampling algorithm.

Theinherent limitations of unbiased M onte Carlo methods. We show that certain kinds
of transport paths cannot be generated by standard sampling techniques. Thisimplies that
the images generated by unbiased Monte Carlo agorithms (such as path tracing) can be
missing certain lighting effects. We analyze the conditions under which this occurs, and
propose methods for making these path sampling algorithms complete.

1.2.2 General-purpose Monte Carlo techniques

Multiple importance sampling. We describe a new technique for constructing estimators
that are robust, i.e. whose variance is low for a broad class of integrands. It is based on
the idea of using more than one sampling technique to evaluate an integral, where each
technique is designed to sample some feature of the integrand that might otherwise lead to
high variance. Our key results are on how to combine the samples: we present combination
strategiesthat are provably close to optimal, compared to any other unbiased method. This
leadsto low-variance estimatorsthat are useful in avariety of problemsin graphics, includ-
ing distribution ray tracing, multi-pass radiosity algorithms, and bidirectional path tracing.

Efficiency-optimized Russian roulette. Russian roul etteisatechniquethat reducesthe av-
erage cost of sampling, but increases variance. We propose a new optimization that trades
off one property against the other, in order to maximize the efficiency of the resulting es-
timator. Thisis particularly useful in the context of visibility tests, where often there are
many samples that only make a small contribution.
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1.2.3 Robust light transport algorithms

Bidirectional path tracing. We propose a new light transport algorithm based on the idea
of using afamily of different sampling techniques for paths, and then combining them us-
ing multipleimportance sampling. Each path isgenerated by connecting two independently
generated subpaths, one starting from the light sources and the other starting from the eye.
By varying the lengths of the light and eye subpaths, we obtain a family of different sam-
pling techniques. We show that each technique can efficiently sample different kinds of
paths, and that these paths are responsible for different lighting effects in the final image.
By combining samples from all of these techniques using multiple importance sampling, a
wide range of different lighting effects can be handled efficiently.

We describe the complete set of bidirectional estimators, including theimportant special
cases where the light or eye subpath has at most one vertex. We also discuss extensions for
handling ideal specular surfaces, arbitrary path lengths, and efficient visibility testing.

Metropolislight transport. We propose a new Monte Carlo approach to the light transport
problem, inspired by the Metropolis sampling method in computational physics. To render
an image, we generate a sequence of light transport paths by randomly mutating a single
current path (e.g. amutation might add anew vertex to the path). Each mutation is accepted
or rejected with a carefully chosen probability, to ensure that paths are sampled according
to the contribution they make to the desired final image. In thisway we construct arandom
walk over the space of transport paths, such that an unbiased image can be formed by simply
recording the locations of these paths on the image plane.

Thisagorithm is unbiased, handles general geometric and scattering models, useslittle
storage, and can be orders of magnitude more efficient than previous unbiased approaches.
It performs especially well on problems that are usually considered difficult, e.g. those in-
volving bright indirect light, small geometric holes, or glossy surfaces. Furthermore, it is
competitive with previous unbiased algorithms even on scenes with relatively smpleillu-
mination.

The key advantage of the Metropolis approach isthat the path spaceis explored locally,
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by favoring mutations that make small changesto the current path. This has several conse-
guences. First, the average cost per sampleis small (typically only one or two rays). Sec-
ond, once an important path isfound, the nearby paths are explored as well, thusamortizing
the expense of finding such paths over many samples. Third, the mutation set is easily ex-
tended. By constructing mutations that preserve certain properties of the path (e.g. which
light source is used) while changing others, we can exploit various kinds of coherence in
the scene. It is often possible to handle difficult lighting problems efficiently by designing
a specialized mutation in this way.

To our knowledge, thisis the first application of the Metropolis algorithm to transport
problems of any kind.

1.3 Thesisorganization

Thefirst two chapters consist of introductory and background material. In therest of Chap-
ter 1, we discuss the advantages and disadvantages of various types of light transport al-
gorithms, we examine the range of optical phenomenathat can be smulated by such algo-
rithms, and we compare light transport to similar problemsin other fields. In Chapter 2, we
giveanintroductionto Monte Carlointegration, including asurvey of thevariance reduction
techniques that have proven most useful in computer graphics.

The remainder of the dissertation is divided into two parts. In thefirst part, we describe
new theoretical modelsfor bidirectional light transport algorithms. Chapter 3 developsthe
conceptsof radiometry and givesan introduction to the standard light transport equations. It
also describes a new measure-theoretic basis for defining radiometric quantities. Chapter 4
presents a new light transport model based on linear operators. This formulation does not
make any assumptionsabout the physical validity of thescenemodel. Chapter 5investigates
the situations where this model is necessary, i.e. materials whose scattering properties are
not symmetric. We give both physical and non-physical examplesof such materials, and we
derive the techniques needed to handle these materials correctly in bidirectional algorithms.

In Chapter 6, we investigate how the scattering of light from materials is constrained
by the laws of physics, and we derive a new reciprocity principle for general materials. In
Chapter 7, this principleisused to construct the first light transport framework where light,
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importance, and particles obey the same transport equationsfor any physically valid scene.
Finally, Chapter 8 describes the path integral framework, which forms the basis of our new
light transport algorithms.

The second part of the dissertation is more practical in nature. Chapter 9 describesmul-
tiple importance sampling, ageneral tool for reducing the variance of Monte Carlo integra-
tion. In Chapter 10, we apply thistool to the path integral framework, to obtain the bidirec-
tional path tracing algorithm. Finally, Chapter 11 builds upon the path integral framework
in a different way, by combining it with a well-known sampling technique from computa-
tional physics to obtain the Metropolis light transport algorithm.

1.4 Light transport algorithms

Within the field of computer graphics, many different algorithms have been proposed for
solving the light transport problem. In this dissertation, we have chosen to focus on unbi-
ased, view-dependent, Monte Carlo algorithms. We first mention the various kinds of algo-
rithms that have been proposed, and then discuss the choices we have made.

1.4.1 A brief history

Light transport algorithms can be roughly divided into two groups: Monte Carlo methods,
and finite el ement methods.

Monte Carlo methods have been used for neutron transport problems since the 1950's
[Albert 1956], and have been studied extensively there [ Spanier & Gelbard 1969]. In graph-
ics Monte Carlo methods arose independently, starting with Appel [1968] who computed
images using random particle tracing. Whitted [1980] introduced ray tracing (the recursive
evaluation of surface appearance), and al so suggested theideaof randomly perturbing view-
ing rays. Cook et al. [1984] implemented this idea and extended it to random sampling of
light sources, lenses, and time. Thisled to the first complete, unbiased Monte Carlo trans-
port algorithm as proposed by Kajiya [1986], who recognized that the problem could be
written asan integral equation, and could be evaluated by sampling paths. Since then, many
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refinements to his path tracing technique have been adapted from the particle transport lit-
erature [Arvo & Kirk 1990].

There has also been a great deal of work on biased Monte Carlo algorithms, which are
often more efficient than path tracing. These include theirradiance caching algorithm of
Ward et al. [1988], the density estimation method of [Shirley et al. 1995], and the photon
map approach of [Jensen 1995].

Finite element methods for light transport were originally adapted from the radiative
heat transfer literature. Goral et al. [1984] introduced these methods to the graphics com-
munity, where they are typically known asradiosity algorithms. Many improvements have
been made to the basic radiosity method, including substructuring [ Cohen et al. 1986], pro-
gressiverefinement [Cohen et al. 1988], hierarchical basisfunctions[Hanrahan et al. 1991],
importance-driven refinement [Smits et al. 1992], discontinuity meshing [Lischinski et al.
1992], wavelet methods [Gortler et al. 1993], and clustering [Smits et a. 1994]. Other ex-
tensions include the handling of participating media [Rushmeier & Torrance 1987], and fi-
nite element methods for non-diffuse surfaces [Immel et al. 1986, Sillion et al. 1991, Aup-
perle & Hanrahan 1993, Schroder & Hanrahan 1994].

Methods have aso been proposed that combine features of Monte Carlo and finite el-
ement approaches. Typically, these take the form of multi-pass methods, which combine
radiosity and ray tracing passes in order to handle more general scene models [Wallace
et a. 1987, Sillion & Puech 1989, Chen et a. 1991]. Another approach is Monte Carlo
radiosity, where the solution is represented as a linear combination of basis functions (as
with finite element methods), but where the coefficients are estimated by tracing random
light particles [Shirley 1990b, Pattanaik & Mudur 1993, Pattanaik & Mudur 1995].

1.4.2 Monte Carlo vs. deter ministic approaches

At the most basic level, aMonte Carlo agorithm uses random numbers, while a determin-
istic algorithm does not. However, in practice algorithms often use a mixture of techniques,
and are not easily classified. The distinction is further blurred by issues that have nothing
to do with random numbers per se, but that are often associated with one type of algorithm
or the other. We discuss some of these differences below.
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First, Monte Carlo algorithms are usually more general. Thisisavery important issue,
since the biggest source of error in light transport calculations is often the scene model it-
self. A key advantage of Monte Carlo approaches is that virtually any environment can be
modeled accurately. With deterministic algorithms, on the other hand, there are often severe
restrictions on the allowable geometry (e.g. limited to polygons) and materials (e.g. limited
toideal diffusereflectors).? Withtheserestrictions, it is difficult or impossibleto model real
environments. To use these methods, we must usually resort to solving adifferent problem,
by modifying the scene model. Any claims about the solution “accuracy” under these cir-
cumstances are misleading at best.

Monte Carlo and deterministic approaches are also distinguished by how they access
the scene model. Deterministic algorithms usually work with explicit representations of the
scene and its properties (e.g. lists of polygons). Thus, they are strongly affected by the size
and complexity of the scene representation. On the other hand, Monte Carlo algorithmsare
based on sampling, which means that the scene model is accessed through a small set of
gueries (e.g. what isthefirst surface point intersected by agiven ray?). Thisinterface hides
the scene complexity behind alayer of abstraction, and meansthat rendering timesare only
loosely coupled to the scene representation (for example, the scene complexity may affect
the time required for ray casting). In effect, Monte Carlo algorithms can sample the scene
to determine the information they actually need, while most deterministic algorithms are
designed to examine every detail, whether it is relevant or not.

This is an especially important issue for robustness. ideally, the performance of light
transport algorithms should depend only on what the scene represents, rather than the de-
tails of how it is represented. For example, consider a scene illuminated by a square area
light source. If this light source is replaced with a 10 by 10 grid of point sources, then the
visual results will be nearly identical. However, the performance of many light transport
algorithms will be much worse in the second case. Similarly, suppose that we replace the
same source by a pair of fluorescent bulbs covered by a translucent panel. In this case the

2Even when deterministic algorithms support “ general” surfaces and reflection models, their formis often
quite limited (e.g. polynomial functions of a prespecified maximum degree). This demands an extra approx-
imation step when modeling the scene, and often this approximation is very bad and/or expensive in some
cases (e.g. for glossy surfaces).
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entire scene isilluminated indirectly, which will cause problems for many algorithms. Ide-
ally, rendering algorithmsshould not be sensitiveto cosmetic changes of thissort. Thesame
comments apply to geometric complexity: whether an object is represented as a thousand
polygons or amillion Bezier patches, we would like the rendering timesto be as similar as
possible. Monte Carlo algorithms at least have the potential to deal with these situations
effectively, because they are based on sampling.

The distinction between Monte Carlo and deterministic methods is somewhat blurred
by the fact that Monte Carlo agorithms place very weak restrictions on the “randomness’
of the numbersthey use (e.g. often the only requirement isthat these numbers are uniformly
distributed). It isusually possible to design fixed sampling patterns which satisfy the same
restrictions, and this often leads to better performance (these are called quasi-Monte Carlo
methods[Niederreiter 1992]). The principle of Monte Carlo methodsis not that the samples
are truly random, but that random samples could be used in their place.

1.4.3 View-dependent vs. view-independent algorithms

The purpose of al light transport algorithmsin computer graphicsisto produce images, i.e.
rectangular arrays of color values, suitable for display on a monitor or printing device. A
view-independent algorithm is one that computes an intermediate representation of the so-
lution, from which arbitrary views can be generated very quickly. Any other algorithm is
view-dependent, which can mean one of several things. |mportance-driven methods com-
pute a solution that is defined globally, but is optimized for a particular view. That is, the
solutionisdetailed in the visible portions of the scene, but it may be very coarse elsewhere.
Multi-pass methods compute aglobal solutionthat isvalid for al views, but where thefinal
rendering step to obtain an image is relatively slow (e.g. it requires ray tracing). Finaly,
image space methods compute an image directly from the scene model, without trying to
represent the solution everywhere. This category includes Monte Carlo algorithms such as
path tracing.

The distinction between view-dependent and view-independent methods raises a num-
ber of interesting issues. First, these two types of algorithms generally have different pur-
poses. View-dependent methods are useful for animations, where the scene model can
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change substantially from one frame to the next. They are also the natural choice for ren-
dering still images. On the other hand, view-independent solutionsare useful for interactive
applications, such as architectural walkthroughs or computer games.

One problem with “view-independent” algorithms is that they do not make any guar-
antees about the error for any particular view. Ideally, these algorithms would ensure that
every view hasasmall error. Instead, error isusually measured globally (averaged over the
entire scene), which impliesthat local errors can still be large. Thismeansthat if we render
animage of aregion wherethe view-independent solutionisparticularly bad, the resultscan
be completely wrong.

Another problem with view-independent solutionsisthat they are often more expensive
than view-dependent ones, because they compute a representation of the full solution (es-
sentially solving for al views simultaneously). When non-diffuse materials are alowed,
this can be a great deal of extra work compared to computing a single view, since the ap-
pearance of glossy surfaces changes rapidly with the viewpoint.

Even if only diffuse surfaces are allowed, view-dependent algorithms are often more
efficient, since they only need to compute the portion of the solution that we are interested
in. For example, if the scene model iscomplex, and only asmall part of itisvisible, then it
can be much more efficient to compute an image directly. Image space algorithms have the
greatest potential here, since importance-driven methods do not scale as well to complex
scenes (where it can be very expensive to compute even a coarse solution over the whole
domain).

The difference between view-dependent and view-independent algorithms is actually
not as large asit might appear at first, sinceit is often possible to convert a view-dependent
algorithm into view-independent one. The similarity is that both types of algorithms com-
pute a finite set of linear measurements of the global solution. For a view-dependent algo-
rithm, these measurements are pixel values: each pixel is defined by integrating the light
falling on asmall region of theimage plane. Thisisclosely related to the view-independent
approach, where the solution is usually represented as a linear combination of basis func-
tions. View-dependent algorithms can often be adapted to estimate the coefficients of these
basisfunctions, rather than the pixel values of animage, sincethey are both defined aslinear
measurements.
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1.4.4 Unbiased vs. consistent Monte Carlo algorithms

A Monte Carlo estimator computes avalue Fiy (X, ..., Xy) that is supposed to approxi-
mate some unknown quantity Q. Typically, ) isaparameter of aknown density function p,
and the X; are random samplesfrom p. The quantity Fy — () iscalled theerror, and its ex-
pected value 3[Fy] = E[Fx — Q] iscaled thebias. The estimator isunbiasedif 3[Fy] = 0
for all samplesizes N, whileitisconsistent if theerror Fy — () goesto zero with probability
one as N approaches infinity [Kalos & Whitlock 1986].

Intuitively, an unbiased estimator computes the correct answer, on average. A biased
estimator computes the wrong answer, on average. However, if a biased estimator is also
consistent, then the average error can be made arbitrarily small by increasing the sample
size.

We argue that unbiased estimators are essential in order for light transport calculations
to berobust. Thisisanimportant point, since many agorithmsused in graphics are merely
consistent.

The basic reason for preferring unbiased algorithms is that they make it far easier to
estimate the error in a solution. To have any confidence in the computed results, we must
have some estimate of this error. For unbiased algorithms, this simply involves computing
the sample variance, since any error is guaranteed to show up as random variation among
the samples. For algorithmswhich are merely consistent, however, we must also bound the
bias. In genera thisis very difficult to do; we cannot estimate bias by simply drawing a
few more samples. Bias leads to results that are not noisy, but are nevertheless incorrect.
In graphics algorithms, thiserror is often noticeable visually, in the form of discontinuities,
excessive blurring, or objectionable surface shading.

Unbiased algorithms are often used to generate reference images, against which other
rendering algorithms can be compared. Because unbiased methods make strong guaran-
tees about the kinds of errors that can occur, they are useful for detecting and measuring
the artifacts introduced by approximations.® For scenes of realistic complexity, unbiased

3Improvements in unbiased algorithms may also lead to better approximation techniques. (Similarly,
[Arvo 1995] has pointed out that better analytic methods can lead to better Monte Carlo methods.) Our view-
pointisthat one should start with an unbiased algorithm, and adopt approximationsonly wherethey areclearly
necessary (and their effects are well-understood).
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algorithms are the only practical way to generate images that we can confidently say are
correct.

Other things being equal, it is clear that we should prefer an unbiased algorithm. The
conventional wisdom in graphicsisthat unbiased methods are “too expensive’, and that an
acceptableimage can be achieved in lesstime by making approximations. However, thereis
little research to support thisclaim. Whilethere has been agreat deal of work onlight trans-
port algorithmsin graphics, very little of this hasbeen directed toward unbiased algorithms.
In our view, considerably more research is necessary before we can judge their capabilities.
One of the goals of this dissertation isto explore what can and cannot be achieved by unbi-
ased methods, to help resolve these questions.

1.5 Modelsof light and their implicationsfor graphics

Light transport can be studied at many levels of abstraction, ranging from two-dimensional
“flatland radiosity” to quantum simulations. It isuseful to have avariety of these mathemat-
ical models at hand, so that we can select the simplest model that is adequate for each task.
Aswe will see, some optical phenomena have profound implicationsfor algorithm design,
while others can be added quite easily. It is this choice about which effects to simulate that
distinguishes different classes of rendering algorithms, and that separates light transport in
graphics from similar problemsin other fields.

In the following sections, we summarize the important optical effects that occur in the
real world, and discusstheir implicationsfor light transport algorithms. Optical phenomena
are grouped according to the least-complicated optical theory that can explain them (geo-
metric, wave, or quantum optics). Each of these theories explains different aspects of the
observed behavior of light.

1.5.1 Geometric optics

Geometric opticsis essentially the particle theory of light. Thismodel can describe awide
range of optical phenomena, including emission, diffuse and specular reflection, refraction,
and absorption. This covers most of what we see in everyday environments, which iswhy
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so many rendering al gorithms are based on geometric optics.

However, full geometric opticsistoo complex for most rendering applications. In com-
puter graphics we usually make more restrictive assumptions, to obtain smpler and faster
light transport algorithms.

For example, participating media are often ignored. In general, light can be emitted,
scattered, or absorbed in a three-dimensional medium, such as fog or gelatin. By ignoring
these possibilities, al scattering isassumed to happen at surfaces (which are infinitely thin).
Thisaso impliesthat no energy islost as light travels between surfaces.

In principle, it iseasy to include participating mediain Monte Carlo algorithms, by sim-
ply extending the ray casting procedure to sample the volume scattering and absorption
aong the ray [Rushmeier 1988]. The main effort required is the implementation of addi-
tional geometric primitives. Considerably more work is necessary to implement participat-
ing mediawith finite element approaches, since three-dimensional volumes must be meshed
and subdivided, and the interaction with two-dimensional elements must be properly ac-
counted for [Rushmeier & Torrance 1987]. With either approach, it is easier to handle me-
diathat only absorb light (no emission or scattering), since this can be handled in the same
way as surface occlusion (these mediablock afraction of the light traveling on a given ray,
rather than all or none).

Geometric optics also alows media that have a continuously varying refractive index.
This situation occurs when air is heated, for example, leading to shimmering “mirage” ef-
fects. Intheory, thiseffect makesthe light transport problem much more complicated, since
beams of light no longer travel in straight lines between surfaces. Instead, they follow
curved trajectories described by the eiconal equation [Born & Wolf 1986], which must be
integrated in small stepsto determine the path of abeam. To check for “visibility” between
two points(i.e. the existence of an optical path that connectsthem), we must solveadifficult
optimization problem. Some of these problems can be alleviated by making approximations
[Stam & Languenou 1996]. However, since this effect is not important for most graphics
models, it isusually just ignored.

Another common assumption isthat light is monochromatic (i.e. that it hasasingle fre-
guency). Thisisusually just a convenience, to simplify the description of algorithms. It
isusually straightforward to deal with polychromatic light, by calculating with full spectra
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rather than monochromatic intensities. Operations on spectra are usually handled through
a generic interface, so that different spectral representations can be substituted easily. A
large number of representations have been proposed, with various tradeoffs between accu-
racy and expense[Hall 1989, Peercy 1993]. Sometimes, itisargued that polychromatic light
can be handled by ssimply repeating a monochromatic algorithm at different wavelengths.
However, thisisrarely agood idea. Many calculations must be repeated separately at each
wavelength, and any variations between the results at different wavelengths (for example,
the mesh resolution or the location of random samples) can lead to objectionable color ar-
tifacts.

Similarly, transmission through surfaces is often disallowed. Again, thisis usually just
a convenience in describing algorithms. Transmission can be handled just like reflection,
except that light is scattered to the opposite side of the surface. However, some care must
be taken when the refractive index changes from one side to the other, since the radiance of
alight beam changes according to the square of refractive index (see Chapter 5). Also, the
index of refraction may depend on the frequency of theincident light, leading to the familiar
rainbow effect known as dispersion.

For some algorithms, ideal specular scattering is not supported. This includes reflec-
tion by mirrors, and refraction between water and air. Thisis mainly a problem for algo-
rithmsthat require an explicit representation of the scattering properties of asurface (e.g. as
a polynomial function). In these representations, mirror-like surfaces correspond to Dirac
delta distributions, which are not easily handled. If specular surfaces are supported by
these algorithms at all, it is often only large, flat mirrors, which can be handled by reflect-
ing the environment around the plane of the mirror, and treating the mirror as a window
[Rushmeier 1986, Wallace et al. 1987, Rushmeier & Torrance 1990]. Itisrelatively easy to
support specular surfaces in Monte Carlo algorithms, although this may add considerable
variance to the cal culations (see Chapter 8).

Finally, some algorithms support only ideal diffuse reflection (or transmission). A dif-
fuse surface appears equally bright from all viewing directions; the direction in which a
photon is scattered does not depend on how it arrived. This is a serious limitation, since
real scenes contain awide variety of materials, and it is often the variation in their scatter-
ing properties that makes an image look interesting or real.
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The main advantage of diffuse surfaces isthat their appearance depends only on posi-
tion, rather than position and direction. This reduces a four-dimensional problem to atwo-
dimensional one, which can obviously lead to simpler algorithms. However, it is usually
quitedifficult to convert an algorithm the other way, from diffuse surfacesto general materi-
als. Someagorithmshandle surfacesthat are alinear combination of ideal diffuseand ideal
specular, but thisisnot at all the same as supporting general scattering functions. There are
al so some algorithmswhich appear to be general, but where in fact only diffuse surfacesare
handled efficiently (e.g. other materials are handled via distribution ray tracing). Claims of
generality for these algorithms are misleading, since they do not perform well unless most
surfaces are diffuse. For testing generality, it is perfectly reasonable to use a scene withno
ideal diffuse materials, since these materials do not exist in the real world.

1.5.2 Waveoptics

Light can also be regarded as an electromagnetic wave [Born & Wolf 1986]. This model
explains al of the phenomena handled by geometric optics, plus a few more. It is not al-
ways necessary to simulate the wave model of light to obtain wave effects. For example,
polarization can be added quite easily to rendering systems based on geometric optics. In
fact, the models of light transport in graphics often combine features from all three optical
theories.

One effect exhibited by waves is diffraction, which causes light to “bend” dlightly
around obstacles. While diffraction is rarely noticeable at human scales, it cannot be ne-
glected for small objects (e.g. those which are less than ten wavelengths across). Thisis
an important issue in predicting reflection from rough surfaces, for example by ssimulating
light transport at the microgeometry level [He et a. 1991]. However, it isdifficult to incor-
porate diffraction into most light transport algorithms, since it viol ates the assumption that
light travelsin straight lines.

Another important wave effect is coherence. Coherence is a relationship between two
beams of light, which measures the average correlation between their phases [Born &
Wolf 1986]. So far, we have been assuming that light waves are perfectly incoherent, mean-
ing that any two such waves have no phase correlation. The most important property of
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incoherent beams s that when they are superposed, their intensities add linearly (wherein-
tensity means the mean squared amplitude). This agrees with our usual intuition, e.g. two
100 watt bulbs are twice as bright as one 100 watt bulb.

When two beams are partially or fully coherent, their superposition results in interfer-
ence. If there is positive correlation between their phases, it is called constructive interfer-
ence, otherwise it is destructive interference. When two coherent beams of equal intensity
are combined, theresulting intensity can be anywherefrom zero tofour timesasgreat* This
effect isresponsible for the light and dark bands in the classic “two-dlit experiment” [Born
& Wolf 1986].

Interference is important when modeling very small features, such as thin coatings or
soap bubbles [Gondek et a. 1994]. Light is reflected back and forth inside the coating, so
that the incident light wave is superposed on itself. This leads to interference, since any
light beam is perfectly coherent with itself, and there is still partial coherence between two
points on the beam that are several wavelengths apart. This applies even to beams from
“incoherent” sources, such as incandescent light bulbs.®

Interference can beincluded in light transport al gorithms by keeping track of the phases
of al light beams [Gondek et al. 1994]. Thisrequires keeping track of the optical length of
the path traveled by each beam from the same source, including any coherent reflections or
refractions. However, for most applications this additional expenseis not justified.

Coherence is also related to polarization. Light is a transverse electromagnetic wave,
which can be represented as point moving in atwo-dimensional plane (this point isthe tip
of the electric vector, which is always contained in the plane perpendicular to the direction
of propagation). Equivalently, we can regard light as the superposition of two independent
waves, vibrating at right angles to each other. (Project the function onto two perpendicular
vectors, such asthe - and y-axes.) Just aswith any waves, these two waves can be partially
or fully coherent, or have different amplitudes. If any of these things are true, we say the
light is polarized.

4Thisis not an example of non-linear optics (discussed in the next section), since the waves themselves
add linearly. However, awave with double the amplitude correspondsto afourfold increase in intensity.

SNote that the assumption of perfect incoherence in Section 1.1.2 is simply a mathematical abstraction;
perfectly incoherent light does not exist in the real world.
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Polarization isimportant for modeling materials such as water or glass, where the scat-
tering properties depend strongly on how the incident light is polarized. Another effect that
depends on polarization isbirefringence (also known as doublerefraction) [Drude 1900]. It
occursin certain kinds of crystals, where the refractive index is different for light polarized
parallel or perpendicular to the crystal surface. This has the effect of splitting an incident
beam of light into two beams with opposite polarizations, which are refracted in different
directions.

Polarization is quite easy to include in most light transport algorithms; the effort issim-
ilar to that of adopting a different spectral representation. There are two common repre-
sentations of polarization: the Jones matrix (appropriate for monochromatic light, whichis
aways completely polarized), and the Stokes matrix (which applies to partially polarized,
perfectly incoherent light beams). The general problem of superimposing two partially co-
herent, partially polarized beams is more difficult; there are no simple representations in
general, other than working with an explicit description of the waveforms [Perina 1985].

1.5.3 Quantum optics

Quantum physics offers the most detailed, accurate model of the behavior of light.® Some
of these effects are not explained by the geometric or wave theories, but are still relevant to
computer graphics.

One of these effects is fluorescence. This occurs when photons are absorbed by a
molecule, and then a new photon is emitted at a different wavelength. This effect is actu-
aly quite common in the real world. For example, fluorescent dyes are used commercially
to obtain brighter colors; thisis why clothing often “glows in the dark” under ultraviolet
lights.

Fluorescenceis quite easy to add to rendering systems|[Glassner 1994], by allowing en-
ergy at different wavelengthsto interact (in alinear way). If light spectra are represented as
vectors (with one coefficient per wavelength), then scattering from a surface can be repre-
sented as amatrix. When there is no fluorescence, this matrix is diagonal; otherwise, some

SFeynman [1985] has written a very readable account of the basics of this theory, and makes fascinating
connections between the macroscopic and quantum behaviors of light.
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of the off-diagonal entries will be nonzero.’

Another interesting effect is phosphorescence [Glassner 1994]. Here photons are ab-
sorbed, and re-emitted at alater time (usually at a different wavelength). This effect is not
important for most computer graphics applications; however, there are similar problemsin
other fields where this kind of time-delay reaction is crucial (e.g. the decay of radioactive
elements). The implementation of phosphorescence requires that the rendering algorithm
integrate the incident light over time, since the current emission of a phosphorescent sur-
face depends on its exposure in the past.

All of the effects we have described so far belong tolinear optics. Consider an arbitrary
optical system, which takes one light beam as input, and produces another light beam as
output. Theoptical systemislinear if the output waveisalinear function of theinput wave,
e.g. if we superpose two input waves, the output must be the sum of the outputs we would
get if each wave were used alone. This property holdsfor practically every optical system.

However, with the introduction of lasers, non-linear effects have been discovered. For
example, when high-intensity laser light passes through certain crystals, the light that exits
the crystal is twice the frequency of the light which entersit. Thisis known as frequency
doubling [Bloembergen 1996]. It does not happen with low-intensity light, so thisis an
example of non-linearity.®

There are many other effects whose explanation rests on quantum physics. For example,
the photoel ectric effect, or the observed spectral distribution of blackbody radiation. Lasers
a so depend on quantum physicsfor their explanation. However, these effects areirrelevant
for computer graphics. We do not need to simulate blackbody radiation from first principles
toincludeit in our scenemodels. Similarly, special and general relativity can beignored for
all practical purposes (e.g. the bending of light in a gravitational field).

"Glassner [1994] points out that for real materials, the matrix is often triangular. Photons often migrate
from higher to lower energies during scattering, but rarely movein the other direction. Thisiswhy clothesdo
not “glow in the dark” when exposed to heat lamps.

8Consider abeam of light that is so intense that it heats the receiving surface, until it beginsto glow. This
effectisnon-linear (since with adim beam of light, the surfacewill not glow at all). However, thisis not what
ismeant by non-linear optics. The surface temperature depends on the integral of the incident light over time
(unlike the frequency doubling example). At each instant in time, the system is still linear, since the surface
emission does not depend on the current intensity of the incident light.
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1.6 Related problemsfrom other fields

Light transport issimilar to avariety of problemsin physicsand engineering. It isimportant
to have aclear understanding of the connections between these problems, since many of the
techniques used in graphicswerefirst discovered in other areas. Thereisstill much to learn
from other scientific fields, and conversely these fields also have something to learn from
computer graphics.

However, the underlying assumptionsin other fields are often very different from those
in graphics. This can make it difficult to transfer results from one field to another. In fact,
some aspects of the light transport problem seem to be unique to computer graphics.

Oneimportant differenceisthe representation of the final output. In computer graphics,
the final output always consists of images, and any other representations of the solution are
just intermediate steps toward this goal. In physics and engineering, images are not impor-
tant (except possibly as a visualization aid). Instead, the objective is to compute a set of
numerical measurements, or even better, afunctional representation of the solution over its
entiredomain. A full representation of the solution makesit easier to locate design problems
(e.g. aleak through the shielding of a nuclear reactor).

Another difference is the way in which the quality of a solution is measured. In other
fields, the goal isto compute resultsthat are objectively accurate, according to standard nu-
merical error metrics (e.g. the L, norm). In computer graphics, on the other hand, the ulti-
mate error metricsare perceptual (and are thus not easy to define explicitly). Visua artifacts
such as discontinuities or Mach bands are very objectionablein graphics, yet they are per-
fectly acceptable in heat transfer or nuclear engineering problems (as long as the numerical
error is satisfactory). Because of this, popular methods in other fields are not always well-
suited for graphics applications. In fact, perceptual error has been one of the main forces
driving further research on light transport algorithms.

In the remainder of this section, we discuss the light transport problem as it relates to
nuclear engineering, radiative heat transfer cal culations, radar and acoustic wave scattering,
and many-body problems.



1.6. RELATED PROBLEMS FROM OTHER FIELDS 23

1.6.1 Neutron transport

One of the first applications of Monte Carlo methods was the design of nuclear devices.
Early Monte Carlo pioneers, such as von Neumann and Ulam, discovered techniques in
this context that have now found much wider applicability [Ulam 1987]. Neutron transport
problems are natural candidates for Monte Carlo methods, because of the relatively large
number of dimensions involved (position, direction, energy, time), and the complexity of
the interactions with atomic nuclei.

Light transport has much in common with neutron transport. They are governed by the
same underlying equation (the Boltzmann equation), which describes the transport of virtu-
ally any kind of particlesthat do not interact with each other.® This equation is one of the
central aspects of transport theory, which studies the transport of generic particles without
regard for their physical meaning [Duderstadt & Martin 1979].

However, neutron and light transport differ substantially in emphasis. For example, the
simulation of participating mediais not important for most applicationsin computer graph-
ics, whereas it is absolutely essential for neutron transport. Neutrons penetrate much far-
ther into solid objects than photons, so that volume scattering (and volume emission) are
the dominant effects. In fact, surface scattering and emission are often completely ignored
in these simulations [Spanier & Gelbard 1969].

Another important difference isthe interaction between particles at different energy lev-
els. In graphics, fluorescence and phosphorescence are relatively insignificant effects. This
means that to a good approximation, photon scattering is elastic (its wavelength does not
change) and instantaneous (there is no significant delay between the arrival and departure
of the photon). On the other hand, the scattering of neutronsisinelastic: they generally gain
or lose some energy upon collision with a nucleus (an effect similar to fluorescence). Like-
wise, thereisa small delay between the arrival of a neutron, and the scattering or emission
of other neutrons (similar to phosphorescence). These delays can substantially affect the
outcome of the calculation, and cannot be ignored.

9The Boltzmann equation does not mode! particletransport perfectly, sinceit is based on assumptionssim-
ilar to those of geometric optics. For example, it ignores wave effects such as diffraction.
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A third mgjor differenceis the existence of conservation principles. In graphics, we of-
ten rely on conservation of energy: the light scattered from a surface is no greater than the
light incident upon it. With neutrons, on the other hand, it is often the objective to avoid
thistype of conservation. It is possible for a nuclear reaction to be critical or supercritical,
in which case the number of neutrons in the environment increases quickly with time. In
terms of individual collision events, a single incident neutron may cause several new neu-
tronsto be emitted (by splitting the atomic nucleus). Other kinds of particles may be emitted
aswell, such as high-energy photons (gammarays), and it is often necessary to track these
particles as well.

Despite these differences, many techniques from the neutron transport literature can be
adapted to computer graphics. Thisis usually quite easy, since light transport is a simpler
problem.

There is also some interest in transport algorithms for charged particles, such as elec-
trons. However, an important property of charged particles is that they interact with each
other at a distance, by means of the electromagnetic field. Similarly, the path of a charged
particle is influenced by fixed electric and magnetic fields, so that these particles follow
curved traectories (similar to photons passing through a medium with a continuously vary-
ing refractive index). These features give the transport of charged particles a considerably
different flavor, and most light transport algorithms cannot easily be adapted to this purpose.

1.6.2 Heat transfer

Radiative heat transfer is also very similar to light transport. In fact, the only difference
is that the photons in heat transfer have longer wavelengths (in the infrared portion of the
spectrum). Aswith neutron transport, however, different aspects of the problem are empha-
Sized.

First, we review the three mechanisms of heat transfer: conduction, convection, and ra-
diation. With conduction, energy is exchanged between adjacent vibrating atoms, as they
bump into each other. This causes aslow migration of heat away from “hot spots’ (e.g. this
iswhat causes the handle of a frying pan to become hot). With convection, heat is trans-
ferred by the large-scale movements of atoms (e.g. a draft of hot air). Finally, heat can be
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transferred by the radiation of photons, which carry energy amost instantaneously across
large distances (e.g. the heat that isfelt when standing near acampfire). It isthislast mech-
anism that is similar to light transport.

This brings us to the first important difference from light transport, namely that ra-
diation is only one aspect of heat transfer problem. For many applications, conduction
and convection are at least as important. (One indication of this is that the heat equa-
tion in the applied mathematics and engineering literature often refers only to conduction
[Gustafson 1987, Hughes 1987].) In theory, conduction and convection can aso affect light
transport calculations, if portions of the surrounding environment are so hot that they begin
to glow (i.e. emit photonsin the visible wavelengths). However, this definitely falls outside
the traditional realm of computer graphics.

A second difference is that heat transfer problems are often non-linear. For example,
the spectrum of radiation emitted by a hot surface depends on the fourth power of its tem-
perature, and convection is also affected by temperature in complex ways. However, these
non-linearities are irrelevant for our purposes, because theradiative aspect of heat transfer
isalways alinear problem. Temperature changes due to conduction, convection, and even
radiation are extremely slow compared to the speed of light, so that the system is effectively
in radiative equilibrium at all times.

Unlike neutron transport, most heat transfer algorithms are based on the finite element
method.!® There are several reasonsfor this. First, finite element methods compute arepre-
sentation of the entire solution (rather than isolated measurements), which makes it easier
to locate design problems. Second, afull solution also makesit easier to include the effects
of conduction and convection, and to follow the evolution of the system over time. Finaly,
finite element methods are astandard tool in civil and mechanical engineering, so that it was
natural to extend these methods to heat transfer problems.

The heat transfer literature has thus inspired finite element approachesto light transport,
just as neutron transport algorithms have inspired Monte Carlo work.

10Technically, these are often boundary element methods [Siegel & Howell 1992], where the solution is
represented only on the boundary of the domain rather than itsinterior. Thisisthe preferred representationin
the absence of convection.
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1.6.3 Radar and acoustics problems

The scattering of radio waves is another problem that is similar to light transport. Radio
waves are simply another part of the el ectromagnetic spectrum, but with much longer wave-
lengthsthan visiblelight or radiant heat. Consequently, the wave nature of €lectromagnetic
radiation becomesimportant: effects such asdiffraction and interference cannot beignored.
For this reason, the mathematical models and algorithms for these problems are based on
the wave mode of light, rather than geometric optics. Thisyields atotally different set of
algorithms and insights.

Radio scattering problems arise in the design of objects that are difficult for radar sys-
tems to detect (e.g. military aircraft). Similar problems arise in the design of auditoriums
and concert halls, whereit isimportant to predict the scattering of sound waves. The wave-
lengths of audible sounds are comparable to the dimensions of ordinary objects (ranging
approximately from one centimeter to ten meters), so that wave effects cannot be neglected.

At their most basic level, these problemsinvolve solving thewave equation, apartial dif-
ferential equation that describes how waves propagate with time [Strang 1986, Gustafson
1987, Zauderer 1989]. Thisformulation is extremely general, but for realistic problems it
is also difficult and expensive to solve. The problem can be greatly simplified by assum-
ing that all radio sources have a single frequency, and that their intensity does not change
with time. This is called the time-harmonic version of the problem. Such a system will
rapidly converge to an equilibrium state, where the intensity of the electromagnetic field at
each point isasinusoidal function of time. The amplitude and phase of the electromagnetic
vibration at each point can be represented by a complex number.

Mathematically, the reduced problem is described by the Helmholtz equation, also
known as the reduced wave equation [Zauderer 1989]. Thisis a partial differential equa-
tion, like the wave equation, except that there is no time dependence (since we are solving
for an equilibrium state). Formally, this means that the Helmholtz equation is an élliptic
problem, rather than a hyperbolic problem like the wave equation. Elliptic problems re-
quire an entirely different set of solution techniquesthan hyperbolic ones, and are generally
easier to solve.

Methods for the scattering of radio and sound waves can be applied directly to the light



1.6. RELATED PROBLEMS FROM OTHER FIELDS 27

transport problem; the restriction to asingle frequency meansthat only monochromatic light
can be handled (or that each frequency must be simulated independently). Thisformulation
correctly handles diffraction and interference, as well as all of the phenomena handled by
geometric optics. This could lead to interesting solution techniques for graphics problems
where the wave nature of light isimportant.

1.6.4 Many-body problems

Efficient algorithmsfor many-body problemsare an important recent influence on computer
graphics. The simplest version of this problem involves a set of NV particles, each with a
different mass. The problem isto determine the gravitational force exerted on each particle
by the others. This can be used to ssimulate the motion of the particles, by integrating their
velocity and position over time. The problem can be extended to charged particles, and also
to bodies with more complex shapes.

The obviousalgorithm for this problemisto computethe O(N?) pairsof forces, and add
them together to find the net force acting on each particle. However, recently several ago-
rithms have been proposed that are far more efficient. These algorithms have complexities
of O(N log N) [Barnes& Hut 1986] or even O (V) [Greengard & Rokhlin 1987, Greengard
1988]. Thebasicideaisthat distant particles can be grouped together, replacing the calcula-
tionsfor many individual particles with a single computation for the group. Because of the
O(1/r?) faloff of gravitational and electric force, these approximations are possible with-
out significant loss of accuracy. Particles are organized into a hierarchical data structure, so
that nearby particles can be processed in small groups, while distant particles are handled
in large groups.

These techniques were the inspiration for hierarchical light transport algorithms
[Hanrahan et a. 1991]. It is easy to see that there is some connection; for example, the
intensity of apoint light source obeysthe same kind of O(1/r?) falloff law as gravity does.
In fact, if we ssimply replace point masses by point light sources, many-body algorithms
can be used to efficiently compute the fluence rate due to these light sources at many points
simultaneously. (The fluence rate at a point in space isthe integral of the incident radiance
over al directions, i.e. the total power per unit cross-sectional area that would be received
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by atiny spherical light sensor [American National Standards Institute 1986].)

However, computing the fluence at isolated points is not particularly useful for making
images. There are substantial differences between light transport and the many-body prob-
lem, such asocclusion. Gravity passesthroughwalls, whilelight doesnot. Furthermore, the
gravitational force is afunction only of position, while light intensity (radiance) is a func-
tion of position and direction. (Thisis because a point mass creates the same gravitationa
force in al directions, while a point light source can radiate different amounts of light in
different directions.)

These differences make light transport considerably more complex than the many-body
problem, and help to explain why hierarchical agorithms in graphics have not been able
to make the same accuracy and performance guarantees that are available for many-body
algorithms. The results for many-body algorithms are quite impressive: solutions can be
computed with any accuracies comparable to the machine's floating-point resolution, with
atime complexity of O(N) [Greengard 1988].2 It is doubtful that similar results will ever
be obtained for realistic light transport problems.

"Note that although the force-calculation component of the Greengard algorithm is O(N), there is also
a tree building component that can take O(N log V) time. Similarly, the complexity of the Barnes & Hut
[1986] algorithm can be significantly worse than O(N log N') when the particle distribution is non-uniform
[Anderson 1996].



Chapter 2
Monte Carlo Integration

Thischapter givesan introductionto Monte Carlo integration. Themain goalsareto review
some basic concepts of probability theory, to define the notation and terminology that we
will be using, and to summarize the variance reduction techniques that have proven most
useful in computer graphics.

Good references on Monte Carlo methodsinclude Kalos & Whitlock [1986], Hammer-
sley & Handscomb [1964], and Rubinstein [1981]. Sobol’ [1994] is a good starting point
for those with little background in probability and statistics. Spanier & Gelbard [1969] is
the classic reference for Monte Carlo applications to neutron transport problems; Lewis &
Miller [1984] is a good source of background information in this area. For quasi-Monte
Carlo methods, see Niederreiter [1992], Beck & Chen [1987], and Kuipers & Niederreiter
[1974].

2.1 A brief history

Monte Carlo methods originated at the Los Alamos National Laboratory in the early years
after World War 11. The first electronic computer in the United States had just been com-
pleted (the ENIAC), and the scientists at Los Alamos were considering how to useit for the
design of thermonuclear weapons (the H-bomb). In late 1946 Stanislaw Ulam suggested
the use of random sampling to simulate the flight paths of neutrons, and John von Neumann

29
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developed adetailed proposal in early 1947. This led to small-scale simulations whose re-
sults were indispensable in completing the project. Metropolis & Ulam [1949] published a
paper in 1949 describing their ideas, which sparked to agreat deal of research inthe 1950's
[Meyer 1956]. The name of the Monte Carlo method comes from acity in Monaco, famous
for its casinos (as suggested by Nick Metropolis, another Monte Carlo pioneer).

In isolated instances, random sampling had been used much earlier to solve numerical
problems[Kalos & Whitlock 1986]. For example, in 1777 the Comte de Buffon performed
an experiment in which aneedle was dropped many timesonto aboard marked with equidis-
tant parallel lines. Letting L be the length of the needle and d > L be the distance between
the lines, he showed that the probability of the needleintersecting alineis

2L
b=
Many years|ater, Laplace pointed out that this could be used as a crude means of estimating

thevalue of .

Similarly, Lord Kelvin used what we would now call a Monte Carlo method to study
some aspects of the kinetic theory of gases. His random number generator consisted of
drawing slips of paper out of aglassjar. The possibility of bias was a significant concern;
he worried that the papers might not be mixed well enough due to static electricity. Another
early Monte Carlo experimenter was Student (an aliasfor W. S. Gosset), who used random
sampling as an aid to guessing the form of hisfamous ¢-distribution.

An excellent reference on the origins of Monte Carlo methodsisthe special issue of Los
Alamos Science published in memory of Stanislaw Ulam [Ulam 1987]. The books by Ka-
los & Whitlock [1986] and Hammersley & Handscomb [1964] also contain brief histories,
including information on the pre-war random sampling experiments described above.

2.2 Quadraturerulesfor numerical integration

In this section we explain why standard numerical integration techniques do not work very
well on high-dimensional domains, especially when the integrand is not smooth.
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Consider an integral of the form

1= [ f@)du(), (2.1)

where ) is the domain of integration, / : 2 — IR isareal-valued function, and x is a
measure function on 2.1 For now, let the domain be the s-dimensional unit hypercube,

Q = [0,1]°,
and let the measure function be
dp(z) = dat---da®,

where 27 denotes the j-th component of the point = = (2, ..., 2°) € [0, 1]°.
Integrals of this sort are often approximated using aquadrature rule, which issimply a

sum of the form N

I= > wfx) (22)

=1

where the weights w; and sample locations «; are determined in advance. Common exam-
ples of one-dimensional quadrature rulesinclude the Newton-Cotes rules (i.e. the midpoint
rule, thetrapezoid rule, Simpson’srule, and so on), and the Gauss-Legendrerules(see Davis
& Rabinowitz [1984] for further details). The n-point forms of these rules typically ob-
tain a convergence rate of O(n~") for some integer » > 1, provided that the integrand has
sufficiently many continuous derivatives. For example, the error using Simpson’srule is
O(n~*), providedthat f hasat |east four continuousderivatives[Davis& Rabinowitz 1984].

Although these quadrature rulestypically work very well for one-dimensional integrals,
problems occur when extending them to higher dimensions. For example, a common ap-
proach is to use tensor product rules of the form
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where s isthe dimension, and the w; and x; are the weights and sample locationsfor agiven

IFamiliar examples of measuresinclude length, surface area, volume, and solid angle; see Halmos [1950]
for an introduction to measure theory.
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one-dimensional rule. This method has the same convergence rate as the one-dimensional
rule on which it is based (let this be O(n™")), however it uses a much larger number of
sample points (namely N = n®). Thusin terms of the total number of samples, the con-
vergence rate is only O(N~"/¢). This implies that the efficiency of tensor product rules
diminishes rapidly with dimension, a fact that is often called the curse of dimensionality
[Niederreiter 1992, p. 2].

The convergence rate can be increased by using a one-dimensional rule with a larger
value of r, however this has two problems. First, the total number of samples N = n?
can become impractical in high dimensions, since n increases linearly with » (specificaly,
n > r/2). For example, two-point Guass quadrature requires at least 2° samples, while
Simpson’srule requires at least 3° samples. Second, faster convergence rates require more
smoothness in the integrand. For example, if the function f has a discontinuity, then the
convergence rate of any one-dimensional quadrature ruleis at best O(n ') (assuming that
the location of the discontinuity is not known in advance), so that the corresponding tensor
product rule converges at a rate no better than O(N /%),

Of course, not all multidimensional integration rules take the form of tensor products.
However, there is an important result which limits the convergence rate of any determinis-
tic quadraturerule, called Bakhvalov's theorem[Davis & Rabinowitz 1984, p. 354]. Essen-
tially, it says that given any s-dimensional quadrature rule, there is function f with » con-
tinuous and bounded derivatives, for which the error is proportional to N~"/°. Specificaly,
let C';, denote the set of functions f : [0, 1]* — IR such that

af
a(xl)al .. .a(xs)as

<M

foral a,...,a, with > a; = r, recaling that 27 denotes the j-th coordinate of the vector

x. Now consider any /N-point quadrature rule
N
I(f) = Zwif(xi)

=1

where each z; isapointin [0, 1)*, and suppose that we wish to approximate some integral
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Then according to Bakhvalov’s theorem, thereis afunction f € C7, such that theerror is

I(f)=1(5)| > k-N77,

where the constant £ > 0 dependsonly on M and r. Thuseven if f hasabounded, contin-
uous first derivative, no quadrature rule has an error bound better than O (N ~1/%),

2.3 A bit of probability theory

Before describing Monte Carlo integration, we review afew concepts from probability and
statistics. See Pitman [1993] for an introduction to probability, and Halmos [1950] for an
introduction to measure theory. Brief introductionsto probability theory can also be found
in the Monte Carlo references cited above.

2.3.1 Cumulativedistributions and density functions

Recall that the cumulative distribution function of areal-valued random variable X is de-
fined as

P(x) = Pr{X <ua},
and that the corresponding probability density function is

po) = 4o

(also known as the density function or pdf). Thisleads to the important relationship

Pria<X<p) = /ﬁp(x) dr = P(3) - P(a). 2.3)

e

The corresponding notions for amultidimensional random vector (X', ..., X¢) arethe
joint cumulative distribution function

P(x',...,2%) = Pri{X' <az'foradli=1,...,s}
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and the joint density function

0°P
1 s _ 1 s
p(aj7 71.) axl -.axs( ? 7x>1
so that we have the relationship
Pr{re D} = /p(:c17...,x5)d:v1---dx5 (2.4)
D

for any Lebesgue measurable subset D C IR°.

More generally, for arandom variable X with valuesin an arbitrary domain €2, its prob-
ability measure (also known as aprobability distribution or distribution) isameasure func-
tion P such that

P(D) = Pr{X e D}

for any measurable set D C . In particular, a probability measure must satisfy P(Q2) = 1.
The corresponding density function p is defined as the Radon-Nikodym derivative

plz) = ‘fl—im

which is ssimply the function p that satisfies

PD) = [ pla)du(a). (25)

Thus, the probability that X € D can be obtained by integrating p(z) over the given region
D. This should be compared with equations (2.3) and (2.4), which are simply special cases
of the more general relationship (2.5).

Note that the density function p depends on the measure 1« used to define it. We will
use the notation p = P, to denote the density with respect to a particular measure /., corre-
sponding to the notation w,, = du / dx that is often used in analysis. This notation will be
useful when there are several relevant measure function defined on the same domain§2 (for
example, the solid angle and projected solid angle measures that will be described in Chap-
ter 3). See Halmos [1950] for further information on measure spaces and Radon-Nikodym
derivatives.
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2.3.2 Expected value and variance

The expected value or expectation of arandom variableY = f(X) isdefined as

ElY] = [ f(e)ple) du(a). (26)

whileitsvarianceis
VIY] = E[(Y - E[Y])?]. 2.7)

We will always assume that expected value and variance of every random variableexist (i.e.
the corresponding integral isfinite).

From these definitions, it is easy to see that for any constant « we have

ElaY] = aE[Y]
ViaY] = &*V[Y].

The following identity is aso useful:

N N
B3| - Yem
=1 =1
which holdsfor any randomvariablesYi, . . ., Yy. Onthe other hand, the following identity

holds only if the variables Y; are independent:

N N
v [zm] v
i=1 =1
Notice that from these rules, we can derive a simpler expression for the variance:

VY] = E[(Y - EY])?] = E[Y*] - E[Y]".

Another useful quantity isthe standard deviation of arandom variable, which issimply
the square root of its variance:

Thisisaso known asthe RMSerror.
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2.3.3 Conditional and marginal densities
Let X € Q; andY € Q, beapair of random variables, so that
(X,Y)eQ

where Q2 = ; x 2,. Let P be the joint probability measure of (X, Y), so that P(D) rep-
resents the probability that (X, Y") € D for any measurable subset D C 2. Then the corre-
sponding joint density function p(x, y) satisfies

P(D) = [ pla.y) dun(a) draa(y)

where 1; and i are measures on €2; and €2, respectively. Hereafter we will drop the mea-
sure function notation, and simply write

P(D) = /Dp(x?y) da dy.
The marginal density function of X isnow defined as
pae) = [ ple.y)dy. (28)
while the conditional density function p(y | x) is defined as
plyle) = px,y) /p(x). (2.9)

The marginal density p(y) and conditional density p(x | y) are defined in a similar way,
leading to the useful identity

plr,y) = plyle) plr) = plxly)ply).

Another important concept is the conditional expectation of a random variable G =
g(X,Y), defined as

EGla] = [ alwnplyleydy = LIGECD - o)

We will also use the notation E'y [] for the conditional expectation, which emphasizesthe
fact that Y isthe random variable whose density function is being integrated.
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Thereisavery useful expression for the variance of GG intermsof its conditional expec-
tation and variance, namely

In other words, V'[G] is the mean of the conditional variance, plus the variance of the con-
ditional mean. To prove thisidentity, recall that

V[F] = E[F?] - E[F],
and observe that

ExVyG+VxEyG = Bx{Ey[G"] - [EyG’} + Ex[EyG)’ — [ExEyG)’
= ExEy|[G?] — [ExEyG)?
= V[aG].

We will use thisidentity below to analyze certain variance reduction techniques, including
stratified sampling and the use of expected values.

2.4 Basic Monte Carlointegration

The idea of Monte Carlo integration is to evaluate the integral

I = [ f@)du()

using random sampling. Initsbasic form, thisis done by independently sampling N points
X1, ..., Xy according to some convenient density function p, and then computing the es-
timate

1 X f(X)
Fy = — : (2.12)
A P e

Here we have used the notation Fy rather than I to emphasi ze that the result is a random
variable, and that its properties depend on how many sample pointswere chosen. Note that
this type of estimator was first used in the survey sampling literature (for discrete rather
than continuous domains), where it is known as the Horvitz-Thompson estimator [Horvitz
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& Thompson 1952].

For example, suppose that the domainis2 = [0, 1)* and that the samples X; are chosen
independently and uniformly at random. In this case, the estimator (2.12) reducesto

1
Fy = NZf(Xi>7

=1
which has the same form as a quadrature rule except that the sample locations are random.

Itisstraightforward to show theestimator Fy givesthe correct result on average. Specif-
icaly, we have

_ 1 X f(X)
i) = &[5 2]
- 32 [ I8 ae)

I
s~ =~

I

~
~
=
=¥
=
=

provided that f(x)/p(z) isfinite whenever f(z) # 0.

Advantagesof Monte Carlointegration. Monte Carlo integration hasthefollowing ma-
jor advantages. First, it converges at arate of O(/N~'/2) in any dimension, regardless of the
smoothness of the integrand. This makes it particularly useful in graphics, where we often
need to calculate multi-dimensional integrals of discontinuous functions. The convergence
rate is discussed in Section 2.4.1 below.

Second, Monte Carlo integration is simple. Only two basic operations are required,
namely sampling and point evaluation. This encourages the use of object-oriented black
box interfaces, which allow great flexibility in the design of Monte Carlo software. In the
context of computer graphics, for example, it is straightforward to include effects such mo-
tion blur, depth of field, participating media, procedural surfaces, and so on.

Third, Monte Carlo is general. Again, this stems from the fact that it is based on ran-
dom sampling. Sampling can be used even on domainsthat do not have anatural correspon-
dence with [0, 1]*, and are thus not well-suited to numerical quadrature. As an example of
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this in graphics, we observe that the light transport problem can be naturally expressed as
an integral over the space of all transport paths (Chapter 8). Thisdomain istechnically an
infinite-dimensional space (which would be difficult to handle with numerical quadrature),
but it is straightforward to handle with Monte Carlo.

Finally, Monte Carlo methods are better suited than quadrature methods for integrands
with singularities. Importance sampling (see Section 2.5.2) can be applied to handle such
integrandseffectively, evenin situationswherethereisno analytic transformation toremove
the singularity (see the discussion of rejection sampling and the Metropolis method bel ow).

In the remainder of thissection, we discussthe convergencerate of Monte Carlo integra-
tion, and give a brief review of sampling techniques for random variables. We then discuss
the properties of more genera kinds of Monte Carlo estimators.

24.1 Convergencerates

To determine the convergence rate of Monte Carlo integration, we start by computing the
variance of Fy. To simplify the notation let Y; = f(X;)/p(X;), so that

1
Alsolet Y = Y,. Wethen have
2
VY] = E[Y?] - E[Y]* = QJ;((;)) du(z) — I*.

Assuming that this quantity isfinite, it iseasy to check that the variance of V'[Fy| decreases
linearly with N:

VIFN] = Vl%éY] = %V[é K—] = %gv[m = %V[Y] (2.13)

where we have used V[a Y] = «? V[Y] and the fact that the Y; are independent samples.
Thus the standard deviation is

U[FN] = UY?

1
VN
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which immediately shows that the RM S error converges at arate of O(N /).
It is also possible to obtain probabilitistic bounds on the absolute error, using Cheby-

chev'sinequality:
1/2
Pr{w—E[Fn > (@) } <,

which holds for any random variable F' such that V[F] < co. Applying thisineguality to
the variance (2.13), we obtain

1/2
Pr{|FN—I| > N7/2 (@) } < 4.

Thus for any fixed threshold §, the absol ute error decreases at the rate O (N ~1/2).

Tighter bounds on the absolute error can be obtained using the central limit theorem,
which statesthat /'y convergestoanormal distributioninthelimitas N — oo. Specifically,
it states that

1 N O’[Y] 2
im Prl— S v,i-Ey] <22 / e~ g,
i, {NEI Yl< \/N} 7
where the expression on theright isthe (cumulative) normal distribution. Thisequation can
be rearranged to give

Pri{|Fy —I| > to[Fy]} \/2/7r/ /2 g

The integral on the right decreases very quickly with ¢; for example when ¢ = 3 the right-
hand sideisapproximately 0.003. Thus, thereisonly about a0.3% chancethat F'y will differ
from its mean by more than three standard deviations, provided that IV is large enough for
the central limit theorem to apply.

Finally, note that Monte Carlo integration will converge even if the variance V[Y] is
infinite, provided that the expectation E'[Y'] exists (although convergence will be slower).
Thisis guaranteed by the strong law of large numbers, which states that

Pr {hm —ZY_E[Y]} = 1.

N —o00 —1
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2.4.2 Sampling random variables

There are a variety of techniques for sampling random variables, which we briefly review
here. Further details can be found in the references given in the introduction.

One method is the transformation or inversion method. In one dimension, suppose that
we want to sample from a density function p. Letting P be the corresponding cumulative
distribution function, the inversion method consists of letting X = P~'(U), where U is
auniform random variable on [0, 1]. It is easy to verify that X has the required density p.
Thistechnique can easily be extended to several dimensions, either by computing marginal
and conditional distributions and inverting each dimension separately, or more generally
by deriving atransformation x = ¢(u) with an appropriate Jacobian determinant (such that
| det(J,(2))|~" = p(x), where J, denotes the Jacobian of g).

The main advantage of the transformation techniqueisthat it allows samplesto be strat-
ified easily, by stratifying the parameter space [0, 1]° and mapping these samplesinto 2 (see
Section 2.6.1). Another advantage is that the technique has a fixed cost per sample, which
can easily be estimated. The main disadvantage is that the density p(z) must be integrated
analytically, which is not always possible. It is also preferable for the cumulative distribu-
tion to have an analytic inverse, since numerical inversion istypically slower.

A second sampling techniqueistherejection method, dueto von Neumann [Ulam 1987].
The ideaisto sample from some convenient density ¢ such that

p(r) < Mq(x)

for some constant M. Generally, the samples from ¢ are generated by the transformation
method. We then apply the following procedure:

function REJECTION-SAMPLING()

fori=1tooo
Sample X; according to q.
Sample U; uniformly on [0, 1].
if Uy < p(Xi)/ (Mq(X,)
then return X;
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It is easy to verify that this procedure generates a sample X whose density functionisp.

The main advantage of rejection sampling isthat it can be used with any density func-
tion, even those that cannot be integrated analytically. However, we still need to be able to
integrate somefunction M ¢ that isan upper bound for p. Furthermore, thisbound should be
reasonably tight, since the average number of samplesthat must be taken before acceptance
is M. Thus, the efficiency of rejection sampling can be very low if it is applied naively.
Another disadvantage is that it is difficult to apply with stratification: the closest approxi-
mation isto stratify the domain of the random vector (X, U ), but the resulting stratification
isnot as good as the transformation method.

A third general sampling technique is the Metropolis method (also known as Markov
chain Monte Carlo), which will be described in Chapter 11. This technique is useful for
sampling arbitrary densities on high-dimensional spaces, and has the advantage that the
density function does not need to be normalized. The main disadvantage of the Metropolis
method is that the samples it generates are not independent; in fact they are highly corre-
lated. Thus, it is most useful when we need to generate a long sequence of samples from
the given density p.

Finally, there are varioustechniquesfor sampling from specific distributions (see Rubin-
stein [1981]). For example, if X isthe maximum of & independent uniform random vari-
ablesU,, ..., Uy, then X hasthe density functionp(z) = ka* ! (where0 < x < 1). Such
“tricks’ can be used to sample many of the standard distributions in statistics, such as the
normal distribution [Rubinstein 1981].

2.4.3 Estimatorsand their properties

So far we have only discussed one way to estimate an integral using random samples,
namely the standard technique (2.12). However, there are actually a great variety of tech-
niques available, which are encompassed by the concept of a Monte Carlo estimator. We
review the various properties of estimators and why they are desirable.

The purpose of a Monte Carlo estimator is to approximate the value of some quantity
of interest 2 (also called the estimand). Normally we will define  asthe value of agiven
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integral, although more general situations are possible (e.g. @ could be the ratio of two in-
tegrals). An estimator isthen defined to be afunction of the form

FN - FN()(lw-wXN); (214)
wherethe X; arerandom variables. A particular numerical value of F'y iscalled an estimate.

Note that the X; are not necessarily independent, and can have different distributions.

Note that there are some differencesin the standard terminol ogy for computer graphics,
as compared to statistics. In statistics, the value of each X; is called an observation, the
vector (X1,...,Xy) iscaled the sample, and NV is called the sample size. In computer
graphics, on the other hand, typically each of the individual X; is referred to as a sample,
and NNV isthe number of samples. We will normally use the graphics conventions.

We now define a number of useful properties of Monte Carlo estimators. The quantity
Fy — @ iscaled theerror, and its expected valueis called the bias:

BlFN] = E[Fy —QJ. (2.15)
An estimator is called unbiased if 5[F| = 0 for all samplesizes N, or in other words if
E[Fy] = Q foral N >1. (2.16)

For example, the random variable

~

(Xi)
(X)

1
FN:NZ

=1

=

isan unbiased estimator of theintegral I = [, f(x) du(x) (aswe saw in Section 2.4).

An estimator iscalled consistent if the error Fy — () goesto zero with probability one,
or in other words if

Pr{ lim Fy — Q} ~ 1. 2.17)
N —o0

For an estimator to be consistent, a sufficient condition is that the bias and variance both go
to zero as V isincreased:
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In particular, an unbiased estimator is consistent as long as its variance decreases to zero as
N goesto infinity.

The main reason for preferring unbiased estimators is that it is easier to estimate the
error. Typically our goal isto minimize the mean squared error (MSE), defined by

MSE[F] = E[(F - Q)?] (2.18)

(where we have dropped the subscript V). In general, the mean squared error can be rewrit-
ten as

MSE[F] = E[(F - Q)

so that to estimate the error we must have an upper bound on the possible bias. In general,
this requires additional knowledge about the estimand @, and it is often difficult to find a
suitable bound.

On the other hand, for unbiased estimatorswe have E[F'| = (), so that the mean squared
error isidentical to the variance:

MSE[F] = V|F] = E[(F - E[F))Y.

Thismakesit far easier to obtain error estimates, by simply taking several independent sam-
ples. Letting Y7, ..., Yy beindependent samples of an unbiased estimator Y, and letting

1 N
By =5 XY

=1

as before (which is also an unbiased estimator), then the quantity

VMAZN%IK%§¥$_<%2KY}

isan unbiased estimator of the variance V[ Fy| (see Kalos & Whitlock [1986]). Thus, error
estimates are easy to obtain for unbiased estimators.
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Notice that by taking many independent samples, the error of an unbiased estimator can
be made as small as desired, since

VIFy] = VIR]/N.

However, thiswill also increase the running time by a factor of V. Ideally, we would like
to find estimators whose variance and running time are both small. Thistradeoff issumma-
rized by the efficiency of a Monte Carlo estimator:

(2.19)

where T'[F'] is the time required to evaluate F'. Thus the more efficient an estimator is, the
lower the variance that can be obtained in a given fixed running time.

2.5 Variancereduction I: Analyticintegration

The design of efficient estimatorsis a fundamental goal of Monte Carlo research. A wide
variety of techniques have been developed, which are often ssmply called variance reduc-
tion methods. In the following sections, we describe the variance reduction methods that
have proven most useful in computer graphics.? These methods can be grouped into sev-
eral categories, based around four main ideas:

e analytically integrating a function that is similar to the integrand;
¢ uniformly placing sample points across the integration domain;

e adaptively controlling the sample density based on information gathered during sam-
pling; and

e combining samples from two or more estimators whose values are correlated.

°Note that some variance reduction methods are useful only for one-dimensional integrals, or only for
smooth integrands (e.g. certain antithetic variates transformations[Hammersley & Handscomb 1964]). Since
these situations are usually better handled by numerical quadrature, we do not discuss such methods here.
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We start by discussing methods based on analytic integration. There are actually sev-
eral ways to take advantage of thisidea, including the use of expected values, importance
sampling, and control variates. These are some of the most powerful and useful methods
for computer graphics problems.

Note that many variance reduction methods were first proposed in the survey sampling
literature, long before Monte Carlo methods were invented. For example, techniques such
asstratified sampling, importance sampling, and control variateswereall first usedin survey
sampling [Cochran 1963].

25.1 Theuseof expected values

Perhaps the most obvious way to reduce variance is to reduce the dimension of the sample
space, by integrating analytically with respect to one or more variables of the domain. This
ideais commonly referred to as the use of expected values or reducing the dimensionality.
Specifically, it consists of replacing an estimator of the form

F = f(X,Y)/p(X.Y) (2.20)
with one of the form
F' = f(X)/p(X), (2.21)

where f'(z) and p(x) are defined by

o) = [ flay)dy
pla) = [pley)dy.

Thus, to apply thistechnique we must be ableto integrate both f and p with respect toy. We
also must be able to sample from the marginal density p(z), but this can be done by simply
generating (X, Y') as before, and ignoring the value of Y.

The name of thistechnique comes from the fact that the estimator F” is simply the con-
ditional expected value of F:
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[t o
/f()(7 ) )( y)
p(X,y) pr y') dy'
= f(X)/p(X).

This makes the variance reduction easy to analyze. Recalling the identity
VIF] = ExVwF +VxEyF

from equation (2.11), and using the fact that /' = Ey F', we immediately obtain
VIF] = V[F'] = ExWyF.

This quantity is always non-negative, and represents the component of the variance of F
that was caused by the random sampling of Y (as one might expect).

The use of expected valuesisthe preferred variance reduction technique, aslong asitis
not too expensive to evaluate and sample the analytically integrated quantities. However,
note that if expected values are used for only one part of alarger calculation, then variance
can actually increase. Spanier & Gelbard [1969] give an example of thisin the context of
neutron transport problems, by comparing the variance of the absorption estimator (which
records a sample only when a particle is absorbed) to that of the collision estimator (which
records the expected value of absorption at each collision along a particle’s path). They
show that there are conditions where each of these estimators can have lower variance than
the other.

2.5.2 Importance sampling

Importance sampling refers to the principle of choosing a density function p that issimilar
totheintegrand f. Itisawell-known fact that the best choiceisto let p(x) = ¢f(x), where
the constant of proportionality is

1
© T To W) duly) (2.22)
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(to ensure that p integrates to one).® Thisleads to an estimator with zero variance, since

_ X1

- op(X)  c

for al sample points X .

Unfortunately this technique is not practical, since we must already know the value of
the desired integral in order to compute the normalization constant ¢. Nevertheless, by
choosing a density function p whose shape is similar to f, variance can be reduced. Typ-
icaly thisis done by discarding or approximating some factors of f in order to obtain a
function ¢ that can be integrated analytically, and then letting p o« ¢. It is also important
to choose p such that there is a convenient method of generating samplesfrom it. For low-
dimensional integration problems, auseful strategy isto construct adiscrete approximation
of f (e.g. apiecewise constant or linear function). This can be done either during a sepa-
rate initialization phase, or adaptively as the algorithm proceeds. The integral of such an
approximation can be computed and maintained quite cheaply, and sampling can be done
efficiently by means of tree structures or partial sums.

In summary, importance sampling is one of the most useful and powerful techniques of
Monte Carlo integration. It isparticularly helpful for integrandsthat have large valueson a
relatively small part of the domain, e.g. due to singularities.

2.5.3 Control variates

With control variates, theideaisto find afunction ¢ that can be integrated analytically and
issimilar to the integrand, and then subtract it. Effectively, the integral is rewritten as

1= [ g@)du(@) + [ f@) - g(@) du(a).

and then sampled with an estimator of the form

o= /Qg(a:) dp(x) + % ; f(X;j(;(ig)(Xi)

3We assumethat f is non-negativein this discussion. Otherwise the best choiceisto let p oc | f|, however
the variance obtained this way is no longer zero [Kalos & Whitlock 1986].
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where the value of the first integral is known exactly. (As usual p is the density function
from which the X; are chosen.) This estimator will have a lower variance than the basic
estimator (2.12) whenever
e [f()(i) - Q(Xi)] <V [f(Xi)] '
p(Xi) p(Xi)
In particular, notice that if ¢ is proportional to p, then the two estimators differ only by a

constant, and their variance is the same. Thisimpliesthat if ¢ is aready being used for
importance sampling (up to a constant of proportionality), then it is not helpful to useit as

a control variate as well.* From another point of view, given some function ¢ that is an
approximation to f, we must decide whether to use it as a control variate or as a density
function for importance sampling. Itispossibleto show that either one of these choice could
be the best, depending on the particular f and ¢g. In generdl, if f — ¢ isnearly a constant
function, then ¢ should be used as a control variate; whileif f /g isnearly constant, then ¢
should be used for importance sampling [Kalos & Whitlock 1986].

As with importance sampling, control variates can be obtained by approximating some
factors of f or by constructing a discrete approximation. Since there is no need to gener-
ate samples from ¢, such functions can be dightly easier to construct. However, note that
for g to be useful as a control variate, it must take into account all of the significant factors
of f. For example, consider an integral of the form f(x) = fi(z) f2(x), and suppose that
f1(z) represents the reflectivity of a surface at the point =, while f,(x) represents the in-
cident power per unit area. Without some estimate of the magnitude of f,, observe that f;
isvirtually useless as a control variate. On the other hand, f; can be used for importance
sampling without any difficulties.

Control variates have had very few applicationsin graphics so far (e.g. see Lafortune &
Willems [19953]). One problem with the technique is the possibility of obtaining negative
sample values, even for an integrand that is strictly positive. This can lead to large relative
errors for integrals whose true value is close to zero (e.g. pixelsin the dark regions of an
image). On the other hand, the method is straightforward to apply, and can potentialy give
amodest variance reduction at little cost.

4See the discussion under Russian roul ette below.
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2.6 Variancereduction |I: Uniform sample placement

Another important strategy for reducing variance is to ensure that samples are distributed
more or less uniformly over the domain. We will examine several techniques for doing
this, namely stratified sampling, Latin hypercube sampling, orthogonal array sampling, and
guasi-Monte Carlo methods.

For these techniques, it is typically assumed that the domain is the s-dimensional unit
cube [0, 1]°. Other domains can be handled by defining an appropriate transformation of the
formT : [0,1]* — Q. Notethat by choosing different mappings ', the transformed samples
can be given different density functions. Thismakesit straightforward to apply importance
sampling to the techniques described below.®

2.6.1 Stratified sampling

The idea of stratified sampling is to subdivide the domain €2 into several non-overlapping
regions (2, ..., 2, such that

UQi - Q
=1

Each region Q; iscalled astratum. A fixed number of samplesn; isthen taken within each
2;, according to some given density function p;.

For simplicity, assumethat 2 = [0, 1]* and that p; issimply the constant function on €2;.
This leads to an estimate of the form

N (223)

Here v; = 1(£2;) isthe volume of region €2;, and each X; ; is an independent sample from

SNotethat if thedesired density p(z) iscomplex, it may bedifficult to find atransformation 7" that generates
it. This can be solved with rejection sampling, but the resulting samples will not be stratified as well.



2.6. VARIANCE REDUCTION I1: UNIFORM SAMPLE PLACEMENT ol

p;. The variance of thisestimator is
VIF = > vlo}/ni, (2.25)
=1

where o7 = V[f(X; ;)] denotes the variance of f within ;.

To compare this against unstratified sampling, suppose that n; = v; N, where N isthe
total number of samplestaken. Equation (2.25) then simplifiesto

1 n
VIF'] = N ; v o2
On the other hand, the variance of the corresponding unstratified estimator i<°
1 n n
VIF] = N Zviag + Zvi(ﬂi_I)Q , (2.26)
=1 =1

where 1; is the mean value of f in region €2;, and I the mean value of f over the whole
domain. Since the right-hand sum is always non-negative, stratified sampling can never
increase variance.

However, from (2.26) we see that variance is only reduced when the strata have differ-
ent means; thus, the strata should be chosen to make these means as different as possible.
Ideally, this would be achieved by stratifying the range of the integrand, by finding strata
suchthat z; € Q; impliesz; < xy < --- < ay.

Another point of view isto analyze the convergence rate. For functionswith a bounded
first derivative, the variance of stratified sampling converges at arate of O(N~'=2/%), while
if the function is only piecewise continuous then the variance is O(N~'~1/*) [Mitchell
1996]. (The convergence rate for the standard deviation is obtained by dividing these ex-
ponents by two.) Thus, stratified sampling can increase the convergence rate noticeably in
low-dimensional domains, but has little effect in high-dimensional domains.

In summary, stratified sampling is a useful, inexpensive variance reduction technigue.

5To obtain this result, observe that an unstratified samplein [0, 1]° is equivalent to first choosing arandom
stratum I;; (according to the discrete probabilities v;), and then randomly choosing X ; within Q7,. From this
point of view, X ; is chosen conditionally on I;. This lets us apply the identity (2.11) to express the variance
as asum of two components, yielding equation (2.26).
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It ismainly effective for low-dimensional integration problems where the integrand is rea-
sonably well-behaved. If thedimensionishigh, or if theintegrand has singularitiesor rapid
oscillationsin value (e.g. a texture with fine details), then stratified sampling will not help
significantly. Thisisespecially true for problemsin graphics, where the number of samples
taken for each integral isrelatively small.

2.6.2 Latin hypercube sampling

Supposethat atotal of N sampleswill betaken. Theideaof Latin hypercube samplingisto
subdivide the domain [0, 1]° into N subintervals along each dimension, and to ensure that
one sample liesin each subinterval. This can be done by choosing s permutations 74, . . .,
7 Of {1,..., N}, and letting the sample locations be

(i) — Ui,

X/ =
(3 N bl

(2.27)

where X/ denotes the j-th coordinate of the sample X;, and the U, ; are independent and
uniformly distributed on [0, 1]. In two dimensions, the sample pattern corresponds to the
occurrences of asingle symbol inalLatin square (i.e.an N x N array of N symbols such
that no symbol appears twice in the same row or column).

Latin hypercube sampling was first proposed as a Monte Carlo integration technique
by McKay et a. [1979]. It isclosely related to L atin square sampling methods, which have
been used inthedesign of statistical experimentssinceat least the 1920's(e.g. inagricultural
research [Fisher 1925, Fisher 1926]). Yates [1953] and Patterson [1954] extended these
techniques to arbitrary dimensions, and also analyzed their variance-reduction properties
(in the context of survey sampling and experimental design). In computer graphics, Latin
square sampling was introduced by Shirley [1990a] under the name of N-rooks sampling
[Shirley 1990a, Shirley 1991].

The first satisfactory variance analysis of Latin hypercube sampling for Monte Carlo
integration was given by Stein [1987]. First, we define a function g(x) to be additive if it
has the form

o@) = 3 @), (2.28)



2.6. VARIANCE REDUCTION I1: UNIFORM SAMPLE PLACEMENT 53

where 27 denotes the j-th component of - € [0, 1]°. Next, let f.qq denote the best additive
approximation to f, i.e. the function of the form (2.28) which minimizes the mean squared
error

[ (Fuaaw) = £ dp).
We can then write f as the sum of two components

f(:L’) = fadd(x)"i_freS(x)?

where f.., isorthogonal to all additive functions, i.e.

| Feel@) () dp@) = 0
for any additive function g.

Stein [1987] was then able to show that variance of Latin hypercube sampling is

VIF) = 5 [ 20 dute) + o(1/N), 229)

whereo(1/N) denotesafunction that decreases faster than1/N. Thisexpression should be
compared to the variance using /V independent samples, whichis

VIFL = 5 ([ 2@ dn) + [ (Gualo) = D dulo))

Thevarianceinthe second caseisawayslarger (for sufficiently large V). ThusLatin hyper-
cube sampling improves the convergence rate for the additive component of the integrand.
Furthermore, it isnever significantly worse than using independent samples [ Owen 19974]:

N
N -1

VIF'] < VIF]  forN >2.

Latin hypercube sampling is easy to implement and works very well for functions that
are nearly additive. However, it does not work that well for image sampling, because
the samples are not well-stratified in two dimensions. Except in specia cases (e.g. pixels
with vertical or horizontal edges), it hasthe same O(1/N) variance that would be obtained
with independent samples. Thisisinferior to stratified sampling, for which the variance is
O(N~2) for smooth functions and O (N ~*/2) for piecewise continuous functions,
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2.6.3 Orthogonal array sampling

Orthogonal array sampling [Owen 1992, Tang 1993] isan important generalization of Latin
hypercube sampling that addresses some of these deficiencies. Rather than stratifying all of
the one-dimensional projections of the samples, it stratifies all of the t-dimensional projec-
tionsfor somet¢ > 2. Thisincreases the rate of convergence for the components of f that
depend on ¢ or fewer variables.

Anorthogonal array of strength ¢ isan IV x s array of symbols, drawn from an al phabet
of size b, such that every NV x t submatrix contains the same number of copies of each of
thed' possiblerows. (The submatrix isnot necessarily contiguous; it can contain any subset
of the columns.) If we let \ denote the number of times that each row appears (where A is
known as the index of the array), it isclear that N = \b*. The following table gives an
example of an orthogonal array whose parametersare OA(N, s, b,t) = (9,4, 3, 2):

NININIFPIPPOIO|IO
NIFRP|IOINIP|IOIN|FL|O
RP|IO|INIOIN|FL|IN|FL,]|O
O|/FR,|IN|INOC|FRL,|FP|IN|O

Various methods are known for constructing orthogonal arrays of strength¢ = 2 [Bose
1938, Bose & Bush 1952, Addelman & Kempthorne 1961], strengtht = 3 [Bose & Bush
1952, Bush 1952], and arbitrary strengthst¢ > 3 [Bush 1952]. Implementations of these
methods are publicly available [Owen 1995a].

Let A bean N x s orthogonal array of strength ¢, where the symbolsin the array are
{0,1,...,b— 1}. Thefirst step of orthogonal array sampling is to randomize the array, by
applying a permutation to the alphabet in each column. That is, we let

Ai,j = ﬂ—j(Ai,j) for a”Z?]7



2.6. VARIANCE REDUCTION I1: UNIFORM SAMPLE PLACEMENT 95

wherer, ..., 7, arerandom permutationsof the symbols{0,...,b—1}. Itiseasy to check
that A is an orthogonal array with the same parameters (N, s,b,t) astheorigina array A.
This step ensures that each of the b* possible rows occursin A with equal probability.

Now let the domain be [0, 1]*, and consider the family of b* subcubes obtained by split-
ting each axisinto b intervals of equal size. Each row of A can be interpreted as an index
into this family of subcubes. The idea of orthogonal array sampling is to take one sample
in each of the NV subcubes specified by the rows of A. Specifically, the j-th coordinate of
sample X; is

X/ = (A + U ) /b

where the U; ; are independent uniform samples on [0, 1]. Because of the randomization
step above, it is straightforward to show that each X is uniformly distributed in [0, 1]*, so
that Fiy = (1/N) XN, f(X;) isan unbiased estimator of the usual integral 1.

To see the advantage of this technique, consider the sample distribution with respect to
any t coordinate axes (i.e. project the samples into the subspace spanned by these axes).
This subspace can be divided into b* subcubes by splitting each axis into b intervals. The
main property of orthogonal array sampling isthat each of these subcubes containsthe same
number of samples. To see this, observe that the coordinates of the projected samples are
specified by a particular N x t submatrix of the orthogonal array. By the definition of or-
thogonal arrays, each of the possible b rows occurs A times in this submatrix, so that there
will be exactly A samplesin each subcube.

Orthogonal array sampling is clearly a generalization of Latin hypercube sampling.
Rather than stratifying the one-dimensional projections of the samples, it stratifies all of the
t-dimensional projections simultaneously. (There are (j) such projectionsin al.)

2.6.3.1 Analysisof variance decompositions

The variance reduction properties of orthogonal array sampling can be analyzed using con-
tinuous analysis of variance (anova) decompositions [Owen 1994, Owen 1992]. Our de-
scription follows [Owen 1992], which in turn is based on [Efron & Stein 1981].

Let S ={1,...,s} betheset of al coordinate indices, and let U C S be any subset of
these indices (there are 2° possible subsetsin all). We will use the notation ¥ to refer to
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the set of coordinate variables 27 for j € U. The anova decomposition of a given function
f can then be written as a sum

flz) = Z fu@Y), (2.30)
Ucs

where each function f;; depends only on the variablesindexed by U'.

The function when U = () does not depend on any variables, and is called the grand
mean:

I =fy= /[O)I]Sf(l’)dx-

The other 2° — 1 subsets of U are called sources of variation. The components of f that
depend on just one variable are called the main effects and are defined as

fi@) = [(f@@)=1) [Tda'.
i#j
Notice that al of these functions are orthogonal to the constant function fy = 7. Similarly,
the two-factor interactions are defined by

fir@™) = [ (@)= 1= f) = £el) T] o’
i#j.k
which represent the componentsof f that depend on two particular variablestogether. These
functions are orthogonal to f;; and to al the f;.
In generd, fi; isdefined by
fo(@) = / ( OESY fv(xv)> dz5~Y (2.31)
vVcUu

where the sum is over all proper subsets of U (V' # U). The resulting set of functionsis
orthogonal, i.e. they satisfy

[ foa”) fo@¥yde = 0
whenever U # V. Thisimpliesthe useful property that

/fQ(:v)dx = Z /f?](xU)dx,

Ucs
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so that the variance of f can be written as

) - > [ i

|U|>0

Asaparticular case of thisanalysis, the best additive approximationto f is
faaa(z) = I+Zf] (27)

wheretheresidua f,., = f — f.4q 1SOrthogonal to al additive functions. The variance of
Latin hypercube sampling can thus be rewritten as

= 5 X [ fadr + o(1/N),
|U\>1
i.e. the single-variable components of the variance converge at arate faster than1/N.
Orthogonal array sampling generalizesthisresult; it ispossibleto show that the variance
is[Owen 1992, Owen 1994]

Oon = — Z /fU )dx + o(1/N),

\U|>t

i.e. the convergence rate is improved with respect to all components of the integrand that
depend on ¢ coordinates or less.

Thecaset = 2 is particularly interesting for graphics. For example, if we apply this
technique to distribution ray tracing, it ensuresthat all the two dimensional projections are
well stratified (over the pixel, lens aperture, light source, etc). Thisachievesasimilar result
to the sampling technique proposed by Cook et al. [1984], except that all combinations of
two variables are stratified (including combinations such as the pixel z-coordinate and the
aperture x-coordinate, for example).

2.6.3.2 Orthogonal array-based L atin hypercube sampling

Notice that because the ¢-dimensional margins are well-stratified, the w-dimensional mar-
gins are also stratified for any w < t. However, the resulting stratification is not as good.
For example, in any one-dimensional projectional there will be exactly \b' ! samplesin
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each interval of width 1/b. Thisisinferior to Latin hypercube sampling, which places one
samplein each interval of width 1/(Ab").

There is a simple modification to orthogonal array sampling that yields the same one-
dimensional stratification properties as Latin hypercube sampling. (The result, logically
enough, iscalled orthogonal array-based Latin hypercube sampling[Tang 1993].) Theidea
isto remap the Ab* symbolswithin each columninto asingle sequence {0, 1, ..., \b* — 1},
by mapping the \b* ! identical copies of each symbol . into arandom permutation of the
symbols

Aty o A (m 1) — 1.

This process is repeated for each column separately. Letting A’ be the modified array, the
sample locations are then defined as
- AL+ U
Xl = = >
Thisensures that the samples are maximally stratified for each one-dimensional projection,
aswell asfor each t-dimensional projection. It ispossibleto show that thisleadsto afurther
reduction in variance [ Tang 1993].

Thistechniqueissimilar to multi-jittered sampling [Chiu et al. 1994], which corresponds
to the special casewheres =2 and ¢t = 2.

2.6.4 Quasi-Monte Carlo methods

Quasi-Monte Carlo methods take these ideas a step further, by dispensing with randomness
completely. Theideaisto distribute the samplesas uniformly as possible, by choosing their
locations deterministicaly.

2.6.4.1 Discrepancy

Let P = {x1,...,2n} beasetof pointsin [0, 1]*. Typically, the goal of quasi-Monte Carlo
methods is minimize the irregularity of distribution of the samples with respect to some
guantitative measure. One such measureisthestar discrepancy of P. Let 5* denote the set
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of all axis-aligned boxes with one corner at the origin:
B* = {B=[0,uy] X -+ x[0,u,] |0 <wu; <1forali}.

|deally, we would like each box B to contain exactly A\(B)N of the pointsin P, where
A(B) = uy---u, isthe volume of B. The star discrepancy simply measures how much
P deviates from thisideal situation:

Di(P) = sup |PAEOBE

R A(B)|, (2.32)

where #{ P N B} denotes the number of points of P that are inside the box B.

Discrepancy measures can also be defined with respect to other sets of shapes (e.g. ar-
bitrary axis aligned boxes, or convex regions [Niederreiter 1992]). For two-dimensional
image sampling, it is particularly useful to measure discrepancy with respect to edges, by
considering thefamily of shapes obtained by intersecting [0, 1]* with an arbitrary half-plane
[Mitchell 1992]. The relevance of discrepancy to image sampling was first pointed out by
Shirley [1991].

The significance of the star discrepancy isthat it is closely related to bounds on the in-
tegration error. Specifically, the Koksma-Hlawka inequality states that

% ;f(xl) — /[ flx)de| < Vur(f) DN(P),

0,1]°

where V; « (f) isthe variation of f in the sense of Hardy and Krause [Niederreiter 1992].
Thus, the maximum integration error is directly proportional to the discrepancy, provided
that the variation V x (f) isfinite. By finding low-discrepancy points sets and sequences,
we can ensure that the integration error is small.

It is important to note that for dimensions s > 2, the variation Vy x(f) is infinite
whenever f isdiscontinuous.” This severely limitsthe usefulness of these boundsin com-
puter graphics, where discontinuitiesare common. Also notethat since Vy  (f) istypically

"More precisely, Vi (f) = oo whenever f is discontinuous along a surface that is not perpendicular to
oneof the s coordinate axes. In general, notethat f must beat least s timesdifferentiablein order for Vi i (f)
to be bounded in terms of the partial derivativesof f. That is, letting M be an upper bound on the magnitude
of al partial derivatives of degree at most s, then Vi (f) < ¢M where the constant ¢ depends only on s
[Niederreiter 1992].
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harder to evaluate than the original integral, these worst-case bounds are not useful for es-
timating or bounding the error in practice.

2.6.4.2 Low-discrepancy pointssetsand sequences

A low-discrepancy sequence is an infinite sequence of points x, x, . . . such that the star

i - o)

discrepancy is

for any prefix P = {z1,...,xy}. (Notethat P isactually amultiset, i.e. the multiplicity of
the elements matters.) This result is achieved by a number of known constructions, and it
iswidely believed to be the best possible [Niederreiter 1992]. However, it should be noted
that the best current lower bound for an arbitrary dimension s is only

Dy(P) > Ol LT
i.e. there isa significant gap between these bounds.

If we drop the requirement that P is a prefix of an infinite sequence, the discrepancy
can be improved dlightly. A low-discrepancy point set is defined to be a multiset P =

{z1,..., 2y} for which

Di(P) = 0 <—“°g Al ) .
(More precisely, this should be the definition of a low-discrepancy point set construction,
since the bound does not make sense when applied to asingle point set P.)

Combining these bounds with the Koksma-Hlawkainequality, the error of quasi-Monte
Carlo integration is at most O((log N)*~!/N) using a low-discrepancy point set, or
O((log N)*/N) using a prefix of alow-discrepancy sequence.

Note that these bounds are of questionable value unless NV isvery large, since (log N)*
is much larger than NV for typical values of NV and s. In particular, notice that the function
(log N)*/N is monotonically increasing for N < ¢* (i.e. the larger the sample size, the
worse the error bound). In fact, we should not expect these error bounds to be meaningful
until (log N)* < N at thevery least, since otherwise the error bound is worse than it would
befor N = 2. To get an idea of how large N must be, consider the case s = 6. It iseasy
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to check that (log N)*/N > (log2)®/2 for dl N < 10% and thus we should not expect
meaningful error bounds until /V is substantially larger than this.

However, these error bounds are overly pessimistic in practice. Low-discrepancy se-
guences often give better results than standard Monte Carlo even when NV is fairly small,
provided that the integrand is reasonably well behaved.

2.6.4.3 Halton sequences and Hammer sley points

We now discuss several well-known constructions for low-discrepancy points sets and se-
quences. In one dimension, the radical inverse sequence x; = ¢,(i) is obtained by first
writing the base-b expansion of i:

i= 3 digb®,

k>0
and then reflecting the digits around the decimal point:
o(i) = > digb 7N
k>0

The special case when b = 2 iscalled the van der Corput sequence,

) 'y o) o T

co| Ut
ol W

oo

3
Y 47

N | =
e

The discrepancy of the radical-inverse sequence isO((log N)/N) in any base b (although
the implied constant increases with b).

To obtain alow-discrepancy sequence in several dimensions, we use a different radical
inverse sequence in each dimension:

i = (@6, (1), Poy (1), - - -, Po, ()

where the bases b; are all relatively prime. The classic example of this construction is the
Halton sequence, where the b; are chosen to be thefirst s primes:

Ty = (¢2(i)7 ¢3(i)7 ¢5(i)v R ¢ps(i)) .

The Halton sequence has a discrepancy of O((log N)°/N).
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If the number of samplepoints NV isknown in advance, thisdiscrepancy can beimproved
dightly by using equally spaced pointsi/N in the first dimension. The result is known as
the Hammerdley point set:

Ty = (i/N7 ¢2(i), ¢3(i), R ¢ps_1(i))

where p; denotes the i-th prime as before. The discrepancy of the Hammersley point set is
O((log N)*=1/N).

2.6.44 (t,m,s)-netsand (t,s)-sequences

Although discrepancy isauseful measure of theirregularity of distribution of aset of points,
it does not always accurately predict which sequenceswill work best for numerical integra-
tion. Recently there has been a great deal of interest in (¢, m, s)-nets and (¢, s)-sequences,
which define the irregularity of distributionin adightly different way. Let E be an elemen-
tary interval in the base b, which is simply an axis-aligned box of the form

STt t;+1
E:H{bTJJ ]b’%‘)

Jj=1

where the exponents k; > 0 areintegers, and 0 < ¢; < b — 1. In other words, each
dimension of the box must be a non-positive power of b, and the box must be aligned to
an integer multiple of its size in each dimension. The volume of an elementary interval is
clearly

AME) = b Zimh |

A (0,m, s)-net in base b is now defined to be a point set P of size N = ™, such that
every elementary interval of volume 1/b~"™ contains exactly one point of P. Thisimplies
that a (0, m, s)-net is distributed as evenly as possible with respect to such intervals. For
example, supposethat P is (0,4, 2)-netin base 5. Then P would contain N' = 625 points
in the unit square [0, 1]%, such that every elementary interval of size 1 x 1/625 contains a
point of P. Similarly, al theintervalsof size1/5 x 1/125,1/25 x 1/25,1/125 x 1/5, and
1/625 x 1 would contain exactly one point of P.
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The more general notion of a (¢, m, s)-net is obtained by relaxing this definition some-
what. Rather than requiring every box of sizeb=" to contain exactly one point, we require
every box of size b~ to contain exactly b' points. Clearly, smaller values of ¢ are better.
The reason for allowing ¢ > 0 isto facilitate the construction of such sequences for more
values of b and s. (In particular, (0,m, s)-netsfor m > 2 canonly existwhens < b+ 1
[Niederreiter 1992].)

A (t, s)-sequence is then defined to be an infinite sequence x4, -, . . . such that for all
m > 0 and k£ > 0, the subsequence

Tkbmg1y -y Lppm+l

isa (t,m,s)-net in the base b. In particular, every prefix xy,...,zy of Size N = "
isa (t,m, s)-net. Explicit constructions of such sequences for various values of b and s
have been proposed by Sobol’, Faure, Niederreiter, and Tezuka (see Niederreiter [1992] and
Tezuka[1999]).

Every (¢, s)-sequence is a low-discrepancy sequence, and every (¢, m, s)-net is alow-
discrepancy points set (provided that ¢ is held fixed while m is increased). Thus these
constructions have the same worst-case integration bounds as for the Halton sequences
and Hammersley points. However, note that (¢, s)-sequences and (t, m, s)-nets often work
much better in practice, because the discrepancy is lower by a significant constant factor
[Niederreiter 1992].

It isinteresting to compare the equidistribution properties of (¢, m, s)-netsto orthogonal
array sampling. For simplicity let t = 0, and let A be an orthogonal array of strength m.
Then in the terminology of (¢, m, s)-nets, orthogonal array sampling ensures that there is
one sample in each elementary interval £ of volume 1/0™, where E hasm sides of length
1/band al other sidesof length one. The Latin hypercube extension of Tang [1993] ensures
that in addition, thereisone samplein each elementary interval E that hasone side of length
1/b™ and all other of length one. Thusthe 1- and m-dimensional projectionsare maximally
stratified. For comparison, the (0, m, s)-net not only achieves both of these properties, it
also ensures that there is one sample in every other kind of elementary interval of volume
1/b™, so that the projections of dimension 2, 3, ..., ¢ — 1 are also stratified aswell as pos-
sible.
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2.6.45 Randomly permuted (t, m,s)-netsand (t, s)-sequences

A significant disadvantage of quasi-M onte Carlo methodsisthat the samplelocationsare de-
terministic. In computer graphics, thisleadsto significant aliasing artifacts[Mitchell 1992].
It also makesit difficult to compute error estimates, since unlike with Monte Carlo methods
we cannot simply take several independent samples.

These difficulties can be resolved by using randomly permuted (¢, m, s)-netsand (¢, s)-
sequences|[Owen 1995b)] (also called scrambled netsand sequences). Theseare obtained by
applying random permutations to the digits of ordinary (¢, m, s)-nets and (t, s)-sequences,
in such away that their equidistribution properties are preserved [Owen 1995b]. The idea
is straightforward to implement, although its analysisis more involved.

Scrambled nets have several advantages. Most importantly, the resulting estimators are
unbiased, since the sample points are uniformly distributed over the domain [0, 1]°. This
makes it possible to obtain unbiased error estimates by taking several independent random
samples (e.g. using different digit permutations of the same origina (¢, m, s)-net). (See
Owen [19974a] for additional discussion of variance estimates.) In the context of computer
graphics, scrambled nets also provide a way to eliminate the systematic aliasing artifacts
typically encountered with quasi-Monte Carlo integration.

Second, it is possible to show that for smooth functions, scrambled nets lead to a vari-

Vi) = 0 (M) ,

ance of
N3

and thus an expected error of O((log V)©*~1/2N=3/2) in probability [Owen 1997b]. This
isan improvement over both the Monte Carlo rate of O(N~'/?) and the quasi-Monte Carlo
rate of O((log N)*~'N~1). Inal cases, these bounds apply to a worst-case function f (of
sufficient smoothness), but note that the quasi-Monte Carlo rate uses a deterministic set of
points while the other bounds are averages over random choices made by the sampling al-
gorithm.

Scrambled nets can improve the variance over ordinary Monte Carlo even when the
function f is not smooth [Owen 1997b]. With respect to the analysis of variance decom-
position described above, scrambled nets provide the greatest improvement on the compo-
nents f;; where the number of variables |U| is small. These functions f;; can be smooth
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even when f itself is not (due to integration over the variablesin S — U), leading to fast
convergence on these components.

2.6.4.6 Discussion

The convergence rates of quasi-Monte Carlo methods are rarely meaningful in computer
graphics, due to smoothness requirements on the integrand and the relatively small sample
sizesthat are typically used. Other problems include the difficulty of estimating the varia-
tion Vi (f), and the fact that (log V)* ! istypicaly much larger than N in practice. The
lack of randomnessin quasi-Monte Carlo methodsisadistinct disadvantage, sinceit causes
aliasing and precludes error estimation.

Hybrids of Monte Carlo and quasi-Monte Carlo seem promising, such as the scrambled
(t, m, s)-nets described above. Although such methods do not necessarily work any bet-
ter than standard Monte Carlo for discontinuous integrands, at |least they are not worse. In
particular, they do not introduce aliasing artifacts, and error estimates are available.

Keller [1996, 1997] has applied quasi-Monte Carlo methods to the radiosity problem
(a specia case of the light transport problem where all surfaces are diffuse). He uses a
particle-tracing algorithm (similar to Pattanaik & Mudur [1993]), except that the directions
for scattering are determined by aHalton sequence. He hasreported aconvergence rate that
isdlightly better than standard Monte Carlo on simpletest scenes. The main benefit appears
to be due to the sampling of the first four dimensions of each random walk (which control
the selection of theinitial point on alight source and the direction of emission).

2.7 Variancereduction I11: Adaptive sample placement

A third family of variance reduction methods is based on the idea of adaptively controlling
the sampledensity, in order to place more sampleswherethey are most useful (e.g. wherethe
integrand is large or changes rapidly). We discuss two different approaches to doing this.
One is adaptive sampling, which can introduce bias unless special precautions are taken.
The other approach consists of two closely related techniques called Russian roul ette and
splitting, which do not introduce bias and are especially useful for light transport problems.
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2.7.1 Adaptive sampling

The idea of adaptive sampling (also called sequential sampling) is to take more samples
wheretheintegrand hasthe most variation. Thisisdone by examining the samplesthat have
been taken so far, and using this information to control the placement of future samples.
Typically this involves computing the variance of the samplesin a given region, which is
then refined by taking more samplesif the variance exceeds agiven threshold. A number of
such techniques have been proposed in graphics for image sampling (for example, see Lee
et a. [1985], Purgathofer [1986], Kajiya[1986], [Mitchell 1987], Painter & Sloan [1989]).

Like importance sampling, the goa of adaptive sampling is to concentrate samples
where they will do the most good. However, there are two important differences. First, im-
portance sampling attempts to place more samplesin regions where the integrand is large,
while adaptive sampling attempts to places more samples where the variance is large. (Of
course, with adaptive sampling we are free to use other criteriaaswell.) A second important
difference isthat with adaptive sampling, the sample density is changed “on the fly” rather
than using a priori information.

The main disadvantage of adaptive sampling is that it can introduce bias, which in
turn can lead to image artifacts. Bias can be avoided using two-stage sampling [Kirk &
Arvo 1991], which consists of first drawing a small sample of sizen from arepresentative
region R C §2, and then using this information to determine the sample size NV for the re-
maining portion Q@ — R of the domain.2 Although this technique eliminates bias, it also
eliminates some of the advantages of adaptive sampling, since it cannot react to unusual
samples encountered during the second stage of sampling.

Another problem with adaptive sampling is that it is not very effective for high-
dimensional problems. The same problems are encountered as with stratified sampling:
there are too many possible dimensionsto refine. For example, if we split the region to be
refined into two pieces along each axis, there will be 2° new regions to sample. If most of
the sampling error is due to variation along only one or two of these axes, the refinement
will be very inefficient.

8Alternatively, two samplesof size n and N could be drawn over the entire domain, where the first sample
is used only to determine the value of NV and is then discarded.
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2.7.2 Russian roulette and splitting

Russian roul ette and splitting are two closely related techniques that are often used in parti-
cletransport problems. Their purposeisto decrease the sample density where the integrand
issmall, and increase it where the integrand is large. Unlike adaptive sampling, however,
these techniques do not introduce any bias. The applications of these methodsin computer
graphics have been described by Arvo & Kirk [1990].

Russian roulette. Russianrouletteisusually applied to estimatorsthat are asum of many
terms:
F=F+.--+Fy.

For example, ' might represent the radiance reflected from a surface along a particular
viewing ray, and each F; might represent the contribution of a particular light source.

The problem with this type of estimator is that typically most of the contributions are
very small, and yet all of the F; are equally expensiveto evaluate. Thebasic ideaof Russian
rouletteis to randomly skip most of the eval uations associated with small contributions, by
replacing these F; with new estimators of the form

F' =

)

qL F; with probability ¢; ,
0 otherwise.

The evaluation probability ¢; is chosen for each F; separately, based on some convenient
estimate of its contribution. Notice that the estimator F is unbiased whenever F; is, since

BIF) = - —BIF]+(1=g)-0
= E[F].

Obvioudly this technique increases variance; it is basically the inverse of the expected
values method described earlier. Neverthel ess, Russian roulette can still increase efficiency,
by reducing the average time required to evaluate F'.

For example, supposethat each F; representsthe contribution of aparticular light source
to the radiance reflected from a surface. To reduce the number of visibility tests using Rus-

sian roulette, we first compute a tentative contribution ¢; for each F; by assuming that the
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light sourceisfully visible. Then afixed threshold ¢ is typically chosen, and the probabili-
tiesq; areset to
¢; = min(1,¢;,/9).

Thus contributions larger than ¢ are always evaluated, while smaller contributions are ran-
domly skipped in away that does not cause bias.

Russian roulette is also used to terminate the random walks that occur particle transport
calculations. (Thiswas the original purpose of the method, as introduced by Kahn — see
[Hammersley & Handscomb 1964, p. 99].) Similar to the previous example, the ideaisto
randomly terminate the walks whose estimated contributions are relatively small. That is,
given the current walk xyx; - - - x;, the probability of extending it is chosen to be propor-
tional to the estimated contribution that would be obtained by extending the path further, i.e.
the contribution of pathsof theformx - - - x;» where &’ > k. Thishasthe effect of terminat-
ing walks that have entered unproductive regions of the domain. In computer graphics, this
technique is used extensively in ray tracing and Monte Carlo light transport calculations.

Splitting. Russianrouletteisclosely related to splitting, atechniquein which an estimator
F; isreplaced by one of the form

k

Y Eij,

j=1

F =

> =

wherethe F; ; areindependent samplesfrom F;. Aswith Russian roulette, the splitting fac-
tor £ is chosen based on the estimated contribution of the sample F;. (A larger estimated
contribution generally correspondsto alarger value of £.) Itiseasy to verify that thistrans-
formation isunbiased, i.e.

E[F]] = E[F].

7

In the context of particle transport calculations, this has the effect of splitting a single
particle into £ new particles which follow independent paths. Each particle is assigned a
weight that isafraction 1 /£ of theweight of the original particle. Typically thistechniqueis
applied when a particle enters a high-contribution region of the domain, e.g. if wearetrying
to measure leakage through areactor shield, then splitting might be applied to neutrons that
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have already penetrated most of the way through the shield.

The basic idea behind both of these techniques is the same: given the current state
XoX7 - - - X3 Of arandom walk, we are free to use any function of this state in deciding
how many samples of x;; will be taken. If we predict that the contribution of the path
X - - - Xpo1 Will be low, then most of the time we will take no samples at al; while if the
contribution is high, we may decide to take several independent samples. If thisis applied
at every vertex, the resulting structure is atree of paths.

In general, Russian roul ette and splitting can be applied to any process where each sam-
pleis determined by a sequence of random steps. We can use any prefix of this sequence to
estimate the importance of the final sample. Thisisthen used to decide whether the current
state should be discarded (if theimportanceislow) or replicated (if the importanceis high).
Although thisidea is superficially similar to adaptive sampling, it does not introduce any
bias.

Russian roulette is an indispensable technique in transport calculations, since it allows
otherwise infinite random walks to be terminated without bias. Splitting is also useful if it
isjudiciously applied [Arvo & Kirk 1990]. In combination, these techniques can be very
effective at directing sampling effort into the most productive regions of the domain.

2.8 Variancereduction IV: Correlated estimators

Thelast family of variance reduction methodswe will discussisbased on theideaof finding
two or more estimators whose values are correlated. So far these methods have not found
significant uses in graphics, so our discussion will be brief.

2.8.1 Antithetic variates

The idea of antithetic variatesisto find two estimators £ and F, whose values are nega-
tively correlated, and add them. For example, supposethat thedesiredintegral is [, f(x) du,
and consider the estimator

F=({fU)+f1-0))/2
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where U isuniformly distributed on [0, 1]. If thefunction f is monotonically increasing (or
monotonically decreasing), then f(U) and f(1 — U) will be negatively correlated, so that
F will have lower variance than if the two samples were independent [Rubinstein 1981,
p. 135]. Furthermore, the estimator F' is exact whenever the integrand is alinear function
(i.e f(x) = ax + ).

This idea can be easily adapted to the domain [0, 1]°, by considering pairs of sample
points of the form

)(1:(U17...,U5> and X2:(1—U1,...,]_—U5).

Again, this strategy isexact for linear integrands. If more than two samples are desired, the
domain can be subdivided into several rectangular regions(2;, and a pair of samples of the
form above can be taken in each region.

Antithetic variates of this type are most useful for smooth integrands, where f is ap-
proximately linear on each subregion 2;. For many graphics problems, on the other hand,
variance ismainly due to discontinuities and singularities of the integrand. These contribu-
tionstend to overwhel m any variance improvements on the smooth regions of theintegrand,
so that antithetic variates are of limited usefulness.

2.8.2 Regression methods

Regression methods are a more advanced way to take advantage of several correlated esti-
mators. Suppose that we are given several unbiased estimators £, .. ., F), for the desired
guantity I, and that the F; are correlated in someway (e.g. because they use different trans-
formations of the same random numbers, as in the antithetic variates example). The idea
is to take several samples from each estimator, and apply standard linear regression tech-
niquesin order to determine the best estimate for I that takes all sources of correlation into
account.

Specifically, the technique works by taking /N samples from each estimator (where the
j-th samples from F; is denoted F; ;). We then compute the sample means
N
Y F; fori=1,...,n,

J=1

ji:
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and the sampling variance-covariance matrix V, asquare n x n array whose entries are

1 N

Vie = v 1 1;1 (Fir = L) (Fjp — 1) -

Thefinal estimate F' isthen given by
F = (X*V1X)"'X*VI, (2.33)

where X* denotesthetransposeof X, X = [1...1]* isacolumnvector of lengthn, andT =
[f 1o, fn]* isthe column vector of sample means. Equation (2.33) isthe standard minimum-
variance unbiased linear estimator of the desired mean I, except that we have replaced the
true variance-covariance matrix V by an approximation V. Further details can be found in
Hammersley & Handscomb [1964].

Note that thistechnique introduces some bias, dueto thefact that the same random sam-
ples are used to estimate both the sample means I; and the variance-covariance matrix en-
tries V; ; (which are used to weight the 7;). This bias could be avoided by using different
random samples for these two purposes (of course, thiswould increase the cost).

The main problem with regression methodsisin finding a suitable set of correlated esti-
mators. If the integrand has discontinuities or singularities, then simple transformations of
theform f(U) and f(1 — U) will not produce a significant amount of correlation. Another
problem isthat this method requires that a substantial number of samples be taken, in order
to estimate the covariance matrix with any reasonable accuracy.
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Chapter 3
Radiometry and Light Transport

In this chapter, we describe the domains, quantities, and equations that are used for light
transport calculations. Many of these concepts have their originsinradiometry, afield that
studies the measurement of electromagnetic radiation. Radiometry is a natural foundation
for graphics, because light is part of the electromagnetic spectrum.

We start by discussing the mathematical representation of the scene model. We then
discuss the phase space and trajectory space, and show how radiometric quantities can be
defined in terms of photon events. Next we give definitions of the quantitiesthat are needed
for light transport cal culations, including power, irradiance, radiance, and spectral radiance.
We al so discuss the concepts of incident and exitant radiance functions.

We then describe how the light transport problem is formulated mathematically. This
startswith the definition of the bidirectional scattering distribution function (BSDF), which
gives a mathematical description of the way that light is scattered by a surface. We show
how the BSDF is used to define the basic light transport equations, and we give a brief
introduction to adjoint methods and bidirectional algorithms. We also explain why non-
symmetric BSDF s require special treatment in bidirectional algorithms, and we define the
useful concept of an adjoint BSDF. These ideas will be of central importance for the next
several chapters.

Appendix 3.A discusses field and surface radiance functions [Arvo 1995], and com-
pares them with the incident and exitant radiance functions that we use instead. Finaly,
Appendix 3.B gives the details of our measure-theoretic radiometry framework, in which

75
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we apply the tools of measure theory to define radiometric concepts more precisely. The
maintask isto define and use suitable measure functions, extending thework of Arvo [1995,
Chapter 2].

A good introduction to radiometry is the book by McCluney [1994]. Other good ref-
erences include [Nicodemus 1976], [Arvo 1995], [Cohen & Wallace 1993], and [Glassner
1995]. Note that our development is quite different than the standard treatments, due to the
emphasis on measure theory.

3.1 Domainsand measures

We assume that the scene geometry consists of a finite set of surfaces inIR?, whose union
isdenoted M. Formally, each surface is a piecewise differentiable two-dimensional mani-
fold, possibly with boundary. For technical reasons, we require each manifold to be aclosed
set; that is, every manifold A/ must include its boundary 0. This prevents gaps between
abutting surfaces (e.g. consider a cube formed from six squares). Note that M itself is not
necessarily a manifold. For example, consider two spheres that touch at a point, or a box
sitting on atable.

The surfaces divide IR* into a number of connected cells, each filled with a non-
participating medium with a constant refractive index (i.e. volume absorption, emission,
and scattering are not allowed).! It is possible that some surfaces do not belong to any cell
boundary (e.g., apolygon floating in space).

We define an areameasure A on M in the obviousway,? so that A(D) denotesthe area

Iwith this convention, all objectsarehollow inside; a“solid” object issimply an empty cell with an opaque
boundary. This representation is actually used by many rendering systems. Alternatively, acell could be al-
lowed to contain a perfectly absorbing medium. However, thiswould regquire some extra care with definitions,
for example when defining the visibility and ray-casting functions used in Chapter 4.

2Given that M isthe union of manifolds My, ..., My, we define A(D) asthe sum of theareas A;(D N
M), where A; isthe usual area measure on the manifold M,. The measurable sets D C M are defined by
the requirement that all D N M, are measurable. We aso require that the intersection between any pair of
surfaces M, and M ; isaset of measure zero. In practice, this means that when the intersection between two
surfaces has non-zero area (e.g. a cube sitting on a table), the rendering system must arbitrarily choose one
surface over the other. This ensures that aimost every point of M (up to a set of area measure zero) has a
unique set of surface properties.
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of aregion D C M. The notation

[, 76 dA)

denotes the Lebesgue integral of the function f : M — IR with respect to surface area.

Directions are represented as unit-length vectorsw € R*. The set of al directionsis
denoted S, the unit spherein IR*. Let o be the usual surface area measure on S2. Given
aset of directions D C S?, the solid angle occupied by D issimply o(D). Similarly, the
solid angle subtended by a surface P from apoint x is determined by projecting P onto the
unit sphere centered at x, and computing the measure of the resulting set of directions.

Another useful concept is the projected solid angle [Nicodemus 1976, p. 70], which
arisesin determining theirradiance (power per unit area) received by surface. Given apoint
x € M, let N(x) bethesurfacenormal at x. Givenaset of directions D C S?, theprojected
solid angle measure o7, is defined by

o (D) = /D |w - N(x)|do(w) . (3.1

X

The factor w - N (x) is often written as cos 6, where ¢ isthe polar angle of w (i.e. the angle
between w and the surface normal).

The name projected solid angle arises from the following geometric interpretation. Let
T,,(x) be the tangent space at the point x, i.e. the space of vectorsin IR? that are perpen-
dicular to the surface normal:

T,(x) = {y e R’ |y-N(x) =0}.

(Unlike the more familiar tangent plane, the tangent space passes through the origin. Thus
it isalinear space rather than an affine one.) The tangent space divides S? into two hemi-
spheres, namely the upward hemisphere

H:(x) = {we S |w-N(x)>0} (3.2
and the downward hemisphere

H? (x) = {we S |w-N(x)<0}.
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Now given aset of directions D contained by just one hemisphere, the projected solid angle
can be obtained by simply projecting D orthogonally onto the tangent space, and then find-
ing the area of the resulting planar region. For example, supposethat D isthe entire upward
hemisphere7{% . The corresponding projected regionisaunit disc, sowe haveai(%i) =T.

3.2 Thephase space

Radiometric quantities can be defined within the more general framework of transport the-
ory, which studies the motion of particlesin an abstract setting. Each particle is character-
ized by a small number of parameters, which vary as afunction of time. Typical particles
such as neutrons or gas molecules can be represented by their position and velocity, for a
total of 6 degrees of freedom. The state of a system of /V particlesis then represented as
a6/N-dimensiona vector, which can be thought of as a point in the 6 V-dimensional phase
space containing all possible system states.® The evolution of the system over time corre-
sponds to a one-dimensional curve in phase space.

We now consider how this applies to light transport. Under the assumption that light
is unpolarized and perfectly incoherent, the state of each photon can be represented by its
position x, direction of motion w, and wavelength A [Nicodemus 1976, p. 8]. Thus for a
system of NV photons, the phase space would be 6/V-dimensional.

However, for particlesthat do not interact with each other (such as photons), it is more
useful tolet the phase space correspond to the state of asingle particle. With thisconvention,
the phase space v is only 6-dimensional, and can be expressed as

Y = R*x S x RY,

wherelR* denotesthe positivereal numbers (corresponding to the range of allowablewave-
lengths). A system of N photonsis represented as a set of NV points in this 6-dimensional
space, whose positions vary as afunction of time.

Radiometric quantities can then be defined by counting the number of photonsinagiven

3For many problemsthe natural phase spaceis not really 6 N -dimensional, since physical laws may cause
certain propertiesof theinitial stateto be preservedfor all time (e.g., thetotal energy). Thisrestrictsthe phase
space to be alower-dimensional manifold within the 6 NV -dimensional Euclidean space defined above.
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region of the phase space, or measuring their density with respect to one or more parameters.
The most basic of these quantities is the photon number N,,, which ssimply measures the
number of photons in a given phase space region [McCluney 1994, p. 26]. For example,
we could count the number of photonsin a given spatial volume Q C IR? at afixed time
to, With no restrictions on the direction or wavelength parameters. This corresponds to the
region Q2 x S? x R" of the phase space ).

3.3 Thetrajectory space and photon events

We generalize the notion of a radiometric measurement further, by considering the time di-
mension explicitly. If the phase space positions of all photons are graphed over time, we
obtain a set of one-dimensional curves in the trajectory space

U =Rx,

where thefirst parameter represents time. Radiometric measurements are defined by speci-
fying a set of photon events along these curves, and then measuring the distribution of these
eventsin various ways.

A photon event isasinglepoint in thetrajectory space V. Some events have natural def-
initions; for example, each emission, absorption, or scattering event correspondsto asingle
point along a photon trajectory.* Other events can be defined artificially, usually by speci-
fying asurface in W that intersects the photon trajectories at a set of points. For example,
we could define the events to be the photon states at a particular timet,. This corresponds
to intersecting the trgjectories with the plane ¢ = ¢, in the trgjectory space ¥. Similarly,
given an arbitrary plane P in IR?, we could define a photon event to be a crossing of P,
corresponding to an intersection with the surface R x P x 8% x R in trgjectory space.

Oncethe photon eventshave been defined, we areleft with aset of pointsinthetrajectory

“4Infact, each scattering event correspondsto two points a ong the photon trgjectory, since the w parameter
hasdifferent valuesbefore and after the callision (corresponding to adiscontinuity inthetragjectory). Similarly,
thewavel ength parameter A could change discontinuously in afluorescent material. Thus, we must distinguish
between in-scattering and out-scattering events, according to whether we measure the photon state before
or after the collision. This is the basis for distinguishing between incident and exitant radiance functions,
discussed in Section 3.5.
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space V. These points may be distributed throughout the whol e space ¥, or they may lie on
some lower-dimensional manifold (e.g. if the photon events were defined as an intersection
with a surface). To define aradiometric quantity, we then measure the distribution of these
events with respect to a suitable geometric measure.

For this purpose, it is convenient to assume that the events are so numerous that their
density can be modeled by continuous distributions rather than discrete ones. Rather than
counting the photon events in a given region of the trajectory space, for example, we de-
termine their total radiant energy @ (measured in joules [J]). We will ignore the discrete
nature of photons and assume that ) can take on any non-negative real value. (Note that
each photon has an energy of hv, where i isPlanck’s constant, and v = 1/ isfrequency.)

3.4 Radiometric quantities

We now discuss some of the most important radiometric quantities. Each of these is de-
fined by measuring the distribution of energy with respect to one or more parameters. The
discussion hereisinformal; a more detailed development is given in Appendix 3.B.

341 Power

Radiant power is defined as energy per unit time,

dQ

o = =
dt ’

(3.3)

and is measured in watts [W = J - s7!]. For example, thisis the quantity used to describe
the rate at which energy is emitted or absorbed by afinite surface S C R®.
The notation (3.3) could be written more precisely as

a) = “0.

which makes it clear that  and () are functions of time. Obviously Q must be defined asa
function of time, in order for the idea of differentiating it to make sense. In general, thisis
done by defining Q(¢) to measure the energy of the photon events in some region D(t) of
trajectory space, where theregion D(t) grows with time. For example, suppose that we are



3.4. RADIOMETRIC QUANTITIES 81

counting emission events, and consider the region
D(t) = [0,t] x S x S* x R*,

where S C R* isafinite surface. In this case, Q(t) represents the total energy emitted by
S over thetime interval [0, ¢], so that ®(¢) = dQ(t)/dt measures the energy emission per
unit time (at each timet).

However, we will usually ignore these subtleties. Most often we are concerned with
systemsin equilibrium, so that the density of photon eventsin phase space does not change
with time. In this case, the ¢ parameter can be omitted from the notation, as in equation
(3.3).

3.4.2 Irradiance

Continuing with our discussion of radiometric quantities, irradianceis defined as power per

unit surface area:
dd(x)

(x) = dA(x)’

(3.4)

with units of [W - m~2|. It is always defined with respect to a point x on a surface S (ei-
ther real or imaginary), with a specific normal N(x). The term irradiance also generally
implies the measurement of incident radiation, on one side of the surface only (i.e. light
incident from the upward hemisphere 7% (x)). When light is leaving the surface, through
either emission or scattering, the preferred term isradiant exitance (denoted by the symbol
M) [Nicodemus 1978, p. 11]. Another common term isradiosity, which was introduced by
Moon [1936] and popularized in the heat transfer literature (cf. Heckbert [1992]).

3.4.3 Radiance

For light transport calculations, by far the most important quantity isradiance, defined by

d*®(x,w)

Lixw) = dAL(x) do(w)’

(3.5)



82 CHAPTER 3. RADIOMETRY AND LIGHT TRANSPORT

where A} isthe projected area measure, which measures area on a hypothetical surface per-
pendicular tow. That is, to measure the radiance at (x, w), we count the number of photons
per unit time passing through a small surface d A7, (x) perpendicular to w, whose directions
are contained in a small solid angle do(w) around w. Radiance is defined as the limiting
ratio of the power d® represented by these photons, divided by the product dA (x) do(w).
The corresponding unitsare [W - m™2 - sr™!].
When measuring the radiance leaving a rea surface.S, a more convenient equation is
given by ,
d*d(x,w
Lixw) = |w - N(x)| C(ZA’(X>> do(w)’ (36)

whereasbefore A istheareameasureon S, and N (x) isthesurfacenormal at x. Thisrelates

the projected area d A_, to the ordinary areadA, according to®

dA-(x) = |w-N(x)|dA(x). (3.7)

w

Alternatively, the|w-N(x)| factor can beabsorbed into the projected solid angle measure

defined above, leading to
> (x, w)
dA(x) dos(w)

This is the most useful definition when dealing with radiance on real surfaces, because it

L(x,w) = (3.8)

uses the natural areameasure A.

3.4.4 Spectral radiance

Carrying this one step further, spectral radiance L, is defined by

PO (x,w, \)
dA(x) dos(w) d\’

Ly(x,w,\) = (3.9

that is, Ly, = dL/d\. The units are typically givenas [W - m 2 - st ! - nm ], where
the use of nanometers for wavelength helps to avoid confusion with the spatial variables
[Nicodemus 1976, p. 49]. Other spectral quantities can be defined similarly, e.g. spectral

SMore precisely, the projected areameasure is defined by 45 (D) = Jp lw - N(x)| dA(x), where D isan
arbitrary region of S.
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power isdefined by @, = d®/dA.
Spectral radianceis often considered to be the fundamental radiometric quantity, in that
many other common quantities can be derived from it. For example, radiance is given by

L(x,w) = /OO Ly(x,w,\)d\,
0

from which irradiance can be obtained by
Ex) = L(x,w dai w).
(x) /i(x) (%, w) (w)

In this dissertation, we will most often deal with spectral radiance L,. However, for
conciseness we will usually just refer to thisas “radiance” and use the symbol L. Thisisa
slight abuse of terminology, but it is common practice in computer graphics.

Many other radiometric quantities have been defined, but we will not need them here.
The manual by Nicodemus [1976] is an excellent reference on this topic, although some of
the notation has been superceded by the USA Standard Nomenclature and Definitions for
[lluminating Engineering [American National Standards Institute 1986].

3.5 Incident and exitant radiance functions

A radiance function is simply a function whose values correspond to radiance measure-
ments.® Most often, we will work with functions of the form

L:Mx8 =R,

where M isthe set of scene surfaces (Section 3.1). Occasionally, radiance functions of the
form
L:R*x 8> — R

will also be useful. Note that we allow negative valuesfor L(x, w) (which have no physical
meaning), to ensure that the set of all radiance functionsis a vector space.

6As mentioned in Section 3.4, we will often use the terms radiance and spectral radianceinterchangeably,
ignoring the extra A parameter.
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We will distinguish between incident and exitant’ radiance functions, according to the
interpretation of the w parameter. An incident function L;(x, w) measures the radiance ar-
riving at x from the direction w, while an exitant function L, (x, w) measures the radiance
leaving from x in the direction w. In free space, these quantities are related by

Li(x,w) = Lo(x,—w). (3.10)

However, at surfaces the distinction is more fundamental: L; and L, measure different
sets of photon events, corresponding to the photon statesjust before their arrival at the sur-
face, or just after their departure respectively. The relation between L; and L, can be quite
complex, since it depends on the scattering properties of the surface.

The difference between incident and exitant radiance can be understood more precisely
in terms of the trgjectory space V. Recall that each photon traces out a one-dimensional
curve in this space, namely the graph of the function (x;, w;, A;)(t) over al valuesof ¢. To
measure radiance, we define a photon event to be an intersection of one of these curveswith
thesurface P = R x M x 8% x R" in trajectory space. Our key observation is that this
curveisnot continuous at IP, since scattered photonsinstantaneously change their direction
and/or wavelength. (A continuous curve would correspond to a photon that passes through
M without any change.) Similarly, the curvesfor emitted and absorbed photonsare discon-
tinuous, since they are defined on only one side of P.

We now observe that L; and L, measure events that are limit points of trgjectories on
opposite sides of the surface P. Each event (¢;, x;,w;, \;) measured by Z; is the limit of
atrajectory defined for ¢ < t;, while an event measured by L, isthe limit of atrgectory
defined for ¢ > ¢;. Thisgives a simple and precise way to differentiate between incident
and exitant radiance.

Notethat incident and exitant radiance functionsare quite similar to thefield and surface
radiance functions proposed by Arvo [1995] (the main differenceisthat thedirection of w is
reversed for field radiance as compared to incident radiance). Appendix 3.A discussesthese
two approaches and explains the advantages of incident and exitant radiance functions.

"Nicodemus prefersthe spelling exitent, and states that this term was coined by Richmond (cf. [Nicodemus
1976, p. 25]). Our use of exitant stems from [Christensen et a. 1993], where the term appears to have been
re-invented.
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Figure3.1: Geometry for defining the bidirectional scattering distribution function (BSDF).

3.6 Thebidirectional scattering distribution function

The bidirectional scattering distribution function (BSDF) is a mathematical description of
thelight-scattering propertiesof asurface. Letx € M beafixed point on the scene surfaces,
and consider the radiance leaving x in a particular direction w, (see Figure 3.1). We will
denote this L, (w, ), dropping x from our notation. In general, the radiance L, (w,) depends
ontheradiancearriving at x fromall directions. For now, wefix aparticular directionw;, and
consider theincident light from an infinitesimal cone around w;, where the cone occupies a
solidangleof do(w;). Thislight strikesthe surface at the point x, and generatesan irradiance
equal to
dE(w;) = Li(w;) do (w;) .

Thelight isthen scattered by the surfacein all directions; welet dL,(w,) represent the con-
tribution made to the radiance leaving in direction w,,.

It can be observed experimentally that asd E'(w;) isincreased (by increasing either L; or
do(w;)), thereisaproportional increase in the observed radiance d L, (w, ):

dLo(w,) x dE(w).

This corresponds to the fact that light behaves linearly under normal circumstances (recall
Section 1.5.3).
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The BSDF f,(w; — w,) isnow simply defined to be this constant of proportionality:

_ dLo(wo)  dLo(wo)
fi(wi—w,) = JBw) — Liw) dot (@) (3.11)

Inwords, f;(w; — w,) isthe observed radiance leaving in directionw,, per unit of irradiance
arriving from w;. The notation w; — w, Symbolizesthe direction of light flow.

3.6.1 Thescattering equation
By integrating the relationship
dLo(wo) = Li(w;) folwi—wo) do (w;)

over all directions, we can now predict L,(w,). Thisis summarized by the (surface) scat-
tering equation,®
Lofwa) = [, Lifw) folwi o) do (i) (3.12)
S2

This equation can be used to predict the appearance of the surface, given a description of
the incident illumination.

3.6.2 TheBRDF and BTDF

The BSDF is not a standard concept in radiometry.® More typically, the scattered light is

subdivided into reflected and transmitted components, which are treated separately. This

leadsto the definition of the bidirectional reflectance distribution function (BRDF), and the

bidirectional transmittance distribution function (BTDF), denoted f. and f; respectively.
The BRDF is obtained by simply restricting f; to asmaller domain:

fHExHE SR,

8The corresponding equation for one-sided, opaque surfaces is called the reflectance equation [Cohen &
Wallace 1993, p. 30].

9The name appears to have been introduced by Heckbert [Heckbert 1991, p. 26]. Previously, he used the
term bidirectional distribution function (BDF) [Heckbert 1990], however we feel that this term is more ap-
propriate for a category of such functions, containing the various B* DF's as members.
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where H? and H? are often called the incident and reflected hemispheres respectively. In
fact, both symbols refer to the same set of directions (2 = H?), which can be either the
upward hemisphere 742, or its complement 2.

The BTDF is defined similarly to the BRDF, by restricting f, to adomain of the form

fi i HE X HE = R,

where the transmitted hemisphere 42 = —#? isthe complement of H?. Asbefore 77 can
represent either the upward hemisphere 742 , or its complement #2 .

Thus, we see that the BSDF is the union of two BRDF's (one for each side of the sur-
face), and two BTDF's (one for light transmitted in each direction). Its main advantage is
convenience: we only need to deal with one function, rather than four. The BSDF allowsus
to write equationsthat are simple and yet general, capable of describing the scattering from
any kind of surface. Surfaces that are purely reflective or transmissive are smply special
cases of thisformulation. In addition, the BSDF isactually easier to define, since we do not
need to specify the hemispherical domains needed by the BRDF and BTDF.

Properties of the BRDF. The BRDF's that describe real surfaces are known to have a
number of basic properties. For example, they are symmetric:

Lilwi—w) = filwo—wi) for al w;, w, . (3.13)

Because of the symmetry, the notation f; (w; <+ w,) is often used. Another property shared
by physical BRDF's isenergy conservation, as embodied by the condition

/‘MM%%MEW)SI for all w; € H2 . (3.14)
H2

Further explanation of BRDF s and their properties can befound in [Nicodemuset al. 1977,
p. 5] or [Cohen & Wallace 1993, p. 28].

Note that these simple conditions are unique to reflection, and do not always apply to
surfaces that transmit light. Thus, it cannot be assumed that BSDF's or BTDF's satisfy the
simplerules above. We will investigate the correct generalization of these propertiesto ar-
bitrary surfacesin Chapter 6.
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3.6.3 Angular parameterizations of the BSDF

It is common to write BSDF's in terms of polar and azimuthal angles, rather than unit di-
rection vectors. We will use this parameterization later in this chapter, to derive the scaling
of radiance at arefractive interface (Section 5.2). We show how the two parameterizations
are related, and summarize the advantages of the unit vector form.

In the angular parameterization, a directionw € S? is represented as a pair of angles
(0, ¢). The polar angle & measures the angle between w and the normal IN, while the az-
imuthal angle ¢ measures the angle between w and afixed direction T lying in the tangent
space at x. The angular and vector representations are thus related by

cosf = w-N,

cosp = w-T.

To use this parameterization, we must also know how the angle measures o and o™ are
represented. The solid angle o corresponds to

do(w) sin 0 df d¢ (3.15)

= dlcosfdo,
while the projected solid angle o can be written in a number of forms:

do (w) = |cosf)| sinfdfde (3.16)
|cos 6| d! cos 6 do

= sinfdsinfdo

(1/2) d! cos* 0 do

= (1/2)dsin’*0do.

With the angular parameterization, the scattering equation (3.12) thus becomes

Lollor0) = [ [ (0,00 £0, 00,00, 00) lcos O sinbudbidos,  (317)

where the other representations (3.16) for the projected solid angle could also be used.
Although the angul ar representation iscommon, there are good reasonsto prefer the unit
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vector representation w € S?. First, note that (6, ¢) isalocal representation of direction,
since the angles # and ¢ depend on the surface normal. When more than one surface point
isinvolved, it is much more convenient to work with direction vectors. Second, the (6, ¢)
representation creates the impression that many formulas involve trigonometric functions,
when in fact they are usually implemented with dot products. Finally, the angular represen-
tation depends on an extra parameter (the tangent vector T'), which must be chosen arbitrar-
ily since it has no physical significance.

3.7 Introduction to light transport

This section reviews the main concepts of light transport, without getting into too much
detail. (Theseideaswill be defined more precisely inthe next chapter, wherewereformul ate
light transport in terms of linear operators.) We discuss the measurement, light transport,
and importance transport equations. We also outline the ideas of bidirectional methods for
the light transport problem, and explain why they are often the most efficient methods for
itssolution. Finally, we explain why bidirectional algorithms need to evaluate BSDF swith
special care, and we define the useful concept of an adjoint BSDF.

3.7.1 The measurement equation

The goal of light transport isto compute a set of real-valued measurements 14, . . ., 1,,. For
example, in alight transport algorithm that computes an image directly, each measurement
I; represents the value of asingle pixel, and M isthe number of pixelsin the image.

Each measurement corresponds to the output of a hypothetical sensor that responds to
theradiance L;(x, w) incident upon it. The response may vary according to the position and
direction at which light strikes the sensor; this is characterized by the sensor responsivity
W, (x,w). Thetotal responseis determined by integrating the product 1, L;, according to

I = /sta Wa(x, ) Li(x, w) dA(x) dos(w) . (3.18)

Thisis called the measurement equation. Note that there is actually one equation for each
measurement 1, each with a different responsivity function 1. (although we will usually
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drop the superscript). Also note that we have assumed that the sensors are modeled as part
of the scene M, in order that we can integrate over their surface.

3.7.2 Thelight transport equation

Generally, we are most interested in measuring the steady-state or equilibrium radiance
function for the given scene.l” It isconventional to solvefor the exitant version of thisquan-
tity, L., from which the incident radiance L; can be obtained using

Li(x,w) = Lo(x,(x,w), —w) .

Here x,,(x,w) is the ray-casting function, which returns the first point of M visible from
x indirection w.
We can express L, as the sum of emitted radiance L., and scattered radiance L, :

Lo = L+ Log.

The emitted radiance function L. (x, w) isprovided as part of the scene description, and rep-
resents all of the light sourcesin the scene. On the other hand, L, ; is determined using the
scattering equation (3.12), according to

Los(x,w,) = / Li(x, w;) fs(x,wi%wo)dai(wi).
S2

By putting these equationstogether, we get acompl ete specification of thelight transport
problem. The most interesting feature isthat L, and L; have been defined in terms of each
other; commonly their definitions are combined to obtain

Lo(x,wo) = Lo(x,w,) + /82 Lo (%, (%, wi), —wi) f(X, wi— w,o) do (wi) (3.19)

which is known as the light transport equation. Since L; does not appear in this equation,
the subscript on L, isusually dropped. Theform of thisequation naturally leadsto recursive
solutions (the essence of traditional Monte Carlo methods).

10Since light travels so much faster than the everyday objects around us, equilibrium is achieved very
quickly after any changes to the environment. Effectively, the world we perceive is always in equilibrium
(with respect to light transport).
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3.7.3 Importance and adjoint methods

As we have presented them, the transport rules apply to the scattering of light, as emitted
by the sources. However, the transport rules can be applied equally well to the sensors, by
treating the responsivity 17, (x, w) asan emitted quantity. In this context, 1, (x, w) iscalled
an emitted importance function, since W, specifies the “importance” of the light arriving
along each ray to the corresponding measurement /.

Thisideaisthe basis of adjoint methods, which apply the transport rules to importance
rather than radiance. These methods start with the emitted importance W, (x, w), and solve
for the equilibrium importance function W (x, w), according to the importance transport
eguation

Wi(x,w) = Wo(x,w)+ . W (%, (X, wi), —wi) f(X, wo = wi) doy (w;) - (3.20)
Thisequation isvirtually identical to the light transport equation (3.19), except that the di-
rectional arguments to the BSDF have been exchanged.

Given the equilibrium importance W, measurements are computed by integrating the
product W L. (smilar to (3.18)). Note that while there is only one equilibrium radiance
function, there can be many different equilibrium importance functions (one for each sen-
sor). Thisisan important difference between direct and adjoint methods.

3.7.4 Bidirectional methods

Many recent algorithms combine features from both of these approaches, leading to bidi-
rectional light transport methods. The computation is guided by the viewing information
(sensors), aswell as the lighting information (sources). This alows these algorithmsto be
more efficient, since they can do less work in regions that are dark or that are not visible.
This concept issimilar to certain planning problemsin artificial intelligence, where the ob-
jectiveistoget fromaninitial statetoagoal, given someset of possibleactions. Itispossible
to reduce the search complexity by simultaneously working forward from the initial state,
and backward from the goal, until the two searches meet somewhere in the middle.

Bidirectional algorithms can appear in a number of different forms. Importance-driven
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Figure 3.2: Path tracing and particle tracing sample the BSDF in different ways. (a) For
path tracing, the directionw,, isgiven (it points toward the previous vertex on apath leading
toasensor). The path isextended by sampling adirectionw; according to the BSDF. (b) For
particle tracing, the directionw; is given (pointing along a path toward a light source), and
the path is extended by sampling a directioncw,.

methods use viewing information to guide mesh refinement, by increasing the mesh resolu-
tion in regionswhere the equilibrium importanceishigh (since these regions have the great-
est influence on the desired set of measurements). With Monte Carlo approaches, bidirec-
tional methods often combine path tracing, where the transport equation is sampled starting
from the sensors, and particle tracing, where sampling begins at the light sources.

In one way or another, almost all recent light transport algorithms have taken a bidi-
rectional approach. These include finite element approaches [Smits et al. 1992, Schroder
& Hanrahan 1994, Christensen et al. 1996], multi-pass methods[Chen et al. 1991, Zimmer-
man & Shirley 1995], particletracing algorithms[Heckbert 1990, Pattanaik & Mudur 1995,
Shirley et al. 1995, Jensen 1996], and bidirectional path tracing [Lafortune & Willems 1993,
Veach & Guibas 1994, Veach & Guibas 1995].

3.7.5 Sampling and evaluation of non-symmetric BSDF’s

Scene model s often contain materialswhose BSDF isnot symmetric, i.e. for which f, (w; —
W) # fo(w, — wj). Great care must be taken when such materials are used with bidi-
rectional algorithms, because in this case the transport rules for light and importance are
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(a) The normal BSDF f. (b) The adjoint BSDF f.".

Figure 3.3: By adopting the convention thatw; is always the sampled direction, the BSDF
fs and its adjoint f.* are used for different purposes. (a) The BSDF f;(w; — w,) is used for
radiance evaluation, and to scatter importance particles. (b) The adjoint BSDF f.* (w; — w,)

is used for importance evaluation, and to scatter light particles.

different. Formally, this can be seen by noting that the light transport equation (3.19) and
the importance transport equation (3.20) are identical, except that the directional arguments
to the BSDF have been exchanged. Thus if the BSDF is not symmetric, then light and im-
portance satisfy different transport equations. From another point of view, recall that the
BSDF was defined in terms of light propagation: light flows from the incoming direction w;
to the outgoing direction w,. Thusimportance flowsfromw, to w;, sinceitistransportedin
the opposite direction aslight. Similarly, different scattering rules must be used for particle
tracing and path tracing to obtain correct results when non-symmetric BSDF's are present
(seeFigure3.2). Thus, bidirectional algorithms must take care when evaluating or sampling
the BSDF, to ensure that w; and w, are ordered correctly.

In the next few chapters, we will study non-symmetric BSDF's and their consequences
for bidirectional algorithmsin detail.

3.7.6 Theadjoint BSDF

Given an arbitrary BSDF f;, the adjoint BSDF f* is defined by

fFwi—=wo) = filwo—w) for al w;,w, € S?. (3.21)
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The main advantage of the adjoint BSDF is that it lets the importance transport equation
(3.20) have the same form as the light transport equation (3.19). Recall that the only dif-
ference between these two equations is that the arguments to the BSDF are exchanged
(fs(wo — wy) instead of f,(w; — w,)). By using the adjoint BSDF f* in the importance
transport equation, this difference is eliminated: the two equations have exactly the same
form, but they use different BSDF's (see Figure 3.3.)

The adjoint BSDF also provides a useful convention for sampling. Recall that in path
tracing, we sample the BSDF to determine the incident directionw; (sincew, isgiven). We
extend thisidea, by adopting the convention that w; is always the sampled direction during
arandom walk. Werefer to the opposite situation (wherew; isprovided, and w, is sampled)
as sampling the adjoint BSDF. For example, according to this convention the adjoint BSDF
is used to scatter light particles.

We also mention two other techniques that can be used in bidirectional algorithms. The
first of these isimportance particletracing, in which particles are emitted from the sensors
and scattered throughout the environment, in order to obtain a set of samplesthat represent
the equilibrium importance. This processis similar to ordinary particle tracing, except that
importance is used instead of light. Thisimplies that importance particles should be scat-
tered using the ordinary BSDF f,. The second techniqueisimportance evaluation, inwhich
the equilibrium importance on aray (x,w) isestimated by recursively sampling the impor-
tance transport equation. Thisis similar to the evaluation of radiance using path tracing,
except that the adjoint BSDF f* isused instead of f.

To summarize, the adjoint BSDF is used for importance evaluation and for scattering
light particles (i.e. sampling processes that start at a light source), while the normal BSDF
isused for radiance evaluation and for scattering importance particles (sampling processes
that start at a sensor). These rules will be justified formally in Chapter 4.
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Appendix 3.A Field and surface radiance functions

In this appendix we consider thefield and surface radiance functions defined by Arvo [1995, p. 28],
and compare them with the incident and exitant radiance functions described in Section 3.5. Basi-
caly, field radiance L; issimilar to incident radiance L;, while surface radiance L is similar to exi-
tant radiance L. The main difference isthat Ly and L are defined only in the context of one-sided
(reflective) surfaces, which allows them to be defined as two halves of a single radiance distribution
L.

To define field and surface radiance precisely, letS be a surface bounding an opagque object, and
consider theradiance distribution L(x,w) at apointx € S. Arvo[1995] observes that since scatter-
ing occurs on only oneside of S, the direction of w can be used to distinguish incident photons from
exitant ones: if w isin the upward hemisphere #2 (x), then L(x,w) refers to radiance leaving the
surface, and otherwise L(x, w) refersto radiance arriving at the surface. Applying this observation,
he proposed that L (x, w) is naturally partitioned intosurface radiance Ly(x,w) and field radiance
L¢(x,w), according to whether w - N(x) is positive or negative respectively.

However, there are severa important differences between incident/exitant radiance and
field/surface radiance. First, the sense of the direction parameterw is reversed for Ly as compared
to L;:

Li(x,w) = Li(x,—w).

Thefield radiance definition Ly woul d appear to be more natural, sincew corresponds to the direction

of travel of the photons. However, theZ; definition has two important advantages. At reflective sur-
faces, it corresponds to the convention assumed by most BRDF formulas, wherew; and w,, both point

outward. More significantly, the L; definition causes certain natural transport operators to become
self-adjoint (namely the G and K operators defined in Section 4.3), which increases the symmetry
between the equations governing light and importance transport.

A second differenceisthat L; and L,, are defined for two-sided surfaces, e.g. thosethat allow both
reflection and transmission. For these surfaces,w cannot be used to distinguish between incident and
exitant photons, since L; and L, are both defined for all w € S?. Instead, the two sets of photon
events must be distinguished using the time dimension, as we have outlined above.

Finally, field and surface radiance are defined only at surfaces, while incident and exitant radi-
ance are defined in space as well. (The distinction betweenZ; and L, is till useful in this context,
since it can be used to define self-adjoint operators for volume scattering.)
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Appendix 3.B Measure-theoretic radiometry

Typicaly, radiometric quantities are defined using “infinitessimals’ and limit arguments. Arvo[Arvo
1995, Chapter 2] has taken a different approach, by proposing aset of axiomsthat correspond to the
observable behavior of photons, and then deriving radiometric quantities using the tools of measure
theory. Hisanalysisfocused onthe spatial distribution of steady-state, monochromatic radiation, and
led to a measure-theoretic definition of thephase space density (defined below). In this section we

show how to extend his techniques to a more general class of radiometric quantities: for example,
we give measure-theoretic definitions of spectral radiance and spectral radiant sterisent

3.B.1 Measure spaces

A measure spaceisatriple (P, P, o), where P isaset (theunderlying set of the measure space), P is
acollection of subsets of P (the measurable sets), and ¢ : P — [0, oo] isanon-negative, countably
additive set function (themeasure function, or simply themeasure). The countably additive property
means that . .
. (U Di> = > o)
=1 =1
whenever the D; are mutually digoint measurable sets.

The measurable sets form ac-algebra, meaning that P contains IP, and is closed under the op-
erations of complementation and countable unions. For technical reasons,P is generally a proper
subset of 2P, that is, some sets are not measurable. However, for the measure spaces we are inter-
ested in (those constructed as the product of Lebesgue measures), the unmeasurable sets represent
pathological situations that can be ignored in practice.

Sometimes, the measures we consider will not be finite; that is, o(P) = oco. However, they
will always have the weaker property of beingo-finite, meaning that there is an infinite sequence
Dy, D, ... of measurable sets such that

and o(D;) isfinite for all i. That is, a o-finite measure space is one that can be decomposed into
countably many regions, each with finite measure.
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3.B.2 Thephoton event space

To define aradiometric quantity, wefirst choose an appropriatephoton event space Thisisthe subset
P C ¥ of thetrgjectory space containing all possiblelocations of the photon events wewish to count.
Thus, P depends on the definition of aphoton event; by defining photon eventsin different ways, we
will obtain different radiometric quantities. For example, consider the case ofvolume emission (e.g.
the light emitted by afire). Without knowledge of the specific scene geometry, we must assume that
a photon could be emitted from any point inIR?3, in any direction, at any wavelength, at any time;
thus we would set P = ¥ (the whole trajectory space). On the other hand, if photon events were
defined as crossings of a hypothetical surfaceS C IR?, then the photon event space would be

P=RxSxSxR".

In this example, IP is a 6-dimensional manifold within the 7-dimensional trajectory spaced.

3.B.3 Thegeometric measure

Next we define a measure ¢ on the photon event space, called thegeometric measure, which will be
used to measure the density of photon events. It will normally be defined as product of the natural
L ebesgue measures on the components of IP. For example, in the case of volume emissionp isgiven

by

0o =IxvxoxIt,

where [ and It are the usual length measures onIR and IR respectively, and v is the usual volume
measure on IR3. Note that this definition also establishes the geometrically measurable setsP, ac-
cording to the usual rules for product measures [Halmos 1950, p. 140]*

3.B.4 Theenergy measure
To count the photon events in various regions of P, we also define an energy content function

Q:P —0,00].

UTechnically, we work with the completion of the product measure, which augments P to include sets of
theform D A N, where A denotes the symmetric difference of two sets, D isameasurable set, and NV isan
arbitrary subset of a set of measure zero.
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To each measurable set D of the photon event space, it assigns a non-negative real numberQ (D)
that measures the total energy of the photon eventsinD. The function @ is assumed to obey the
following physically plausible axioms (see [Arvo 1995, p. 19]):

(AD) Q:P —[0,0]

(A2 Q (G Di> = iQ(Di) for mutually disoint{D;} C P
=1

=1

(A3) o(D)<o0 = Q(D)<x
(Ad) o(D)=0 = Q(D)=0

Axiom (A1) states that every region contains a non-negative quantity of energy. Axiom (A2)
states that (2 is countably additive; that is, if we consider a countable set of disjoint regionsD;, the
energy contained their union is simply the sum of their individual energies. Together, (A1) and (A2)
imply that @ is anon-negative, countably additive set function, so that by definition( is a measure
(on the same measurable sets for which o is defined).

Axiom (A3) states that every region with finiteo-measure contains a finite quantity of energy.
Intuitively, this says that the energy density is finite everywhere, a concept that will be made more
precise below. From a measure-theoretic point of view, it ensures that thes-finite property of ¢ car-
riesover to Q.

Finally, (A4) states that ) is continuous with respect to o, meaning that every set with zero o-
measure also has zero Q-measure. Thisimportant property allows the “ratio” of two measures to be
defined rigorously, as we shall see below.

By trandating these axioms into the language of measure theory, we obtain the following theo-
rem (cf. Arvo, Theorem 1 [Arvo 1995, p. 22)):

Theorem 3.1 (Existence of Energy Measures). Given a photon event space P with geometric
measure o, and an energy content function @ satisfying axioms (Al), (A2), (A3), and (A4), thenQ
defines a positive o-finite measure over P, and () is continuous with respect to .

Thus, we will now refer to Q as the energy measureon PP.

3.B.5 Defining radiometric quantitiesasa ratio of measures

Loosely speaking, a radiometric quantity can now be defined by measuring the density of@@ with
respect to o, i.e. the ratio dQ/do for aregion D that becomes arbitrarily small. Thisidea can be
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made precise by means of the Radon-Nikodym theorem [Halmos 1950, p. 128]%?

Theorem 3.2 (Radon-Nikodym). If (P, P, o) isa o-finite measure space, and if ac-finite measure
@ on P is continuous with respect to o, then there exists a non-negative, real-valued, o-measurable
function f on P such that

QD) = [ fdo
D
for every measurable set D € P. The function f is unique up to a set of p-measure zero.

Thefunction f is called the Radon-Nikodym derivative of 2 with respect to o, denoted

_ Q
f=0 (3.22)

Thisnotation emphasizesits similarity with ordinary differentiation, with which it shares many prop-
erties.

Using the Radon-Nikodym theorem, we can thus defineafunctionf corresponding to the density
of photon events. The meaning of this density obviously depends on how the events are defined.
However, we can summarize the fact of its existence as follows (cf. Arvo, Theorem 3 [Arvo 1995,
p. 23)):

Theorem 3.3 (Existence of Energy Density). Given a photon event spacelP with geometric mea-
sure o, and an energy content function ) satisfying axioms (A1), (A2), (A3), and (A4), then there
exists a p-measurable function f : P — (0, co), which is unique to within a set of p-measure zero,
satisfying
QD) = | fe.
D

where D € P isa measurable subset of IP.

3.B.6 Examplesof measure-theoretic definitions

We now give several examples showing how these concepts can be applied.

3.B.6.1 Spectral radiant sterisent

Consider again the case of volume emission. Recall from Section 3.B.2 that the photon event space
isthe whole trajectory spacelP = W, while the geometric measureisp = [ x v x o x [T. By taking

2Notice that we have restricted our definition of a measure space to positive, total measures, which sim-
plifies the statement of the theorem somewhat.
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the derivative d@/do, we obtain a quantity

AT do T dldvdodlt

This quantity is called spectral radiant sterisent [Nicodemus 1978, p. 55], and has units of power
per unit area per unit solid angle per unit wavelength[W - m=3 - sr=! - nm™!]. It is used for the
measurement of emission, scattering, and absorption within volumes.

3.B.6.2 Spectral phase space density

Asanother example, consider the events defined by intersecting the photon trajectories with the sur-
facet = ty. Thisallowsusto measure theinstantaneous spatial distribution of the photons, aconcept
that is particularly useful for steady-state systems. This was the situation studied by Arvo [1995],
who devel oped a measure-theoretic phase space density for photons distributed inIR* x S2.

In our framework, the event space for this situation is

P = {t} x v,

where {t,} denotes the set containing the single valuet,, and recalling that v is the phase space
Y = R? x §2 x R*. The geometric measure o is just the natural measure on the phase space,
with adight technical modification to account for presence of the fixed timety:

— +
0 = Ny XvXxoxIT,

where Ay, (D) = 1if tg € D and A4, (D) = 0 otherwise. Then the quantity

dQ d@
T T dvdodit (3.23)

measures the density of energy with respect to volume, direction, and wavelength[J - m 2 - sr— 1 .
nm™!]. We call u, the spectral phase space density. It is similar to the phase space density u de-
scribed by Arvo [1995], except that we have also taken the derivative with respect to wavelength.

3.B.6.3 Spectral radiance
As afinal example, define the photon events as crossings of a surfaceS. The event spaceis

P=RxSxS8xR",
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with the geometric measure defined by
0 =I1xAxo,xIt.

Notice that A x o, issimply the measure that was used to define radiance. Thus the density

Lol e
AT do T dldAdot alt

corresponds to spectral radianceas defined earlier (3.9). Notice that although this definition isvalid
only on the surface S, the choice of S was arbitrary. Thus we can use this equation to defineL
anywhere in the trgjectory spaceWw.

3.B.7 Discussion: fundamental vs. derived quantities

It is sometimes claimed that spectral radianceisthe“fundamental” radiometric quantity, from which
all others can be derived. Aswe have seen, thisisnot so. All of the three quantities defined in Sec-
tion 3.B.6 are fundamental, because they measuredifferent sets of photon events It isnot possible to
obtain one from another by integration. Each quantity must be defined independently, by first spec-
ifying the photon events, and then describing their density using a Radon-Nikodym derivative:?
Thereisnot even aunigque geometric space that we can use, since different kinds of photon events
require different geometric measures. 1n some cases, the measure can be defined on al of¥ (aswith
LY), whilein other casesit must be defined on alower-dimensional subset of ¥ (aswithuy and L).
Note that many “derived” quantities (i.e. one that is obtained by integrating afundamental quan-
tity, aswedid in Section 3.4 to obtain radiance from spectral radiance) can be interpreted directly as
Radon-Nikodym derivatives, by reducing the dimension of the underlying measure space. For ex-
ample, to interpret radiance as a Radon-Nikodym derivative, we could redefine the trajectory space
tobeR x R? x % (omitting the wavelength parameter), and then proceed as for spectral radiance

13Note that by making additional assumptions, it is often possible to express one fundamental quantity in
terms of another. For example, Arvo [1995, p. 26] shows how radiance can be defined in terms of the phase
space density u, by assuming that all photonstravel at the same speed ¢. He then observes that radiance and
phase space density arerelated accordingto Ly = cuy, where c isthe speed of light. (A similar observation
appearsin [Milne 1930, p. 76].)

Note that thisrelationship is only truein avacuum, since in general photonstravel at the speed ¢/n (where
7n isthe local refractiveindex, which may vary with position). It is even possible that photons at same point
in spacewill travel at different speeds (i.e. if they have different wavelengths, in a dispersive medium). Thus
in general, vy and L) cannot be derived from each other without additional assumptions, so that we consider
both of them to be fundamental quantities.
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(Section 3.B.6). This technique can be used to give rigorous meaning to the various derivative no-
tations we used in Section 3.4, such asE = d%Q / (dt dA).



Chapter 4

A General Operator For mulation of
Light Transport

Thegoal of thischapter isto devel op arigoroustheoretical basisfor bidirectiona light trans-
port algorithms. Current frameworks do not adequately describe the relationships between
light and importance transport; between finite element, recursive evaluation, and particle
tracing approaches; or between incident and exitant transport quantities, especially when
materialswith non-symmetric BSDF sare used. Asaresult, given abidirectional algorithm
that uses some combination of these features, it can be difficult to verify whether it actually
solvesthe original transport equations. This can lead to significant mistakes when bidirec-
tional algorithms are implemented, as we will see in Chapter 5.

To remedy these problems, we need a better theoretical framework for light transport
calculations. Thistheory should clearly state the relationships between the various solution
techniques mentioned above, using only a small number of basic concepts. It should also
show how these techniques are affected by non-symmetric scattering, and specify a set of
rulesthat allow correct results to be obtained. All components of the framework should be
expressed in terms of standard mathematical concepts, and the notation should be concise
and yet rigorous.

In this chapter, we develop a light transport framework that addresses these goals. It
concisely expresses the relationships between light and importance transport, in both their
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incident and exitant forms, and also their relationship to particle tracing. The fundamen-
tal building blocks used are measures, function spaces, inner products, and linear opera-
tors. Our work builds directly on the elegant formulation of Arvo [1995], who consid-
ered light transport among reflective surfaceswith symmetric BRDF's. We also incorporate
ideasfrom Christensen et al. [1993], Schroder & Hanrahan [1994], and Pattanaik & Mudur
[1995].

However, many aspects of our framework are new. Most importantly, we do not make
any assumptions about the symmetry of BSDF's. This leads to a framework with aricher
structure than previous approaches. There are four distinct transport quantities L;, L., W;,
W,,, corresponding to incident/exitant radiance/importance. For each of these quantities,
there is a distinct transport operator and measurement equation. All of these are related
in a ssmple way, since they are constructed from just two basic elements: the scattering
and propagation operators, which describe independent aspects of the light transport pro-
cess. This additional structure actually helps to clarify the relationships among transport
guantities, since we can see which relationships are fundamental, and which depend on the
symmetry of the BSDF.

There are several other contributions. We characterize particletracingin anew and more
useful way, as a condition on the probability distribution of a set of weighted sample rays.
We aso introduce the ray space abstraction, which simplifies the notation and clarifies the
structure of light transport calculations. Finaly, we point out that incident rather than field
radiance functions must be used to make certain transport operators self-adjoint.

This chapter is organized as follows. We start by defining the ray space and reviewing
some useful properties of functionson ray space. Next, we describe the scattering and prop-
agation operators, and we show how they can be used to represent light transport. We then
consider sensors and measurements, and show that the scattering and propagation opera-
tors can also be used for importance transport. In Section 4.7, we give a summary of the
complete transport framework.

Appendix 4.A considers particle tracing algorithms, and describes a new condition that
can be used to verify their correctness. Finally, Appendix 4.B gives an analysis of the in-
verses, adjoints, and norms of the operators we have defined.
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4.1 Ray space

We define the ray space and throughput measure, which together form a natural basis for
light transport calculations. We show that it is possible to represent the ray space in more
than one way, and we also discuss the advantages of defining the ray space abstractly, as
opposed to using an explicit representation of rays.
Theray space R consists of all raysthat start at points on the scene surfaces. Formally,
R isthe Cartesian product
R = M x§?%, (4.2

where as usual, M isthe set of surfaces in the scene, and S? isthe set of all unit direction
vectors. Theray r = (x,w) hasoriginx and directionw. Thereason for requiringtheorigin
to lie on a surface is that in the absence of participating media, the radiance along a given
ray isconstant. Thusinstead of representing the radiance at every point in an environment,
it is sufficient to represent the radiance leaving surfaces.

Thethroughput measure. We define ameasure ;. on R, called the throughput measure,
that is used to integrate functions on ray space. Consider a small bundle of rays around a
central ray r = (x,w), such that the origins of these rays occupy an area dA, and their
directionsliewithin asolid angle of do. Then the throughput of thissmall bundleis defined
as

du(r) = dp(x,w) = dA(x)do, (W), (4.2)

that is, 1 isssmply the product of the areaand projected solid angle measures. Thisisknown
asthedifferential form of the throughput measure. Note that 1« isinvariant under Euclidean
transformations, which makesit unique up to aconstant factor [Ambartzumian 1990, p. 51].

To define (D) for ageneral set of rays D C R, we integrate the differential measure
(4.2) over thedomain D:

p(D) = [ dA(x)doy(w).

which can be written more explicitly as

u(D) = /M o-(D)dA(x) where D, = {w]|(x,w)e D}.
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The quantity (D) measures the light-carrying capacity of a bundle of rays D, and corre-
sponds to the classic radiometric concept of throughput [Steel 1974, Nicodemus 1976, Co-
hen & Wallace 1993]. The measure 4 is also similar to the usual measure on linesin R?
(see [Ambartzumian 1990]). However, note that the measures on line space and ray space
are not the same, since unlike line space, the ray space R can contain distinct rays that are
colinear (corresponding to lines that intersect M at more than one point).

The differential form (4.2) of the throughput measure can be written in several aterna-
tive forms that are sometimes useful. By expanding the definition (3.1) of projected solid
angle, we get

du(x,w) = |w-Ng(x)|dA(x)do(w), (4.3
= dA(x)do(w), (4.4)

where A" isthe projected area measure (3.7). All of these definitions are equivalent.
The throughput measure a so alows usto define radiance in a simpler and more natural

way, namely as power per unit throughput:

d®(r)

dp(r)

It is easy to check that this definition is equivalent to the ones given in Section 3.4.3.

L(r) = (4.5)

Other representationsof ray space. Although we will most often use the representation
r = (x,w) for aray, it ispossibleto represent the ray spacein other ways. For example, we
could define R as

R = MxM, (4.6)

so that each ray isapair r = x — x’ (where the arrow notation denotes the direction of the
ray). Notice that there is some redundancy in this representation, since the raysx — x’ and
x — x" are equivalent whenever x’ and x” lie in the same direction from x. However, this
redundancy is sometimes useful: for example, it allows usto construct abasisfor functions
onray space asatensor product of bases defined on the scene surfaces. Also noticethat with
this representation, there is no way to represent light that radiates out to infinity: thus, itis
most useful when M isa closed environment, and we are only interested in light transport
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between elements of M.
Even when R isrepresented in different ways, the throughput measure 1. should be un-
derstood to havethe same meaning. For example, with the representation above, . isdefined

by
cos(#) cos(6')

du(x—x') = V(x<x') x— x|

dA(x) dA(xX) . 4.7)

Hered and ¢’ are the angles between the segment x <+ x’ and the surface normalsat x and x’
respectively, while V' (x <+ x’) isthe visibility function, whichis 1 if x and x" are mutually
visible and 0 otherwise.! Asusual, the notation x — x’ indicates the direction of aray, and
f(x+>x') indicates a symmetric function.

Advantages of the ray space abstraction. There are several reasons to use the abstract
representation r € R for rays, rather than writing (x, w) explicitly. First, it clarifies the
structure of radiometric formulas, by hiding the details of the ray representation. Second,
it emphasizes that the representation is a superficial decision that can easily be changed.
Finally, it alows usto define concepts whose meanings do not depend on how the rays are
represented, e.g. the throughput measure /.

4.2 Functionson ray space

The distribution of radiance or importance in a given scene can be represented as a real-
valued function on ray space, i.e. afunction of the form

f:R—=R.

In this section, we study the properties of such functions (e.g. norms and inner products),
and review some terminology related to function spaces (i.e. collections of functions that
all have some specified property). These ideas will be used later to analyze the properties
of light transport operators.

That is, V(x +» x') = 1 if the open line segment between x and x’ does not intersect M. Note that the
visibility factor can be removed from the definition (4.7), by restricting R to contain only those rays where
Vixex') =1
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Norms. We restrict our attention to the L,, norms, which are defined by

£, = ([ 1rerasm) " @8

where p isapositive integer. In the limit as p — oo, we obtain the L, norm:

[fllsc = esssup|f(r)], (4.9)
reR

where ess sup denotes the essential supremum, i.e. the smallest real humber m such that
f(r) < m admost everywhere.? The most commonly used norms are the L, L., and L.,
norms, which measure the average, root-mean-sgquare (RMS), and maximum absolute val-
ues of a function respectively. When the particular norm being used is not important, we
will simply write || f|].

For the purposes of analysis, it is convenient to consider only the functions whose L,
norm is finite. The collection of all such functions (for a given value of p) iscalled an L,
space, which we will denote by L,(R) (to emphasize the domain R of these functions).
These spaces have desirable analytic properties (which depend on the assumption of finite
norms).

There are a variety of terms that are used to describe L,, spaces, corresponding to the
various properties that they possess. At the most basic level, they are vector spaces, since
each space L, (R) is closed under the operations of addition and scalar multiplication. Vec-
tors spaces are also known as linear spaces, and in this context, as function spaces (since
each element of L,(R) isafunction).

The L, spaces are also complete, meaning that all Cauchy sequences converge?® (this
property is useful for analysis). Thus, L,(R) is a complete, normed, linear space; in the
terminology of functional analysis, thisis called a Banach space.

2Almost everywhere means that the rays for which f(r) > m form a set of measure zero (with respect to
the throughput measure 11). Thus according to this definition, the essential supremum ignoresvaluesof f that
are attained only at isolated points, etc.

3A sequence of functions f1, f», . . . isaCauchy sequenceif for any € > 0, thereis anindex N such that
IIfi — f;ll < eforalid,j > N. Such asequence converges if there is afunction f € L,(R) such that

Mmoo [|fi = £l = 0.
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Inner products. Another useful operation is the inner product of two functions on ray
space, defined by
(£.9) = [ £(x) g(r) dur). (4.20)

Notice that the inner product notation is more concise than writing the integral explicitly,
and yet it also imparts more information (sinceit can immediately be recognized asan inner
product, rather than some other kind of integral). A linear space F equipped with an inner
product is called an inner product space.

Every inner product has an associated norm defined by

IFIl = (f. )72,

whichinthiscaseisidentical tothe L, norm. Thus, the space L, (R ), together with theinner
product (4.10), is an example of an inner product space that is complete with respect to its
associated norm: thisis called a Hilbert space.

It is also possible to define weighted inner products between functions on ray space, by
multiplying the integrand of (4.10) by a positive weighting function w(r). This technique
can also be used to define other norms. In this chapter, however, we will only have need for
the unweighted versions defined above.

4.3 The scattering and propagation operators

From aphysical standpoint, we can consider light transport to be an alternation of two steps.
The first is scattering, which describes the interaction of photons with surfaces. The other
ispropagation, in which photonstravel in straight linesthrough afixed medium. Following
Arvoet a. [1994], we will define each of these steps as alinear operator acting on radiance
functions.

A linear operator is ssimply alinear function A : F — F whose domain is a vector
space F. In our case, F is a space of radiance functions, as defined above. The notation
A f denotes the application of an operator to a function, whose result is another function.
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Thelocal scattering operator. We begin with the local scattering operator, defined by*

(Kh)(x,w,) = /9 Fo(x, wi— wo) h(x, w;) doy (w;) . (4.12)

When this operator is applied to an incident radiance function L;, it returns the exitant ra-
diance L, = KL; that results from a single scattering operation. Equation (4.11) issimilar
to the scattering equation (3.12), except that K operates on entire radiance functions, rather
than being restricted to a single point x. It maps one function L into another function KL,
where each function is defined over the whole ray spaceR.

The propagation operator. To define the propagation operator, wefirst give amore pre-
cise definition of the ray-casting function x, ,(x, w) mentioned in Section 3.7. First, let

dy(x,w) = inf{d >0 | x+dw € M}, (4.12)

which is called the boundary distance function [Arvo 1995, p. 136]. We then define the
ray-casting function as
Xy (X, w) = x+dy(x,w)w, (4.13)

S0 that x,,(x,w) represents the first point of M that is visible from x in the direction w.
When theray (x, w) doesnot intersect M, we haved, ,(x,w) = oo, and x, , isnot defined.®

The propagation of light in straight linesis now represented by the geometric or propa-
gation operator G, defined by

(X (x,wi), —w;) i dy, (x,wi) < 00,

(Gh)(x,wi) = { (4.14)

0 otherwise,

This operator expresses the incident radiance L; in terms of the exitant radiance L, leaving
the other surfaces of the environment, accordingto L; = GL,.
These definitionsof G and K are dightly different than those of Arvo [1995]. First, we

4Although this definition seems to depend on the particular ray representation r = (x,w), in fact it can
be used with any representation. To do this, simply replace the argument on the left-hand side by a single
parameter r, and replace the symbols x and w, by functionsx = x(r) and w, = w,(r) (whose definitions
depend on the representation used).

SWith respect to equation (4.12), we have used the convention that inf () = oo, where §) is the empty set.
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have considered transmission aswell asreflection, by using the BSDF in the definition of K.
Second, we have used incident and exitant radiance rather than field and surface radiance
(see Section 3.5), so that the direction of w; isreversed compared to [Arvo 1995]. Themain
advantage of this convention isthat G and K are both self-adjoint when f; is symmetric,
which greatly increases the symmetry between light and importance transport (as we will
seein Section 4.6). Onthe other hand, the G and K defined by Arvo are not self-adjoint. He
handlesthisby introducing an isomorphism H between surface and field radiance functions,
such that HG and KH are equivaent to the G and K defined here [Arvo 1995, p. 151].

Locality. Notice that to evaluate the radiance scattered along a given ray (x, w), we only
need to know the incident radiance at the same point x. In other words, the evaluation of
(Kh)(x,w) only requires the evaluation of / on rays of the form (x, w’). This property of
the scattering operator K is called locality.

In general, we say that atransport operator A islocal if the evaluation of (Ah)(r) only
requires the evaluation of ~ on asmall set of raysr’. Inthis sense, the propagation operator
G isalsolocal, since to evaluate (Gh)(x,w) we only need the value of i on asingle ray
(x', —w). In fact we could say that G ismorelocal than K, since (Gh)(r) depends on the
value of i on asingleray, while (Kh)(r) depends on the value of i on a two-dimensional
subset of R.

Locality isimportant, since it dictates how much of the domain of 2 must be examined
in order to compute (Ah)(r) for agivenray r. Thistype of locality has been successfully
exploited in radiosity calculations, in order to handle textures more efficiently [Gershbein
et al. 1994].

4.4 Thelight transport and solution operators

The composition of the scattering and propagation operators is called the light transport
operator,
T = KG.
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Thisoperator maps an exitant radiance function L,, into the exitant function T L,, that results
after a single scattering step. (When there is no ambiguity, we will drop the subscript on
exitant functions and simply write L.)

Recall that our goal isto measure the equilibrium radiance L. The condition that must
be satisfied in equilibrium is that

L = L.+TL, (4.15)

where L. (r) isthe emitted radiance function (specified as part of the scene model). Thisis
called thelight transport equation. It issimply areformulation of (3.19), which saysthat at
equilibrium, the exitant radiance must be the sum of emitted and scattered radiance.

The solution operator. Formally, the solution can be obtained by inverting the operator
equation (4.15):

I-T)L = L.
= I-T)"'Le,

where I is the identity operator. It is convenient to rewrite this equation in terms of the
solution operator®
S =(1I-T)", (4.16)

in which case the solutionissimply L = SL..

Conditions for invertibility. These forma manipulations are valid only if the operator
I — T isinvertible. A sufficient condition isthat || T|| < 1, where || T|| is the standard
operator norm

IT| = sup T[], (4.17)

Iri<t

6Note that S is closely related to the resolvent operator R, used in spectral analysis, except that R, has
aparameter A\, and does not have a universally accepted definition (e.g. compare [Delves & Mohamed 1985,
p. 74], [Taylor & Lay 1980, p. 272)). Itisalso closely related to the “GRDF” of Lafortune & Willems[1994],
which is simply anew name for the kernel of the solution operator S.
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wherethe normson theright are function norms.” Giventhat | T|| < 1, theinverseof I— T
existsand is given by

S=(1I-T)" =T =I+T+T°+---. (4.18)
=0
Thisiscalled the Neumann series (after C. Neumann, though the method goes back asfar as
Liouville[Taylor & Lay 1980, p. 191]). Thisexpansion has a physical interpretation when
appliedto L = SL., since

L = Le+TLe+T2Le+"'

expresses L as the sum of emitted light, pluslight that has been scattered once, twice, etc.

The validity of (4.18) raises the issue of whether || T|| < 1. In general, this depends on
physical assumptionsabout the scene model, aswell asthe norm used for radiance functions.
We will consider several cases.

For (one-sided) reflective surfaces, Arvo hasshownthat |G|, < 1forany 1 < p < oo
[Arvo 1995, Theorem 14]. Furthermore, hehasshownthat || K||, < 1, aslongasal BRDF's
in the scene are energy-conserving and symmetric. By making the additional assumption
that no surface is perfectly reflective, he obtains ||K||, < 1 [Arvo 1995, Theorem 13], and
thus

1T, = [IKGl, < |Kl,|Gl, < 1.

In the case of general scattering (i.e. transmission as well as reflection), things are
dightly more complicated. Arvo’s proof thet ||G|| < 1 requires some modifications, be-
causeit depends on the fact that G* = I when M forms an enclosure (which does not hold
under the more general assumptions considered here). We will give adifferent proof below
(Appendix 4.B). Asfor K, itisno longer truethat || K|| < 1. Infact, itisonly true that

2
K| < Lz,
min

’Each function norm induces a distinct operator norm. The notation || - ||, can mean either the L,, norm
on functions (4.8), or the corresponding operator norm, depending on the type of its argument.
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where 7,,;, and 7,,,., denote the minimum and maximum refractive indices in the environ-
ment. This corresponds to the fact that radiance can increase during scattering, due to re-
fraction. Putting these facts together, it is possible that || T||, > 1.

However, the condition || T|| < 1 isnot strictly necessary, sincetheinverseof I — T ex-
ists whenever the series given by (4.18) converges|[Taylor & Lay 1980, p. 192]. A weaker
yet sufficient condition for convergenceisthat | T*|| < 1 for somek > 1.8 In Section4.B.3,
we will show that this condition is satisfied for any physically valid scene model, and there-
fore the Neumann series converges (which makes S well-defined).

45 Sensorsand measurements

The goal of light transport algorithmsisto estimate a finite number of measurements of the
equilibriumradiance L. For example, if the algorithm computes an image directly, then the
measurements consist of many pixel values 1y, .. ., I,;, where M isthe number of pixelsin
the image. If the algorithm computes a finite-element solution, on the other hand, then the
measurements /; would simply be the basis function coefficients (with one measurement
for each basis function).

Each measurement can be thought of as the response of a hypothetical sensor placed
somewhere in the scene. For example, we can imagine that each pixel is asmall piece of
film within a virtual camera, and that the pixel value is proportional to the radiant power
that it receives. Of course, most of the time the camera and lens system are not modeled
explicitly. However, for any given pixel it isstill possibleto identify the set of raysinworld
space that contributeto itsvalue, and assumethat there is an imaginary sensor that responds
to the radiance along these rays.

The sensor response can vary according to the position and direction of the incident ra-
diance. We will only deal with linear sensors, in which case the response is characterized
by afunction

dS(x,w

N )
W.(x,w) = 1D(x.0) (4.19)

8Note that this condition impliesthat perfectly reflective mirrorsare allowable, aslong asit is not possible
for light to continue bouncing indefinitely between these mirrorswithout somelight escaping to another (more
absorptive) portion of the scene.
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that specifies the sensor response per unit of power arriving at x from direction w. For real
sensors, W, is called the flux responsivity of the sensor [Nicodemus 1978, p. 59]. The cor-
responding units are [S - W], where S is the unit of sensor response. Depending on the
sensor, S could represent avoltage, current, change in photographic film density, deflection
of ameter needle, etc.

For the hypothetical sensors used in graphics, W, is called an exitant importance func-
tion (we think of the sensor as emitting importance).® The corresponding sensor response
isunitless, and thusimportance has units of [W~1]. However, the symbol S isaconvenient
reminder that something is being measured. We assume that W, is defined over the entire
ray space R, althoughit will be zero over most of thisdomain for typical sensors. Inthe case
where measurements represent pixel values, note that 17, can model arbitrary lens systems
used to form theimage, as well as any linear filters used for anti-aliasing.

The measurement equation. To compute a measurement, we integrate the response
dS(r) = We(r)d®(r) = We(r) Li(r) dp(r)

for all the incident radiance falling on the sensor. Thisissummarized by Nicodemus' mea-
surement equation [Nicodemus 1978, p. 85], expressed in our notation as

= (W) = [ W) Lix) dp(). (4.20)

where I isameasurement, 1, is the emitted importance, and L; is the incident radiance.®
Noticethat we have defined both L. and W, as exitant quantities. Thisisnatural, sinceit
letsusdefinetheir values at pointson the source or sensor. 1t would not beintuitiveto define

9Thisfollows the terminology of [Lewins 1965, p. 7, p. 21], where each importance function pertainsto a
single “meter reading” (measurement). The alternative term potential function [Pattanaik & Mudur 1995] is
undesirable because it has awell-known, different meaning in physics (a function satisfying Poisson’s equa-
tion, e.g. the electric or gravitational potential functions).

It is also allowable for an importance function to represent the average of a set of measurements (e.g. the
average of all pixel valuesin an image). This is the case with importance-driven radiosity methods [ Smits
et al. 1992, p. 275], where the importance function is used only to guide the solution (and the value of the
corresponding “measurement” isirrelevant).

Ogtrictly speaking, the measurement equation should also integrate over frequency (since L; and W, are
spectral quantities, defined separately at each frequency v). However, to simplify the notation wewill usually
ignorethis detail.
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L.(x,w) as the amount of light arriving at x from direction w, since the actual emission
takes place somewhere else. Similarly, it ismore natural to define sensor response in terms
of radiance arriving at the sensor, rather than radiance leaving points el sewhere in the scene
(e.g. aswiththe“visual potential” proposed by Pattanaik & Mudur [1995]). The definitions
of L. and W, asexitant quantitiesal so increasesthe symmetry between light and importance
transport [Christensen et al. 1993], as we discuss below.

Also notice that although we have defined the equilibrium solution L = S, as an exi-
tant quantity, the measurement equation (4.20) requires an incident function. This problem
can be solved withthe G operator, by using therelationship L; = G L.** Each measurement
now has the form

I = (W.L) = (W,GL) = (W,,GSL,). (4.20)

Notice that it isthe explicit inclusion of G in this equation that allows us to use the exitant
forms of both L. and W..

4.6 Importancetransport via adjoint operators

Adjoint operators are a powerful tool for understanding light transport algorithms. They
allow usto evaluate measurementsin avariety of ways, which can lead to new insightsand
rendering algorithms.

The adjoint of an operator H is denoted H*, and is defined by the property that!?

(H*f,g9) = (f,Hg) fordl fg. (4.22)

An operator is self-adjoint if H = H*. This corresponds to the familiar concept of a sym-
metric matrix in real linear agebra.
To show how the adjoint can be used, we apply the identity (4.22) to the measurement

Yin order for L; = G L to represent the radiance arriving at the sensors, the sensors must be modeled as
part of the domain M. For the purposes of this framework, the sensors can be model ed without affecting light
transport in the rest of the scene by making them completely transparent.

2The adjoint of an operator depends on the inner product used. In this chapter, we always use the inner
product (4.10).
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equation (4.21), yielding
I = (W,,GSL.) = {((GS)"'W,, L.) . (4.23)

This suggests that we can evaluate [ by transporting importance in some way. To deter-
mine exactly what this means, we must express the operator (GS)* in terms of the known
operators G and K.

We start by examining the adjoints of G and K. It isrelatively straightforward to show
that G = G*. On the other hand, the adjoint of K isgiven by

(K*h)(x,w,) = /82 F5 (X, wi = we) h(x, w;) dory (w;) (4.24)

(see Appendix 4.B for proofs of these results). Noticethat K* isthe same as K, except that
it uses the adjoint BSDF

3 (X, wi = wo) = fu(X,wo—wi) -

For now, let us suppose that f, is symmetric at every point x € M, sothat K = K*.
Putting these facts together with standard identities (Appendix 4.B), it is easy to show that

(GS)* = GS, (4.25)

i.e. the operator (GS) is self-adjoint as well.
Thus according to (4.23), measurements can be evaluated using either

[ = (W.,GSL.) or I = (GSW,, L.). (4.26)

The only difference between these two expressionsisthat 1V, and L. have been exchanged.

Importancetransport. The significance of this symmetry isthat any algorithmsthat ap-
ply to light transport may aso be used for importance transport. There is an exact corre-
spondence between the concepts, quantities, and equations in the two cases. In particular,
the equilibrium importance functionisgivenby W = SW,, and satisfies the importance
transport equation

W =W, +TW.
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Similarly, the relationship L; = GL, for incident radiance becomes W; = GW, for
incident importance. Rewriting (4.26) using these definitions, we get the symmetric mea-
surement equations

I = (W, L) or I = (W, L).

However, if the scene model contains any surface with a non-symmetric BSDF, then
K # K*. Thisdoes not affect the light transport operator T = KG, which we will rename
T, , but the importance transport operator becomes

T, = K*G

(see Appendix 4.B). This meansthat in general, light and importance obey different trans-
port equations.

Furthermore, we have not yet considered the transport operators for the corresponding
incident quantities, L; and W;. Thisleadsto a multitude of possibilitiesfor evaluating mea-
surements, all with different transport equations. Fortunately, al of these equations share
the same general structure, as described in the next section.

4.7 Summary of the operator framework

We consider the four basic transport quantities L,,, L;, W,, and W;, corresponding to exitant
radiance, incident radiance, exitant importance, and incident importance respectively. The
propagation operator G maps exitant quantities to incident ones, according to the relation-
ships

Li = GL, and W, = GW,. (4.27)

Similarly, the local scattering operator K maps incident quantities to exitant ones:
L, = KL; and W, = K'W,. (4.28)

Recall that the operators K and K* differ only in the ordering of the BSDF arguments w;
and w, (see (4.24)).
By putting these relationships together in various ways, we obtain a different transport
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operator T ,, for each quantity X, where X isoneof L;, L,, W, or W,. These operators are
summarized in the table below:

Exitant Incident

Light T, =KG | T, = GK

o

Importance | T, = K*G | T, = GK*

o

To solve for the equilibrium value of any of these quantities, we use the transport equation
X = X.+T,X,
where X, isthe given emission function for X. The formal solution to this equationis
X = SX.,

where S, = (I - T,)~" iscalled the solution operator for X . Finally, a measurement 7
can be computed using any of the following expressions:

I = (W, L) = (WL

(4.29)
= <M/;)i7Lo> = <m;Le,i>'

To apply these equations, recall that we are initially given two emission functions, one
that describes the emitted radiance, and one that describes the emitted importance (i.e. the
sensor responsivity). Most often, both are given asexitant functions (L. or 11,), but for some
problems, theincident formismorenatural (L. ; or W ;). For example, supposethat wewish
to project the equilibrium radiance L, onto a set of orthonormal basis functions B; (e.g. as
with finite element approaches). In thissituation, the coefficient of each basisfunction B; is
given by the inner product (B;, L,). Comparing this*“measurement” against the templates
above (4.29), we seethat B, isconsidered to be an incident importance function (1, ;). This
is because B; specifies the response to radiance leaving the corresponding surface, rather
than radiance arriving at it.

If the emitted radiance and importance are supplied in opposite forms (oneincident and
one exitant), the equations above can be applied in a straightforward manner by solving
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for the equilibrium function of one quantity (e.g. L,), and computing an inner product with
the emitted function of the other (e.g. 17, ;). On the other hand, if two exitant functions are
supplied (L. and 17;,), one of them must be converted to an incident quantity using the re-
lationships L; = GL, or W, = GW,(4.27), before a measurement can be computed (e.g.
one possibility is (GW,, L,)). Similarly, if two incident emission functions are provided
(L.; and W, ;), one of them must be converted to an exitant function using the relationships
L, = KL; or W, = KW; (e.g. ameasurement of theform (W, ;, S, KL.;)).

Together, these equations specify many waysin which measurements can be made. Ev-
erything is constructed from only two basic operators, G and K, which represent indepen-
dent components of thelight transport process. It isclear which relationshipsare fundamen-
tal, and which depend on the assumption of symmetricBSDF's(i.e. K = K*). Thenotation
has been chosen to simplify the structure as much as possible, by using the concepts of ray
Space, measures, inner products, and linear operators.

Previous authors have stated special cases of these results. For example, Christensen
et a. [1993] show that L, and WV, satisfy the same transport equation, provided that all
BSDF's are symmetric. Similarly, Pattanaik & Mudur [1995] show that L, and W; satisfy
adjoint transport equations (i.e. T, = T ), athough their arguments are not rigorous.
Arvo [1995] derives the adjoints of G and K for one-sided, reflective surfaces, but does
not discuss their significance. Adjoint relationships have aso been used extensively in the
field of neutron transport [Spanier & Gelbard 1969, Lewins 1965], but those results apply
to volume scattering rather than surfaces.
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Appendix 4.A A new characterization of particletracing

Intuitively, particle tracing consists of following the paths of “photons” asthey are emitted, scattered,
and eventually absorbed. Theseparticle historiesare then used to approximate the equilibrium radi-
ancefunction, either asadiscrete set of measurements (e.g. pixel values, basis function coefficients),
or in some other way (e.g. density estimation [Shirley et a. 1995]). This smple idea can be made
quite sophisticated by applying different estimators to the particle histories, or by sampling the par-
ticlesin clever ways [Spanier & Gelbard 1969].

Several explanations of particle tracing have been proposed in computer graphics. Most often
these methods are justified intuitively, by appealing to the notion that each particle carries a certain
amount of “energy” (e.g. [Shirley et al. 1995]). Pattanaik & Mudur [1995] propose a different ap-
proach, by interpreting particle tracing as a random walk solution of the importance transport equa-
tion. Our god is to relate particle-based methods to the transport framework of this chapter, and
study the conditions that must be satisfied to ensure that particle tracing algorithms are correct.

Our approach. We present anew characterization of particle tracing that addresses these i ssues.
We define a particle tracing algorithm as a method for generating a set of NV weighted sample rays

(i, rs),

where each r; isaray, and «; isits corresponding weight. These samples must be an unbiased rep-
resentation of the equilibrium radiance L, such that the estimate

LN
E [N ;O@Wé(ri)] = (W, L) (4.30)

holds for any importance function W,. Essentially, this identity states that an arbitrary linear mea-
surement can be estimated by taking aweighted sum over the given set of random sample rays.
Formally, thisis a condition on the joint density functionp(«, r) of the weighted sample rays:

/Rozp(oc, r)da = L(r), (4.31)
since this ensures that
N
E[%zavv()] = [ [ aWempla.r) dadu(r)

= /W;(r)L(r)du(r) = (W, L).
R
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Using these ideas, rendering algorithms based on particle tracing can be decomposed into two
independent steps. First, there must be a method for generating a set of sample rays that satisfy the
conditions above. The simplest way of doing this involves tracingn independent particle histories
starting from the light sources, as described below. Second, the algorithm must use these samples
in some way to compute the desired set of measurements. In addition to unbiased estimators of the
form (4.30), other (biased) possihilities include density estimation [Shirley et al. 1995] and various
forms of interpolation (e.g. see [Jensen 1996]).

The conditions (4.30) and (4.31) are a specification of theinterface between these two compo-
nents of arendering algorithm. Onthe one hand, there are avariety of waysto prove them for specific
particle generation schemes. On the other hand, they concisely state the properties that the generated
particles possess, i.e. the properties that higher-level rendering algorithms are allowed to depend on.
Essentialy, these conditions are arigorousinterpretation of the “energy packets’ approach: they pre-
serve the idea that particles represent the equilibrium radiance itself, independent of any particular
Sensor.

Generatingtheparticles. Thesimplest way to generate aset of weighted ray samples satisfying
condition (4.30) isto follow arandom walk. This process can be summarized as follows:

1. Choose arandom ray ry = (xg,wp) Starting on alight source, and let its weight be

Le(rO)
po(ro)

ap —

where py(r) isthe density from whichr, was sampled. Theinitial state of the particle is de-
fined to be (ay, rp).

2. Given the current state («;, r; ), decide whether to continue the random walk. We letg; 1
denote the probability with which the random walk is continued (whereg; .1 depends on the
current path in someway). If thewalk isterminated (which happens with probabilityl —g; 1),
welet k = i denote itslength.

3. Otherwise, let x;,1 be the first intersection point of therayr; = (x;,w;) with a surface (see
Figure 4.1). Choose arandom scattering directionw;; according to some density function
pi+1 that approximates the BSDF there. The particle weight«;; is then computed from

using the formula
1 fs*(xi+17wi+1 _>_WZ) (4 32)
qQi+1 Pit1(wit1) ’

Qi1 = @4
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Wisy

Figure4.1: A scattering step in particle tracing.

where the density p;11 (w) is measured with respect to projected solid angle. (If this density
is measured with respect to ordinary solid angle instead, the corresponding update formulais

1 fs*(xi+lvwi+1_>_wi) |wi+1 ) N(Xi+1)| (4 33)
di+1 pi+1(wi+1) ’

Qi1 = @4

whereN (x) isthenormal atx.) Notice that we have used the adjoint BSDF in thisexpression,
according to the sampling conventions of Section 3.7.6.

4. Return to step 2.

This process yields a set of ray samplesry, . .. ri, where k is the length of the random walk.
Eachray r; = (x;,w;) isassigned the weight

0 = Le(x0,w0) 77 1 £ (%j41,wip1 = —w)) 7 (4.34)
Po(X0,wo) 5% Gj41 Pi+1(wj+1)

which was obtained by expanding therecursion (4.32). There areavariety of waysto show that these
samples satisfy the desired condition (4.30), either directly from the light transport equation (similar
to[Spanier & Gelbard 1969, p. 62]), or from theimportance transport equation (aswe discuss bel ow).

There are many other possibilities for generating a suitable set of particles, by modifying and
extending the basic particletracing technique. For example, different density functions could be used
for sampling, Russian roulette or splitting could be applied, the samples could be resampled to make
the weights all equal, and so on. Our new characterization (4.30) appliesto all of these possibilities:
this makes it clear that the essence of particle tracing is not how the samples are obtained, but what
they represent.
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Particle tracing asimportance transport. For comparison, we summarize the approach of
Pattanaik & Mudur [1995] (in our notation, and in a more general form). Given a set of basis func-
tions

Bi, ..., By,

they consider the problem of approximating the equilibrium radiance as alinear combination

M
L, ~ Z I; Bj,
=1

where I; = (Bj, L,) isthe coefficient of thej-th basis function. Notice that since the inner product
(B, L,) measures the radiancel eaving the corresponding surface, we can interpret 3; asan incident
importance function W

e’

and rewrite the expression for each coefficient; as

I = (W9, Ly). (4.35)

I = (W Le). (4.36)

This equation is then evaluated by recursively sampling the importance transport equation. This
leads to arandom walk that is very similar to the one that we have aready described above.

They start by lettingry = (x9,wo) be arandom ray sampled on a light source, from which;
can be estimated using

wl (437)

I, = F
! [ po(ro)
where py(ry) isthe density for samplingr,. Notice that this expression isjust the usual Monte Carlo

estimate f (x)/p(x), applied to equation (4.36).

Thefactors L, and p in (4.37) can easily be evaluated, |eaving only the equilibrium importance
W9 (rg). Thisfactor is evaluated recursively, using the transport equation

1

WY = wl + WY (4.38)

Starting with 7 = 0, thisis done by casting theray r; = (x;,w;) to find the first intersection point
x;+1 With asurface. Next, anew ray directionw;; is chosen, according to a density functionp; 1
that approximates the BSDF atx; ;| (recall Figure 4.1). It is then easy to check that .’ (r;) can be
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estimated as

WO () = W)+ (GKW)(xy)

0 if d(I‘l) =00 0Mw;y1 = A,
= We(Jl) (rl) + E fs* (Xi+17 Wit1 — _wi) Wi(j) (ri+1) (439)
di+1 Pi+1 (Wi+1)
otherwise,

where p;. 1 is measured with respect to projected solid angle. The recursion stops when aray fails
to intersect asurface (d(r;) = o0), or when thewalk israndomly terminated (asindicated by setting
x;+1 = A), which happens with probability 1 — ¢;11.

Discussion. This process is superficially quite similar to particle tracing: it generates a random
walk that startsat alight source, isscattered at each surface, and iseventually absorbed. Furthermore,
it istheoretically well-founded, since it computes an unbiased estimate of the measurement!.

However, this view of particle tracing also has several disadvantages. First, there is no obvi-
ous relationship to the concepts of photons or particle energies. Furthermore, the sampling process
seems to depend on which particular measurement /; we evaluate (since equation (4.38) describes
the equilibrium importance for a specific sensor). This would seem to imply that different particle
histories are needed to estimate each measurement, which would be very inefficient. In contrast, in
practice the random walks are chosennot to depend on any particular I, since this allows each ran-
dom walk to be used for all measurements simultaneously. The formal dependence on a particular
measurement I, is rather non-intuitive.

Relationship to particle weights. Finally, observe that the importance transport process gen-
erates a set of ray samplesry, ..., r,. Furthermore, if we expand the recursion (4.39) and multiply
together the factors that weight the emitted importanceli.. ; (r;), we obtain exactly the same weights
«; that were used for particle tracing (see equation (4.34)). Thus, if we insert this set of weighted
ray samplesinto equation (4.30), we obtain the same estimate for a given measurement! that would
have been obtained by recursively sampling the importance transport equation (we have simply re-
arranged the calculations). Since we have already shown that the importance transport scheme gives
an unbiased estimate (for any importance function¥ ;), it followsthat this set of weighted ray sam-
ples satisfiesthe desired condition (4.30). Thisvalidates the expression for the particle weights given
earlier.
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Appendix 4.B Propertiesof theoperatorsG, K, T, and S

Thisappendix gives some formal results on the invertibility, adjoints, and norms of the operators,
K, T,,and S, . Insome cases, these results are parallel to those of Arvo [1995], who considered
the case of purely reflective, one-sided surfaces. However, different proof techniques are required
for the general case considered here, and in most cases the specific results are different as well.

The proofs are not difficult; however, it is surprisingly tricky to state the results correctly. There
are often exceptions to “intuitively obvious’ properties that require careful thought. We have also
emphasized some of the more subtle issues that arise in the proofs.

We will need various properties of the sceneM, so it isimportant to clarify exactly what is al-
lowed. Recall that in Section 3.1, we defined M to be the union of afinite number of closed, piece-
wise differentiable, two-dimensional manifolds (possibly with boundary). In particular, we allow
manifolds to be unbounded (e.g. aplane), to have any number of handles (e.g. atorus), and to have
any number of holes (e.g. an annulus). A manifold can even be disconnected; for example, asingle
manifold may represent several spheres (this could arise naturally as an implicit surface). On the
other hand, true fractals are not allowed (since they are not manifolds), andM must always be rep-
resentable as afinite union of manifolds!® Note that despite this restriction, M may still contain an
infinite number of connected surfaces, since one manifold could represent an infinite stack of planes,
or an infinite grid of spheres.

4.B.1 Invertibility

Invertibility is an important property for computer vision problems. For example, suppose that we
wish to determine the incident radianceL; at a surface point, given the exitant radianceL,. Thissit-
uation isdescribed by theinverse of the operator that applies to the corresponding graphics problem.

In this section, we show that G and K are not invertible in general. We also show that it is
possible to construct special scene models where their inverses do exist!

13| countable unions were allowed, then M could be a dense subset of IR*. For example, let ¢y, ¢», . . . be
an enumeration of the rational numbers, and define M as the union of the planes z = ¢;.

141 the case of one-sided, reflective surfaces that form an enclosure, G isinvertible [Arvo 1995]. In fact,
G isitsowninverse (G2 = I). However, for thisto be true, the space of radiance functions f must be defined
carefully. In particular, the domain of these functionsis not M x S?; itisthe set of rays (x, w) wherex € M
andw € H3 (x) (the upward hemisphere at x).
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Recall the definition of theboundary distance function
dy(x,w) = inf{d>0]|x+dw e M},

and the ray casting function

Xy (x,w) = x+d,(x,w)w.

For brevity, we will omit the M subscripts on these functions in this appendix.
We begin with the following definitions:

1. Arayrisreversbleif d(r) < oco.
2. Thereversible ray spaceR isthe set of all reversible raysinR.
3. Thereversal mapisafunction M : R — R whose value is given by

M(x,w) = (x(x,w),—w).

The following lemmaimplies that the range of M/ is actually the reversible ray spaceR (rather
than all of R, as we defined it above), and that furthermoreM : R — R is abijection.

Lemmad4.l. If r isreversible, then M (r) isalso reversible, and M (M (r)) = r.

Proof. Letr = (x,w)andr’ = M(r). Alsoletd = d(x,w) andx’ = x + dw, sothat ' =
(x', —w). Now by definition,

d(r') = inf{d >0 | x —dw € M}.

Sincex’ — dw = x € M, wehaved(r') < d,and sor’ isreversible.
Now assumethat d(r') = d’', where0 < d’' < d. Thenx’ — d'w = x + (d — d')w isapoint of
M, which contradicts the fact that d(x,w) =d. B

With respect to these definitions, the propagation operator (4.14) is defined by

h(M(r)) forreR,
0 otherwise.

(Gh)(r) = {

Theorem 4.2. Whenever M is non-empty and bounded, then G is not invertible. However, G is
invertible for some unbounded scenes.
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Proof. Assuming that M is non-empty and bounded, we first show that some rays are not re-
versible, i.e. u(R — R) > 0. (These are the “outward-pointing” rays that do not intersect M.)
This may seem obvious, but since there are scenes for which al rays are reversible (see below), we
must be a bit careful.

Consider the non-reversible rays(x,w) for afixed directionw € S2. The origins of these rays
are the maximal points of M along lines in the directionw. Thus, there is an exact correspondence
between non-reversible rays, and directed lines that intersectM. Given that w occupies an infinites-
imal solid angle do (w), the measure of these rays is

Ay (I, (M) do(w)

whereI1,, denotes orthogonal projection onto the plane perpendicular tow, and A, isthe area mea-
sure on that plane. Thus, the total measure of the non-reversible raysis exactly

pR=R) = [ Au(L(M))do(w).
Thisis simply 47 times the average projected surface area of M, which is positivel®
Now let Ly, Ly be any two radiance functions such that

Ll(I') = LQ(I‘) forr e 'ﬁ,

Then clearly GL, = G Lo, no matter what valuesthe L; haveforrr € R —R. Since (R —R) > 0,
the functions L; and L, can be distinct, which shows that G is not invertible in general.

For an example where G isinvertible, let M be an infinite stack of planes, or an infinite set of
concentric spheres. Inthiscase, all rays arereversible (up to aset of.-measure zero). Thiscan aso
be achieved with asingle infinite surface that is diffeomorphic to aplane. In genera G isinvertible
if and only if M has anon-empty intersection with the interior of every infinite coneinlR? (or if M
isempty). N

Note especially that G isnot its own inverse, so that the relationshipL; = G L,, does not imply
L, = GIL;.

5Technically, thisisaso abit tricky. It is possible make the average projected surface areaof M arbitrarily
small, while keeping the sametotal area, by making M very convoluted. However, we can use the assumption
that M isafinite union of piecewisedifferentiablemanifolds. Thisimpliesthat for amost every pointx € M,
we can find a neighborhood Uy that is arbitrarily close to being a disc (of very small radius). The average
projected surface area of any such Uy is positive (becauseit isalmost adisc), and thisisalower bound on the
average projected surface area of M.



4.B. PROPERTIES OF THE OPERATORSG, K, T, AND S 129

Theorem 4.3. The operator K is not invertible in general. However, K isinvertible for some spe-
cial scene models.

Proof. Suppose that every point of M has a constant BSDF (with regard to both reflection and
transmission):
fs(x,wi—w,) = g(x) forall x € M and w;,w, € S?.
In this case, K reduces to
(KL)(x,wo) = [ g(x) L(x,wi) doy(w) -
S2

Sincetheright-hand side does not depend onw,, K L isafunction of position only. That is, for every
L thereisafunctionhy : M — R suchthat (KL)(x,w) = ho(x). However, itisclear that infinitely
many distinct functions L map to each such hy, and thus K is not invertible.

Itiseasy to seethat thisargument still holdsif any part of the scene hasadiffuse BRDF or BTDF,
thus K is not invertible for most graphics models.

On the other hand, suppose that every point of M isamirror. In this case, it is easy to see that

K isan isomorphism. There are also lesstrivial examples. For example, f; could be chosen so that
K encodes the two-dimensional Fourier transform of the input signal. &

With regard to the other operators we have defined, it is easy to see that the transport operators
T, arenot invertiblein general, since they are compositions ofK and G. For the operatorsI— T, ,
on the other hand, invertibility depends on the norms of K and G (to be discussed in Section 4.B.3).
These operators must be invertible in order for the solution operatorsS, = (I — T,) ! to exist.

4B.2 Adjoints

We derive the adjoints of G and K, and use them to prove the relationship
(We,GS, L) = (GSy, We, Le) .

(The operators T, and S, are defined in Section 4.7.) Our approach is unique in that we use this
identity to define the equilibrium importance, according to

Wy = Sy We.
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From this we derive the transport equation satisfied by, and we derive similar results for the in-
cident quantities ; and W.

We begin by showing that G is self-adjoint.® Thefollowing lemma states that M/ preserves the
measure ji.

Lemma4.4. Let 1. be the throughput measure (4.2), and letD C R be a measurable set. Then

where M (D) = {M(x) | x € D}.

Proof. Since M is a bijection, it is sufficient to show that . is preserved locally. LetdA(x) x
do(w) bean infinitesimal neighborhood of theray (x,w) € D, and define

(lew,) = M(x,w) = (x(x,w), —w).
We must show that du(x,w) = du(x’,w’). Recall that one expression for . is given by
du(x,w) = dA.(x)do(w).

Weimmediately havedo (') = do(—w) = do(w). Asfor the other factor, recall that A;, measures
projected surface area on a plane perpendicular tow. By definition of x(x,w), however, x" — x is
aways parallel tow. Thustwo corresponding areasd A(x), dA(x’) on M will aways have the same
projected area,

dA

w

(x) = dA,(x(x,w)) = dA,(x). N

In terms of the composition measure notation (5.29), the preceding lemma statesthaty o M = p
(restricted to reversible rays).

Theorem 4.5. The operator G is self-adjoint (for any scene model).

Proof. Given f,g € Ly, we have

(1.69) = [ s dp(r)
Cdp(r)
AL Towo D) W)

160ur proof is necessarily different than the one in [Arvo 1995], which assumed that G> = I when M
forms an enclosure.
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- /R FOM(E)) g(x') dux)
= (Gf,9),

where we have used the fact that M isabijection, that o o M = p, and (5.32). B
The following theorem and proof are similar to [Arvo 1995, Theorem 16].

Theorem 4.6. The adjoint of K is given by
(K*h)(x,w,) = /2 L%, wi = wo ) h(x, wi) do (w;) -
S

In particular, K is self-adjoint if and only if f; is symmetric for almost everyx € M (i.e. except on
a set of A-measure zero).

Proof. We have
(Ko = [ Soxw) [ Axe 5w gl o) doy () dulx. )
(x,0) (3, ) g%, ') dork(!) dork () dA(x)

f
, o P00 £ =) g(.) doy () dory () dA(R)

where we have used Fubini’s theorem to change the order of integration. W

We are now in aposition to study importance transport, which usually proceeds by writing down
aformulafor the equilibrium importance and verifying that it has the desired properties. We will
take the opposite approach, by starting with the fundamental relationship (4.21) for light transport,

I = (W,,GS, L),

and then deriving the equations for importance based on the principle that we wish to compute the
same value for the measurement 1.
We start with the identity
I = ((GS;,)"We, L),

which follows from the definition (4.22) of an adjoint operator.
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Lemma4.7. (GS, )* = GS,, ,providedthatS, andS,, exist.

Proof. Wewill make use of the following simple identities, which follow directly from the defini-
tion (4.22):

' =1
(A+B)" = A"+ B
(AB)* = B*A*

(Afl L (A*)fl
Provided that the operators(I — KG) ! and (I — K*G) ! exist, we now have

(GS,)* = (GI-KG)™')* = (I-GK*)'G
= LZ(GK)'G = Y, GK'G)
= GI-K'G)™! = GS, . =&

We have thus proven that I = (W., GS, L.) = (GS;;, W., L.), which is the basis for the fol-
lowing definition:

Definition 4.8. The exitant equilibrium importance function¥,, is defined by

Wo = Sy, We.

Theorem 4.9. W, satisfies the transport equation W, = W, + T, W, where T, = K*G. In
particular, L, and W, obey the same transport equation whenK = K*.

Proof. This follows directly from Lemma 4.7, Definition 4.8, and the definitionS,, = (I —

K*G) ! from Section4.7. &

Theorem 4.10. The incident equilibrium quantitiesZ; and W; satisfy

L; = Le.;+ GKL;,
Wi = Wi+ GK*'I;.

Proof. Wehave
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L, = L.+KGL,
GL, = GL.+GKGL,
L, = Le,i + GKL;,

wherewe have used thedefinition L; = G L,,, and we have assumed that emitted radianceis specified
asan incident quantity L. ;. A similar relationship holdsforiv;. B

The complete results are summarized in Section 4.7.

4B.3 Norms

In this section, we prove conditions on the norms of G and K that are sufficient to ensure that the
various solution operatorsS , are well-defined. This is possible despite the fact that we can have
|K|| > 1 for physically valid scene models.

The following theorem is similar to [Arvo 1995, Theorem 14]. However, our proof holds for
two-sided surfaces, and involves only geometric concepts (Arvo's proof requires the principle that
radiance is constant along straight lines in free space).

Theorem 4.11. For any 1 < p < oo, we have |G|, < 1. Furthermore, |G|, = 1 unless M is
contained by a plane inIR?, in which case || G||, = 0.

Proof. Foranyl <p <ooandanyL € L,, wehave

Gl = (/ |<GL><r>|Pdu<r>)1/p

where we have used the fact that M is a measure-preserving bijection onR (Lemma4.4). The case
p = oo issimilar, but only needs the fact that M is measure-preserving on sets of measure zero.
Thus |G|, < 1forall <p < oo.
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Now we consider the conditions for which||G||, = 1 exactly. If u(R) > 0 (i.e. there are re-
versible rays), then consider the function L defined by

1 forreR
L(r) = rew
0 otherwise.

Then |GL||, = ||L||, > 0, and s0 |G ||, = 1. On the other hand, if 4(R) = 0, then ||GL||, = 0
for al L, and we have || G||, = 0.

Thus we must show that .(R) = 0 if and only if M is contained by a plane inIR3. The “if”
direction is clear. For the converse, recall that. M isaunion of piecewise differentiable manifolds.
Choose pointsx, x’ € M each lying in the differentiable interior of some manifold, and such that
x’ does not lie in the tangent plane atx. (Thisis possible since M is not contained by any plane.)
Because M isdifferentiable at x and x’, we can choose small disk-shaped regionsd A(x), dA(x') C
M that are arbitrarily close to lying in the tangent planes atx and x’ respectively. The set of rays
leaving dA(x) toward dA(x’) now has positive ;-measure (even if x happens to lie in the tangent
plane of x'). Furthermore, these rays are reversible (even if there are other surfaces betweenx and
x). 1

The following results will be proven in Section 7.B.2. They are stated here for compl eteness.
Theorem 4.12. For any physically valid scene, and for anyl < p < oo,

2
K|, < Jmax
min

where nmin and nmax denote the minimum and maximum refractive indices in the environment.

Theorem 4.13. For any physically valid scene, the solution operatorsS . exist and are well-defined.



Chapter 5

The Sources of Non-Symmetric
Scattering

In this chapter, we study two examples of non-symmetric scattering that have not previ-
ously been recognized. Specifically, we show that non-symmetric scattering occurs when-
ever lightisrefracted, and a so whenever shading normalsare used. We show how to handle
these situations correctly in bidirectional light transport algorithms, by deriving and using
the corresponding adjoint BSDF's.

It isimportant to note that these sources of non-symmetry are not obvious, and that shad-
ing normals and refraction are widely assumed to be described by symmetric BSDF's. We
show that this can cause significant problems when bidirectiona algorithms are used. For
example, it can cause rendered images to have large errors, even when the scene model is
physically valid. It can also cause rendering algorithms that are supposedly equivalent to
convergeto different solutions (whether the scene model isphysically valid or not). Finally,
it can cause shading artifacts that should not be present, such as brightness discontinuities.
These problems can occur whenever anon-symmetric BSDF is used without recognizing it
(i.e. when it is handled as though it were symmetric).

We show that there are two distinct situations where non-symmetric BSDF's can arise.
First, some scattering modelsin computer graphics are not physically valid. A good exam-
ple of thisis the use of shading normals (which are commonly applied to make polygonal

135
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surfaces ook smooth, or to add detail to coarse geometric models). Although shading nor-
mals do not have any well-defined physical basis, they are very convenient and useful for
many graphics applications. Thus it is important to be able to handle these non-physical
materials correctly when bidirectional light transport algorithms are used.

The other situation where non-symmetric BSDF sariseistherefraction of light between
two different media. Noticethat inthiscase, the BSDF describesareal physical effect. This
implies that even when a scene model is physically valid, it is sometimes necessary to use
different transport rules for light and importance (or path tracing and particle tracing) in
order for bidirectional algorithmsto converge to the correct result.

This chapter is organized as follows. In Section 5.1 we explain why non-symmetric
BSDF's are sometimes difficult to recognize, and we describe the significant problems that
thiscan cause. We al so discuss several elementary sources of non-symmetric scattering that
are well-known in graphics. We then analyze in detail two sources of non-symmetry de-
scribed above: namely refraction (Section 5.2) and the use of shading normals (Section 5.3).
We also present test cases demonstrating the errors that occur in computed images when
these BSDF's are not handled correctly.

Another contribution istheidea of Dirac distributionswith respect to general measures,
which can be used to model specular scattering and transport singularitiesin general. This
concept is described in Appendix 5.A, along with several identities that can be used to ma-
nipulate and evaluate them in a consistent way. (Although this idea seems quite basic, we
are unableto give areference for it.)

5.1 Introduction

5.1.1 Theproblemscaused by non-symmetric scattering

We explain the problemsthat arise when non-symmetric BSDF's are treated as though they
were symmetric. Thisprovides some motivation for therest of this chapter, where we study
the various reasons that non-symmetric scattering occurs.

The main problem with non-symmetric BSDF's is that they are sometimes difficult to
recognize. Most often this occurs when a scattering model is defined procedurally (rather
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than by giving the BSDF as an explicit function). For example, refraction is generally im-
plemented as a procedure that maps an incident direction w; into atransmitted direction w;.
The BSDF itself is not evaluated or even represented (because as we will seg, it isaDirac
distribution rather than an ordinary function). Another example of a procedurally defined
scattering model isthe use of shading normals. With thistechnique, the true surface normal
N, isreplaced by adifferent vector N, (the shading normal) when the BSDF is evaluated.
This can be interpreted as a procedural modification of an existing BSDF.

In these cases, it is easy to use a non-symmetric BSDF without realizing it. When this
happens, the same BSDF f, isused in all situations (even those where the adjoint BSDF f*
should be used instead). This creates problems, because the BSDF is not used consistently.
For example, consider a bidirectional algorithm that uses particle tracing in one phase, and
path tracing in another. Recall that in order to get correct resultswith such an agorithm, the
adjoint BSDF f* must be used during the particle tracing phase (see Section 3.7.5). There-
fore, using the ordinary BSDF f; for particletracing is equivalent to solving alight transport
equation that uses the adjoint BSDF f*. By using the same BSDF f; in both phases, we get
resultsthat are almost certainly wrong: they could converge to the solution of alight trans-
port equation that uses f;, f.*, or any combination of the two. Thishasanumber of practical
consequences:

e Computed images can have substantial errors (even when the scene model is physi-
cally correct). The computed radiance values can easily be wrong by a factor of two
or more.

¢ Rendering algorithmsthat are supposed to be equivalent may in fact converge to dif-
ferent answers. Thiscan happen whether the model isphysically valid or not. For ex-
ample, path tracing might converge to adifferent result than particle tracing, because
particle tracing must use the adjoint BSDF to get results that are consistent with path
tracing.

e Computed images can have spurious, visually objectionable artifacts. For example, if
the adjoint BSDF for shading normalsis not used correctly, there can be fal se discon-
tinuitiesin the image reminiscent of flat-shaded polygons. (Thiswill be explained in
Section 5.3.)
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Note that these errors can occur with all types of bidirectional algorithm. For example, this
includes importance-driven finite element methods, multi-pass algorithms, particle tracing
approaches, and bidirectional path tracing.!

Fortunately, these problems are easy to fix. It is only necessary to recognize non-
symmetric BSDF's whenever they exist, and make appropriate use of the corresponding
adjoint BSDF.

5.1.2 Elementary sources of non-symmetric scattering

There are several reasons why the BSDF's used in graphics are sometimes not symmetric.
One reason is that shading models are sometimes derived empirically, without regard for
the laws of physics. Another reason is that shading models are sometimes approximated,
to make them faster to evaluate. These sources of non-symmetry are well-known, and they
are relatively easy to recognize and handle correctly.

On the other hand, some sources of non-symmetry are not so easily recognized. This
category includes non-symmetry due to refraction and the use of shading normals, which
are discussed separately in Sections 5.2 and 5.3.

5.1.2.1 Empirical shading models

The most obvious source of non-symmetric scattering is that some shading models are de-
rived empirically, using formulas that are convenient to cal culate and happen to give inter-
esting visual results. Probably the best-known example of thisisthe original Phong model
for glossy reflection [Phong 1975].2 Trandlating his formula into our terminology, the re-
flected radiance from a glossy surface is computed according to

Lo(ws) = /H , Co max(0, ;- My (o))" Liles) dor(i) (5.1)

INotethat with importance-drivenalgorithms, the adjoint BSDF is only used to computeimportance. Thus
if we use the wrong BSDF, it will not cause errors in the solution (provided that importance is only used to
guide mesh refinement). However, any error estimates that depend on importance will be wrong.

2Phong also proposed the use of shading normals, which is another source of non-symmetry.
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where C, controls the color and intensity of the glossy highlights, n controls the apparent
specularity of the surface, and M (w,) isthe mirror direction (see Section 5.2.1.2).
Although this* shading formula’ issymmetric, notice that theintegration iswith respect
to solid angle o, whereas in the scattering equation (3.12) the projected solid angle o7, is
used. Thuswhen this shading formulais expressed as a BRDF, it has an extra factor of

1/ Jwi - N(x)]

that makes it non-symmetric. (Thisfactor isrequired to cancel the factor of |w; - N(x)| that
is hidden by the projected solid angle notation (3.1).) It is easy to fix the non-symmetry,
of course, by changing the definition (5.1) to use integration with respect to projected solid
angle.

5.1.2.2 Approximations of symmetric BSDF's

Non-symmetric BSDF's can also arise when physically valid scattering model s are approx-
imated (to make their computation more efficient). For example, the Cook-Torrance model
[Cook & Torrance 1982] has the form

DGF
flwi—w,) = w050 cosd.
where D, G, and F' are symmetric functions of w; and w,. This BSDF is clearly symmet-
ric. However, noticethat when it isinserted into the scattering equation (3.12), the factor of
cos 6 is canceled by the corresponding factor in the projected solid angle notation. When
this formulais implemented in hardware, it is common to throw away the factor of cos 6,
aswell. This saves a division operation, but destroys the symmetry of the corresponding
BSDF. For example, thisis the approach taken by the OpenGL specification [OpenGL Ar-

chitecture Review Board 1992].

5.2 Non-symmetry dueto refraction

We show that when light is refracted, the corresponding BSDF is not symmetric. In partic-
ular, we show that radiance crossing the interface must be scaled by afactor of (1, /7;)?, but
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Figure 5.1: Two-pass rendering of caustics on a pool bottom. (a) First pass: particles are
traced from the light sources, and their distribution on the pool bottom is recorded.(b) Sec-
ond pass. animageisrendered using ray tracing. When rays intersect the pool bottom, the
light distribution recorded by thefirst passis sampled. To obtain correct resultsin this exam-
ple, it isessentia to handle particles and viewing rays differently at the air-water interface:
radiance is scaled by (1, /7;)?, while particle weights are left unchanged.

that no scaling is required for importance. (For ssimplicity we will ignore partial reflection
in this section; in other words, we assumethat all light is transmitted through the interface.)
We derive explicit formulas for corresponding BSDF and its adjoint, and we discuss the
implicationsfor bidirectional rendering algorithms.

Note that there can be substantial errorsif the (1, /7;)* scaling factor for radiance isig-
nored. For example, consider alight source shining on aswimming pool with a diffuse bot-
tom and sides (see Figure 5.1). Suppose that particle tracing is used to accumul ate the caus-
tic pattern on the bottom of the pool, followed by aray tracing passto render thefinal image.
If the radiance of the viewing raysis not scaled at the air-water interface, the causticsin the
image will be too bright by a factor of (n,/7;)? (about 1.78 for water). In particular, the
caustics will be brighter than they would be in a path-traced image. On the other hand, if
the (1. /n;)? scaling factor is applied to both the viewing rays and the particles, the caustics
will be too dim by afactor of (1,/n;)%.

Themain point of thissectionisnot that radiance must be scaled when it entersamedium
with adifferent refractive index; thisfact iswell-known in radiometry and optics, although
it does not seem to have been implemented in many graphics systems. Rather, the point is
that the adjoint BSDF does not involve any such scaling. Thusthe BSDF is not symmetric,
and so different rules must be used for radiance and importance (or particle tracing and path
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tracing) in order to obtain correct results.

5.2.1 Background material

We review two results that will be used to derive the BSDF for refraction (and its adjoint).
First, we show that when light is refracted, radiance is scaled by afactor of (r, /rii)* asit
crossestheinterface. Second, we show how to write the BSDF for reflection from a perfect
mirror, using anew notation involving aDirac distribution with respect to the projected solid
angle measure.

5.2.1.1 Radiancescaling at arefractiveinterface

Intuitively, when light enters amedium with a higher refractive index, the samelight energy
issqueezed into asmaller volume. To seethis, consider asmall patch d A(x) that isexposed
to uniform radiance over theincident hemisphere 742, and assume that thislight istransmit-
ted into a medium with a higher refractive index (Figure 5.2). Then the transmitted light
does not fill the entire hemisphere 742, since by Snell’slaw, the angle of refraction satisfies

sin gt < E .
Us
Thus radiance must increase as light crosses the interface (at least on some subset of the
rays), by conservation of energy.

In fact, the incident and transmitted radiance are related by
L= M. (5.2)

This can be shown using Snell’s law (e.g. [Milne 1930, p. 74], [Nicodemus 1963], [Hall
1989, p. 30]). We repeat this argument here, since we will need some of the intermediate
results.

Consider a beam of light that strikes small surface patch dA(x), and occupies a solid
angle do(w;) (see Figure 5.3). Let w, be the direction of the refracted beam (determined
using Snell’slaw), and suppose that it occupies asolid angle do (w ). The power carried by



142 CHAPTER 5. NON-SYMMETRIC SCATTERING

air

water

Qt

Figure5.2: When light enters amedium with ahigher refractive index, the samelight energy
is squeezed into a smaller volume. This causes the radiance along each ray to increase.

ds (w)
hi  dAX)
hy i
ds (w;
(wy) [N
—
(oF;

Figure 5.3: Geometry for deriving the (; /;)? scaling of radiance due to refraction.
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the incident beam is
dd;, = Ly dA(x)do (wj),

where L; isthe radiance of the incident beam (see (3.8)), and similarly
AP, = Ly dA(x)do (w).
Thus by conservation of energy,

do™ (w)
do™(wy)

We now turn to the angular parameterizationw = (6, ¢), for which we have
do (w) = cos Osin 0 df do

(see Section 3.6.3). Using thisrelationship, we can relate do™ (w;) and do (w, ) by differen-
tiating Snell’s law:
nisin®, = nsing,  (Snell'slaw)
nicos B df; = ngcos by db .

Similarly, the relationship ¢; = ¢; £ 7 implies
dpy = dey, .
Multiplying these three equations together and using (3.16), we get
7 ot (w) = 0 do (), (54)

which together with (5.3) gives the desired relationship
2
L= % p,.

2
1

To be precise, this equation only applies to spectral radiance that is measured with re-
spect to frequency (L, ). For spectral radiance that is measured with respect to wavelength
(L), the correct relationshipis L, = (n,/n;)* L; (aswe will discussin Section 6.2).
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5.2.1.2 TheBSDF for specular reflection

We will study in detail the BSDF that describes specular reflection, i.e. aperfect (two-sided)
mirror. ThisBSDF sometimescauses confusion, becauseit involvesDirac distributions. We
will introduce a new, simpler notation for this BSDF, using Dirac distributions defined on
the unit sphere. The concepts developed here will be needed bel ow, when we study perfect
specular refraction. (Further information on the mirror BSDF can be found in Nicodemus
et a. [1977], Cohen & Wallace [1993], and Glassner [1995].)

For a perfect mirror, the desired relationship between L; and L, isthat

Lo(wo) = Li(MN(wo))' (55)

Here Mn(w,) isthe mirror direction, obtained by reflecting w, around the normal N. (Al-
gebraically, the mirror direction is defined by M (w,) = 2(w, - N)N — w,.)

Wewouldliketo find aBSDF that producestherelationship (5.5) whenitisinserted into
the scattering equation (3.12). We will show how to define this BSDF in terms of a special
Dirac distribution §,., which is defined by the property that

J T 0o =y o' () = J(e)

for any function f that is continuous at w’.

Our notion of a Dirac distribution is slightly more general than the one usually encoun-
tered. Often, the Dirac distribution (or delta function) is understood to bea*“function” ()
defined on IR with the following properties:

1. 6(x) =0foral x #0.
2. [go(x)dx =1.
These imply the more useful identity that
[ F@) b =) de = f(xo). (5.6)

provided that f iscontinuous at .
Our notation simply extends the identity (5.6) to integration on more general domains.
Given adomain €2, ameasure ;. on €2, and afunction f : 2 — IR that is continuous at x,
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the notation §,,(x — x,) refersto a“function” with the following property:

L £ 8,x = x0) dulx) = f(xo). (57)

The rigorous meaning of this notation is discussed in Appendix 5.A.
Given this background, we can write the BSDF for a perfect mirror as

folwi—=we) = 00 (w; — Mn(w,)) - (5.8)

g

It is easy to see that thisis a correct representation of the mirror BSDF, by inserting these
definitions into the scattering equation (3.12) to obtain (5.5).

This BSDF can be written in several other equivalent ways. For example, suppose that
we write the scattering equation (3.12) in the form

Lo(wo) = [, L) fulwr—wi) i - N| do(w) (59

(by expanding the definition of the projected solid angle measure). From thisequation, itis
clear that the mirror BSDF could also be written as

0o (wi — Mn(wo))

1
|wi - N (510

fs(wi_ﬂf‘jo) —

Notethat expressions containing Dirac distributionsmust be evaluated with great care. This
is particularly true when the measure function associated with the Dirac distribution is dif-
ferent than the measure function used for integration (e.g. suppose that we are given the
form (5.8) of the mirror BSDF, together with the form (5.9) of the scattering equation). In
Appendix 5.A, we derive several identitiesthat allow such expressionsto be evaluated cor-
rectly and easily.

5.2.2 TheBSDF for refraction

We will write the BSDF for refraction using the Dirac distribution notation developed in
Section 5.2.1.2 and Appendix 5.A. It can aso be written with ordinary ¢-functions, using
the (9, ¢) parameterization of BSDF's, aswe will discussin Appendix 5.C.

For afixed point x € M, let Qx bethe set of directionsw; € S? that are not subject to



146 CHAPTER 5. NON-SYMMETRIC SCATTERING

total internal reflection. We now define a mapping
R:Qr — Qpg,
such that R(w;) isthe transmitted direction corresponding to the incident direction w;:*
wy = R(w).
Notethat R iseasily seento beitsown inverse:
R(R(w)) = w foralwe Qp. (5.11)

Given this mapping, the relationship between L; and L, due to refraction can be ex-
pressed as

Li(w) = 2 LR(w)). (5.12)

where we have used the self-inverse property (5.11) to obtainw; = R(w;). The correspond-

ing BSDF isthus
2

flwi—w) = D5 (w — Rlw), (5.13)

g
1

where§ . isthe Dirac distributionwith respect to o™, asdefined in Section 5.2.1.2. Inserting
this BSDF into the scattering equation (3.12), it is easy to check that we get the desired
relationship (5.12).

Thisisthe simplest way to write the BSDF from a conceptual point of view; it expresses

the desired rel ationship between w; and w;, and also thefact that radianceisscaled by afactor
of (n,/n;)?, with aminimum of extra clutter.

SAlgebraicaly, R is defined by

R(0i7¢i) = (0t7¢t) = (Sinil(E Sinei)7¢iiﬂ—)7

1

where 6, is chosen to lie on the opposite side of the surface as 6;, i.e. cos ; cosf; < 0. The symbols#; and
7, denote the refractive indices on the side of the surface containing w; and w; respectively. (Sincew; canlie
on either side of the surface, this meansthat »; is actually afunction of 6;.)

Notice that we have used the angular parameterization w = (6, ¢) to define R. It is possibleto define R(w)
directly in terms of the unit vector w, but the result is relatively complicated. The vector form is commonly
used in implementations, for example see [Glassner 1989, p. 298]).
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5.2.3 Theadjoint BSDF for refraction

We now derive the adjoint BSDF for refraction. We will make use of the following genera
symmetry relationship, which holds for any physically valid BSDF:*

fs(winj wo) _ fs(“’; ). (5.14)
This fact will be derived in Chapter 6. For now, we can use it to immediately obtain the

adjoint BSDF for refraction:

Kwi—w) = filw—w)
= (Ui/ﬂt)zfs(wi%wﬁ
= Jpt(wi — R(wy)), (5.15)

where we have used (5.14) and (5.13) in the second and third lines respectively.

The main thing to notice is that the (r, /1;)* factor is not present in the adjoint BSDF.
Thus, importance and light particles are not scaled when they cross the interface. (Notice
that this correspondsto theintuitiveideathat light particlescarry “power”, since power (un-
like radiance) is conserved when light enters a different medium.)

In an implementation, the difference between f; and f* must be represented explicitly.
It isnot possibleto evaluate the adjoint BSDF by just exchanging the directional arguments,
since thereis no way to evaluate the BSDF at all. Specular BSDF's contain Dirac distribu-
tions, which means that the only allowable operation is sampling: there must be an explicit
procedure that generates a sample direction and a weight. When the specular BSDF is not
symmetric, the direction and/or weight computation for the adjoint is different, and thus
there must be two different sampling procedures, or an explicit flag that specifies whether
the direct or adjoint BSDF is being sampled.

In Appendix 5.B, we give adifferent derivation of the adjoint BSDF for refraction. The
problem with the derivation given here is that it depends on the laws of physics, by way of
the symmetry condition (5.14). Since the adjoint BSDF is a purely mathematical concept,

4Equation (5.14) appliesto the BSDF's of amuch larger class of surfacesthan we consider here, including
frosted glass for example. Perfect refraction correspondsto the special case of an optically smooth interface
between two dielectric media
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it should be possible to derive it mathematically, and thisis what is done in Appendix 5.B.

5.24 Reaults

Figure 5.4 shows a pool of water with small waves, illuminated by two area light sources.
Thisimage simulates the results of a two-pass rendering algorithm, consisting of a particle
tracing pass followed by aray tracing pass (Figure 5.1).> The waves (and the floor) were
modeled using bump mapping.

Figure 5.4(a) shows the correct image, whose computation requires that viewing rays
and particles be handled differently at the air-water interface. The radiance aong viewing
raysisscaled by (n,/n;)* when they crossthe interface, but the particle weights are | eft un-
changed.

Figure 5.4(b) shows the errors that occur when the BSDF at the air-water interface is
assumed to be symmetric, i.e. when the same scattering rules are used for viewing rays and
particles (for thisimage, neither one was scaled). This leads to caustics that are too bright,
by afactor of (1, /m;)2.

5.2.5 Discussion

Hall [1989] pointed out that radiance should be scaled by (1, /n;)? at arefractive interface,
but this fact has been ignored by most ray tracing systems. Our results take this one step
further, by showing that the (n, /7;)* scaling should not be applied to importance or light
particles. We are not aware of any system (other than ours) that implements different scat-
tering rulesfor radiance vs. importance or path tracing vs. particletracing inthisway. Aswe
have shown, thisiseasy to do, and essential for the correctness of bidirectional algorithms®

SBoth of theseimages were actually computed using the Metropolislight transport algorithm (Chapter 11),
with modifications that simulate the results of two-pass algorithms such as[Shirley et al. 1995, Jensen 1996].

5Theradiance scaling isnot asimportant for ray tracing or path tracing, sincewhen apath entersand exitsa
given medium, the two factors cancel out. However, the results of these algorithmswill beincorrect when the
sources and sensorsarein different media (e.g. underwater lights). Here we have assumed that the underwater
lightsare modeled as direct emitters, rather than asafilament surrounded by aglass shell (sincemost rendering
algorithmswould be very inefficient if this representation were used). However, note that errors occur in both
cases when bidirectional methods are used (e.g. recall the pool example, for which the source and sensor were
in the same medium).



5.2. NON-SYMMETRY DUE TO REFRACTION 149

(b)

Figure5.4: (a) A pool of water asit would be rendered by aparticle tracing algorithm (refer-
enceimage). (b) Incorrect caustics (too bright), caused by assuming that refraction between
air and water is modeled by a symmetric BSDF.
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Another approach to correctly handling refraction is to find away to represent it by a
symmetric function. Thisseemsplausible, given the existence of the general symmetry con-
dition (5.14). Thistopic isexplored further in Chapter 7, where we derive aframework for
light transport in which light, importance, and particles all obey the same scattering rules.

5.3 Non-symmetry dueto shading normals

Shading normals are used to change the apparent orientation of a surface without changing
its geometry. The mechanism is simple: when the surface is shaded (e.g. using the scatter-
ing equation (3.12)), the surface normal N (x) isreplaced by a different, arbitrary direction
vector. The new direction is called the shading normal N(x), and corresponds to the de-
sired orientation of the surface. To avoid confusion, we will refer to the true surface normal
as the geometric normal N, (x).

Shading normalsare useful tool for many graphicsapplications. For example, their orig-
inal purposewasto make polygonal surfaces appear more smooth [Phong 1975]. Todothis,
avertex normal isdefined at each vertex of apolygonal mesh. Shading normalsare obtained
by linearly interpolating the vertex normals across each polygonal face, to give the appear-
ance of a smoothly changing surface orientation. This ssmple technique is still widely in
use today, because computer models of smooth surfaces are usually converted to polygons
before they are rendered.

Shading normals are also used for bump mapping [Blinn 1978]. Thisis atechnique for
adding detail to surfaces that are otherwise smooth and uninteresting. By perturbing the
surface normal, it is possible to create the impression of high geometric complexity; for
example, aflat rectangle can be given the appearance of a stucco wall.

However, thereisa“catch”. Aswe will explain, shading normals modify the BSDF of
the material to which they are applied. (In some sense thisis obvious, since shading nor-
mals change the surface appearance, and surface appearance is completely determined by
the BSDF.) Unfortunately, the modified BSDF does not possess the same properties as the
original: in genera it is not symmetric, and it does not conserve energy. It should not be
surprising that shading normals cause problems, since they do not have any physical basis.

Nevertheless, shading normals are a useful tool for many graphics applications, and we
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observe that there is still a well-defined set of equationsto be solved. By deriving and us-
ing the correct adjoint BSDF, we can ensure that different bidirectional light transport al-
gorithms all converge to the same mathematically correct solution. On the other hand, we
show that if the non-symmetry due to shading normals is not recognized (i.e. the adjoint
BSDF is not used), then different rendering algorithms will converge to different results.
Thisisclearly undesirable.

One way to see the problems caused by shading normalsisto observe that some certain
calculations still depend on the geometric normal. By changing the normal used in some
calculations, but not in others, we get an inconsistent representation of the scene model.
In aparticle tracing ssmulation, for example, consider the number of particlesreceived by a
given polygon A. Clearly thisdependson the geometric normal of A, rather than itsshading
normal. Similarly, observe that the solid angle subtended by a polygon is not affected by its
shading normal. These inconsistencies between geometric and shading normals can cause
problems, unless the correct adjoint BSDF is used.

5.3.1 How shading normals modify the BSDF

Letx € M beafixed point, so that we can omit x from our notation. When shading normals
are not considered, recall that the radiance leaving x can be evaluated using the scattering
equation (5.9),

Lo(wo) = [ L) fonv, (6= wo) do* ()
= [, La(n) g o) o - Ny o).
With shading normals, however, the following equation is used instead (see Figure 5.5):
Lowo) = [, Liwn) fun.(wi—wo) i Nyl do(ur), (5.16)

i.e. the shading normal is used when evaluating the BSDF and the projected solid angle.
This formulais very effective at changing the apparent orientation of a surface (from

N, to N;). However, it does not actually change the surface geometry. Instead, the shading

normal should be thought of asaparameter that modifiesthe BSDF. We can write an explicit
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Figure 5.5: Geometry for defining the effect of shading normals.

formula for this modified BSDF, by converting the shading formula (5.16) to the standard
form (3.12). In other words, we would like to write it in the form

Lo(w,) = /52 Li(wy) fo(wi—w,) |wi - Ng| do(w) .

This can be achieved by letting £, be the modified BSDF given by

r |w; - N
flwi—w,) = fin, (Wi—ws,) :
|Wi : Ng|

(5.17)

It is easy to verify that the formula obtained by using this BSDF is indistinguishable from
the original shading formula (5.16) (notice that the two |w; - N,| factors cancel each other).
We have ssimply interpreted the calculation in a different way.

5.3.2 Theadjoint BSDF for shading normals

However, even if the original BSDF was symmetric, the modified BSDF is not. Its adjoint
frisgiven by

Flwi—we) = filwo—w)
jwo - N
|wo - Ng| '

= foN,(Wo—wi) (5.18)

Thisisthe BSDF that must be used for importance transport and particle tracing.
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For example, the scattering equation for importance is given by

Wolwn) = [ Whlun) (=) do ()
|wo - Ni|
|wo - Ng|

= /82 VVi(Wi) fs,NS (Wo _>Wi) |Wi . Ng| dO'((,ui) .

This will give results that are consistent with the formula (5.16) for radiance evaluation.
Notice that the formula for evaluating importance is more complex than the formula for
evaluating radiance, because there is no cancelation of the|w; - N, | factors.

Similarly, recall that the adjoint BSDF is used in particle tracing (see Sections 3.7.5
and 4.A). Given a particle that arrives from direction w, and is scattered in direction w;,
the particle weight should be multiplied by

fo (wi—=wo) |wi - Ng|
Pg(wi)
fS,Ns (Wo_>wi> |w0 ! NS|

_= |(,Ui * N | [} (519)
P, (w;) |wo - Nyg| &

a(w)

where P, (w;) isthe density with respect to solid angle for sampling direction w; (See equa-
tions (4.33) and (5.18)). If particles are weighted in this way, the results will be consistent
with the desired shading formula (5.16).

5.3.3 Examplesof shading normal BSDF’'sand their adjoints

We show how these results apply to diffuse surfaces (i.e. Lambertian), and perfect specular
surfaces (i.e. mirrors).

For adiffuse surface, we will show that the importance sampling techniques needed for
ray tracing and particle tracing are different. We start with the constant BRDF:

fr(wi —>u}0> = Ky.
For radiance evaluation (ray tracing), we insert thisin (5.16) to obtain

Lowo) = [, KaLi{wi) [wi - NeJ do(ws).
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For particle tracing, according to (5.19) scattered particle weights should be multiplied by

Ky |wo - Ny
pwo(wi) |w0 ' Ng|

alw) = |wi - N,

where we have used the convention that particles go from w, to w;.

These equations imply that the importance sampling techniques needed for ray tracing
and particle tracing are completely different. In both cases, the task is to sample an appro-
priate direction w;, when w, is aready given. For ray tracing, w; should be chosen with
probability proportional to |w; - Ny|, since thisis the factor by which incoming radiance is
weighted. However, for particles, w; should be chosen according to the cosine with the ge-
ometric normal, |w; - Ng|. (The weighting factors involving w, are irrelevant, since they
depend only on the direction the particle arrived from.) The fact that two different density
functionsare needed for sampling can have important implicationsfor rendering system de-
sign (see Section 5.3.4).

As another example, consider a perfect (two-sided) mirror. We will show that reflected
particles (or importance) must be weighted by an extrafactor of

o = |wj - Ng|
|W0'Ng|

to get correct results.
To show this, recall that the BSDF for a perfect mirror wasderived in Section 5.2.1.2 as

O (wi — Mn(ws))
|wi + N

fs,N (wi — wo) =

To apply equation (5.19) to thisBSDF, we must also know the density functionp,,, (w;) that
the reflected particles are sampled from. For a perfect mirror, the direction w; is chosen
deterministically, as represented by the density function

P (i) = 0o (wi — Mn(wo)) -

Plugging these into equation (5.19), and noting that w; - Ny = w, - N, we get

fs,Ns (Wo _>Wi) |wo ) Ns|

|wi - Ny
Puw, (Wi> |w0 : Ng| ¢

a(w)



5.3. NON-SYMMETRY DUE TO SHADING NORMALS 155

|wo - Ns| |wi - Ny
|wo - Ny Jwi - N
|wi - Ng|
|wo - Ng| -

As afina example, recall the pool test case of Section 5.2.4. The waves in this scene
were model ed using bump mapping, so that the air-water interface involves both refraction
and shading normals. This means that both sets of results apply: radiance is scaled by a
factor of (1, /n;)> when it crosses the interface, while particle weights are scaled by

|wo - N |w - Ng|
|wo - Nl Jwi - N[’

whereasusual particlesgofromw, tow; (sincethisisarepresentation of the adjoint BSDF).

5.3.4 Pseudocode for the correct use of shading normals

In Figure 5.6, we give pseudocode to evaluate the factor

K(wi—=w,) = fs(wi—=w,) |wi Nyg| (5.20)
that appears in the scattering equation (5.9), and also the adjoint factor
K*(wi—w,) = fHwi—w,) |wi - Ng| (5.21)

that is used for importance evaluation and light particles. We will call these quantities the
scattering kernel and the adjoint scattering kernel respectively. In Figure 5.6, the adjoint
flag controls which of theseis returned.

It may seem redundant to provide both the direct and adjoint kernels (because f (w; —
w,) = fi(w,—w;)). However, thisisactually quite useful. First, it allows higher-level ren-
dering algorithmsto always have the same form, whether they use radiance, importance, or
particles. By supplying the appropriateadjoint flag, the BSDF is* transposed” appropriately
for sampling or evaluation.” Second, it allowsdifferent density functionsto be used for sam-
pling in the direct and adjoint cases, as was shown to be necessary in Section 5.3.3. Givena

“In any case, the adjoints of specular BSDF’'s must alway's be represented explicitly, as mentioned in Sec-
tion 5.2.5.



156 CHAPTER 5. NON-SYMMETRIC SCATTERING

function EVAL-KERNEL (w; — w,, adjoint)

assert N, - Ng > 0 (if not, flip IN,)

if (wi - Ng)(wi-Ng) < 00r (w,+ Ng)(w, - Ng) <0
then return O

if adjoint
then return f, N, (wo —wi) [wo + Ni| |wi - Ng| / |wo - Ny
else return f, N, (w;—wo) |w; - Ng|

Figure5.6: Evaluation of the scattering kernel K when the geometric and shading normals
are different. Theadjoint flag controls whether K or K* is returned (these are used for ray
tracing and particle tracing respectively). The return value includes the factor of|w; - N|

that is hidden by the projected solid angle notation.

direction w,, theideal density function for w; is proportional to either K" or K* (depending
on the adjoint flag). These density functions can be attached to the BSDF and returned as a
single object during ray casting. Noticethat for materialswith symmetric BSDF's, we have
K = K* and the adjoint flag can be ignored by the material implementation.

5.34.1 Theprevention of “light leaks’

The pseudocode in Figure 5.6 also shows how to prevent light from “leaking” through the
surface [Snyder & Barr 1987]. The problem isthat an opague surface can actually transmit
light when shading normals are used. This happens when w; and w, lie geometrically on
opposite sides of the surface, and yet they are on the same side of the surface according to
the shading normal (see Figure 5.7(a)), so that the BSDF is evaluated as though light were
“reflected” from one side of the surface to the other.

The simplest way to prevent thisisto check that w; lies on the same side of the surface
with respect to both normals, i.e. that w; -IN, and w; -IN have the same sign. We also perform
thistest on w,, and if either test fails, we return a zero value for the BSDF (see Figure 5.6).
Thistechniqueis effective in preventing the “light leaks” described above. However, it can
also cause ordinary surfaces to appear completely black. This happens when the shading
normal faces away from the viewing direction, i.e. when w, lies on opposite sides of the
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(@ (b)

Figure5.7: (a) Thedirectionsw; and w, are on opposite sides of the surface geometrically,

yet they are on the same side with respect to the shading normal. Thusif we simply evaluate
the BSDF using the shading normal, light can be “reflected” from one side of the surface to
the other. Thegivesthevisua impression that light is somehow leaking through the surface.
(b) The easiest solution to this problem is check ifw; lies on opposite sides of the surface
with respect to N, and N. A similar test is performed onw,, and if either test fails, we
return a zero value for the BSDF. However, this creates a new problem: if the test forw,

fails (as shown in the diagram), then the BSDF is zero for alw;. This leads to sporadic
“black patches’ on the rendered surface.

surface with respect to N, and N, (see Figure 5.7(b)).
We now describe a way to solve both the light leak and black surface problems. To do
this, we represent reflection and transmission by separate functions:

fin: 8= & and fin:S*— 8.

Notice that both of these functions are defined for al w;, w, € S?, i.e. they can be thought
of as extensions of the BRDF and BTDF.

To evaluate the BSDF with shading normals, we proceed as follows (see Figure 5.8).
If w; and w, lie on the same (geometric) side of the surface, then f. is used, and otherwise
fi isused. Then, the chosen function f is evaluated with respect to the shading normal N
(correcting for the adjoint if necessary).

With respect to thisframework, f. specifies how much light would be reflected between
any two directionsw; and w,, evenif w; and w, lieon oppositesidesof the surface. Similarly,



158 CHAPTER 5. NON-SYMMETRIC SCATTERING

function EVAL-KERNEL-EXTENDED (w; — w,, adjoint)
if (wi-Ng)(wo-Ng) <0
then f « f.
ese f+ fi
if adjoint
then return fn_ (wo = wi) |wo * Ny Jwi - Ng| / |wo - Nyg|
else return fn_(wi— wo) |wi - N

Figure 5.8: This pseudocode shows a different way to prevent light from leaking through
asurface, by extending the BRDF and BTDF to be functions defined for all directions. We
use the extended BRDF whenw; and w, lie on the same side of the surface (with respect to
the geometric normal), and otherwise we use the extended BTDF.

f; isextended to describe transmission between directions on the same side of the surface.
Thisextrainformationisused only when the shading and geometric normal sgive conflicting
information.

For example, a diffuse surface would be represented by

filwi—w,) = Ky and filwi—w,) = 0,

for all wi,w, € S?. With these definitions, no light will leak through the surface in Fig-
ure 5.7(a), and yet the surface will not appear to be black in Figure 5.7(b).

Many other BRDF's, such as those based on microfacet theory, can naturally be ex-
tended to a function defined over al directions. Thus, this idea can be applied quite gen-
erally to solvethe problem of light leaks. However, it isimportant to note that these are not
the only artifacts associated with shading normals; see [Snyder & Barr 1987] for further
examples.

5.3.5 Shading normalsviolate conservation of ener gy

In Section 6.3, we will show that any energy-conserving BSDF must satisfy

/ flwimwe) dot(ws) < 1 foralw.
S2
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€Y (b)

Figure 5.9: (a) A flat, diffuse surface facing toward a point light source, withINy = N,.
The surface is assumed to not to absorb any light, so that the incident and reflected power is
the same. (b) A ridged surface with shading normals that point toward the light. It receives
the same power as (a), but reflects far more due to its larger surface area.

When shading normals are used, this condition applies to the modified BSDF f, defined by
(5.17), leading to

|wi - N
|wj - Ng|

/ JoN (Wi = w,) do(we) < 1 for al w; .
82

However, if N, and N, are different, then the factor |w; - N;| / |w; - N,| can be arbitrarily
large (by choosing w; nearly perpendicular to N, but not N;). Notice that this factor can
be taken outside the integral, since it does not depend on w,. Thus energy is not conserved
(for some values of w;).

For intuition about this, consider Figure 5.9(a), which showsapoint light source shining
on aflat, perfectly reflective, diffuse surface. To determinewhether energy isconserved, we
compare the power received by the surface to the power that isreflected. In Figure 5.9(a),
these two quantities are equal .

In Figure 5.9(b), the surface is covered with steep ridges, but the shading normals point
toward the light source as though the surface were flat. This surface receives the same to-
tal power as (@), since it occupies the same solid angle with respect to the light source. It
a so has the same apparent brightness as (a) at every point, because it has the same shading
normal. In other words, the reflected radiance at every point and in every direction is the
same in both cases, so that (b) reflects the same power per unit area as (a). However, the
total surface area of (b) is much larger than (a). Thus, surface (b) reflects far more power
than it receives.
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Figure 5.10: Light of uniform intensity (represented by equally spaced particles) arrives
from direction w, at the polygonal surface shown. The shading normal N is continuous
across the boundary between polygons A and B, implying that the shading should be con-
tinuous as well. However, suppose that an image is computed by estimating the apparent
particle density from some other directionw;. Thisdensity isdiscontinuous at the boundary,
as shown; to get continuous shading, the particles must be weighted according to equation
(5.19).

Thislack of energy conservation has an important consequence for particletracing algo-
rithms: namely, that sometimes particle weightswill increase during a scattering operation.
This is especialy important for algorithms that use unweighted particles (e.g. density es-
timation [Shirley et a. 1995]), since splitting of particles may be required. That is, rather
than multiplying the current particle’ sweight by o, wereplaceit by |« | new particles, plus
an extra particle with probability o — |« ].

5.3.6 Shading normals can cause brightness discontinuities

It isvery important to use theadjoint BSDF £ in particletracing algorithms. Otherwise,
there can be noticeable artifacts in the shading of polygonal meshes.

Consider Figure 5.10. Light of uniform intensity is arriving from direction w, at the
polygonal surface shown. The shading normal IN; is continuous (in fact, constant) across
the boundary between polygons A and B, implying that the shading of the mesh should
appear smooth (no matter what rendering algorithm is used).

However, suppose that a particle tracing algorithm is used, and that an image is com-
puted directly by making a dot for each particle collision at the corresponding point in the
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image. (Thisis an example of an image space rendering algorithm, as discussed in Sec-
tion 1.4.3.) We let w, denote the direction that particles arrive from, while w; denotes the
direction toward the viewer, following our convention that w; is aways the sasmpled direc-
tion in arandom walk (Section 3.7.5).

We will show that the computed brightness of the polygons A and B is not the same,
implying that thereisadiscontinuity at the boundary between A and B. To seethis, observe
that the brightness of the image regions corresponding to A and B is proportiona to the
number of dots per pixel made there. In turn, thisis proportional to the apparent density of
particleson A and B, measured perpendicular to the viewing direction w;.

To compute this apparent density, first note that the geometric normals of A and B are
different, so that fewer particles per unit areaarereceived by B thanby A. Itiseasy to show
that the particle densities on the polygons A and B areinthe ratio

By _ |wo-Ny(A)|

Ep |wo - Ng(B))] '
(Thisisalso theratio of the irradianceson A and B.) From this, we can now compute the
apparent particle density as seen from the viewpoint. Thisissimply the density of particles
on the surface, divided by |w; - N, |. (Observethat if |w; - N, | issmall, then we are looking
at the surface edge-on, and thus the particles will appear much more dense.)

Putting this all together, the image brightnesses of A and B are in theratio

Lo Jwo - Ng(A)] Jwi - Ny(B))]
Ip |wo - Ng(B)| |wi- Ng(A)]”

(5.22)

and so there is a discontinuity in the image brightness at the boundary between A and B.

Our original goal was that this boundary should appear smooth (since N, is continuous
there). We will show that if the particles are weighted according to the adjoint BSDF f*
(as they should be), this will be achieved. Referring to (5.19), the particles striking A are

weighted by afactor of
_ Jwi - Ng(4)]

 fwo  Ng(A)]

where we have ignored weighting factors that are the same for particleson A and B. A

Qg
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similar weighting factor appliesto particles striking B, and the ratio of these weightsis

oA |wi - Ng(A)] |wo-Ng(B)|'
ap  |wo Ng(A)| |wi - Ng(B)|

Comparing thiswith (5.22), we see that the change in particle weight exactly compensates
for the change in particle density, resulting in smooth shading across the boundary.

Particle tracing techniques are not often used to compute direct illumination, aswe have
supposed here, because other techniques are usually more efficient. However, it is quite
common that particle tracing is used to render at least some component of the lighting on
visible surfaces; for example, particle tracing is often used to render caustics. If the adjoint
BSDF is not used for these particles, there will be false discontinuitiesin the image as we
have outlined above.

5.3.7 Reaults

Figure 5.11 shows a bump-mapped teapot, and a polygonalized sphere with smooth shading
normals. The images are ssmulations of a particle tracing algorithm: for each particle that
strikesa surface, adot is made at the corresponding point in the image, where the dot inten-
sity is proportional to how much light is reflected toward the viewer. Figure 5.11(a) shows
the correct result (using the adjoint BSDF), while Figure 5.11(b) shows what happens if
particles are scattered just like viewing rays (i.e. if the non-symmetry caused by shading
normalsis not recognized). Both images use the same shading normals; the flat-shaded ap-
pearance of Figure 5.11(b) isan example of the shading artifacts described in Section 5.3.6.

5.3.8 Alternativesto shading normals

One way to avoid the problems associated with shading normalsisto simply not use them.
After all, they are not physically plausible. However, they are ailmost too useful to give up,
both for approximating smooth surfaces with polygonal meshes, and for adding apparent
surface detail without increasing geometric complexity.

Atfirst, it might appear that some problemscan be avoided by using the shading formula:

Lowo) = [ Lilwn) fom, (=) s - Ny dor(ws), (5:29)
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(b)

Figure 5.11: (a) Bump mapping and Phong interpolation, reference image. Shows direct
lighting asit would be computed by particle tracing. (b) The same model, with errors caused
by assuming that shading normals do not affect the symmetry of BSDF's.
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where we have used |w; - N, | instead of |w; - N;|. Thismethod preserves the symmetry of f;
(assuming that it was symmetric in the first place), and will often conserve energy (but not
always). However, the results obtained with thisformulaare not very useful. For example,
consider adiffuse surface. The proposed shading formula(5.23) computesthesame surface
appearancefor al valuesof N, becausethe BRDF f. isaconstant. Thus, itisimpossibleto
make apolygonal surface look smooth, or make aflat surfacelook bumpy with thisformula.

Similarly, consider a perfect mirror. Using (5.23) and the representation (5.10) of the
mirror BSDF, we see that the radiance reflected by the mirror would be

| M, (wo) - Ny|
Lo(w,) = |wo - Ny :

Li(Mn, (wo)) -

The weighting factor in this equation causes the reflectivity of the mirror to change with
N,, varying intherange 0 < p < 2.2 Again, this formula does not achieve what we would
expect with shading normals, since it changes the reflectivity of the surface as well as the
direction of reflection.

Other BSDF's produce similarly strange effects when used with (5.23), but they do not
create the appearance of a changing surface orientation (as shading normals do). Thusthe
usefulness of (5.23) is quite limited. It seems far better to just use traditional shading nor-
mals, and accept the fact that their use corresponds to a non-symmetric BSDF.

Another possibility istolook for new BSDF modelsthat serve the same purpose as shad-
ing normals, and yet are symmetric and energy-conserving. Thisisaninterestingareafor fu-
tureresearch. Perhapsit could be accomplished with amicrofacet shading model [ Torrance
& Sparrow 1967, Glassner 1995], where the distribution of microfacets is not symmetric
about the surface normal.

However, it isimportant to realize that this kind of approach will never replace shading
normals. One of the big advantages of shading normalsis that they can be applied to any
BSDF, while a microfacet approach would obviously be limited to a particular scattering
model. Second, shading normals are designed to be as effective as possible at changing the
apparent surface orientation. The results achieved using any symmetric, energy-conserving

8Becauseit is possiblethat p > 1, thisis an example of aBSDF which was originally energy conserving,
but not when formula (5.23) is used.
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approach will necessarily beless convincing. Notethat it isimpossibleto duplicate the sur-
face appearance achieved by shading normals, since if two shading formulas always pro-
duce the same surface appearance, then they are represented by the same BSDF.
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Appendix 5.A Diracdistributionsfor general measures

Our goal in this section is to give a rigorous definition of the notationd, (x — x) that was used
to define the mirror BSDF (Section 5.2.1.2). This concept of a Dirac distribution with respect to
ageneral measure is apparently new (although it seems quite basic), and we have found it to be a
useful tool for many problems in graphics. We show how these distributions fit into the standard
framework, and we also derive several identities that give them a consistent meaning as they are
manipulated during calculations.

5.A.1 Linear functionalsand distributions

Although the notation () looks like afunction, it isproperly called ageneralized functionor distri-
bution. A rigorous theory of distributions wasfirst developed by Laurent Schwartz inthe late 1940's
and early 1950's [ Schwartz 1966]. However, physicists had been using similar ideas well before that;
for example, Dirac introduced his famous “delta function” in 1925 [Liitzen 1982].

To define distributions rigorously would take ustoo far afield, but we will at least summarize the
basic concepts. Further information can be found in [Rudin 1973, Al-Gwaiz 1992].

First, the notation

/ f(z)o(z — xp) do (5.24)
R

should be thought of as purely symbolic (there is nothing being integrated in the traditional sense).
Rather, this notation defines a mapping that takes a continuous functionf, and yields areal number
f(xo). The mapping is called alinear functional, and we will denote it by A, .

Formally, alinear functional is alinear operatorA : X — F from avector space X onto its
scalar field F [Taylor & Lay 1980, p. 31]. In the example (5.24), the vector space isthe setC'(IR) of
all continuous functionsf : IR — IR, with the usual operations of addition and scalar multiplication,
and the scalars are smply the real numbers (F = IR). The functional A,, : C(IR) — R is defined
by

Aao(f) = flz0).

Thus, the notation (5.24) isjust along way of writingA, (f).

Themapping A, isactually aspecial kind of functional called adistribution. Distributions have
many desirable properties: they areinfinitely differentiable, they obey the usual formal rules of cal-
culus, they are equipped with many convergence theorems, and furthermore every continuous func-
tion isadistribution [Rudin 1973, p. 135]. To achieve these wonderful properties, however certain
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technical restrictions must be made (see Schwartz [1966] and Rudin [1973, p. 137,141]).

5.A.2 General Dirac distributions
Returning to our notation for general Dirac distributions, the expression
[ 7601 ¢ = x0) dx) (5.25)
represents a distribution A, acting on afunction f : Q@ — IR, where A, is defined by®
Axo(f) = f(x0)- (5.26)

At this point, the notation ¢,,(x — xo) may seem rather odd, because the measure . does not
appear anywhere in the definition of Ax,. That is, given adifferent measurey’ on the domain €2, the
expression

[ 5608 = x0) ' 3
Q

denotes exactly the same distribution A, that we defined above. However, the point isthat we have
defined the meaning of the notation

| 1601 8(x = x0) () (5.27)

only when the measures i« and 1. are the same. The subscript ond,, is areminder of this, since it
is possible to get meaningless results if an expression such as (5.27) is evaluated carelessly. For
example, if we take definition (5.8) of the mirror BSDF, and substitute it in the expanded version
(5.9) of the scattering equation, we obtain
Lo(w,) = , Li(wi) 0,0 (wi — MN(wo)) |wi - N|do(w;) . (5.28)
s

If it were not for the subscript ond, we might apply the identity (5.7) to obtain
Lo(wo) = Li(Mn(wo)) |wo - NI,

which isincorrect.

9The fact that Ay, isadistribution, and not merely afunctional, is because the formula A, (f) = Jo fdv
defines a distribution whenever v is ao-finite positive measure [Rudin 1973, p. 143]. In our case, the measure
visdefinedby v(D) = 1if xg € D,and v(D) = 0 otherwise.
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5.A.3 ldentitiesfor evaluating general Dirac distributions

For future reference, we give several identities that are useful for evaluating expressions containing
general Dirac distributions. We can summarize these as follows:

(D1) du(x0—x) = 0u(x —xo)

0 Sulx—x0) = Sox0) 3 (x = )

(D3) 6,.(B(x) — B(x0)) = Ouop(x —X0)

For property (D3), 5 denotes a bijective function3 : Q@ — €2, and p o 3 isthe composition measure
defined by

(noB)(D) = pu(B(D)), (5.29)

where 5(D) = {3(x) | x € D}. Property (D3) may look more familiar when it is specialized to
the case of ordinary Dirac distributions on the real line, yielding

_ 1
[ f (o)

where f isabijective function that is differentiable atz.

o(f(x) = f(xo))

d(x — xp), (5.30)

Note that al three of these properties are actually definitions, whose purpose is to extend the
notation (5.25) in a consistent way. The definitions are designed to be compatible with the usual
rules of calculus, so that we may formally apply them as though Dirac distributions were ordinary
functions.

Property (D1). This defines the meaning of the notationd,, (xo — x). Note that the expressions
x — x( and xy — x are purely symbolic; they do not imply that subtraction is defined on the domain
Q.

Property (D2). Thisdefinition gives aconsistent meaning to expressions of the form

/Q F(x) 8 (% — x0) dit'(x) (5.31)

where the measures. and ./ are different. Oneway to evaluate an expression of thiskind isto change
the integration measure, a concept similar to a change of variables. To do this, we require thaty
and ;' are continuous with respect to each other, i.e. they have the same sets of measure zero. This
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guarantees the existence of the Radon-Nikodym derivatived./dy' (see Theorem 3.2), and allows
us to switch from one integration measure to the other using

= d_u X "(x
[ feante) = [ £x) 55 )i ) (532

[Rudin 1987, p. 23]. For example, we could use this relationship to evaluate (5.28) correctly, by first

substituting

do (w;)
do(w;) ’
and then applying (5.32) and (5.7) to get the right answer.

|wi - N| =

Definition (D2) allows us to evaluate (5.31) in another way, by changing thedistribution rather
than the integration measure. To obtain this identity, we rewrite (5.31) as
!/

#6086 =xa) 60 = [ 60 ,0x = x0) G0 dn(x) (539

We now simply observe that if the substitution (D2) is made on the |eft-hand side of (5.33), the same
result is obtained. Thus, the definition (D2) is consistent. (Note that we have not previously defined
the meaning of expressions such as (5.31).)

Property (D3). The definition gives a consistent meaning to the notation

| 160 8,(9(x) = B(x0)) (0 (534
where 3 be abijective function 3 : @ — €. Our goal isto define thisin such away thatd,, can be
treated as an ordinary function.

To do this, we make the definition

u(B(x) — B(x0)) d(”d; A) (x0) = du(x —x0), (5.35)

where 11 o 3 is the composition measure (5.29). We require thaty o /3 is continuous with respect to
1, S0 that the Radon-Nikodym derivative existsin (5.35). Notice that property (D3) can be obtained
from (5.35) by applying property (D2).
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To show that definition (5.35) is consistent, we evaluate

[ 7698006 = 50e0)) W2 ) o
Q 1
= [ 109053060 = 50xe)) LD gy
Q I

dpi(x)
- /fx5 (%) — B(x0)) du(B(x))
_ /f B(x0)) du(x')
= (5 wmm

= /f (% = xo) dp(x)

where we have defined x’ = 3(x) and used the fact the 3 isabijection. Comparing the first and last
lines, we get (5.35).
Another form of thisidentity is sometimes useful, when we are given an expression of the form
§,(B(x) — xg). By letting xg = 37! (x{) in (5.35), we obtain
d(p o 3) / - !

0u(B(x) —xq) = T(ﬁ_l(Xo)) 0u(x = B7H(xp)) - (5.36)
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Appendix 5.B Derivation of the adjoint BSDF for refraction

We derive the adjoint BSDF for refraction (5.15). Unlike the derivation in Section 5.2.3, this one
does not depend on physical laws.
Recall from Section 5.2.3 that refraction is described by the following BSDF:
2
flwiow) = Z—t(s (wi — Rlwy)).

2 70
i

From the definition (3.21) of the adjoint BSDF, we can immediately write it as

felwimw) = filw—=w)

5 — R(wr)

Ui 7

where r; and 1, have been exchanged because they are functions ofw; and w; respectively.
Thisisavalid expression for the adjoint BSDF, but it is certainly not obviousthat it isequivalent

to the expression (5.15) given in Section 5.2.3. To show that it is, we first observe that althoughR

isabijection, it does not preserve the measureo ", since from (5.4) we have

do*(R(wi))  do™(w) 7

do*(w;)  dot(w;)  m2’

Thus, we can apply the identity (5.36) to get

2
folwi—=w) = %@#(R(Wi)—wt)
t

2 [d(o* o -
%[ﬂa;@uz%mﬂ b~ R )

nt |do”(w) - _
= % [d&(wl)l 5U¢(w1—R(wt))
= Gyt (wi — R(wy)),

(e

which agrees with the expression (5.15) that we obtained before.
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Appendix 5.C Angular formsof perfect specular BSDF's

Although we prefer to use general Dirac distributions to represent specular BSDF's, it may be helpful
to see how reflection and refraction can be represented using ordinarys-functions. We will use the
identities from Section 3.6.3 and Appendix 5.A.

5.C.1 TheBSDF for amirror
Starting with mirrors, recall that the desired relationship betweenL; and L, is
Lo(0o, ¢o) = Li(fo, o £ 7).

The corresponding BSDF is thus
6(0i —0,) 6(pi — (o £ 1)) ‘

|cos 6] sin 6;

fS(0i7 ¢i7 907 d)o) =

To verify this, simply substitute f; in the scattering equation (3.17).
By using different expressions (3.16) for the projected solid angle, we can also write the mirror
BSDF as

Fi(6 61,00, 05) = 2c030 = cos00) 005 — (G £ 1)) (5.37)

cos 6,
= 2§(sin?6; —sin 6,) 0(¢y — (¢o £ 7)),

where the last expression is valid only for one-sided mirrors (since there are two solutions for; in
therange 0 < 6; < w). These forms of the mirror BRDF were given in [Nicodemus et al. 1977,
p. 44] and [Cohen & Wallace 1993, p. 31].

5.C.2 TheBSDF for refraction

The BSDF for refraction can also be written in terms of the angles(f, ¢). Thisform is given by

fo(65, 04,0, b)) = Z—gz §(sin” 0; — ”—tz sin? 0;) 8(py — (o £ 7)) (5.38)

(compare with (5.8)). Strictly speaking, this only represents the BTDF for light flowing in one
direction (rather than the full BSDF), since equation (5.38) has two solutions foré; in the range
0<6,<m.
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The adjoint BSDF for refraction is given by

2 2
F5(01, 61,00, 80) = %%(sin?et—%smzei)é(@—(@ﬂ))
t t

2
= 20(sin” 6 — 15 sin® 6,) 6(6 — (6 £ 7)),

1

where we have used (5.30).
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Chapter 6

Reciprocity and Conservation Laws for
General BSDF's

In this chapter, we derive anew reciprocity principlethat holdsfor materialsthat transmit as
well asreflect light.! According to thisprinciple, the BSDF of any physically valid material
must satisfy

fs(winjwo) _ fs(w;jwi) ’ (6.1)
wherer; and ), arethe refractive indices of the materials containingw; and w,, respectively.
Thisis a generalization of the well-known condition for reflective materials, which states

that the corresponding BRDF must be symmetric:

fr(wi_ﬂf‘jo) = fr(w0—>wi).

We also investigate how light scattering is constrained by the law of conservation of en-
ergy, and we derive a simple condition that must be satisfied by any BSDF that is energy-
conserving.

These conditions are important for two reasons. First, they provide a convenient test of
the plausibility of BSDF modelsin computer graphics. Second, they provide aminimal set

LA reciprocity principleis astatement that expresses some form of symmetry inthelaws governingaphys-
ical system. Such principles have been proposed throughout physics and chemistry, and are often stated as a
pair of hypothetical experiments whose outcomes are supposed to be the same.

175
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of facts that can be assumed by any physically valid rendering system. Along these lines,
in Chapter 7 we use the reciprocity condition mentioned above to derive a framework for
which light, importance, and particles al obey the same transport rules (for any physically
valid scene). This can make many rendering algorithms significantly easier to implement.

The main goal of this chapter isto derive the new reciprocity principle (6.1). Given an
arbitrary material, we analyzeits scattering propertieswhenit is placed within anisothermal
enclosure (i.e. onewhere all objects have the sametemperature, and no heat islost to the ex-
ternal environment). For such a system, which is said to be in thermodynamic equilibrium,
the exchange of light energy between various parts of the enclosureishighly constrained by
the laws of thermodynamics. This allows usto derive the reciprocity condition (6.1) from
only two basic principles, namely Kirchhoff’s equilibrium radiance law, and the principle
of detailed balance. Note that even though our analysistakes place within anisothermal en-
closure, the resulting reciprocity principleisvalid generally (since the BSDF of a material
isan inherent property).

We also discussthe historical originsof reciprocity principles. Oneof thefirst physicists
to study these ideas was Helmholtz, who proposed a famous principle concerning the prop-
agation of light through an optical system. However, it isimportant to note that Helmholtz
himself did not make any statement that would imply the symmetry of BRDF's. Aswe will
see, his reciprocity principle only applies to reflection from mirrors (rather than arbitrary
materials), and thus it does not have any direct implications for the symmetry of general
BRDF's.

We also discuss the subtletiesthat arise in rigorously justifying such principles. For ex-
ample, we explain why the symmetry of BRDF's cannot be derived directly from the second
law of thermodynamics, or from the principle of time reversal invariance.

This chapter is organized as follows. Section 6.1 describes the second law of thermo-
dynamics, Kirchhoff’s laws, and the principle of detailed balance. Section 6.2 shows how
these ideas can be put together in a “thought experiment” to prove the desired reciprocity
condition (6.1). Section 6.3 derives a separate condition to ensure that BSDF's are energy-
conserving.

In the appendices we examine the history of reciprocity principles, and also their limita-
tions. Appendix 6.A describesthe Helmholtz reciprocity principle, and explainswhy it does
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not have any implications regarding the symmetry of BRDF's. Appendix 6.B describes a
different reciprocity principle due to Lord Rayleigh, who appears to be the first person to
state aprinciplefor reflection from arbitrary surfaces. Appendix 6.C considersthe principle
of timereversal invariance, and explainswhy observabl e light scattering processesareirre-
versiblein general. Finally, Appendix 6.D investigates the limitations of these reciprocity
principles, by describing two situations in which they fail: namely, in the presence of ab-
sorbing media or external magnetic fields.

6.1 Thermodynamics, Kirchhoff’slaws, and detailed bal-
ance

Consider an enclosure containing various kinds of matter, which is completely insulated
from its surrounding environment. Eventually, the contents will reach a uniform tempera-
ture, and the system is said to be in thermodynamic equilibrium. At equilibrium, each por-
tion of matter will be emitting, scattering, and absorbing energy at variouswavelengths (e.g.
inthethermal, visible, and ultraviol et portions of the spectrum), in amanner that dependson
both the local material properties and the surrounding radiation field. Thus, energy is con-
stantly being exchanged among different regions of the enclosure, but in such away that the
temperature everywhere remains constant.

In this section, we explain two basi ¢ facts about systemsin thermodynamic equilibrium,
which will be used to derive the reciprocity condition (6.1). These facts are:

1. Theradiancein anisothermal enclosureisuniform,i.e. it isthe samefor all positions
and directions. More precisely, it depends only on the temperature of the enclosure
and the local refractive index, such that

L,(x,w,v)

n(x,w,v)?
is constant throughout the enclosure (thisis called Kirchhoff’s equilibrium radiance
law). Here (x, w) isaray, v isafrequency, L, (x, w, v) isthe spectral radiancefor this
ray and frequency, and n(x, w, v) isthe refractiveindex of the medium that surrounds



178 CHAPTER 6. RECIPROCITY AND CONSERVATION LAWS

thisray. (The reason that ) isafunction of w isto handle the case when x is on the
boundary between two different media.)

2. For every process that transfers energy from one part of an isothermal system to an-
other, there is areverse process that transfers energy at the same rate in the opposite
direction. Thisisknown asthe principle of detailed balance. For example, this prin-
ciple statesthat for a system in thermodynamic equilibrium, the rates of emission and
absorption for any given surface are equal.

We now explain these concepts in more detail. We first discuss the second law of thermo-
dynamics, followed by Kirchhoff’s equilibrium radiance law, and finally the principle of
detailed balance. Our discussion of these ideas is based mainly on the excellent summary
of [Milne 1930]; more detail ed information can be found in Drude [1900], Siegel & Howell
[1992], and [de Groot & Mazur 1962].

The second law of thermodynamics. Using the second law of thermodynamics, it ispos-
sible to derive important facts about the distribution of light energy in an isothermal enclo-
sure. According to thisprinciple, no ideal experiment can produce atemperature difference
within the enclosure unless the experiment does work or modifiesthe external environment.
For example, suppose that we divide the enclosure into two compartments separated by a
surface S. Furthermore, supposethat S istransparent to light in aparticular frequency band
[11, 5], but reflectslight at al other frequencies. Then by the second law, the rate of energy
flow across this surface must be the same in both directions. Otherwise, the net flow would
produce a temperature difference between the two sides of S, which could then be used to
perform work.

The second law can be stated more precisely in terms of entropy. Entropy measures
the amount of energy that can be transferred from one system to another, in the form of
work. For a given system with a fixed energy, the entropy can range from zero to some
maximum: if it is zero, then al of the energy in the system can be converted into work;
whileif itisat amaximum, then no work can be doneat all. With respect to this concept, the
second law states that the entropy of a closed, insulated system can never decrease, unless
work is performed on it from some external source (see [de Groot & Mazur 1962, p. 20]
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for further details). Thus, once a system has reached thermodynamic equilibrium (the state
of maximum entropy), it will remain in equilibrium, even if we perform ideal experiments
such as adding barriers or mirrors, changing the locations of objects, etc.

Kirchhoff’'slaws. By proposing ideal experimentsof thiskind, Gustav Kirchoff wasable
to derive many interesting facts about the radiation in an isothermal enclosure [Milne 1930,
p. 79], which are collectively known asKirchhoff’'slaws.? Of these facts, we will need only
his equilibrium radiance law mentioned above, which states that the quantity

L,(x,w,v)
n(x,w,v)? (62)

is constant throughout the enclosure.® For example, if the objects in the enclosure are sur-
rounded by a single medium, such as air, then this law states that the observed spectral ra-
diance for all positionsand directionswill be the same. Thisistrue even though the objects
within the enclosure may have very different emission, scattering, and absorption proper-
ties. In fact, the observed spectral radiance depends only on temperature; given any two
enclosures with different contents, but at the same temperature, the observed spectral radi-
ance in these enclosures will be the same.

If the objects in the enclosure are surrounded by several different media, the spectral
radiance will be proportional to 2, as indicated by equation (6.2). Thisis one of the key
facts that we will need to derive the reciprocity condition for general BSDF's.

Detailed balance. The other fact we need is the principle of detailed balance, which as-
sertsthat for asystem in thermodynamic equilibrium, every detailed processthat we choose
to consider has areverse process, and that the rates of these two processes are equal [van de
Hulst 1980, p. 17]. For example, this principle asserts that in an isothermal enclosure, the

2In the heat transfer literature, Kirchhoff’s law generally refersto one of these facts in particular, namely
that the emissivity and absorptivity of real materials are the same [Siegel & Howell 1992, p. 66]. This was
derived by Kirchhoff as a consequence of his equilibrium radiancelaw. Note that these results are not related
to Kirchhoff’slawsfor electric circuits, which he proposed much earlier in 1845. Also notethat theinvariance
of L/n? isoften falsely attributed to Clausius (cf. Drude [1900, p.504]).

3Strictly speaking, thislaw is true only when some material in the enclosureis capable of emitting or ab-
sorbing radiation at the given frequency v [Milne 1930, p. 80]. We can ensure that this is always true by
assuming that the enclosure contains a black body (which absorbs and emits radiation at all frequencies).
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emission and absorption rates of every surface are equal. This principle also appliesto scat-
tering, aswe will see in the next section.

Detailed balance has been formulated and proven for any system that possesses time
reversal invariance, both in classical systems and in quantum mechanics [de Groot &
Mazur 1962], [van Kampen 1954], [Wigner 1954]. Time reversal invarianceis one of the
basic principles of physics, which states if the time variable is negated in all formulas and
equations, then the laws of physics at their most microscopic level are unchanged (see Ap-
pendix 6.C). The only significant restriction of detailed balance is that for it to be valid,
there must not be any external magnetic fields [de Groot 1963].

6.2 A reciprocity principlefor general BSDF's

By combining Kirchhoff’s equilibrium radiance law with the principle of detailed balance,
we derive areciprocity principlethat holdsfor arbitrary physically valid materials. We also
show that this principle cannot be derived from the second law alone.

Consider a small area d A(x) within an isothermal enclosure (see Figure 6.1). We as-
sumethat x lieseither on an opague surface, or on the boundary between two non-absorbing
media. We also assume that no external magnetic fields are present, so that the principle of
detailed balance applies.

Consider the light that arrives from a small cone of directions do(w;), and is scattered
toward another cone do(w, ), where w; and w, can lie on either side of the surface. The scat-
tering can be of any type: reflection or transmission, specular or non-specular. According
to the definition of the BSDF (3.11), the power scattered from w; to w,, IS

dq)l — Lo (wo) dA(X) dO.L (wo)
= Li(w) do (w;) fo(wi—we) dAX) do (ws,) .

On the other hand, the power scattered fromw, to w; is
APy = Li(we) do (wo) folwo— wi) dA(X) do (w;) -

By the principle of detailed balance, the rates of scattering in thesetwo directionsare equal.
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Figure 6.1: To prove areciprocity condition for general BSDF's, we consider the light en-
ergy scattered between two directionsw; and w, a apoint x in an isothermal enclosure. By
the principle of detailed balance, the rates of scattering fromw; to w, and from w, to w; are
equal (d®; = dP,), while by Kirchhoff’s equilibrium radiance law, the incident radiance
from each direction is proportional to the refractive index squared. Putting these facts to-
gether, we get the desired reciprocity condition (6.1).

Thuswe have d®, = dd,, so that

Li(w) fs(wi—w,) = Li(w,) fs(wo—rwi) .

Next, we consider theincident radiance values, L; (w;) and L;(w,). According to Kirch-
hoff’s equilibrium radiance law, L; /»? is constant throughout the enclosure, so that
Li(wi) _ Li(wo)
0% m

Putting these two facts together, we get the following result for physically valid BSDF's:

Theorem 6.1. Let f, bethe BSDF for a physically valid surface, which is either the bound-
ary of an opaque object or the interface between two non-absorbing media. Provided that
there are no external magnetic fields, then

flwi—w)  folwe—rwi)

02 B o

(6.3)
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wheren, = n(w,) isafunction of w,, and similarly for ;. &

This condition is clearly a generalization of the usual symmetry condition for BRDF's.
The most significant change concerns BSDF's that describe the interface between two dif-
ferent refractive media. For this case, the ratio of f; to f* is (n,/n;)?, so that radiance and
importance are scaled differently when they are transmitted through the interface. Thislaw
isnot limited to perfect specular refraction; it also includes diffusely transmitting materials,
such asfrosted glass.

Note that although this relationship was derived in an isothermal enclosure, itisvalidin
general. The BSDF isan inherent property of the surface, and does not change simply be-
cause the surrounding environment isisothermal. Also notethat the enclosure doesnot have
to be at a high temperature for this argument to hold, since even at ordinary temperatures,
there isa small amount of thermal radiation in the visible wavelengths.

Insufficiency of the second law. Returning to the simpler case of opague materias
(BRDF's), it is sometimes claimed that the reciprocity condition for these materials can be
derived directly from the second law of thermodynamics* We show that thisis false, by
giving an example of a BRDF which is not symmetric, but where this lack of symmetry
cannot be detected by any ideal experiment in an isothermal enclosure.

We consider a hypothetical surface that is ssimilar to a mirror. For an ordinary mirror,
light is reflected from the incident direction w; to the mirror direction w,, where the mirror
direction is obtained by rotating w; by 180 degrees about the surface normal. We consider
anew BRDF that modifies thisrule: the mirror vector is obtained by rotating the incident
vector by only 90 degrees about the surface normal, in a clockwise direction. Clearly, this
new BRDF is not symmetric.

However, the new BRDF and the original mirror BRDF are indistinguishable in an
isothermal enclosure. The reason is that the incident radiance is guaranteed to be uniform,
and both of these BRDF swill map a uniform incident radiance function into auniform ex-
itant radiance function. Thus, thereis no ideal experiment in an isothermal enclosure that

4For example, the BRDF reciprocity argument of Siegel & Howell [1992, p. 73] appears to depend only
on the second law. However, their argument is flawed. Tofix it, they require the principle of detailed balance;
inwhich case their proof could be simplified by neglecting the transport path labeled dA; dA3 intheir figure.
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can distinguish between these two situations. Thisiswhy the principle of detailed balance
isnecessary; it provides more detailed information about how the incident and exitant radi-
ancefunctionsarerelated, by considering the energiestraveling in oppositedirectionsalong
the same path.

Reciprocity for spectral radiance. To be precise, the reciprocity condition (6.3) applies
to spectral radiance (rather than radiance), and in fact it applies only to spectral radiance
that is measured with respect to frequency (L,). When spectral radiance is measured with
respect to wavelength (L), this condition must be modified, since light undergoes a change
inwavelength when it istransmitted into adifferent medium. In particular, the incident and
transmitted wavelengths are related by

Av = (/) Ai

i.e. the wavelength is smaller in media with a higher refractive index. Notice that accord-
ing to this equation, the product A\ny = A, is constant across the interface, where )\, is the
wavelength of light in a vacuum.

For spectral radiance with respect to wavelength, Kirchhoff’s equilibrium radiance law
now states that the quantity

Ly(x,w,\o/n)
(X, w, Ag)?

is constant throughout the enclosure. This equation applies separately at each wavelength
Ao. The factor of 7? instead of 7? occurs because L, is defined as a derivative with re-
spect to wavelength (see [Nicodemus 1976, p. 51]). Effectively, whenlight entersamedium
of higher refractive index, the same light energy is squeezed into a smaller band of wave-
lengths, which causes the spectral radiance to increase proportionately.

Applying thisversion of Kirchhoff’s equilibrium radiance law, thereciprocity condition
for BSDF's becomes

fs,)\(wiéwoa)\O/nﬂ _ fs,)\(woéwiv)\()/no)
770()\0)3 Ui()\o)?’ ’

where the wavel ength parameter of f; \ (w; — w,, ) refersto theincident light, and )\ isthe

(6.4)

wavelength in a vacuum.



184 CHAPTER 6. RECIPROCITY AND CONSERVATION LAWS

6.3 Conservation of energy

We show that the following condition isimplied by conservation of energy:

Theorem 6.2. If f; isthe BSDF for a physically valid surface, which iseither the boundary
of an opague object or the interface between two non-absorbing media, then

/ fs(wi%wo)dal(wo) <1 forall w, € S%. (6.5)
82

Thisisvery similar to the energy-conservation condition for BRDF's, which was mentioned
in Section 3.6.2.
Proof. Equation (6.5) can be proven from the relations

E = /82Li(w)dal(w)
Lo(ws) = /S Liw) flw—wo) do(w)
M = /82L0(w)d&(w),

where E denotes the irradiance (i.e. the incident power per unit area), and M denotes the
radiant exitance (i.e. the scattered power per unit area, see Section 3.4). By conservation of
energy, we require that A/ < FE for all possible incident radiance functions L;; that is, the
surface should never scatter more light than it receives.

To obtain the desired condition (6.5), we fix a particular direction w;, and consider the
incident radiance distribution L;(w) = 0.+ (w — wi), i.e. we let the incident power be con-
centrated in a single direction w;.> With this choice of L;, we obtain

E = [g Li(w)do (w) =1
Lo(wo> = sz Li(w) fs(w_ﬂfuo) dal(w) = fs(wi _>Wo)
M = [s Ly(w)do(w) = [ fi(wi—wo) do(w,),

from which the requirement that M/ < E givesthedesiredresult. H

SAlternatively, we could use a sequence of radiance functions that approximate L;, to avoid the issue of
whether L; is allowed to be a Dirac distribution.
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Appendix 6.,A Helmholtz reciprocity

In the graphics and radiometry literature, the symmetry of BRDF's is often attributed to the
Helmholtz reciprocity principle. Apparently this notion first arose in the radiometry literature (see
the references in Section 6.A.3), and migrated to graphics through the work of Nicodemus (e.g. see
[Nicodemus et a. 1977, p. 40], [Nicodemus 1965, p. 769]).

In this section, we examine the original statement of Helmholtz reciprocity, and show that it does
not imply the symmetry of BRDF's. Helmholtz stated his principle only for classical optical systems
(consisting of mirrors and lenses), and thus with regard to the reflection of light from surfaces, his
principle appliesonly to mirrors. Hedoes not mention non-specular reflection of any sort (e.g. diffuse
or glossy surfaces). (Of course, we would not expect Helmholtz to mention BRDF's in any case,
since the concept of a BRDF was not invented at that time.)

6.A.1 Summary of the principle

The Helmholtz reciprocity principleisfound in hisfamoustreatise on physiological optics, first pub-
lished in 1856 [von Helmholtz 1856, p. 231]. This three-volume work concerns human vision: the
anatomy of the eye, the mechanisms of sensation, and the interpretation of those sensations. With
regard to optics, Helmholtz' main concern wasto analyze the properties of the eye within the frame-
work of classical geometric optics.

In this context, Helmholtz proposed the following reciprocity principle for beams traveling
through an optical system (i.e. a collection of mirrors, lenses, prisms, etc). Suppose that a beam
of light A undergoes any number of reflections or refractions, eventually giving rise (among others)
to a beam B whose power is afraction f of beam A. Then on reversing the path of the light, an
incident ray B’ will give rise (among others) to a beam A’ whose power is the same fraction f of
beam B'.% In other words, the path of alight beam is always reversible, and furthermore the relative
power lossis the same for propagation in both directions.

The main point is that the only type of reflection considered by Helmholtz is specular reflec-
tion from mirrors. Thus, his principle does not have any direct implications for general BRDF's (or
BSDF's).

Note that Helmholtz reciprocity can easily be extended to materials that are composed of many

80ur paraphrasing follows that of Chandrasekhar [1960, p. 176].
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small mirrors. By considering the limit as these mirrors become very small, a variety of interest-
ing materials can be obtained (thisis the basic idea behindmicrofacet reflection models[Torrance &
Sparrow 1967, Cook & Torrance 1982]). However, note that this approach is not adequate to prove a
reciprocity principle for real materials, since it only applies to a particularmodel for reflection from
surfaces. That is, real surfaces are not necessarily composed of microfacets, so thistype of argument
cannot be used to make statements about the properties of real BRDF's. (Microfacet models were
only proposed as amodel to explain reflection from metals, and in any case the microfacets are gen-
erally so small that geometric optics is not applicable:; diffraction theory must be used instead [He
et al. 1991].)

6.A.2 Helmholtz' original statement

We now examine the original statement of Helmholtz reciprocity , to explain in more detail why it
applies only to specular reflection. Note that the following quotation is for polarized light, which
makes it slightly more complicated. With respect to the paraphrasing of the previous section, it as-
sumes that beam A is polarized in a given plane P, and that we only measure the component of
beam B that is polarized in a given plane Pz. Helmholtz' principle then states that the same frac-
tion of power islost for abeam traveling in either direction:

Suppose light proceeds by any path whatever from a point A to another point B,
undergoing any number of reflections or refractionsen route. Consider a pair of rect-
angular planesa; and a, whaose line of intersection is along the initial path of the ray
at A; and another pair of rectangular planesb; and b, intersecting along the path of
the ray when it comes to B. The components of the vibrations of the aether particles
in these two pairs of planes may be imagined. Now suppose that a certain amount of
light J leaving the point A in the given direction is polarised in the planea;, and that
of this light the amount K" arrives at the point B polarised in the planeb;; then it can
be proved that, when the light returns over the same path, and the quantity of lightJ
polarised in the planeb, proceeds from the point B, the amount of thislight that arrives
at the point A polarised in the planea; will be equal to K.

Apparently the above proposition is true no matter what happens to the light in
the way of single or double refraction, reflection, absorption, ordinary dispersion, and
diffraction, provided that there is no change of its refrangibility, and provided it does
not traverse any magnetic medium that affects the position of the plane of polarisation,
as Faraday found to be the case.

"Trand ated from the German [von Helmholtz 1856, p.231]. A somewhat shorter statement of this principle
appearsin [von Helmholtz 1903, Section 42, p. 158], but the apparent meaning is the same.



6.A. HELMHOLTZ RECIPROCITY 187

It is absolutely clear that Helmholtz did not intend this principle to be applied to diffuse reflec-
tion. In the cited reference, he consistently uses the wordreflection to mean only specular (mirror-
like) reflection. For example, in the discussion leading up to the statement of the principle above
[von Helmholtz 1856, p. 230], Helmholtz states and proves a similar theorem where it is obvious
that only specular reflection is considered. The very phrasereflections and refractionsimplies spec-
ularity, since otherwise the theorem would be stated in terms of reflection andtransmission.

Also, the principle refers to theamounts of light leaving A and arriving at B. In the terminology
of the day, an “amount” of light referred to total flux or power® Thus, the principle does not even
make sense for diffuse reflection: the power arriving on beamB would always be zero, since only an
infinitesimal quantity of power isreflected by adiffuse surfacein any particular direction. Inorder to
make sense for non-specular reflection, the law would need to relate the power atA to adifferential
quantity at B, such asirradiance. (Thisisexactly what wasdone by Lord Rayleigh, inthereciprocity
principle discussed below.)

Another important fact is that Helmholtz reciprocity is not always valid, as we will discuss
in Appendix 6.D). Interestingly, Helmholtz did not provide a proof of his principle, claiming
that “anybody who is at al familiar with the laws of optics can easily prove it for himself” [von
Helmholtz 1856, p. 231].

6.A.3 Further reading on Helmholtz reciprocity

This section gives a sampling of the various sources of information available concerning reciprocity
principles. It is by no means exhaustive.

First, there are references that interpret the Helmholtz reciprocity principle correctly, in the lim-
ited sense discussed above (beams propagating through an optical system, rather than general scatter-
ing from surfaces). Theseinclude Planck [1914, p. 49], von Fragstein [1955], Chandrasekhar [ 1960,
p. 176], and Born & Wolf [1986, p. 381].

Second, there are sourcesin the radiometry literature that claim (in passing) that Helmholtz reci-
procity impliesthe symmetry of physically valid BRDF's. Theseinclude McNicholas[1928], de Vos
[1954], de laPerrele et a. [1963], Nicodemus [1965, p. 769], and Nicodemus et a. [1977, p. 4Q].

8]t isimportant that Helmholtz stated hislaw in terms of power, rather than radiance, sincethisway hislaw
isvalid evenwhen A and B liein mediawith different refractiveindices. If it were stated in terms of radiance
(which Helmholtz calls “ brightness’), there woul d need to be an 5% scaling factor as discussed in Section 5.2.
Helmholtz was aware of this scaling factor [von Helmholtz 1856, p. 233], and thus phrased his law to make
it as general as possible.
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Another worthwhile reference is Minnaert [1941], who recognized that the origina statement of
Helmholtz reciprocity does not apply to general scattering, but shows how the statement can berein-
terpreted to have greater generality.

Third, there are general reciprocity principles in the physics literature regarding the scattering
of electromagnetic waves. These include Kerr [1987], Saxon [1955], and de Hoop [1960]. These
principles are unrelated to Helmholtz’', and require additional physical assumptions for their validity.

This brings up an important point, which isthat many reciprocity principlesin optics are derived
by starting with arelationship of the sort that we want to prove (i.e. an assumption that is equivalent
to the symmetry of BRDF's). For example, several reciprocity principles for volume scattering are
proven in[Case 1957], by assuming that the phase function is symmetric (bottom p. 653). By making
additional assumptions of this sort (e.g. that all scattering particles have random orientations), it is
possible to derive awide variety of reciprocity principles in optics [van de Hulst 1957, Chapter 5],
[Hovenier 1969], [van de Hulst 1980, Chapter 3]. It would be an easy mistake to derive areciprocity
principle for BSDF's by starting with results such as these.
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Appendix 6.B Lord Rayleigh’sreciprocity principle

In 1900, Lord Rayleigh stated a reciprocity principle for non-specular reflection, and apparently he
wasthefirst to do so.® Essentially, this principle asserts that real materials have symmetric BRDF's.
The original statement is as follows:

Suppose that in any direction (¢) and at any distance r from a small surface (.S)
reflecting in any manner there be situated a radiant point (A) of given intensity, and
consider the intensity of the reflected vibrations at any pointB situated in direction e
and at distancer’ from S. Thetheorem isto the effect that theintensity isthe same asit
would beat A if the radiant point were transferred toB. [Footnote: | have not thought
it necessary to enter into questions connected with polarization, but a more particular
statement could easily be made.]

Trandated into modern terminology, we are given asmall reflective surface, exposed to asmall
light source and asmall irradiance sensor (which measuresthe power per unit areafalling on asquare
facing toward thereflective surface). Hisprinciple statesthat if the positions of the source and sensor
are exchanged, the measured irradiance will be the same. Thisimpliesthat the corresponding BRDF
must be symmetric, as may easily be verified.

Observe that Rayleigh's principle is merely a statement of fact; no proof was given in terms of
more basic physical laws. Although it was claimed as a consegquence of “afundamental principle of
reciprocity, of such generality that escape from it is difficult” (to be found in hisTheory of Sound
[Rayleigh 1877, Sec. 109, p. 154]), the methods used there are not rigorous by modern standards,
and are not explicitly related to light. Furthermore, they require symmetry assumptions about the
underlying system (e.g. see [Rayleigh 1877, Sec. 103a, p. 139]) that seem no more justifiable than
assuming the symmetry of the BRDF in the first place.

9This observation was made by Chandrasekhar [Chandrasekhar 1960, p. 177]. Rayleigh's statement of
reciprocity can be found in a short letter to the Philosophical Magazine [Rayleigh 1900, p. 324] (reprinted in
[Rayleigh 1964, p. 480]).
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Appendix 6.C Timereversal invarianceand theirreversibility of light
scattering

The symmetry of BRDF's is sometimes attributed to a physical law known astime reversal invari-
ance. In this section, we explain why such claims are incorrect. Time reversal invariance does not
have any direct consequences for the symmetry of BRDF's, because most observable light scattering
processes areirreversible

We first explain the principle of time reversal invariance, which applies the laws of physics at
amicroscopic level (e.g. interactions between individual particles). Next, we explain why observ-
able processes are usualyirreversible even though they are governed by microscopically reversible
laws. Finally, we explain how this applies to light scattering: we show that observable light scatter-
ing processes are almost alwaysirreversible, so that timereversal invariance does not have any direct
implications for the symmetry of BRDF's.

Timereversal. It isknown that the fundamental laws of physics are invariant under the oper-
ation of time reversal, in which the time variable is negated in formulas and equations. More pre-
cisely, thisprinciple should be calledmotion reversal invariance sinceit assertsthat if the motions of
all particles and waves in a system are reversed, then they will retrace their former paths [de Groot
& Mazur 1962, p. 35]. This principle holds in any physical system, as long as there are no exter-
nal magnetic fields; otherwise, the direction of the field must be reversed along with the wave and
particle motions, in order for time reversal invariance to hold ([de Groot & Mazur 1962, p. 38],
[de Groot 1963]).1°

This principle can be stated more precisaly as follows. LetA and B be any two microscopic
states of the given system, where each state completely specifies the attributes of al particles and
waves. We let p(A, B, t) denote thetransition function for this system, i.e. the probability density
that if the system isin state A, it will evolve to state B over atime interval of lengtht. (Note that
according to quantum mechanics, the universe is not deterministic; thus, we can only compute the
probability with which the system evolves from state to state.) Finally, given a stateX', welet — X
denote the state obtained by motion reversal of all particles and waves (including the reversal of
magnetic fields, if necessary). Given these definitions, the principle of time reversal invariance then

10Technically, there are some known exceptionsto time reversal invariance, however these involve nuclear
interactions and are not significant for optics [Brittanica Online 1996].
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states that
p(A,B,t) = p(—B,—~A,t) foral A, B,andt

(see [de Groot 1963)).

Irreversible processes. It isimportant to realize that time reversibility applies only at amicro-
scopic level, and that most physically observable processes ardrreversible Asasimple example of
an irreversible process, consider a box that is divided into two compartments, one containing vac-
uum and another filled with air. If ahole is made in the separating wall, air will rush from one side
to the other until the pressures on both sides are the same. This process is irreversible, since if the
motions of all the particles are reversed, they will not revert to their original configuration.

How can we explain this paradox, given that the underlying physical laws are time reversible?
Briefly, the reason is that observable states and microscopic states are not in one-to-one correspon-
dence. In fact, each observable state X' can be realized in a large number of different microscopic
ways, al of which are indistinguishable with respect to measurable properties (such as pressure or
temperature). Thisideais closely related to the concept of entropy: letting W denote the number
of ways that an observable state X’ can be realized, its entropy is given by S = kIn W, where k
is the Boltzmann constant. Thus, states with higher entropy can be realized in a greater number of
microscopic ways.

Given these facts, irreversible processes can arise as follows. Consider a discrete system where
there are only 100 microscopic states X1, . . ., X199, and the transition probabilities between them
areall equal: p(X;, X;) = p(X;, X;) fordliand j. We suppose that motion reversal issimply the
identity operation, i.e.— X; = X; (recalling that — X denotes motion reversal). Clearly this system
is microscopically time reversible, since

p(A,B) = p(—B,—A) foradl Aand B.

However, now suppose that the system has only two observable statesA’ and B’, which corre-
spond to 1 and 99 microscopic states respectively. Itiseasy to verify thaip(A’, B') = 99/100, while
p(B', A") = 1/100. Thusfrom an observable point of view, the system isnot timereversible: if the
system movesfrom A’ to B’, and motion reversal is applied to the microscopic state underlyingB’,
then the system isfar morelikely to moveto another microscopic state of B’, than itistoreturn tothe
original microscopic state underlying A’. The general reason for this behavior isthat B’ corresponds
to amuch larger number of microscopic states thanA’: that is, it has a higher entropy.
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In area thermodynamic system, any measurable increase in entropy corresponds to a huge in-
crease in the number of equivalent microscopic states. For al practical purposes, the probability of
returning to the original observable state is zero, and thus any process which increases entropy issaid
to beirreversibleprocess. Thisis the essence of the second law of thermodynamics: given a closed,
isolated system, it will always move from less probable to more probable observable states. (These
are only the basic ideas behind irreversible processes; for more rigorous arguments, see van Kampen
[1954], de Groot & Mazur [1962], or de Groot [1963].)

Irreversibility of light scattering. Aswe mentioned, the symmetry of BRDF s is sometimes
attributed directly to the timereversibility of physical laws. Thisisincorrect, because the scattering
of light at an ordinary surface isirreversible. (Here we are referring to theobservable behavior of
light scattering, which corresponds to an average behavior over many indistinguishable microscopic
states.) There are two reasons for this: first, when alight beam strikes a surface, some of the en-
ergy is absorbed (and converted into heat). Motion reversal of all photons and other particles will
not convert this heat back into light. Second, the incident beam will generally be scattered in many
directions (e.g. by a diffuse surface); and if the direction of this scattered light is reversed to form
an incident distribution, it does not recreate the original beam. Both of these situations represent
an increase in entropy, and are not reversible!* Thus, time reversal invariance does not have any
direct implications for ordinary BRDF's, where some light is absorbed and/or scattered in multiple
directions.

Light scattering is only reversible at a perfect mirror (if such a thing could be constructed), or
at an optically smooth interface between two dielectric materials, as pointed out by Stokesin 1849
(see[Lekner 1987, p. 36] or [Knittl 1962]). Itisoccasionally claimed that Maxwell’s equations them-
selves are time reversible, but thisistrue only in special cases. Obviously Maxwell’'s equations are
not time reversible in general, since they describe phenomena such as absorptiont?

Although timereversal invariance is not useful to usdirectly, recall that it underlies the principle
of detailed balance. Since detailed balance holds even for irreversible processes, it can be applied to
light scattering, as we did in Section 6.2. The main limitation of detailed balance (as compared to
time reversal) isthat it only holds for systems in thermodynamic equilibrium.

11See [Jones 1953] for an intuitive discussion of the irreversibility of light scattering; however, note that
this paper has a few technical errors.

2 Although Maxwell’s equations are not invariant under the operation of time reversal, they do have other
symmetry properties. This has been studied by éantavy [1961], who describes an operation closely related to
time reversal under which Maxwell’s equations are indeed invariant.
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Appendix 6.0 Exceptionsto reciprocity

When we derived the reciprocity condition (6.3) for BSDF's, we needed two important assumptions:
that there are no external magnetic fields, and that there are no absorbing medial® In this section,
we give some insight into why these assumptions are necessary, by showing what goes wrong when
they are violated.

First, we discuss magnetic fields, which cause problems for polarized light. Then we discuss
absorbing media, which at first appear to violate not only the reciprocity condition (6.3), but also the
principles of detailed balance and conservation of energy. We explain the apparent contradictions,
and we also derive areciprocity condition that applies to absorbing media (in Section 6.D.2.3).

6.D.1 Magnetic fields and the Faraday effect

We show how magnetic fields can cause reciprocity principlesto fail. Thisincludes both Helmholtz
reciprocity, and the reciprocity condition (6.3) for general BSDF's.

The source of these problems istheFaraday effect, which states that when plane-polarized light
propagates within an external magnetic field, the plane of polarization is rotated. For example, con-
sider apolarized beam of light that passes through an electromagnet. According to the Faraday effect,
the plane of polarization will rotate in the same direction as the current flow in the magnet. Thisro-
tation does not depend on the direction of light propagation, but only on the magnetic field: thus,
if the same beam is reflected back and forth through the magnet, the rotation increases each time.
This obviously represents an exception to the Helmholtz reciprocity principle, as it was stated for
polarized light, and Helmholtz himself was aware of this (see the quotation in Section 6.A.2).

Lord Rayleigh’s light trap. As a more dramatic example of how reciprocity can fail, Lord
Rayleigh proposed the followinglight trap. Consider a horizontal cylinder filled with a magnetic
medium,'* together with an external field such that polarized light passing through the cylinder is
rotated by 45 degrees. Now suppose that a polarizer is placed at either end of the cylinder, oriented
so that their planes of polarization are 45 degrees apart. In this situation, light passing in one di-
rection through the cylinder is completely blocked by the second polarizer, while light traveling the

13An absorbing medium is one that absorbs some of the light energy passing through it, so that the intensity
of alight beam decreases with distance.

14Note that the Faraday effect only occursin substances that are magnetically active. Oxygen, hydrogen,
and water are all magnetically active to some degree [Born & Wolf 1986, p. 3], although the Faraday effect is
strongest in substances such as carbon bisulphide [Drude 1900, Chapter 7].
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other direction is transmitted. Thus, a source of light at one end of the cylinderA would be visible
at the other end B, while a source at B would not be visible from A.

Using this idea, we can show the existence of BSDF's that do not obey the reciprocity con-
dition (6.3) in the presence of a magnetic field. For example, consider a thin film of magnetized
iron. When plane-polarized light passes through thisfilm, its plane of polarization isrotated slightly
[Drude 1900, p. 451]. Now suppose that the iron is coated with polarizing films on both sides; this
will produce an effect similar to the“light trap”, i.e. the transmissivity of the surface will be different
for light traveling through it in opposite directions. The same can be achieved for reflective surfaces,
for example by coating a magnetized mirror with certain kinds of optical crystals [Drude 1900].

6.D.2 Transmission between absorbing media

Reciprocity also fails when light is transmitted intoabsorbing media For these media, the radiance
of alight beam decreases exponentially with the distance traveled. The absorption is due to electri-
cal conduction, which transforms light energy into electron vibrations (which then appear as heat).
The medium may be only slightly absorbing, as with imperfect dielectric materials, or it may be a
conductor (metals), in which case light is virtually extinguished after propagating only afew wave-
lengths.

For absorbing media, there are two separate waysin which reciprocity fails[von Fragstein 1955].
We give abrief introduction to them here, and provide more detail in the following sections.

First, the path of alight beam is not always reversible. For example, consider alight wave that
is transmitted from air into metal (Figure 6.2). For some metals, there exists an non-zero angle of
incidence where the transmitted beam does not change its direction (i.e. it is not refracted), and yet
light beamsthat go in the opposite direction from metal into air are refracted for all non-zero incident
angles. For other metals, thereverseistrue: beams are aways refracted upon entering the metal, but
for beams exiting the metal, there is a non-zero angle where the direction of propagation does not
change. Note that these situations do not happen in the familiar case of non-absorbing media, where
light beams are refracted for all non-zero angles of incidence, and the path of alight beam is always
reversible.

The second effect concernsthetransmissivity of theinterface between two media, i.e. thefraction
of incident power that is transmitted through the surface. For absorbing media, alarger fraction of
light can be transmitted in one direction than the other. Lettingr; ; denote the transmissivity from
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Figure 6.2: When absorbing media such as metals are present, the path of alight beam is
not always reversible. For example, when alight beam A4; is transmitted from air into some
metals, there is a non-zero angle of incidenced, for which the beam does not change its
direction of propagation (Figure (a)). However, a beam of lightB; traveling in the reverse
direction (from metal into air) isrefracted at the surface, and follows adifferent path (Figure

(b)).

medium 7 to medium j, the transmissivities in opposite directions are related by
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where «; isthe attenuation index for medium ¢ (which measures the rate of light absorption in that
medium).®® Furthermore, the reflectivity and transmissivity at such an interface can sum to more
than one (which cannot happen with non-absorbing media).

At first sight, these properties appear to violate the principles of detailed balance and conser-
vation of energy, respectively. However, thisis not the case. In the following sections, we explain
these apparent contradictions, and we also derive a more general reciprocity condition for BSDF's
that holds even when there are absorbing media.

15The attenuation index is defined so that when alight wave travels asingle wavelength )\, its amplitudeis
reduced by afactor of e=27*. Thisisnot the same asthe absor ption coefficient o, usedin thevolumerendering
and radiation transport literature, which measures the rate of absorption per unit length. The two quantities
arerelated by o, = 4mk/A [Born & Wolf 1986, p. 614]. Adding further to the confusion,  is often called
the extinction coefficient, which is the same name given in the transport literature to the sum of the absorption
and scattering coefficients.
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6.D.2.1 Non-reversibility of optical paths

We have stated that the path of alight beam between air and metal isnot alwaysreversible. Toexplain
this, consider a homogeneous plane waveA; traveling through the air (i.e. an infinitely wide beam,
propagating inagiven direction). Suppose that thiswave strikes the planar boundary of an absorbing
medium, where the angle of incidence isf( A;) = 0y (see Figure 6.2(a)).

In [von Fragstein 1955], it is shown that for some metals, there is a non-zero value off, for
which the incoming wave will not be refracted (i.e.0(A;) = 0(A;) = 6p). On the other hand, a
homogeneous wave B; traveling in the reverse directionwill be refracted; that is, if it strikes the
boundary at an anglef(B;) = 6, from inside the metal, it will exit at an anglefd(B; ) that is different
from 6y (Figure 6.2(b)).

Atfirst sight, thisappearsto contradict the principle of detailed balance. At thermodynamic equi-
librium, wemust have the same energy flowing both ways between any given pair of directions; thus,
it would seem that if the wave A; is not refracted, then the wave B; should not be refracted as well.
(Otherwise, power arriving from the given directionw; would be scattered to—w;, but not viceversa.)

The crucial observation isthat the two situations we have considered are actuallynot the reverse
of each other. To obtain therefraction results above, thewavesA; and B; must both behomogeneous
i.e. their amplitude must be constant along each wavefront [von Fragstein 1955]. However, when the
wave A; is refracted into metal, the result A; is not a homogeneous wave: the wavefronts are per-
pendicular to the direction of propagationf(A;) = 6y, while the surfaces of constant amplitude are
parald to the boundary between the two media[Born & Wolf 1986, p. 616]. This happens because
each point on agiven wavefront hastraveled adifferent distance through the absorbing medium, and
the amplitude of the wave falls off according to the distance traveled.

Because of this, theirreversibility of optical paths between absorbing mediaisabit miseading.
The situation considered by von Fragstein is not a true reversal of the optical path, because he as-
sumes that the incident wave is homogeneous in both directions. Suppose that instead, we letB; be
an inhomogeneous wave of the same type as Ay, where the wavefronts are perpendicular to the di-
rection 6y, but the surfaces of constant amplitude are parallel to the boundary. It is possible to show
that this yields atransmitted wave B; of the same form as A;: a homogeneous wave, propagating in
the desired direction 6. Thus, the requirements of detailed balance are satisfied.

To see that thisistrue, consider the following experiment. Suppose that the metal forms a thin
layer, with air on both sides, and consider a homogeneous waveA; that isincident at the angley.
This wave enters the metal, where it is refracted into an inhomogeneous waveA; traveling in the
same direction. Thiswave propagates to the far side of the metal layer, where we will rename itB;,
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and is then transmitted into air yielding a waveB;. This wave B; must clearly be homogeneous,

since al parts of the wave have traversed the same thickness of metal. Furthermore, from Snell’s
law it is straightforward to show that the waves A; and B; have the same direction of propagation

[Born & Wolf 1986, p. 629]. Thus, the second refraction (which acts on an inhomogeneous wave
B;) exactly reverses the action of the first, as we claimed above.

6.D.2.2 Apparent non-conservation of energy

Next, we turn to the transmissivity of the interface between absorbing media. We have claimed that
the reflectivity and transmissivity at such an interface can sum to more than one, which appears to
violate conservation of energy. This can be explained in terms of interference between the incident
and reflected light waves.

In particular, consider aplanar boundary between air and metal, where the metal has an attenua-
tion index of . Suppose that an incident wave A; strikes the boundary from within the metal, giving
rise to areflected wave A, and atransmitted wave A;. Then according to von Fragstein [1950], the
transmissivity satisfies

T = (A1),
where the reflectivity p can be determined from the Fresnel laws [Born & Wolf 1986, p. 628]. Note
that the factor 1 + 2 can be rather large; e.g. for silver it is approximately 400 [von Fragstein 1950,
p. 65]. Thus, the amount of transmitted light can be much larger than it would beifp + 7 = 1.

Tounderstand this, we must examine the definitions of reflectivity and transmissivity. They mea-
sure the power of the reflected and transmitted waves, as compared to the incident wave:

(4, B(4y)
oMy T T ey

However, the key observation is that the incident and reflected waves are propagating in the same
medium, and that these two waves can interfere with each other. The power carried toward the
boundary by the combined wave A; + A, can be either more or less than the intuitively expected
value ®(A4;) — (A;).

For transmission from metal to air, the combined waveA; + A, carries more power toward the
boundary than expected. This can be shown from Maxwell’s equations, where the additional energy
appears as mixed product termsin the Poynting vector [von Fragstein 1950]. In the one-dimensional
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case [Salzberg 1948], the power carried by the combined wave can be written in the form
(1/2)Re(EiH;") — (1/2) Re(E.H}) — (1/2) Re(E{H} — E H/),

where FE and H denote the complex amplitudes of the el ectric and magnetic components of thewave,
respectively, and* denotes complex conjugation. Thefirst two terms denote the power of theincident
and reflected waves, while the third term measures the additional energy flow due to interference.

Effectively, the interference between incident and reflected waves causes there to be less ab-
sorption in the metal near the boundary [von Fragstein 1955]. That is, for a wave propagating far
inside the metal, absorption will occur at the usua rate (as determined byx). However, asthe wave
approaches the boundary, the rate of absorption becomes smaller, due to interference from the re-
flected wave. Thus, when the wave finally exits from the metal, it will have much more power than
it would if the reduced absorption were not taken into account.

6.D.2.3 A reciprocity condition for BSDF’'swith absorbing media

We derive areciprocity condition for BSDF's that applies even when absorbing media are present.
Thisrequires only one small change to the argument in Section 6.2.

Recadll that for a system in thermodynamic equilibrium, where only non-absorbing media are
present, that the quantity L /n? is constant throughout the enclosure. When absorbing media are
present, this must be modified: it is possible to show that the quantity

L(x,w) (1 + K?)
772

is constant throughout the enclosure [von Fragstein 1950, Tingwaldt 1952], wherel, x, and n are
parameterized by frequency v. Thus according to this formula, the equilibrium radiance is smaller
in an absorbing medium than in a non-absorbing one.

By repeating the argument of Section 6.2, we can now show that an arbitrary, physicaly valid
BSDF must satisfy

fs(wi—>w02) (L+rg) _ fs(wo—>wi2) (1+xD) 7 (6.6)
UR UA

where all quantities are parameterized by frequencyv. Thisisclearly ageneralization of the condi-

tion (6.3) given for non-absorbing media.

To put this into perspective, however, the difference between (6.6) and (6.3) is utterly insignifi-
cant for the typical participating mediaused in graphics, because the attenuation indices are so small.
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For example, consider a medium that is so dense that 99% of the incident light is absorbed after a
distance of one millimeter. This corresponds to an attenuation index of onlyx = 0.00037 (for light
with awavelength of 500nm), so that the(1 + ~2) change in transmissivity isinappreciable.

Also, note that the participating mediain graphics are often not true absorbing media, but instead
consist of small particles (e.g. clouds, fog, smoke). These materials are described byscattering the-
ory [van de Hulst 1957], rather than the theory of absorbing mediadescribed here. (In atrue absorb-
ing medium, the particles must be of negligible size compared to the wavelength: for example, an
iodine solution, or acloud of chlorine gas.)

6.D.2.4 Discussion

Given these hizarre examples, it is clear that absorbing media cannot be described with familiar
optical concepts. The idea of independent waves propagating and reflecting, each with its own
power, is simply meaningless in an absorbing medium [Salzberg 1948]. For example, consider
the standard Fresnel formulas for reflection and transmission between absorbing media [Born &
Wolf 1986, p. 628]. According to these formulas, there is non-zero reflection even at aficticiousin-
terface between twoidentical media; furthermore, the corresponding transmissivity is greater than
one. To handle such situations correctly, it is necessary to work with explicit wave descriptions (e.g.
monochromatic waves described by their phase and amplitude), rather than with secondary concepts
such as power.

It is reassuring to note that the strange effects we have described are restricted to the absorbing
mediathemselves. For example, consider awaveA; that istransmitted from air, through ametal film,
and then back into air to yield awave A;. It can be shown that the optical path isreversible, and that
the transmissivity of the film is the same in both directions [Lekner 1987]. This holds even if the
film consists of many layers of absorbing and non-absorbing media (known as astriated medium).
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Chapter 7

A Self-Adjoint Operator Formulation of
Light Transport

Aswe have mentioned, it is very convenient for implementationsto use the same scattering
rules for light, importance, and particles. Thisis desirable for theoretical work as well, so
that we may avoid the use of adjoint operators. However, the existing light transport models
in graphics fail to achieve this, even when the scene model is physically valid. To obtain
symmetry, the typical solutionisto limit the scene to reflective surfaces (or more generally,
to require that all media have the same refractive index). Thisisamajor restriction, since
it disallows materials such as glass and water, which occur frequently in graphics models.

In this chapter, we develop aframework where light, importance, and particles obey the
same scattering rules, for any physically valid scene. Technically, thisrequires usto define
operators that are self-adjoint, so that the same operators apply in al situations. The major
issue, of course, is how to deal with transmission between media with different indices of
refraction. The solution turns out to very simple and practical, and also reveals interesting
connections with classical geometric optics.

7.1 Conceptsof the new framework

We would like to find aframework where light and importance always obey the same trans-
port equation, even when there are mediawith different refractive indices. We show how to

201
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achieve this by modifying the framework of Chapter 4. In this section, we discuss only the
formal changesthat are required, leaving interpretation and discussion for later. We assume
throughout this chapter that only physically valid materials are used in the scene model.

The problem. The problem with the framework that we described in Chapter 4 is that
sometimes the local scattering operator K is not self-adjoint. In this case, the light and im-
portance transport operators are different, since they aregivenby T, = KGand T, =
K*G respectively.

Tofix this, recall that K is defined by

(KL)(x,w,) = /52 fs(x, wi = w,) L(x, w;) dai(cui)7

and that K = K* whenever f, issymmetric. From Section 6.2, we also know that

fs(wiéwo) o fs(wo _>Wi>

n? B n? (7.1)

for any physically valid BSDF; that is, f,(w; — w,)/n? isasymmetric function. Thus, if we
could change the definition of K to use this symmetric function f, /72, rather than f; itself,
then we would have K = K* for any physically valid scene model.

The solution. There is a very ssmple way to achieve this. The idea isto define a new
solid angle measure o', which replaces the usual measure ¢ in al radiometric quantities
and definitions. We call the new measure basic solid angle, and it is defined by*

do’ (w) = n*(x,w)do(w), (7.2)

where 7(x, w) is the refractive index of the medium that is adjacent to x in the direction
w. Note that unlike the usual solid angle measure o, the basic solid angle measure o, is

1As aways, when measures are defined using “infinitesimals”, it should be understood as shorthand for a
formal definition involving integration. For example, a more precise definition of equation (7.2) would be

oL(D) = /D 72 (%, w) do(w)

where D C S? isao-measurable set of directions.
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afunction of position, since its value depends on the refractive indices of the surrounding
media.

By mechanically substituting this new measure into all of our old definitions, we obtain
aframework with very desirable symmetry properties. The symbolsfor the new quantities
are obtained by appending a prime symbol (e.g. L), while their names are obtained by pre-
fixingtheword basic (e.g. basic radiance). Thisnaming conventionisjustified by theunique
invariance properties of these quantities, which will be studied further in Appendix 7.A. It
a so extendstheterminology of Nicodemus, who first introduced theideas of basic radiance
and basic throughput [Nicodemus 1976]. By replacing the solid angle measure as outlined
above, we obtain these concepts along with a variety of new ones (which generally differ
from their original definitions by afactor of 1?):

e Thebasic projected solid angle measure (0,,') on S2:
doy!(w) = |w-N(x)|do(w)
= 7(x,w) dog(w). (7.3)
e The basic throughput measure (1) on the ray space R

di(x,w) = dA(x)doy (w)
= 1P (x,w) dA(x) dog(w),
or in other words, dy'(vr) = n*(r)du(r). (7.4)

e Basicradiance (L'):

L'(r) = = (> . (7.5)

Basic spectral radiance (L!)) isdefined in asimilar way.
e Thebasicinner product on Ly(R):

(f,9)" =

(r) g(r) n*(r) dp(r) . (7.6)
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This inner product will be used to define adjoint operators in this chapter, i.e. two
operators H and H* are adjoint if (H* f, ) = (f, Hg) foral f and g.

e Thebasic BSDF (f):

dLy(x,w,)  fo(X,wi—w,)

- 7.7
dE(x, w) ns ’ 7D

fsl(Xv Wi _>w0) =
where we have once again used the convention that ), = n(x, w,).

Note that we have only redefined quantities whose definitions depend on solid angle. All
other quantities (e.g. irradiance) are left unchanged.

These new quantities have interesting symmetry properties. Most importantly, the basic
BSDF of any physically valid material is guaranteed to be symmetric:

flx,wi—=w,) = fl(x,wo—w;).

Thisfollows directly from the general reciprocity principle (7.1) that was proven in Chap-
ter 6. (Asaspecial case of this, Appendix 7.C derives the basic BSDF for perfect specular
refraction and shows how to expressit in a symmetric form.)

The other quantities defined above also have interesting symmetry properties, some of
which take the form of optical invariants (a notion from classical geometric optics). These
properties are discussed in Appendix 7.A.

7.2 Thesaf-adjoint operator formulation

We now show how to put these concepts together into aframework of self-adjoint transport
operators. The main ideaisto use basic radiance (L') for al light transport calculations,
while for importance transport the standard definitions are used.? Aswe will see, thisleads
to the desired symmetry properties, because basic radiance and importance satisfy the same
transport equation. Furthermore, thisframework computes exactly the samevaluefor every
measurement as before.

2Recall that importance has units of [S - W 1], and thusit is not affected by the new solid angle measure.
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We now givethe details of our framework. Measurements are computed using the basic
inner product (7.6):
I = (W, L. (7.8)

This equation gives the same results as the original measurement equation (4.20), since
Li(r)
n*(r)
The propagation operator G is unchanged; however, we define the new basic local scatter-
ing operator (K') by

W) = [ W) S () du'()] = (WL L)

(K,h> (Xa wO) = / fsl(wii_>wo> h(wii> dai,(wi) . (79)
52
It is helpful to expand the basic scattering equation L = K'L!, to see how the old and new
guantities are related:
L, fs(x,wi—w,) Li(x,w;) 1
5= e - = [n? dor (wi)] - (7.10)

We see that the n? and ? factors are handled consistently. The most important difference
isthat the BSDF has been replaced by a symmetric quantity (the basic BSDF f!). Because
of this, it is straightforward to check that the scattering operator K’ is self-adjoint (see Ap-
pendix 7.B for details). Also notice that when there is only a single medium at x, then K’
isidentical to the original operator K (since the hidden factor of 72 in f/ cancelsthe hidden
factor of 2 in o).

Light and importance transport operators. We define the transport operators T, and
solution operatorss . inthesameway asbefore (see Section 4.7). These can be summarized
asfollows:

Exitant Incident

Importance | T, = K*G | T,, = GK”
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However, because G = G* and K’ = K'* for physically valid scenes, these definitions
simplify to
TL' — TVVO — I{lG'7

o

T, = T, = GK'.

Thus, basic radiance and importance obey the same transport equation.

We should emphasize that only the light transport operators have been changed in this
framework; the importance transport operators have the same definitions as before. This
is not immediately obvious, since we originally defined T, = K*G, and now we have
defined T, = K"G. However, K* and K" are actually the same operator (as will be
shown in Appendix 7.B). Because of thisfact (which holdsin al environments, physically
valid or not), we continueto usethe samesymbolsT,,, and T, for theimportancetransport
operators.

To summarize, themain ideaof the self-adjoint framework isto usebasic radiance rather
than radiance for light transport cal culations, and to compensate for this by including afac-
tor of n? in the measurement equation. With these simple changes, light, importance, and
particles can be scattered and propagated in the same way. Further details of the framework
are described in Appendix 7.B.

7.3 Conseguencesfor implementations

We show how this framework affects the implementation of path tracing and bidirectional
rendering algorithms. It is actually very simple to use the self-adjoint framework, since no
scaling factors are required for transmission between different media, and the same scatter-
ing rules apply to light, importance, and particles.

Consider the structure of an ordinary path tracing algorithm. The cal culation starts at the
viewpoint, whereaparticular pixel valueI; = (W), L,) isestimated by sampling aray that
contributes to thisintegral. Theinitial ray liesin a medium with some refractive index 7, .
We then proceed by following a path backward, through a sequence of media with indices
n2, - . ., Mk, UNtil finally alight source is reached, and the emitted radiance L. is computed.
With a standard framework (e.g. that of Chapter 4), a scaling factor of 17 /1?7 , isrequired
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between each pair of mediai and i + 1 to account for the change in radiance.

With the self-adjoint framework, we obtain the same result in a ssimpler way. Start-
ing again at the viewpoint, we sample a ray r to estimate the basic inner product /; =
(WY LY. Sincer liesin medium 1, , theweight for thisray has an extrafactor of 1% com-
pared to the standard path tracing implementation. However, we now evaluate thebasic ra-
diance aong thisray, which meansthat no special scaling factors are required as we follow
apath backward through medians,, . . ., n,.. When the path finally reaches alight source, we
must divideits emitted radiance by 7? to obtain basic radiance.® Thusthe combined scaling
factor for thispathisn? /57, whichisidentical to the product of all the scaling factors above.

With bidirectiona agorithms, some of the calculations are carried out by propagating
information forward from thelight sources. For example, consider the* pool of water” scene
from Section 5.2. Suppose that a particle tracing passis used to accumulate the caustics on
the pool bottom in a view-independent form (e.g. a texture map), which is then rendered
using aray tracing pass. With the self-adjoint framework, the particle tracing pass does not
require any changes. Theray tracing passis similar to the path tracing algorithm described
above, except that now the* emission function” consistsof atexture map on the pool bottom,
which must be expressed in theform of basic radiance beforeitisused. Thisisdonelooking
up theirradiance valuein the texture map, and dividing it by ther? value of the surrounding
medium (i.e. water).

Similarly, the self-adjoint framework can be used with algorithms such as density esti-
mation [Shirley et al. 1995], the photon map [Jensen 1996], and bidirectional path tracing,
by making changes of asimilar nature.

We should mention that it is al so possibleto obtain a symmetric transport framework by
working with the quantities L /» and 1W/n (rather than L and W), and computing measure-
ments using the ordinary inner product. With this convention, light and importance are both
scaled by the same factor of 7 /n; when they enter a new medium. However, this scheme
only givescorrect resultswhen all sourcesand sensorsarelocated in mediawhoserefractive
indexisn = 1.

SAlternatively, the emission from light sources can be expressed using basic radiance in the first place.
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Appendix 7.A Classical optical invariants

The quantities defined in Section 7.1 have several important symmetry properties. Some of these
correspond to the classical notion of an optical invariant, atopic that we explore here.

Optical invariants are defined within the framework of classical geometric optics, which studies
the formation of images by systems of mirrors and lenses. Anoptical invariant is a quantity that
preserved by such systems, that is, a numerical measurement that has the same value for any real
object and its image.

7.A.1 The Smith-Hemholtz invariant

Of the classical optical invariants, the most famous is theSmith-Helmholtz or Lagrange invariant,
which was first stated by Smith in hisCompleat System of Opticks (Cambridge, 1738), and subse-
guently rediscovered by Lagrange (1803) and von Helmholtz [1856, p. 74].

Consider alens system that has rotational symmetry about the lens axis, so that it can be rep-
resented by aplanar diagram (see Figure 7.1). Given some object and its corresponding image, the
Smith-Helmholtz invariant states that

nha = n'h'a’, (7.12)

where n isthe refractive index of the medium containing the object, i is the object height, and « is
the angle over which light is radiated from the object toward the lens system. The quantities;’, /’/,
and o/ denote the corresponding quantities for theimage (wheren’ is now the angle over which light
is received from the lens system, at a given point of the image). Theratioh’ /h is called the linear
magnification of the lens system, while o’ /« is called the angular magnification, equation (7.11)
shows that these quantities are related in a simple way.

7.A.2 Theinvariance of basic throughput

Another classical invariant isbasic throughput [Nicodemus 1976, p. 37], which is aso known as
etendue [Steel 1974]. This quantity has already been defined (Section 7.1), but we repeat its defini-
tion here:

/(D) = /DnQ(r)du(r),
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mediumn mediumn’'
T
h a a' .
1 h

Figure 7.1: The Smith-Helmholtz invariant relates the geometry of an object and its corre-
sponding image, according to the equationnha = n'h'a’.

ds (W)

dA(X) h i

ds wy)

Figure 7.2: When abeam of light is refracted, its basic throughput is preserved.

where D C R isaset of rays. With respect to classical geometric optics,D would represent the beam
of raysthat leave an object toward the lens system, eventually forming an image. The invariance of
thisquantity impliesthat asthislight beam propagates through an optical system, itsbasic throughput
' is preserved.

An example: perfect specular refraction. We show how this invariance can be proven, for
the special case of perfect specular refraction. Consider a beam of light that strikes small surface
patch d A(x), occupying a solid angle of do(w;) (see Figure 7.2). Let w; be the direction of the re-
fracted beam, which occupies a solid angle of do(w; ). In Section 5.2.1.1, we have aready shown
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that the incident and transmitted beams are related by
0t do” (i) = nf do™(wy), (7.12)

recalling that o~ denotes the projected solid angle. Since these beams travel through the same area
dA(x) on the surface, we thus have

B AAK) do (1) = 72 dA(x) do™ ()
= ndu(r)) = 7 du(re)
— dW(r) = di(r), (7.13)

wherer; = (x,w;) and ry = (x,wy) represent the incident and transmitted rays. By integrating
this relationship, we can show that basic throughput .. is invariant for an arbitrary set of raysD
that strike the surface. This affirms the invariance of i/ in the special case of refraction. It is also
straightforward to show that basic throughput is preserved when light is reflected, or when it propa-
gatesthrough aconstant medium (see Appendix 7.B). Using more advanced techniques, itispossible
to show that basic throughput is actually preserved in any system that obeys the laws of geometric
optics [Nicodemus 1963].

Note that the Smith-Helmholtz invariant can be derived as a special case of thislaw. To seethis,
observe that for rotationally symmetric lens systems, the aread A of an object is proportional toy?,
while the solid angledo over which light radiates is proportional toa?. Thus the Smith-Helmholtz
invariant follows immediately from (7.13)#

7.A.3 Theinvariance of basic radiance

If we assume that each light beam follows asingle path through an optical system (i.e. partial reflec-

tion is not allowed), and that there are no losses due to absorption, we can also show the invariance

of basic radiance[Nicodemus 1976, p. 26]. That is, asabeam of light propagates through an optical

system, itsbasic radiance L’ = L /n? ispreserved (thisisknown asAbbe's law [Keitz 1971, p. 195]).
The invariance of basic radiance can be derived directly from its definition,

“Note that the Smith-Helmholtz equation (7.11) is strictly valid only for infinitesimally small objects that
are aligned with the optical axis.
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That is, as abeam of light propagates through an optical system, its powerd® and its basic through-
put dy’ are both preserved (by conservation of energy, and theinvariance of basic throughput). Thus,
basic radiance isinvariant aswell. This can be shown under very general conditions by using ther-
modynamic principles [Liebes 1969].

Basic spectral radiance L, /n? is an optical invariant as well, when it is parameterized by fre-
quency. However, if spectral radiance is parameterized by wavelength, thenL, /»? isinvariant in-
stead [Nicodemus 1976, p. 52], since wavelengths (unlike frequencies) are modified at the interface
(see Section 6.2).

The other “basic” quantities we have defined also possess symmetry properties, however they
do not take the form of optical invariants. For example, the basic BSDF is symmetric, but does not
correspond to any property that is preserved by beams propagating through an optical system. Simi-
larly, equation (7.12) impliesthat the basic projected solid angleis preserved at arefractive interface
(do™(w;) = do™' (wy)).
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Appendix 7.B Propertiesof the new operators

We consider the adjoints and norms of the operators defined in this chapter. (The invertibility prop-
erties are unchanged from Section 4.B.1.)

7.B.1 Adjoints

Recall that adjoint operators in this chapter are defined with respect to the basic inner product, i.e.
two operators H and H* are adjoint if (H* f, g}’ = (f,Hg)' fordl f and g.

Lemma7.1. Thereversal map M preserves the measurey'. In other words, /(M (D)) = 1/(D)
for any measurable set D C R.

The proof depends on the fact that the refractive indices ofr and M (r) are lways equal. It is
otherwise similar to the proof of Lemma4.4.

Theorem 7.2. The operator G is self-adjoint (with respect to the basic inner product).
The proof issimilar to Theorem 4.5, but requires the preceding lemma.

Theorem 7.3. Theadjoint of K’ is given by
(K" h)(x,w,) = / 7% (%, wi = wo) h(x, w4) do! (w)
82
In particular, K’ is self-adjoint for any physically valid scene model.

The proof is similar to Theorem 4.6. The last statement follows from the fact that /! = f/* for
physically valid scenes (7.1).

Coroallary 7.4. The operators K'* and K* are the same (for all scenes).

Proof. We have

(K™h)(x,w,) = T2 (%, wi— wo) h(x, wy) doy! (wi)

2
, fl(x, wo = wi) h(x,w;) doi’(wi)
fs(x-; Wo _>Wi)

T ) [ do ()|

, fs(x, wo = wi) h(x, wp) doi(wi)

*h)(x,wo). B

|
TS o

~

=
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Thusimportance obeys the same scattering rulesin both frameworks. In physically valid scenes,
we also have K’ = K™, so that K’, K’*, and K* are all the same operator.

7.B.2 Norms

Since the new operators are defined using the basic throughput measurey/, it will be convenient to
define anew set of L, norms, denoted || - ||;,:

I, = ([ 17w du'(r))% . (7.14)

(Thenorm || - || .. defined by equation (4.9) isnot affected by this change, but wewill relabel it] - ||/,
for consistency.)

The old and new norms are always within a constant factor of each other, as stated by the fol-
lowing lemma:

Lemma7.5. Let iy and nmax denote the minimum and maximum refractive indices in the given
scene. Thenfor anyl <p < ocandany f € L,(R), we have

2P U f < IFIL < (Ra) P IF L - (7.15)

Furthermore if H is any bounded operator onL,(R ), then

7712na.x P /
][, < |52 [H,- (7.16)

The proofs follow directly from the corresponding definitions.
As acorollary, note that the space L, (R) contains the same functions when it is defined using

either of thenorms|| - ||,, or || - ||/, since the two norms are always within a constant factor. Thus we
can refer to L, (R) in either case without ambiguity.

Theorem 7.6. |[K'[|;, < 1 for any physically valid scene, and for any1l < p < oc.

Proof. The proof isvery similar to [Arvo 1995, Appendix A.8]. First, we consider the casep = 1.
To bound the operator norm||K’||}, we must find a number rn such that

IK'R||} < m|hl} for any function h € Li(R).
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To obtain such abound, we compute
Knl = [ 0@ d
= [, [ ) ) dA0) do )
= [ L e ) ) o (1) dA(0) dox (o)
= [ L o) do )| B dor (wa) dA(x)
(where we have dropped the absolute value signs, since all quantities are positive).

To obtain an upper bound on this expression, we letm denote the maximum value attained by
the bracketed quantity over the entire domain of the outer integrals:

m = esssup FH(x, wi = wo) doy (wo) -
(x,w;)ER /82
We thus have
1Kl < m [ (e do @) dAG) = mlall,
M JS?

so that m is an upper bound on the operator norm||K'||;.

To better understand the meaning of this bound, we re-express it in terms of the ordinary BSDF

fs:

m = esssup F(x, wi = wo) doy! (wo) (7.17)
(x,w;)ER J S2

fS(X7wi _H'UO)

2 1
= esssup N (x, wo) doy (wo)
(x,w;)ER /S 772(X7Wo) |: e * O]
= esssup (%, wi = wo ) doy (wo) -
(x,w;)ER / S2

Comparing this to the BSDF energy-conservation condition (6.5) derived in Chapter 6, we see that
if the scene model uses only physicaly valid BSDF's, then we are guaranteed thatm < 1. Further-
more, real materials will always have at least a small amount of absorption, so that for physically
valid scenes we may assume thatm < 1.° This establishes the theorem in the casep = 1.

SEven for situations such astotal internal reflection, or reflection from metals at grazing angles, there will
always be some absorption due to tiny imperfections and impuritiesin the materials.
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Thecasep = c isvery similar; it is straightforward to show that

IK'|., < (esss)u% S2fs'(x,wo—>wi)dgi/(wo)
X,wi)€E

Notice that this expression isidentical to (7.17), except that the directional arguments to the basic
BSDF f! have been exchanged. Since f! is guaranteed to be symmetric for physically valid scenes,
we obtain the same bound as forp = 1, namely

Kl < m < 1.
For values of p with 1 < p < oo, we use the fact that
1K', < max{[[K'[l1, [K'll5}-

This was shown by Arvo [1995, Theorems 12 and 13], whose results apply to any operator of the
fomKo K. &

From this result and the bound (7.16), we obtain the following:

Corollary 7.7. For any physically valid scene, and for anyl < p < oo,

2
K|, < ‘max

min
where nmin and nmax denote the minimum and maximum refractive indices in the environment.
Thiswas previously stated as Theorem 4.12.

Finally, we can put these results together to show that the solution operatorsS ,, are well defined,
i.e. that the operators (I — T',) areinvertible.

Theorem 7.8. For any physically valid scene, the solution operatorsS . exist and are well-defined,
where X isany of L, L, L;, L,, W;, or Wj.

i?

Thiswas previously stated as Theorem 4.13.
Proof. When X isoneof L!, L/, Wj, or W,, then T, isacomposition of K’ and G. Therefore

IT. )" < IKNIGI" < 1,

and thus (I — T ) isinvertible.
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For the cases X = L; and X = L,, it is sufficient to show that | T* || < 1 for some integer
k > 1. Todo this, observe that since||T, ||’ < 1, thereis some integer & such that

HTI;(HI < (nmin/nmax)2 .

Applying the relationship (7.16) between the operator norms|| - || and || - ||’, we obtain the desired
result. N
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Appendix 7.C Thebasic BSDF for refraction

In Section 5.2.2 we showed that the BSDF for perfect specular refraction is
772
fs(wi—wy) = n—tz 0, (wi — R(wy))

o
1

where R isthe refraction mapping, andJ, isthe Dirac distribution with respect to the given measure
1. Thus the corresponding basic BSDF is

i) = nigfswﬁwt) — b (i — R(w). (7.18)
We have given two separate arguments showing that this quantity is symmetric: the first was a di-
rect mathematical derivation (Appendix 5.B), while the second was based on a genera reciprocity
principle (Chapter 6).

In this appendix, we show how the basic BSDF for refraction can be rewritten to make its sym-
metry moreobvious. Theideaisto rewriteit asaDirac distribution with respect to the basic projected
solid angle measure (o). Using the relationship (7.3) between basic and ordinary projected solid
angle, and theidentity (5.35) between Dirac distributions with respect to different measures, we have

fllwi—w) = %(sL(Wi_R(Wt)) = 0,1 (wj — R(wy)) .

g
1

The symmetry of this quantity can then be expressed as
O 0 (wi — R(wy)) = 6,0 (wy — R(wi)) ,

which follows from the fact that the mapping R isabijection, and that it preserves the basic projected
solid angle measure (see Section 5.2 and equation (5.36)).
With respect to the angular parameterization (6, ¢), the basic BSDF for refraction can be written

F1(05, 01,0t 0) = 20(n7 sin® 6 — nf sin® 6;) 6(d — (¢4 £ 7)),

which follows from equations (5.38), (7.7), and (5.30). Inthisform, the symmetry of the basic BSDF
isclear.
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Chapter 8

A Path Integral Formulation of Light
Transport

In this chapter, we show how to transform the light transport problem into an integration
problem. This pathintegral formulation expresses each measurement in the form of asim-
pleintegral (rather than as the solution to an integral equation or operator equation, aswith
the other formulations we have described). More precisely, each measurement 1 iswritten
intheform

I = [ @) du),

where Q2 is the set of transport paths of al lengths, 1. is a measure on this space of paths,
and f; is called the measurement contribution function (to be defined below).

The path integral model has several benefits. The main advantage is that by reducing
light transport to an integration problem, it allows general-purpose integration methods to
be applied. For example, we will show how light transport problems can be solved more
robustly using multipleimportance sampling (Chapter 9), an integration method that allows
several different sampling strategies to be efficiently combined.

The path integral model also leads to new techniques for sampling paths. The problem
with models based on integral equationsisthat they only describe scattering from one sur-
face at atime. This leads to light transport algorithms that construct paths incrementally,
by recursive sampling of theintegral equation. The path integral model takes a more global

219
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view, which has led directly to techniques such as bidirectional path tracing (Chapter 10)
and the Metropolis light transport algorithm (Chapter 11). These new techniques can only
be properly understood within the path integral framework.

Finally, the path integral model is a useful tool for understanding the limitations of un-
biased Monte Carlo algorithms. It provides a natural way to classify transport paths, and to
identify those that cannot be sampled by certain kinds of techniques.

This chapter is organized as follows. First, we review the three-point form of the light
transport equations, and show how to transform them into an integral over paths. We then
discuss the advantages of the path integral model in more detail, and show how it can be
used to construct unbiased Monte Carlo estimators. Finaly, introduce the idea of full-path
regular expressions (extending a notation of Heckbert [1990]), and discuss the limitations
of path sampling approaches to light transport.

In Appendix 8.A, we describe several other waysthat the path integral model can befor-
mulated, by introducing new measures on the space of paths. These measures have natural
physical interpretations whose meanings are described.

8.1 Thethree-point form of thetransport equations

We show how to rewrite the transport equationsto eliminate the directional variablesw;, w,,.
Thisfirst step isto write the equilibrium radiance in the form L(x —x'), wherex, x’ € M
are points on the scene surfaces. In terms of the function L(x, w) we have been using up
until now, we define

L(x—x') = L(x,w)

wherew = x’ — x is the unit-length vector pointing from x to x’. (This representation
of the ray space R was described in Section 4.1, recall that it has some redundancy, since
L(x—x') = L(x—x") whenever x’ and x” lie in the same direction from x.)

Similarly, we write the BSDF as a function of the form

filx—=x'=x") = (X, wi—w,),

wherew; = x — x’ and w, = x” — x'. The arrow notation x — x’ symbolizes the direction
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Figure 8.1: Geometry for the light transport equation in three-point form.

of light flow.

The three-point form of the light transport equation can now be written as
L(x'—=x") = L.(x'—=x") + / L(x—X') fi(x—=x'"—=x")G(x+x)dA(x) (8.1)
M

(seeFigure 8.1). Thisissimply areformulation of the original version of the light transport
equation (3.19) that we have already described. As before, M isthe union of all scene sur-
faces, A isthe area measure on M, and L. is the emitted radiance function. The function
G represents the change of variables from the original integration measure do™ to the new
integration measure d A, which are related by

dog(w) = dog(x —x') = G(x<x')dA(x), (8.2
where

|cos(6,) cos(6!)]

[Ix = x'[|?

Gxex) = V(xex) (8.3

Here 6, and ¢! are the angles between the segment x <+ x’ and the surface normalsat x and
x' respectively, whileV (x +»x’) = 1 if x and x" are mutually visible and is zero otherwise.

We al so use the change of variables (8.2) to rewrite the original measurement equation
(3.18) as

I; = / WO (x—x') L(x—x") G(x+x') dA(x) dA(X'), (8.9)
MxM
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where as usual, the notation x — x’ indicates the direction of light flow. In particular,
WY (x — x') represents the importance that is emitted from x’ toward x (opposite to the
arrow notation). Thisis, we define W." (x —x') = WV (x',w), wherew = x — x'.1

8.2 Thepath integral formulation

In this section, wefirst define the components of the path integral formulation: the integra-
tion domain, measure, and integrand. Next, we discuss the advantages of this formulation.
Finally, we show how to use the path integral framework in Monte Carlo algorithms, and in
particular how to calculate the probability densities with which paths are sampled.

Recall that our goal isto express each measurement in the form
I = | @) duz). (85)
To do this, let €2, represent the paths of length £, i.e. the set of paths of the form
T = XoX{ ... Xk,

wherel < k£ < oo and x; € M for each i. We define a measure 1., on this set of paths,
called the area-product measure, according to

pe(D) = [ dA(xa) - dAs),

where D C ), isaset of paths. Formally, 1., isaproduct measure [Halmos 1950]; we could
also have written its definition as

dug(xg...xp) = dA(xq) - dA(xs),

or e = Ax---xA.
k times

!Noticethat thevisibility factor V(x <+ x') hiddeninthefunction G is essential, since L(x — x') refersto
the radiance leaving x, while W9 (x—x") appliesto the radiance arriving at x’. To put this another way, L
and W.”) are both exitant quantities, since .Y’ specifiestheimportanceleaving x’, rather than theimportance
arriving at x.
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Next, we define the path space Q2 as
Q= %,
k=1

i.e. Q2 representsthe set of paths of all finite lengths. We extend the area-product measure 1
to this space in the natural way, by letting

WD) = 3 (D). (8.6)
k=1

That is, the measure of a set of pathsis simply the sum of the measures of the paths of each
length.?

To complete the definition of the path integral formulation (8.5), we must definetheinte-
grand f;. To do this, we start with the measurement equation (8.4), and recursively expand

the transport equation (8.1) to obtain
0 k—1
L = 3. /Mk+l Le(xo—x1) G(xo > x1) [T filxior =% =Xi41) G(xi 6 xi11)
k=1 =1

W9 (xp—1 —xk) dA(x0) - - - dA(xy) (8.7)
- /M2 Le(x0—%1) G(x0 43 x1) W9 (x50 — x1) dA(x0) dA(x,)

+ /M3 Le(XO—)X1>G(X0<—>X1) fS(XO—)Xl —>X2) G(Xl <—>X2)
. I/I/l;(j) (Xl —)Xz) dA(Xo) dA(Xl) dA(Xz)
_|_

The integrand f; is defined for each path length & separately, by extracting the appro-
priate term from the expansion (8.7). For example, given apath 7 = xyx;x»x3, we have

f](i‘) = Le(X0—>X1) G(X0<—>X1) fS(X0—>X1—>X2)

. G(Xl HXz) fs(Xl — X9 —)Xg) G(X2<—>X3) M/(;(j)(Xz —>X3)

(see Figure 8.2). Thisfunction f; is called the measurement contribution function.

2This measure on pathsis similar to that of Spanier & Gelbard [1969, p. 85]. However, in our case the path
space 2 does not include any infinite-length paths. This makesit easy to verify that (8.6) isin fact ameasure,
directly from the axioms [Halmos 1950].
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R

EO2 X7
. (X\oﬁ ) G(Xofixy) G(xfix3) _
¢ ,  GOifix) % We(xafix3)

fs(XofiX4fiX5) fs(Xfi Xofi X3)

Figure 8.2: The measurement contribution function f; isa product of many factors (shown
for apath of length 3).

We have now defined all the terms of path integral model (8.5): the integration domain,
integrand, and measure. There is nothing particularly complicated about this transforma-
tion; we have just expanded and rearranged the transport equations. The most significant
aspect is that we have removed the sum over different path lengths, and replaced it with a
singleintegral over an abstract measure space of paths.

8.2.1 Advantages of the path integral formulation

The path integral formulation has several advantages. First, the expression for each mea-
surement has the form of an integral (as opposed to some other mathematical object). This
allowsusto derive new rendering algorithms by applying general-purpose integration tech-
niques, such as multiple importance sampling (Chapter 9).

Second, the path integral model has a much simpler structure: a single expression de-
fines the value of each measurement. In contrast, the integral equation approach requires
two equations (the light transport and measurement equations), one of which is defined re-
cursively. With the path integral approach, there are no adjoint equations, no intermediate
guantities such as light or importance, and no need to choose between these alternatives.
M easurements are defined and computed directly, by organizing the calculations around a
geometric primitive (the path), rather than radiometric quantities.

By dealing with whole paths rather than rays, the path integral framework also provides
amoreexplicit and complete description of light transport. Each path specifiestheemission,
scattering, and measurement events along a complete photon trgjectory. On the other hand,
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integral equations describe the scattering events in isolation, by specifying the interaction
of light with each surface separately.

This has practical consequences for sampling paths: the natural strategy for solving an
integral equation isto samplethe equation recursively, leading to pathsthat are built starting
entirely from the lens, or entirely from alight source (depending on whether the light trans-
port equation or its adjoint is sampled). With the path integral approach, on the other hand,
itispossibleto construct pathsin arbitrary ways, e.g. by starting with avertex inthemiddle,
and building the path outwardsin both directions. Thisleadsdirectly to sampling strategies
such as bidirectional path tracing (Chapter 10), and the Metropolis algorithm (Chapter 11).

Furthermore, the path integral approach gives a convenient framework for computing
probability densities on paths (as described in the next section). This allows us to easily
compare the probabilities with which a given path is sampled by different techniques. This
isan essential prerequisite for the use of the multiple importance sampling and Metropolis
techniques.

8.2.2 Applyingthe path integral formulation

In this section, we explain how the path integral framework can be used in Monte Carlo
algorithms. We first show how measurements can be estimated, by randomly generating
transport paths X, and computing an estimate of the form f;(X)/p(X). This requires the
evaluation of the probability density p(X') with which each path was sampled. We consider
how to do this within the framework of local path sampling, which is general enough to

describe virtually al unbiased path sampling algorithmsthat are used in practice.
Our goal isto estimate the path integral

L = [ f@d(@)

for each measurement ;. To do this, the natural Monte Carlo strategy isto first sample a
random path X according to some chosen density function p, and then compute an estimate
of theform

fi(X
p(X)

~—

I =~

J

(8.8)
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Thisisan unbiased estimate of the measurement /;, since its expected value is

LX) f(@) 2 dulz
E[po‘o] - [ 28w dutey 89)
= [ £i@) du(@)
_ ]j,

where we have assumed that p is measured with respect to the area-product measure i, in
order for thefirst line of this equation to hold.

To apply this strategy, we must be able to evaluate the functions f; and p for the given
path X. An explicit formulafor the measurement contribution function f; hasalready been
given; thus, the main question is how to evaluate the probability density p(X). Obviously,
this depends not only on the particular path X, but also on how this path was generated. For
example, one way to generate pathsiswith ordinary path tracing: the vertex x;. ischosen on
the lens, and subsequent verticesx;_1, . . ., x; are generated by following random bounces
backward, until eventually we connect the path to arandom vertex x, on alight source. The
probability p(X') dependson all of the random choices made during this process, aswe will
discussin more detail below.

8.2.2.1 Local path sampling

We will concentrate on aparticular family of methodsfor generating paths, calledlocal path
sampling algorithms. These methods generate vertices one at a time, based on local infor-
mation at existing vertices (such as the BSDF). There are three basic mechanisms that can
be used to construct pathsin this framework:

e A vertex can be chosen according somea priori distribution over the scene surfaces.
For example, this can be used to sample a vertex on alight source, with a probability
density proportional to the radiant exitance (i.e. the power per unit area emitted over
the light source). Similarly, this technique can be used to sampletheinitial vertex on
a finite-aperture lens. It can aso be used to sample intermediate vertices along the
path, e.g. to sample a vertex on a window between two adjacent rooms.
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e The second method for generating a vertex isto sample a direction according to alo-
cally defined probability distribution at an existing vertex x, and then cast aray tofind
thefirst surface intersection x’ (which becomesthe new vertex). For example, thisis
what happens when the BSDF at an existing vertex is sampled (or an approximation
to the BSDF). This mechanism can a so used to sample adirection for emission, once
avertex on alight source has been chosen.

e Thethird mechanism for path sampling isto connect two existing vertices, by check-
ing the visibility between them. In effect, this step verifies the existence of an edge
between two vertices, rather than generating a new vertex.

By combining these three simple techniques, it is possible to sample pathsin agreat variety
of ways. Subpaths can be built up starting from the light sources, the lens, or from an arbi-
trary scene surface. These subpaths can then be joined together to create afull path from a
light source to the lens. Thislocal sampling framework is genera enough to accommodate
virtually all path sampling techniques that are used in practice3

8.2.2.2 Computing the path probabilities

I nthissection, we describe how to computethe probability density p(z) for samplingagiven
path 7. As mentioned above (equation (8.9)), we wish to compute the probability density
with respect to the area-product measure 1, that is:

pa) = @),

Givenapathz = xq...x;, thisexpandsto

p(T) = fl—i(xo...xk)
bdp
= H d—A(Xi) .

1=0

3As an example of anon-local sampling technique, suppose that the location of anew vertex is computed
by solving an algebraic equation involving two or more existing vertices. For example, this could be used to
determine the point y on a curved mirror that reflects light from a given vertex x to another vertex x’. Thisis
not allowed in the local path sampling framework, since the position of y depends on more than one existing
vertex. Thistype of non-local sampling will be discussed further in Section 8.3.4.
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Figure 8.3: Geometry for converting between area and directional probabilities.

Thusto evaluate p(.X'), we must compute the probability per unit area (dP/dA) with which
each vertex x; was generated, and multiply them together.

We now consider how to compute the probability for sampling a given vertex. Accord-
ing to the local path sampling model, each vertex x; can be generated according to one of
two methods: either x; is sampled from adistribution over the scene surfaces (in which the
probability density dP/dA(x;) can be computed directly), or elseit is generated by casting
aray from an existing vertex, in arandomly chosen direction.

To calculate the density in the latter case, let x be the existing vertex, and let x' = x; be
the new vertex. We assume that x’ was generated by casting aray from x in the direction
w,, Where

—

we = X' —X

(see Figure 8.3). We are also given the probability density p(w,) with which w, was chosen
(measured with respect to solid angle). To computethe density p(x’) with respect to surface
area, we must expressit interms of the given density p(w, ). Thesetwo densitiesare related

by

dP . dP, | do(w,)
ax) = @)
— p(x) = plw,) (%) (8.10)

(see Figure 8.3). The parenthesized expression is the solid angle subtended at x per unit of
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surface area at x'.

Using these rules, it is straightforward to compute the probability density p(z) for the
whole path. We simply consider the verticesin the order that they were generated, and mul-
tiply together thedensitiesd P/d A for each vertex (converting from directional to areaprob-
abilities as necessary). There are few restrictions on how the paths are generated: starting
from the lens (as with path tracing), starting from the lights (as with particle tracing), or
a combination of both (as with bidirectional path tracing). Paths can also be constructed
starting from the middl e, by sampling vertices according to predefined distributionsover the
scene surfaces: thiscould be useful in difficult geometric settings, e.g. to generate transport
paths that pass through a known small portal.

In the path integral framework, all of these possibilities are handled in the same way.
They are viewed as different sampling strategies for the measurement equation (8.5), lead-
ing to different probability distributions on the space of paths. They are unified under one
simple equation, namely the estimate f;(X)/p(X).

Densities with respect to projected solid angle. In many cases, it is more natural and
convenient to represent directional distributions as densities with respect to projected solid
angle o~ (rather than ordinary solid angle o). We summarize the equations here for future
reference.

Given an existing vertex x (Figure 8.3), let p(w,) and 7 (w,) be the probability densi-
ties with respect to ordinary and projected solid angle respectively for sampling the given
direction w,. These two densities are related by

dP AP, | do(w,)
dot W) = ) T
1 1
= p (wo) = p(wo> (m ) (811)

where we have used the relationship
do (wo) = |wo - N(x)| do(ws) -

Putting thistogether with equation (8.10), we can convert between densitieswith respect
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to projected solid angle and densities with respect to surface area using

|cos(6,) cos(6!)]

[l = x'[[?

p(x) = P (wo)

— X% Gxex),

where G isthe geometric factor (8.2).# Notice that this conversion factor is symmetric, un-
like the conversion factor (8.10) for densities with respect to ordinary solid angle.

8.3 Thelimitations of path sampling

Although agorithms based on path sampling tend to be ssmple and general, they do have
limits. For example, if point light sources and perfect mirrors are allowed, then there are
some types of transport paths that cannot be sampled at all. Images computed by path sam-
pling algorithmswill be missing the contributions made by these paths. Asatypical exam-
ple of this problem, consider a scene where a point light source reflects off a mirror, creat-
ing caustics on adiffuse surface. Although algorithms such as bidirectional path tracing are
capable of rendering these caustics when viewed directly, they will fail if the caustics are
viewed indirectly through a second mirror. (The indirectly viewed caustics will simply be
missing from the image.)

More generaly, there are some light transport problems that are provably difficult for
any algorithm. In thisregard, it has been shown that some ray tracing problems are unde-
cidable, i.e. they cannot be solved on a Turing machine [Reif et al. 1994]. These examples
are not physically realizable, sincethey rely on perfect mirrors and infinite geometric preci-
sion. However, we can expect that asthe geometry and material sof theinput scene approach
aprovably difficult configuration, any light transport algorithm will perform very badly.

Our goals in this section are more practical. We are mainly concerned with the limi-
tations of local path sampling algorithms, as described in Section 8.2.2.1. For this type of
algorithm, problemsare caused not only by mirrors and point sources, but also by refraction,

“Note that the visibility term V' (x « x') hidden in G is required only when the visibility between x and
x" is not known.
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perfectly anisotropic surfaces, parallel light sources, pinhole lenses, and orthogonal view-
ing projections. Our goal is to determine which combinations of these features can cause
local path sampling algorithmsto fail.

We start by reviewing Heckbert’s regular expression notation for paths. Next, we show
how to extend this notation to describe the properties of light sources and sensors, in order
to allow features such as point light sources and orthographic lenses to be represented in a
compact and consistent way. We then give a criterion for determining which types of paths
cannot be generated by local path sampling. Finaly, we consider some ways to lift this
restriction using non-local sampling methods.

8.3.1 Heckbert’sregular expression notation for paths

Heckbert [1990] introduced a useful notation for classifying paths by means of regular ex-
pressions. Originaly, it was used to describe the capabilities of multi-pass global illumi-
nation algorithms, e.g. agorithms that combine radiosity and ray tracing. In this context,
it was assumed that all BSDF's can be written as a linear combination of an ideal diffuse
component and an ideal specular component. For example, atypical surface might reflect
50% of theincident light diffusely, reflect 10% in amirror-like fashion, and absorb the rest.

Paths are then described using regular expressions of the forne
L(S|D)E.

Each symbol represents one vertex of a path: L denotes the first vertex of the path, which
lies on alight source, while E denotes the last vertex (the camera position or “eye’). The
remaining vertices are classified as.S or D, according to whether the light was reflected by
the specular or diffuse component of the surface respectively. Note that the symbolsS and
D represent the type of the scattering event at each vertex, not the type of the surface, since
the surface itself is allowed to be a combination of specular and diffuse.

5In regular expressions, X denotes one or more occurrences of X, X* denotes zero or more occur-
rences of X, X|Y denotes a choice between X or Y, ¢ denotes the empty string, and parentheses are used
for grouping.
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Definitionsfor general materials. Thisnotationiseasily extended to sceneswith general
materials, by redefining the symbols .S and D appropriately. We show how to make these
definitions rigoroudly, by relating them to the BSDF.

Letz = xg...x; beapath, and consider the scattering event at a vertex x; (where
0 < i < k). For general materials, we let the symbol D represent any scattering event
where the BSDF isfinite, i.e. where

fs(xii1 =X —X41) < 00.

All other scattering events (wherethe BSDF is not finite) are denoted by the symbol S. This
category includesnot only pure specular reflection and refraction, wherelight is scattered in
azero-dimensional set of directions, but also pure anisotropic scattering, wherelight is scat-
tered in a one-dimensional set of directions (similar to the reflection properties of brushed
aluminum). These possibilitieswill be discussed in more detail below.

8.3.2 Full-path regular expressions

Heckbert's notation describes only the scattering events along a path. We show how to ex-
tend these regular expressions in a natural way, to describe the properties of light sources
and sensors as well.

Each light source is classified according to a two-letter combination, of the form
(S|D) (S|D). Thefirst letter represents the surface area of the light source: D denotes a
finite-area source, while S denotes a source with zero area (e.g. a point or linear source).
The second | etter represents the directional properties of the emission: D denotes emission
over afinite solid angle, while S denotes emission over a set of angles with measure zero.
Thus, a point light source that radiates light in al directions would be denoted by the
regular expression LSD. Note that unlike Heckbert’'s notation, the symbol L does not
represent areal vertex; it issimply a placeholder that indicates the ordering of vertices (i.e.
the fact that the first vertex is on alight source rather than a sensor).

Similarly, to represent the properties of the sensor we use a suffix of the form

(SID) (S|D) E .
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LDD | adiffusely emitting sphere

LDS | sunlight shining through awindow, where the window itself is mod-
eled as the light source

LSD | apoint spotlight
LSS | alaser beam
DDE | afinite-aperture lens

SDE | an orthographic projection lens (where the image plane located
within the scene, rather than at infinity)

DSE | apinholelens
SSE | an idealized spot meter (which measures radiance along a single
given ray)

Table 8.1: Examples of regular expressions that approximate various kinds of real light
sources and sensors (e.g. by treating the sun as apoint at infinity, etc.)

Thefirst letter represents the directional sensitivity of the sensor, i.e. whether it is sensitive
to light over afinite solid angle (D), or to light that arrives from a set of directions with
measure zero (S). The second letter represents the surface area of the sensor, with the same
conventions used for the first letter of the light source classification.

Table 8.1 gives some examples of light sources and lens models which are good ap-
proximations to the various letter combinations (e.g. if we treat the sun as a point source at
infinity).

Combining this notation for light sources and sensors with Heckbert’s notation for scat-
tering events, an entire path is thus described by a regular expression such as

LDDS*DDE.

This example represents a path that starts on an ordinary area light source, is scattered by
zero or more specular surfaces, and terminates at an ordinary finite-aperture lens. This ex-
tended notation is called a full-path regular expression.

The main advantage of full-path expressionsisthat they give acompact way to describe
the paths generated by specific sampling strategies. For thispurpose, itisessential to specify
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the properties of the light source and sensor, since some strategies do not work for sources
or sensors with zero area, or those that emit or measure light over a zero solid angle. (For
example, “pure” path tracing cannot handle point light sources, since they will never be
intersected by a path that is randomly generated starting from the lens.) We will make ex-
tensive use of full-path expressionsto describe the sampling strategies of bidirectional path
tracing and Metropolis light transport, and aso to investigate the limitations of local path
sampling.

Formal definitions of the full-path notation. Full-path regular expressions can be de-
fined more rigoroudly in the following way. First, we show how to split the emitted radi-
ance function L. into a product of two factors L and L{”, which represent the spatial and
directional components of the emission respectively. The factor LY is defined by

LO(x) = /82 Lo(x,w)do (W), (8.12)

and represents the radiant exitance (emitted power per unit area) associated with a point x
on alight source. The second factor L{" is given by

LY (x,w) = Le(x,w)/LO(x), (8.13)

and represents the directional distribution of the emitted radiance at x. These factors corre-
spondto thefact that sampling for emissionisnaturally subdividedinto two steps, consisting
of first choosing a point on a light source, and then a direction for the emitted ray. Notice
that by definition,

/S LO(x.w)do'(w) = 1,

sothat L{" issimply the probability density function for w, for a given choice of x.

With these definitions, the light source notation LX'Y" has the following meaning:

v _ )DL (xg) < oo
B S otherwise,

v D if LS)(XO—>X1) < 00
B S otherwise.
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Likewise, we can rigorously define the meaning of the notationY” X E for sensors. This
is done by splitting the emitted importance function 17, into a product of two factors 17."”
and 1., and making a definition similar to the one for LXY'.

Thusfar, we have only distinguished between light that is emitted or scattered in atwo-
dimensional set of directions (D), vs. al other cases (). It is sometimes useful to classify
the S vertices further, according to whether light is scattered in a zero- or one-dimensional
set of directions (Sy vs. S;). Thisextended notation is discussed in Appendix 8.B, and can
be used to describe the properties of light sources, sensors, and materials more precisely.

Notethat Langer & Zucker [1997] have independently proposed a classification system
for light sources that is similar to the one described here. However, they do not attempt to
giveagenera definition of their classification scheme, they do not develop any notation for
it, and they do not consider the classification of sensors or scattering events.

8.3.2.1 Interpreting sources and sensors as scattering events

The definitions above are somewhat cumbersome to use, because sources and sensors are
treated as special cases. |n other words, thefirst two (S| D) symbolsand thelast two (S|D)
symbols of each path cannot be handled in the same way as the rest, since they represent
emission and measurement rather than scattering. It would be easier to reason about these
regular expressionsif the S and D symbols had a consistent meaning.

In this section, we show how the S and D symbols describing light sources and sen-
sors can be interpreted as “ scattering events” in a natural way. To do this, we introduce an
imaginary vertex at each end of the path, and extend the definition of the BSDF to describe
light transport to and from these imaginary vertices. With these changes, all of the symbols
in a full-path regular expression have a consistent interpretation, so that the special cases
associated with sources and sensors can be avoided.

The conversion from emission to scattering is described in two steps. We first consider
the directional component of the emission, and then the spatial component.

Scattering eventsat xo and x,. We show how thedirectional componentsof the emission
functions L. and W, can be interpreted as scattering at the vertices x, and x;,. To do this,
we introduce two imaginary vertices ¥, and ¥y, which become the new path endpoints.
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A complete path thus has the form
\IJLX()Xl X]C\ij,

where the vertices ¥, and W, aways occur at positionsx_; and x;, 1 respectively.

We regard the vertex ¥, asthe source of al light, while ¥ isthe source of al impor-
tance. That is, rather than allowing surfaces to emit light directly, we assume that emission
occurs only at the vertex W;. Light is emitted along imaginary rays of the form ¥, — x,
and is then scattered at x into physical rays of the form x — x’. This process is defined
so that we obtain the same results as the original emission function .. Similarly, all sen-
sor measurements are made at the point Wy,. This corresponds to the following symbolic
definitions:

L(¥,—x) = LO9(x),
[0, —»x—x) = LOK—X),
(X —=x—=Ty) = WO —=x),

We(x—=Uw) = WO(x),

where LY and .’ are the spatial and directional components of emission (8.12, 8.13).

Scatteringeventsat ¥; and ¥y,.  We now show how the spatial components of emission
can beinterpreted as scattering at theimaginary vertices;, and ¥y,. Todothis, we assume
that the emitted light isinitially concentrated on the single imaginary ray ¥; — ¥ . This
light is scattered at W, to obtain a distribution aong rays of the form ¥; — x. We then
proceed as before (with a second scattering step at x), to obtain emission along physical
raysx — x’. Similarly, measurements are handled by scattering light from rays of the form
x — Wy, into the singleray ¥y, — Wy, where the actual measurement takes place.
Thisidea correspondsto the following symbolic definitions. First we define®;, and @y
to represent the total power and the total importance emitted over all surfaces of the scene:

@ = [ IO dAR).

Dy = /M WO (x) dA(x) .
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Next, we change the emission functions so that light and importance are emitted on asingle

imaginary ray:
Le(\PL—>\DL) = (I)L,

VVB(‘I/W —>\Ifw) = (I)W .

Finaly, we extend the BSDF to scatter this light and importance along rays of the form
¥, —x and x — Uy respectively:

LWL U, %) = L0(x)/3,,
f(x=Ty =Ty) = WO(x)/Dy.

Notice that these BSDF' s are normalized to integrate to one, so that thereisanatural corre-
spondence with scattering.

With these conventions, every S and D symbol corresponds to a unique scattering event
at some vertex of the full pathx_; . .. x;, 1. Furthermore, these symbols have a consistent
meaning. Given any vertex x; of a path, the symbol D means that the BSDF at that ver-
tex isfinite (so that energy is spread over atwo-dimensional set of adjacent vertices), while
S means that the BSDF is not finite (in which case power is distributed to a zero- or one-
dimensional set of adjacent vertices). This consistency will be useful aswe study the limi-
tations of local path sampling below.

8.3.3 Thelimitationsof local path sampling

In this section, we show that local sampling strategies can only generate paths that contain
the substring D D. Any path that does not contain this substring cannot be sampled, and the
contributions of these pathswill be missing from any computed images. Examples of paths
that cannot be sampled are shown in Table 8.2.

We start by consider specular vertices, and the constraintsthat they impose on path sam-
pling. Next, we show that paths can be sampled by local sampling strategiesif and only if
they contain the substring D D. Finally, we discuss the significance of these results.

Lemma 8.1. Letz beany path generated by alocal sampling algorithm, for which the mea-
surement contribution function f;(z) isnon-zero. If this path contains a specular vertex x;,
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LSDSDSE apoint light source reflected in a mirror, viewed with a pin-
hole lens

LDSSDSDE caustics from a parallel light source, viewed with an ortho-
graphic lens

LSDSDSDSE | causticsfrom apoint light source, viewed indirectly through
amirror with a pinhole lens

Table 8.2: Examples of path types that cannot be generated by local sampling algorithms.

then one of the adjacent vertices x;,; or x;_; was necessarily generated by sampling the
BSDF at x;.

Proof. For any fixed positions of x; and x;_;, consider the positions of x;.; for which
fs(Xifl —>Xi—>Xi+1) = o0,

i.e. for which x; is a specular vertex. By definition, the possible locations of x;,; form a
set of area measure zero, since they subtend a zero solid angle at x;. Similarly, if we fix
the positions of x; and x; 1, the possiblelocations of x;_; for which x; isa specular vertex
form a set of measure zero.

Thus, if the vertices x; ; and x;,; are generated independently by the local sampling
algorithm, then x; hastype D with probability one. Thusif x; hastype S, then one of these
two vertices must be generated by sampling the BSDF at x; (since this is the only other
aternative that is allowed within the framework of local path sampling). B

It is easy to extend this result to the case where several specular vertices are adjacent.
Corollary 8.2. Let T be a path as described above, and suppose that z contains a subpath
x; ...x; of theform DS*D. Then one of the endpointsx; or x; must be generated by sam-

pling the BSDF of the adjacent S-vertex (that is, either x;,; or x;_;). N

We are now ready to consider the sampling of full paths.
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Theorem 8.3. Let = be a path generated by a local sampling algorithmfor which the mea-
surement contribution function is non-zero. Then & necessarily has the form

L (S|D)*DD(S|D)*E,

i.e. it must contain the substring D D. Furthermore, it is possible to generate any path of
thisformusing local sampling strategies.

Proof. If T doesnot contain the substring D D, then it has the form
L (Dle) ST (DST)*(Dle) E .

Thispath hasn specular substringsof theform S+, but only n— 1 vertices of type D separat-
ing them.® Thusaccording to the corollary above, one of these D vertices must be generated
by sampling the BSDF of both adjacent specular vertices (whichis not possible). In effect,
there are not enough D vertices to alow this path to be sampled by local techniques.
Conversely, let 7 be a path that contains an edge x;x; ; of theform D D. Then this path
can be generated by at least one local sampling strategy: namely, by generating the subpath
Xy . . . X; starting from alight source, and the subpath x; , ; . . . x;, starting fromthelens. R

Thus, the DD condition is necessary and sufficient for local path sampling. Of course,
specific agorithms may have more restrictive requirements. With ordinary path tracing, for
example, all vertices are generated starting from the camera lens, except for the vertex x,
which is chosen directly on the surface of alight source. This implies that ordinary path
tracing can only sample paths of the form

L(S|D)DD(S|D)*E.

These results are significant for two reasons. First, it isvery common for graphics sys-
temsto support point light sources and perfect mirrors, even though these are mathematical
idealizations that do not physically exist. If scenes are modeled that use these primitives,
then some lighting effects will simply be missing from the computed images. Second, even

5The symbol following L and the symbol preceding E do not count, because they are not sampled: they
represent the fixed, imaginary vertices Wy and Wy .
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if we disallow thesefeatures (e.g. by disallowing point and parallel light sources, so that ev-
ery path starts with the prefix L D D), we should expect that path sampling algorithms will
perform badly as the scene model approaches adifficult configuration. In thiscase, the con-
tributions from the difficult paths will not be missing; however, they will be sampled with
high variance, leading to noisy regions in resulting images.

8.3.4 Approachesto non-local sampling

Weoutlineseveral approachesfor handling pathsthat cannot be sampledlocally. The easiest
solutionisto not alow these pathsin thefirst place, by placing mild restrictions on the scene
model. For example, any of the following strategies are sufficient:

e Allow only (ordinary) arealight sources, so that all paths start with LD D.
e Allow only finite-aperture lenses, so that al pathsend with DDE.

e Do not allow perfectly specular surfaces.

These strategies ensure that path sampling algorithms will produce unbiased results, al-
though there can still be high variance in limiting cases as discussed above.

A second approach isto use a more sophisticated path sampling strategy. Wefirst intro-
duce some new terminology.

Chainsand chain separators. Givenapath, wedivideitsedgesinto asequence of chains
asfollows. A vertex iscalled achain separator if it hastype D, or if it isone of the special
vertices U, or ¥y,. A chainisnow defined to be a maximal subpath bounded by chain
separators (not including the symbols . and E, which do not correspond to any vertex).
For example, the path

LDSDDSSDSFE

consists of four chains. Thefirst chainis DS D, consisting of the imaginary edge from ¥,
to xy, and thereal edgefromx, tox;. Thesecond chainis DD (the edge x;x5,), thethirdis
DS S D (three edges connecting x; to x5), and thelast chainis D.S, animaginary edge from
x5 to Wyy,. Notice that each chain separator vertex is shared between two chains (except for
the special vertices W, and Wy ).
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Connectors. Wecan extend the class of pathsthat can be sampled by implementing meth-
ods that generate connecting chains. That is, given two vertices x and x’ of type D, we
would like to generate a chain of zero or more specular vertices that connect them. Strate-
giesthat do this are called connectors. The simplest connector consists of joining the two
vertices with an edge, by checking the visibility between them. Thisyields a chain of the
form DD.

Another simple form of connector can be used with planar mirrors, by computing the
point y onthemirror that reflectslight fromx to x’. If such apoint'y doesnot exist, or if ei-
ther of the segmentsxy or yx' isoccluded, then the connection attempt fails. Otherwise, we
have generated a connecting chain of the form DS D. Thisissimilar to the idea of “virtual
worlds’ and “virtual light sources” used in radiosity and el sewhere [Rushmeier 1986, Wal-
lace et al. 1987, Ward 1994].

Connectors can also be used to handleparallel light sources (L .D.S) and orthogonal view-
ing projections (SDFE) in asimple way. For example, a connecting chain between a real
vertex x and the imaginary vertex ¥, can be generated by projecting x onto the surface of
the light source along the direction of emission.

Thegeneral caseisclosely related to the problem of computing illuminationfrom curved
reflectors [Mitchell & Hanrahan 1992]. The connecting chains problem can be equivalently
stated as follows: given apoint source at x, what istheirradiance received at x’ over spec-
ular paths? Light flows from x to x’ along paths of stationary optical length, also known as
Fermat paths. In general, there are a countable set of such paths, and they can be found by
solving an optimization problem [Mitchell & Hanrahan 1992]. Once a path has been found,
theirradiancereceived at x’ aong that path can be determined by keeping track of the shape
of thewavefront aslight isreflected, refracted, and propagated, and computing the Gaussian
curvature of the wavefront at x’.

In our case, we seek an algorithm that can either generate all such paths (in which case
their contributions are summed), or one that can generate asingle path at random (in which
case there must be a non-zero probability of generating each candidate path, and this proba-
bility must be explicitly computable). Thiswould make it possibleto generate paths of any
type in an unbiased Monte Carlo agorithm.

Although it seems unlikely that the general case will ever be practical, these ideas are
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still useful for handling planar mirrors, short sequences of such mirrors, or ssmple curved
surfaces. With more sophisticated geometric search techniques, it may eventualy be pos-
sible to handle moderately large numbers of specular surfaces in thisway with reasonable
efficiency.



8A. OTHER MEASURES ON PATH SPACE 243

Appendix 8. A Other measureson path space

We describe several new measures on the path spacen.. These include the measurement contribu-
tion measure, the power throughput measure the scattering throughput measure and the geometric
throughput measure Each of these measures has anatural physical significance, which is described.
We also show that it is possible to base the path integral framework on any of these measures (rather
than using the area-product measure:). To avoid confusion, we will use the symbol ;i for the area-
product measure throughout this appendix.

The measurement contribution measure. The most important of these new measures is the
measurement contribution measure defined by

w0) = [ @), (8.14)

Thisequation combines f; and 1.* into asingle measure ., with the following physical significance:
15 (D) represents the portion of measurement 7 that is due to light flowing on the given set of paths
D. In particular, the value of I; itself is given by

I = pi'(Q),

i.e. I; is the measure of the whole path space. The units of ./'(D) are [S] (the unit of sensor re-
Sponse).

This measure 11" is actually the fundamental component of our path integral framework. Itis
more basic than the measurement contribution functionf;, since f; implicitly depends on the mea-
sure used for integration (i.e. the area-product measurey*). By choosing different integration mea-
sures (e.g. the ones we define below), we can obtain any number of different but equivalent “mea-
surement contribution functions’. In contrast, the meaning of /" does not depend on details such
asthese.

The main reason for working with the function f; (rather than the measure.") is so that Monte
Carlo estimators can be written as aratio of functions, rather than as Radon-Nikodym derivatives.
For example, the estimator f;(X)/p(X) corresponds to the Radon-Nikodym derivative

dp’

1P (X).

Although this may be an improvement from the standpoint of purism (since it avoids any reference
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to the auxiliary measurep®), itisundesirable from a practical standpoint. 1t makes use of the Radon-
Nikodym derivative (which is unfamiliar to many in graphics), and leaves us with arather abstract
expression with no clear recipe for computing its value. Thisiswhy we have emphasized the formu-
lation of Section 8.2, where .} is split into afunction f; and a measure xi*, and where the measure
is made as simple as possible.

The power throughput measure. We now consider another interesting measure called the
power throughput measure (1), which is obtained from the previous measure by omitting the im-
portance function W), Explicitly, it is defined for paths of lengthk by

pp(D) = /DLe(Xo—>X1)G(Xoﬁxl)fs(xo%m—mz)G(Xlﬁxz)"' (8.15)

- fs(Xp—2 = Xp—1 = Xp) G(Xp—1 < xp) dA(X0) - - - dA(xy),

where D C €, and then extended to ameasure.” over the whole path space by the same technique
we used for the area-product measure (8.6).

Physically, 1P (D) represents the power that is carried by aset of pathsD (units: [W]). A nice
property of this measure is that it is independent of any sensor: there is only one measure for the
whole scene, rather than one per sensor (as with"). It can still be used to evaluate measurements,
however, using the relationship

I; = /QW/é(j)(Xk—1—>X1c)de(f)-

This equation showsthat I; can be split into afunction and a measure in more than one way. Inthis
case, we have moved almost all the factors of f; into the integration measure, leaving onIyWe(j) as
the “measurement contribution function”.

The scattering throughput measure.  Next, we discuss thescattering throughput measurey®.
Thevalue 1. (D) represents the power-carrying capacity of aset of pathsD, in the following sense:
if auniform radiance L., isemitted along the first segment of each path inD, then the power carried
by these paths and received by surfaces at the path endpoints will be

Le1f(D).

Thedefinition of 1® isidentical to the previous measure (8.15), except that the emitted radiance func-
tion L, is omitted (as well asthe importance functionWe(j)). A nice property of this measure is that
it depends only on the scene geometry and materials, not on the light sources or sensors. The units
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of u5(D) are [m? - sr].

The geometric throughput measure. Finally, we consider thegeometric throughput measure
18, which measures the geometric “size” of a set of paths. To do this, we start with the expression
for the scattering throughput 1.*, and set all of the BSDF factors to the constant value

fs(xic1—=xi—=xi41) = % :

Physically, this corresponds to a scene where the surfaces scatter light in all directions uniformly; the
value 1/(27) ensures that f, is energy-preserving (see Section 6.3).” With this modification to the

scattering throughput measure.®, any differences in the power-carrying capacity of different path

sets are due entirely to their geometry.

Explicitly, the geometric throughput measurey:® is defined at each path length & by

k—1
WD) = (55) [ Glex) - Glooyox) dAlx) - dAG), (816

and extended to a measure ¢ over the whole path space as before. The termgeometric throughput
measure is particularly appropriate for 2, since it is anatural extension of the throughput measure
1 defined on the space of rays (see Section 4.1): these two measures are identical for paths of length
one. The units of ;% are the same as the previous measure, namely [m? - sr].

Notice that ;® has severa properties that we should expect of a geometric measure on paths.
First, it does not encode any preference for directional scattering at surfaces (sincethisisaproperty of
materialsrather than geometry). Second, in general the measurey2 isnot finite, even for sceneswith
finite surface area® This corresponds to the fact that there is no geometric reason for light energy to
diminish asit propagates over long paths.

In fact, by comparing the scattering and geometric throughput measures, it is possible to deter-
mine whether the power-carrying capacity of a given set of pathsis limited primarily by materias
or geometry. A suitable quantitative measure of thisistheratio

1(D) [ u#(D).

"Thistype of surface has the same radiance when viewed from all directions, on both sides of the surface.
In an environment where only reflectionis allowed, i.e. where all surfaces are one-sided, the BRDF would be
fi = 1/m instead.

81f the scene has finite area, then 1§ (2,) will befinite for each path length k. However, when we take the
union 2 over al path lengths, the resulting space has infinite geometric measure.
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The area-product measure. Finaly, we return to the area-product measurey. The chief ad-
vantage of thismeasureisthat itissimple. Thismakesit easy to compute the probabilities of various
sampling techniques with respect to this measure, so that we may compare them. Like the geometric
throughput measure .2, the area-product measure isin general not finite.
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Appendix 8.B Subclassification of specular vertices

Specular vertices can be subclassified into two categories, according to whether light is scattered
into a zero- or one-dimensional set of directions. We distinguish between these possibilities with
the symbols Sy and S;. This notation allows the properties of sources, sensors, and materials to be
specified more precisely.

We first consider light sources, which are represented by a string of the formZL X'Y. The first
symbol X represents the physical extent of the light source, so thatS, denotes a point source, while
S denotes alinear, ring, or other one-dimensional source. The second symbolY” represents the set
of directions over which light is emitted. The symbol S, denotes emission in adiscrete set of direc-
tions, while S; denotes emission into a plane or other one-dimensional set. A similar classification
applies to sensors, which are represented by a string of the formY” X E. Severa examples are given
in Table 8.3.

For scattering events, S, denotes a surface that scatters light from an incoming directionw; into
adiscrete of directions (e.g. amirror or awindow). The symbolS; denotes asurface such asan ideal
anisotropic reflector, where light from an incoming directionw; is scattered into a one-dimensional
set of outgoing rays.

For example, the full-path regular expression
LS DS;SyDE

represents a path where light is emitted from alinear source, bounces off zero or more mirrors, and
then is measured by a camera with an orthographic lens.

Formal definitions of Sy, S, and D. For completeness, we give formal definitions of these
symbols. Consider a scattering event at a vertexx;. Aswe have already mentioned, this vertex has
type D isthe BSDF at x; isfinite:

fs(xi,wi—w,) < o0,

where w; and w, arethe directions towardx; ; and x;,, respectively.

The scattering event at x; is defined to be Sy whenever the BSDF behaves localy like a
two-dimensional Dirac distribution (as was used to define the BSDF for mirror reflection in
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LSyD | auniform point source, point spotlight, etc.
LSyS; | emission from apoint into a planar fan or sheet
LSySp | anidedlized laser beam

LS,D | atypical linear or ring source

LSS, | anarealight sourcein “flatland” [Heckbert 1990]
LDSy | sunshine through awindow

DSyE | atypica pinhole lens model

DS, E | apinhole lenswith motion blur due to movement of the camera (in astatic
scene)

SoDE | an orthographic viewing projection
SpSoE | anidealized spot meter

Table8.3: Examplesof regular expressions for light sources and sensors, where the specul ar
components have been subclassified into zero- and one-dimensional components.

Section 5.2.1.2). More precisely, this happens when there is a constante > 0 such that
/ fo(xiyw—wo)do™ (w) > €
D

for every open set D C S? that containsw;.

Finally, a vertex is defined to be S, if itisnot Sy or D. Itis straightforward to extend these
definitions to the classification of light sources and sensors, using the functionsL!” and W."” defined
in Section 8.3.2.
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Chapter 9
Multiple Importance Sampling

We introduce a technique called multiple importance sampling that can greatly increase the
reliability and efficiency of Monte Carlo integration. It is based on the idea of using more
than one sampling technique to evaluate a given integral, and combining the sample values
in a provably good way.

Our motivation is that most numerical integration problems in computer graphics are
“difficult”, i.e. the integrands are discontinuous, high-dimensional, and/or singular. Given
aproblem of thistype, wewould liketo design asampling strategy that givesalow-variance
estimateof theintegral. Thisiscomplicated by thefact that theintegrand usually dependson
parameters whose values are not known at the time an integration strategy is designed (e.g.
material properties, the scene geometry, etc.) Itisdifficult to design asampling strategy that
works reliably in this situation, since the integrand can take on a wide variety of different
shapes as these parameters vary.

In this chapter, we explore the general problem of constructing low-variance estimators
by combining samplesfrom several different sampling techniques. We do not construct new
sampling techniques — we assume that these are given to us. Instead, we look for better
ways to combine the samples, by computing weighted combinations of the sample values.
We show that there is a large class of unbiased estimators of this type, which can be pa-
rameterized by a set of weighting functions. Our goal isto find an estimator with minimum
variance, by choosing these weighting functions appropriately.

A good solution to this problem turns out to be surprisingly smple. We show how to

251
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combine samplesfrom several techniquesin away that is provably good, both theoretically
and practically. Thisallows us to construct Monte Carlo estimators that have low variance
for a broad class of integrands — we call such estimators robust. The significance of our
methods is not that we can take several bad sampling techniques and concoct a good one
out of them, but rather that we can take several potentially good techniques and combine
them so that the strengths of each are preserved.

Thischapter isorganized asfollows. We start with an extended exampleto motivate our
variance reduction techniques (Section 9.1). Specifically, we consider the problem of com-
puting the appearance of a glossy surfaceilluminated by an area light source. Next, in Sec-
tion 9.2 we explain the multipleimportance sampling framework. Several modelsfor taking
and combining the sampling are described, and we present theoretical results showing that
these techniques are provably close to optimal (proofs may be found in Appendix 9.A). In
Section 9.3, we show that these techniques work well in practice, by presenting images and
numerical measurements for two specific applications: the glossy highlights problem men-
tioned above, and the“final gather” passthat isused in some multi-passalgorithms. Finally,
Section 9.4 discusses of a number of tradeoffs and open issues related to our work.

9.1 Application: glossy highlightsfrom area light sources

We have chosen a problem from distribution ray tracing to illustrate our techniques. Given
aglossy surfaceilluminated by an arealight source, the goal isto determineits appearance.
These “glossy highlights” are commonly evaluated in one of two ways:. either by sampling
the light source, or sampling the BSDF. We show that each method worksvery well in some
situations, but failsin others. Obviously, we would prefer a sampling strategy that works
well al thetime. Later in thischapter, we will show how multipleimportance sampling can
be applied to solve this problem.

9.1.1 Thedglossy highlights problem

Consider anarealight source S that illuminatesanearby glossy surface (seeFigure9.1). The
goal is to determine the appearance of this surface, i.e. to evaluate the radiance L, (x', w))
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NI/ .
A~ spherical

= light
>
AT source

glossy surface

Figure9.1: Geometry for the glossy highlights computation. The radiance for each viewing
ray is obtained by integrating the light that is emitted by the source, and reflected from the
glossy surface toward the eye.

that leaves the surface toward the eye. Mathematically, thisis determined by the scattering
equation (3.12):

Lo(x,w!) = / £, = w!) Ley(x, W) do () (9.1)
52

where L. ; represents the incident radiance due to the area light source S.

We will examine afamily of integration problems of thisform, obtained by varying the
size of thelight source and the glossiness of the surface. In particular, we consider spherical
light sources of varying radii, and glossy materials that have a surface roughness parame-
ter () that determines how sharp or fuzzy the reflections are. Smooth surfaces (- = 0)
correspond to highly polished, mirror-like reflections, while rough surfaces (- = 1) corre-
spond to diffuse reflection. It is possible to simulate a variety of surface finishes by using
intermediate roughness valuesin therange 0 < r < 1.

9.1.2 Two sampling strategies

There are two common strategies for Monte Carlo evaluation of the scattering equation
(9.1), which we call sampling the BSDF and sampling the light source. The results of these
techniques are demonstrated in Figure 9.2(a) and Figure 9.2(b) respectively, over arange of
different light source sizes and surface finishes. We will first describe these two strategies,
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and then examine why each one has high variance in some situations.

Sampling the BSDF. To sample the BSDF, an incident direction w! is randomly chosen
according to a predetermined density p(w;). Normally, this density is chosen to be propor-
tional to the BSDF (or some convenient approximation), i.e.

plwi) o fi(xwi—wg),

where p is measured with respect to projected solid angle. To estimate the scattering equa-
tion (9.1), an estimate of the usual form

fs(x' Wl = wl) Lei (%', w))
p(wi)

Lo(x',w!) =~

isused. The emitted radiance L. ;(x',w!) is evaluated by casting a ray to find the corre-
sponding point on the light source. Note that some rays may miss the light source S, in
which case they do not contribute to the highlight calculation. The image in Figure 9.2(a)
was computed using this strategy.

Sampling the light source. To explain the other strategy, we first rewrite the scattering
eguation as an integral over the surface of the light source:

Lo(x' —x") = //vt fs(x—=x' —=x") Le(x—x") G(x ') dA(x) . (9.2

Thisis called the three-point form of the scattering equation (previously described in Sec-
tion 8.1). The function G represents the change of variables from do™ (w!) to dA(x), and is

given by
|cos(6,) cos(6!)]

Gxex) = V(xex) Ix— x|’

(see Figure 9.1).

The strategy of sampling the light source now proceeds as follows. First, a point x on
the light source S is randomly chosen according to a predetermined density p(x), and then
a standard Monte Carlo estimate of the form

Lo(x' —x") =~ Le(X%jEXG)(XH’O fi(x—=x'—x")




9.1. GLOSSY HIGHLIGHTS FROM AREA LIGHT SOURCES 255

(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are aso four shiny
rectangular plates, each onetilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy thereflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (@) and (b)
use different sampling techniques for the highlight cal culation. Both images are 500 by 500
pixels.

(@) Incident directions w{ are chosen with probability proportional to the BSDF
fs(x', wl —wl), using n; = 4 samples per pixel. We call this strategy sampling the BSDF.

(b) Sample pointsx are randomly chosen on each light sourceS, using ny = 4 samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by S at the current point x’. We call this strategy sampling the light source

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent isn = (1/r) — 1, where r is the surface roughness
parameter mentioned above, and0 < r < 1. The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF's.
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isused. Theimagein Figure 9.2(b) was computed with thistype of strategy, where samples
were chosen according to the density
|cos(6,)]

p(X) X LB(X%X,) ||X_X/H2

(measured with respect to surface area). With this strategy, the sample pointsx are uni-
formly distributed within the solid angle subtended by the light source at the current point
x'. (See Shirley et a. [1996] for further details on light source sampling strategies.)

9.1.3 Comparing thetwo strategies

One of these sampling strategies can have amuch lower variance than the other, depending
on the size of the light source and the surface roughness parameter. For example, if thelight
source is small and the material is relatively diffuse, then sampling the light source gives
far better results than sampling the BSDF (compare the lower |eft portions of the imagesin
Figure9.2). Ontheother hand, if thelight sourceislarge and the material ishighly polished,
then sampling the BSDF is far superior (compare the upper right portions of Figure 9.2).

In both these cases, high varianceis caused by inadequate sampling where the integrand
islarge. To understand this, notice that the integrand in the scattering equation (9.2) isa
product of various factors — the BSDF f, the emitted radiance L., and several geometric
guantities. Theideal density function for sampling would be proportional to the product of
all of these factors, according to the principle that the variance is zero when p(x) < f(z)
(see Chapter 2).

However, neither sampling strategy takesall of these factorsinto account. For example,
the light source sampling strategy does not consider the BSDF of the glossy surface. Thus
when the BSDF has a large influence on the overall shape of the integrand (e.g. when it is
a narrow, peaked function), then sampling the light source leads to high variance. On the
other hand, the BSDF sampling strategy does not consider the emitted radiance function
L.. Thusit leads to high variance when the emission function dominates the shape of the
integrand (e.g. when the light source isvery small). Asa consequence of these two effects,
neither sampling strategy is effective over the entire range of light source geometries and
surface finishes.
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It isimportant to realize that both strategies are importance sampling techniques aimed
at generating sample points on the same domain. This domain can be modeled as either a
set of directions, as in equation (9.1), or a set of surface points, as in equation (9.2). For
example, the BSDF sampling strategy can be expressed as a distribution over the surface of
the light source, using the relationship

do™ (W) |cos(6,) cos(6))]

p(x) = p(wi) A p(w) Ix— < (93)

(as discussed in Section 8.2.2.2). This formula makes it possible to convert a directional
density into an area density, so that we can express the two sampling strategies as different
probability distributions on the same domain.

9.1.4 Discussion

There are many problems in graphics that are similar to the glossy highlights example,
where alarge number of integralsof a specific form must be evaluated. Theintegrands gen-
eraly have a known structure (e.g. f(z) = fi(x)fo(x) + f3(x)), but they also depend on
various parameters of the scene model (e.g. the surface roughnessand light source geometry
inthe example above). Thismakesit difficult to design an adequate sampling strategy, since
the parameter values are not known in advance. Furthermore, different integrals may have
different parameter values even within the same scene (e.g. they may change from pixel to
pixel).

The mainissueisthat we would like low-variance results for the entire range of param-
eter values, i.e. for al of the potential integrandsthat are obtained as these parameters vary.
Unfortunately, itisoften difficult to achievethis. Theproblemisthat theintegrandisusually
asum or product of many different factors, and is too complicated to sample from directly.
Instead, samples are chosen from a density function that is proportional to some subset of
thefactors (e.g. the BSDF sampling strategy outlined above). Thiscan lead to high variance
when one of the unconsidered factors has alarge effect on the integrand.

We propose a new strategy for this kind of integration problem, called multiple impor-
tance sampling. It isbased on theidea of taking samples using several different techniques,
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designed to sample different features of the integrand. For example, suppose that the inte-
grand hasthe form

f=(H+f)fs.

If the functions f; are ssmple enough to be sampled directly, then the density functionsp;
f: would al be good candidates for sampling. Similarly, if theintegrand is a product

f =5l Je,

then several different density functionsp; could be chosen, each proportional to the product
of adifferent set of f;. Inthisway, it is often possible to find a set of importance sampling
techniques that cover the various factors that can cause high variance.

Our main concern in this chapter isnot how to construct a suitable set of sampling tech-
niques, or even how to determine the number of samplesthat should be taken from each one.
Instead, we consider the problem of how these samples should be combined, oncethey have
been taken. We will show how to do thisin away that is unbiased, and with a variance is
provably close to optimal.

In the glossy highlightsproblem, for example, we propose taking samplesusing both the
BSDF and light source sampling strategies. We then show how these samples can be auto-
matically combined to obtain low-variance resultsover the entirerange of surface roughness
and light source parameters. (For apreview of our resultson thistest case, see Figure 9.8.)

9.2 Multipleimportance sampling

In this section, we show how Monte Carlo integration can be made more robust by using
more than one sampling technique to evaluate the same integral. Our main results are on
how to combine the samples. we propose strategies that are provably good compared to
any other unbiased method. This makes it possible to construct estimators that have low
variance for a broad class of integrands.

We start by describing ageneral model for combining samplesfrom multipletechniques,
called the multi-sample model. Using this model, any unbiased method of combining the
samples can be represented as a set of weighting functions. This gives us a large space of
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possible combination strategies to explore, and a uniform way to represent them.

We then present a provably good strategy for combining the samples, which we call the
balance heuristic. We show that this method gives avariance that is smaller than any other
unbiased combination strategy, to within a small additive term. The method is simple and
practical, and can make Monte Carlo calculations significantly more robust. We also pro-
pose several other combination strategies, which are basically refinements of the balance
heuristic: they retain its provably good behavior in general, but are designed to have lower
variance in acommon special case. For thisreason, they are often preferable to the balance
heuristic in practice.

We conclude by considering a different model for how the samples are taken and com-
bined, called the one-sample model. Under thismodel, theintegral is estimated by choosing
one of then sampling techniques at random, and then taking asingle sample fromit. Again
we consider how to minimize variance by weighting the samples, and we show that for this
model the balance heuristic is optimal.

9.2.1 Themulti-sample model

In order to prove anything about our methods, there must be a precise model for how the
samples are taken and combined. For most of this chapter, we will use the multi-sample
model described below. This model alows any unbiased combination strategy to be en-
coded as a set of weighting functions.

We consider the evaluation of an integral

| 7@ duz)

where the domain €2, the function f : Q© — IR, and the measure ;. are all given. We are
also given a set of n different sampling techniques on the domain €2, whose corresponding
density functions are labeled p4, . . ., p,. We assume that only the following operations are
available:

e Givenany pointz € Q, f(x) and p;(x) can be evaluated.

e Itispossibleto generate asample X distributed according to any of the p;.
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To estimate the integral, several samples are generated using each of the given tech-
niques. Welet n; denotethe number of samplesfromp;, wheren; > 1,andwelet N = 3" n;
denotethe total number of samples. We assume that the number of samplesfrom each tech-
niqueisfixed in advance, before any samplesare taken. (We do not consider the problem of
how to all ocate samples among the techniques; thisisan interesting probleminitself, which
will be discussed further in Section 9.4.2.) The samples from technique: are denoted X, ;,
for j = 1,...,n;. All samples are assumed to be independent, i.e. new random bits are
generated to control the selection of each one.

9.2.1.1 Themulti-sample estimator

We now examine how the samples X, ; can be used to estimate the desired integral. Our
goal is generality: given any unbiased way of combining the samples, there should be a
way to represent it. To do this, we consider estimatorsthat allow the samplesto be weighted
differently, depending on which technique p; they were sampled from. Each estimator has
an associated set of weighting functions wy, . . ., w,, which give the weight w;(x) for each
sample x drawn from p;. The multi-sample estimator is then given by

N1 f(Xiy)
F = ; o ]Zl wi(Xi;) EE (9.4)
This formula can be thought of as a weighted sum of the estimators f(X; ;)/p:(X; ;) that
would be obtained by using each sampling technique p; on itsown. Notice that the weights
are not constant, but can vary as afunction of the sample point X; ;.
For this estimate to be unbiased, the weighting functions w; must satisfy the following
two conditions:

(W1) zn:wi(x) = 1whenever f(z) # 0, and

(W2)  w;(x) = 0whenever p;(z) =0.

These conditions imply the following corollary: at any point where f(x) # 0, at least one
of the p;(x) must be positive (i.e., at least one sampling technique must be able to gener-
ate samples there). Thus on the other hand, it is not necessary for every p; to sample the
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whole domain; it is allowable for some of the p; to be specialized sampling techniques that
concentrate on specific regions of the integrand.?
Given that (W1) and (W2) hold, the following lemma states that ' is unbiased:

Lemma 9.1. Let /" beany estimator of theform(9.4), wheren,; > 1 for all 7, and theweight-
ing functions w; satisfy conditions (W1) and (W2). Then

Proof.

The remainder of this section is devoted to showing the generality of the multi-sample
model. We show that by choosing the weighting functions appropriately, it is possible to
represent virtually any unbiased combination strategy. To make this more concrete, wefirst
give some examples of possible strategies, and show how to represent them by weighting
functions. We then show how the multi-sample estimator can be rewritten in a different
form that makes its generality more obvious. Thisleads up to Section 9.2.2, where we will
describe a new combination strategy that has provably good performance compared to all
strategies that the multi-sample model can represent.

9.2.1.2 Examplesof weighting functions

Supposethat there are three sampling techniquesp, , p», and p;, and that asinglesample X ;
istaken from each one (n; = ny = n3 = 1). First, consider the case where the weighting

LIf f isallowed to contain Dirac distributions, note that (W2) should be modified to state that w; (z) = 0
whenever f(z)/p;(z) isnotfinite. To relate thisto graphics, consider amirror which also reflects some light
diffusely. The modified (W2) states that samples from the diffuse component cannot be used to estimate the
specular contribution, since this corresponds to the situation where f(x) contains a Dirac distribution §(x —
Xo), but p(z) doesnot.)
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functions are constant over the whole domain 2. Thisleadsto the estimator

f(X11) f(Xa) w f(X31)
lpl(Xl,l) sz(X2,1) 3]03(X3,1) ’

where the w; sumto one. Thisestimator issimply aweighted combination of the estimators
F; = f(Xi1)/pi(Xi1) that would be obtained by using each of the sampling techniques

F = w + w

alone. Unfortunately, this combination strategy does not work very well: if any of thegiven
sampling techniquesis bad (i.e. the corresponding estimator F; has high variance), then F
will have high variance as well, since

VIF] = wiV[R] + wV[Fo] + w3 V[ F3] .

Another possible combination strategy is to partition the domain among the sampling
techniques. To do this, the integral iswritten in the form

[y f@ydute) = 3 [ fe)dua).

where the 2; are non-overlapping regions whose unionis2. Theintegral isthen estimated
ineachregion 2; separately, using samplesfrom just onetechniquep;. Intermsof weighting
functions, thisis represented by letting

( ) 1 ifae Qz N
w;\r) = .
0 otherwise.

This combination strategy is used a great deal in computer graphics, however, some-
times it does not work very well due to the simple partitioning rules that are used. For
example, it is common to evaluate the scattering equation by dividing the scene into light
source regions and non-light-source regions, which are sampled using different techniques
(e.g. sampling L. vs. sampling the BSDF). Depending on the geometry and materials of the
scene, thisfixed partitioning can lead to a much higher variance than necessary (as we saw
in the glossy highlights example).

Another combination technique that is often used in graphicsis to write the integrand
asasum f = 3 g;, and use a different sampling technique to estimate the contribution of
each g;. For example, this occurs when the BSDF is split into diffuse, glossy, and specular
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components, whose contributions are estimated separately (by sampling from density func-
tionsp; o g;). Asbefore, it isstraightforward to represent thisstrategy asaset of weighting
functions,

9.2.1.3 Generality of the multi-sample model

Thegenerality of thismodel can be seen more easily by rewriting the multi-sample estimator
(9.4) intheform

g

F =Y S CXy), (©5)

=1 j5=1
where C;(X; ;) isthe called the sample contributionfor X; ;. ThefunctionsC; are arbitrary,
except that in order for F' to be unbiased they must satisfy

2_: n; Ci(zx) pi(z) = f(z) (9.6)

at each point x € Q. In thisform, it isclear that the multi-sample model can represent any
unbiased combination strategy, subject only to the assumptions that all samples are taken
independently, and that our knowledgeof f and p; islimitedto point evaluation. (Thisforces
the estimator to be unbiased at each point = independently, as expressed by condition (9.6).)

To see that thisformulation of the multi-sample model is equivalent to the original one,
we simply let

Ci(z) = % . (9.7)

It iseasy to verify that if the weighting functions w; satisfy conditions (W1) and (W2), then
the corresponding contributions C; satisfy (9.6), and vice versa. The main reason for pre-
ferring the w; formulation is that the corresponding conditions are easier to satisfy.

9.2.2 Thebalance heuristic

The multi-samplemodel gives usalarge space of unbiased estimatorsto explore, and auni-
form way to represent them (as a set of weighting functions). Our goal is now to find the
estimator F' with minimum variance, by choosing the w; appropriately.
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We will show that the following weighting functions are a good choice:
N n; pi(x)
. = 9.8
() S e () 5.9

We call this strategy the balance heuristic.? The key feature of the balance heuristic is that
no other combination strategy is much better, as stated by the following theorem:

Theorem 9.2. Let f, n;, andp; begiven, fori =1,...,n. Let F' beany unbiased estimator
of theform(9.4), and let F* bethe estimator that usesthe weighting functions; (the balance
heuristic). Then

VIE] - VIF] < ( . ! ); (9.9)

min; n; >oing

wherey = E[F] = E[F] Isthe quantity to be estimated. (A proof isgivenin Appendix 9.A.)

According to this result, no other combination strategy can significantly improve upon
the balance heuristic. That is, suppose that we let £™* denote the best possible combination
strategy for a particular problem (i.e. for a given choice of the f, p;, and n;). In generd,
we have no way of knowing what this strategy is. for example, suppose that one of the p;
isexactly proportional to f, so that the best strategy isto ignore any samplestaken with the
other techniques, and use only the samples from p;. We cannot hope to discover this fact
from a practical point of view, since our knowledge of f and p; islimited to point sampling
and evaluation. Nevertheless, even compared to this unknown optimal strategy £, the bal -
ance heuristic isalmost as good: its variance isworse by at most the term on the right-hand
side of (9.9).

To give someintuition about this upper bound on the “variance gap”, suppose that there
arejust two sampling techniques, and that n; = n, = 4 samplesaretaken fromeach one. In
this case, the variance of the balance heuristic isoptimal to within an additive term of 1.2/8.
In familiar graphics terms, this corresponds to the variance obtained by sending 8 shadow

2The name refers to the fact that the sample contributions are “ balanced” so that they are the same for all
techniques :
) = B@I@ @
n;i pi(z) >k M Pr(T)
That is, the contribution C; (X; ;) of asample X; ; does not depend on which technique ¢ generated it.
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raysto an arealight source that is 50% occluded. Furthermore, notice that the variance gap
goesto zero asthe number of samplesfrom each techniqueisincreased. On the other hand,
if a poor combination strategy is used then the variance can be larger than optimal by an
arbitrary amount. Thisis essentially what we observed in the glossy highlights images of
Figure 9.2: if the wrong samples are used to estimate the integral, the variance can be tens
or hundreds of times larger than ;2.

Furthermore, the balance heuristic is practical to implement. The main requirement for
evaluating the weighting functions w; isthat given any point =, we must be able to evaluate
the probability densities p, (x) for al k. This situation is different than for the usual esti-
mator f(X)/p(X), whereitisonly necessary to evaluate p(X') for sample points generated
using p. The balance heuristic requires slightly more than this: given a sample X ; gener-
ated using technique p;, we also need to evaluate the probabilitiesp; (X; ;) withwhich all of
theother n—1 techniquesgenerate that samplepoint. Itisusualy straightforward to do this;
itisjust amatter of reorganizing the routines that compute probabilities, and expressing all
densities with respect to the same measure.

For example, consider the glossy highlights problem of Section 9.1. To evaluate the
weighting function w; for each sample point x, we compute the probability density for gen-
erating = using both sampling techniques. Thus if = was generated by sampling the light
source, then we also compute the probability density for generating the same point = by
sampling the BSDF (as discussed in Section 9.1.3). Note that the cost of computing these
extra probabilitiesis insignificant compared to the other calculations involved, such as ray
casting; detailswill be given in Section 9.3.

9.22.1 A simpleinterpretation of the balance heuristic

By writing the balance heuristic in a different form, we will show that it is actually avery
natural way to combine samples from multiple techniques.

To do this, we insert the weighting functions «@; into the multi-sample estimator (9.4),
yielding

n i ni n; P; )(z ) f(XZ,])
Z Z (Zk nlcplc(Xw)> pi(Xi;)

i=1 i o
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< f(Xiy)

- ;jzl 2k 1 pe(Xi )

1L EE L FXG)

N Z:: Z:: Sk (X ) (910

where N = 3", n; isthe total number of samples, and ¢, = n, /N isthe fraction of samples
from py,.

In this form, the balance heuristic corresponds to a standard Monte Carlo estimator of
the form f/p. This can be seen more easily by rewriting the denominator of (9.10) as

— Y aomle). (9.12)
k=1

which we call the combined sample density. The quantity (x) represents the probability
density for sampling the given point z, averaged over the entire sequence of N samples.®

Thus, the balance heuristic is natural way to combine the samples. It has the form of a
standard Monte Carlo estimator, where the denominator p represents the average distribu-
tion of the whole group of samplesto which it is applied. Pseudocode for this estimator is
givenin Figure 9.3. However, it isimportant to realize that the main advantage of this esti-
mator isnot that itissimpleor standard, but that it has provably good performance compared
to other combination strategies. Thisisthe reason that we introduced the more complex for-
mulation in terms of weighting functions, so that we could compare it against a family of
other techniques.

9.2.3 Improved combination strategies

Although the balance heuristic is a good combination strategy, there is still some room for
improvement (within the bounds given by Theorem 9.2). In this section, we discuss two
families of estimatorsthat have lower variance than the balance heuristic in acommon spe-
cial case. These estimators are unbiased, and like the balance heuristic, they are provably
good compared to all other combination strategies.

3More precisely, it is the density of arandom variable X that is equal to each X; ; with probability 1/N.
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function BALANCE-HEURISTIC()
N> n,
fori<+< 1ton
for j « 1ton;

X + TAKESAMPLE(p;)
D Xiea (/N pre(X)
F+— F+f(X)/p

return F/N

Figure 9.3: Pseudocode for the balance heuristic estimator.

We start by applying the balance heuristic to the glossy highlights problem of Sec-
tion 9.1. We show that it leads to more variance than necessary in exactly those cases where
the original sampling techniques did very well, e.g. where sampling the light source gave a
low-variance result. The problem isthat the additional variance due to the balance heuristic
is additive: thisis not significant when the optimal estimator already has substantial vari-
ance, but it is noticeable compared to an optimal estimator whose variance isvery low.

We thus consider how to improve the performance of the balance heuristic on low-
variance problems, i.e. those for which one of the given sampling techniquesis an excellent
match for the integrand. We show that the balance heuristic can be improved in this case
by modifying its weighting functions slightly. In particular, we show that it is desirable to
shar pen these weighting functions, by decreasing weightsthat are closeto zero, and increas-
ing weights that are close to one. We propose two general strategies for doing this, which
we call the cutoff and power heuristics. The balance heuristic can be obtained as alimiting
case of both these families of estimators.

Finally, we give some theoretical results showing that these new combination strategies
are provably close to optimal. Thus, they are never much worse than the balance heuristic,
but for low-variance problems they can be noticeably better. Later in this chapter, we will
describe numerical teststhat verify these results (Section 9.3). Based on these experiments,
we have found that one strategy in particular isagood choicein practice: namely, the power
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Figure 9.4: Thisimage was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent 5 = 2.

9.2.3.1 Low-variance problems. examplesand analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
Thisimage combinesthe samplesfrom Figure9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that workswell over the entirerange of surface finishesand light source geometries.

In someregions of theimage, however, the balance heuristic does not work quite aswell
asthebest of the given sampling techniques. Figure 9.5 demonstratesthis, by comparing the
bal ance heuristic against images that use the BSDF or light source samplesaone. Columns
(@), (b), and (c) show close-ups of theimagesin Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using
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(a) Sampling the BSDF (b) Sampling the lights (c) The balance heuristic

Figure 9.5: These images show close-ups of the glossy highlights test scene, computed by
(a) sampling the BSDF, (b) sampling the light sources, and(c) the balance heuristic. Notice
that although the balance heuristic works much better than one of the two techniquesin each
region, it does not work quite as well as the other. These images were computed with one
sample per pixel from each technique (; = ny = 1), as opposed to the four samples per
pixel used in Figures 9.2 and 9.4, in order to reveal the noise differences more clearly.

only one sample per pixel (as opposed to the four samples per pixel used in the source im-
ages.) It isclear that although the balance heuristic works far better in each region than the
technique whose variance is high, it has some additional noise compared to the technique
whose variance is low.

The test cases in Figure 9.5 are examples of low-variance problems, which occur when
one of the given sampling techniques p; is an extremely good match for theintegrand f. In
thissituation it is possibleto construct an estimator whose variance is nearly zero, by taking
samples using p; and applying the standard estimate f /p;. The balance heuristic can be no-
ticeably worsethan the results obtained in thisway, because Theorem 9.2 only statesthat the
variance of the balance heuristic is optimal to within an additive extraterm. Even though
this extra variance is guaranteed to be small on an absolute scale, it can till be noticeable
compared to an optimal variance that is practically zero (especiadly if only a few samples
are taken).

Unfortunately, there is no way to reliably detect this situation under the point sampling
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Figure 9.6: Two density functions for sampling a simple integrand.

assumptions of the multi-sample model. Instead, our strategy is to take samples using all
of the given techniques, and compute weighting functions that automatically assign low
weightsto any irrelevant samples. I1n the case where one of thep; isagood match for f, the
ideal result would be to compute weighting functions such that w;(z) = 1 over the whole
domain, while all of the other w; are zero. Thiswould achieve the same end result as using
p; aone, at the expense of taking several unnecessary samples from the other p,;. However,
extra sampling is unavoidable if we do not know in advance which of the given sampling
techniques will work best.

We now consider how the bal ance heuristic can beimproved, sothat it performsbetter on
low-variance problems. To do this, we study the simpletest case of Figure 9.6, which shows
anintegrand f and two density functionsp; and p, to be used for importance sampling. The
density function p; is proportional to f, while p, isa constant function. For this situation,
the optimal weighting functions are obviously

wi () 1,

wy(x) = 0,

since thiswould give an estimator F™* whose variance is zero.

The balance heuristic weighting functions «w; are different than the optimal ones above,
and thus the balance heuristic will lead to additional variance. We now examine where this
extra variance comes from, to see how it can be reduced. We start by dividing the domain
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/ \ P,

B A B
Figure 9.7: Theintegration domain is divided into two regionsA and B. Region A repre-

sents the set of points wherep, > p», while region B represents the points whereps > p;.
The weights computed by the balance heuristic are considered in each region separately.

into two regions A and B, as shown in Figure 9.7. Region A represents the set of points
where p; > po, While region B represents the points where p, > p;. We will consider
the weights computed by the balance heuristic in each region separately. To simplify the
discussion, we assumethat n; = n, = 1 (i.e. asingle sampleistaken using each technique,
and their contributions are summed).

First consider the sample from p;, which islikely to occur in the central part of region
A. Since p; ismuch larger than p, in thisregion, the sampleweight @, = p;/(p1 + p2) Will
be close to one. This agrees with the optimal weighting function w} = 1, asdesired.

Similarly, the sample from p, is likely to occur in region B, where its weight w, =
p2/(p1 + p2) is closeto one. Nevertheless, the contribution of this sample will be small,
sincetheintegrand f isnearly zero in region B. Therefore this situation is also closeto the
optimal one, in which the samples from p, are ignored.

However, there are two effects that |ead to additional variance. First, the samplefromp;
sometimes occurs near the boundaries of region A (or even in region B), where its weight
wy = p1/(p1 + p2) issignificantly smaller than one. In this case, the sample makes a contri-
bution that is noticeably smaller than the optimal value f /p,. (Recall that p, isproportiona
to f, sothat f/p; isthe desired value . of theintegral.) In Figure 9.5, this effect shows up
asoccasional pixelsthat are darker than they should be (e.g. inthetop image of column (c)).

The second problem is that the sample from p, sometimes occurs in region A. When
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this happens, its weight @, = po/(p1 + p2) is small. However, the contribution made by
thissampleis

/ b2 f /

wZ_ - - = )
D2 D1+ D2 D2 P1+ D2

which is approximately equal to f/p; = p inthisregion. Sinceitislikely that the sample

fromp, asoliesinregion A (contributing another 1, toward the estimate), thisleadsto atotal
estimate of approximately 2. InFigure 9.5(c), thiseffect showsup asoccasional pixelsthat
are approximately twice as bright as their neighbors*

Thus, the additional noise of the balance heuristic can be attributed to two problems.
First, some of the samplesfrom p; have weightsthat are significantly smaller than one: this
happens near the boundary of region A, wherep, and p, have comparable magnitude. (Very
few of these sampleswill occur intheregionwherep, < p,, SsSmply becausep; isvery small
there.) The second problem isthat some samples from p, make contributions of noticeable
size (i.e. asignificant fraction of ;). Most of these samples have small weights, because
they occur inregion A where p; > p,. Some samples will also occur in the region where
p1 and p, have comparable magnitude; however, the samples where p, > p; do not cause
any problems, since the sample contribution f /(p, + p2) isnegligible there.

9.2.3.2 Better strategiesfor low-variance problems

We now present two families of combination strategies that have better performance on
low-variance problems. These strategies are variations of the balance heuristic, where the
weighting functions have been sharpened by making large weights closer to one and small
weights closer to zero. Thisideais effective at reducing both sources of variance described
above.

The basic observation is that most samples from p; occur in region A, where p; > ps.
We would like al of these samplesto have the optimal weight w; = 1. Since the balance
heuristic already assigns these samplesaweight @, = p, /(p; + p») that is greater than 1/2,
we can get closer to the optimal weighting functions by applying the sharpening strategy
mentioned above. For example, one way to do thiswould be to set w; = 1 (and w,; = 0)

“Note that this situation is entirely different than the “spikes’ of Figure 9.5(a) and (b), which are caused
by sample contributionsthat are hundreds of times larger than the desired mean value.
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whenever w; > 1/2.

Similarly, thisidea can reduce the variance caused by samplesfromp, inregion A. The
optimal weight for these samplesis w; = 0, while the balance heuristic assigns them a
weight w, < 1/2, so that sharpening the weighting functions is once again an effective
strategy.®

We now describe two different combination strategies that implement this sharpening
idea, called the cutoff heuristic and the power heuristic. Each of these is actually afamily
of strategies, controlled by an additional parameter. For convenience in describing them,
we will drop the 2 argument on the functions w; and p;, and define a new symbol ¢; as the
product ¢; = n;p;. For example, in this notation the balance heuristic would be written as

~ Y
w; — .
>k Gk

Thecutoff heuristic. The cutoff heuristic modifiesthe weighting functions by discarding
samples with low weight, according to a cutoff threshold a € [0, 1]:

0 if ¢; < @ Qmax

otherwise
Elc {Qk | qk Z QQmax}

where ¢,,.x = max; g;. Thethreshold o determines how small ¢; must be (compared to
Imax) beforeit is thrown away.

Thepower heuristic. Thepower heuristic modifiesthe weighting functionsin adifferent
way, by raising al of the weightsto an exponent /3, and then renormalizing:

q’
>k

SNote that sharpening the weighting functionsis not a perfect solution for low-variance problems, since
it does not address the extra variance due to samplesin region B (wherep, > p;). Inthisregion, sharpen-
ing the weighting functions has the effect of decreasing w, and increasing w-, which is opposite to what is
desired. The number of samples affected in this way is relatively small, however, under the assumption that
most samples from p; occur where p; > po.
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We have found the exponent 3 = 2 to be areasonable value. With this choice, the sample
contribution (w; f)/(n; p;) isproportional to p;, so that it decreases gradually as p; becomes
smaller relativeto the other p,.. (Compare thiswith the balance heuristic, where asample at
agiven point « always makes the same contribution, no matter which sampling technique
generated it.)

Notice that the balance heuristic can be obtained as a limiting case of both strategies
(whena = 0 or 8 = 1). These two strategies also share another limiting case, obtained by
setting o = 1 or f = oo. Thisspecial case is called the maximum heuristic:

The maximum heuristic. The maximum heuristic partitions the domain into n regions,
according to which function ¢; islargest at each point x:

]- If i — {max
w; = G4 (9.14)
0 otherwise.

In other words, samplesfrom p; are used to estimate theintegral only intheregion(2; where
w; = 1. Themaximum heuristic does not work aswell asthe other strategiesin practice; in-

tuitively, thisis because too many samplesare thrown away. However, it gives someinsight
into the other combination strategies, and has an elegant structure.

9.2.3.3 Variancebounds

The advantage of these strategies is reduced variance when one of the p; is a good match
for f. Their performanceis otherwise similar to the balance heuristic; it is possible to show
they are never much worse. In particular, we have the following worst-case bounds:

Theorem 9.3. Let f, n;, andp; begiven, fori =1,...,n. Let F' beany unbiased estimator
of theform (9.4), and let £ be one of the estimators described above. Then the variance of
F' satisfies a bound of the form

VIF) < eviF + (e - ) o,

min; n; iy

where the constant ¢ is given by the following table:
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Cutoff heuristic (with threshold «) c=1+a(n—-1)
Power heuristic (with exponent 3) c=1+ 1/ ((n—-1)1—1/3)"1/"
Power heuristic (with exponent 3 = 2) c = (1/2) (1 ++/n)

In particular, these bounds hold when F” is compared against the unknown, optimal es-
timator F*. A proof of thistheorem in given in Appendix 9.A. However, the true test of
these strategiesis how they perform on practical problems; measurements along these lines
are presented in Section 9.3.1.

9.2.4 Theone-sample model

We conclude by considering adifferent model for how the samples are taken and combined,
called the one-sample model. Under this model, the integral is estimated by choosing one
of the n sampling techniques at random, and then taking a single sample from it. Again
we consider how to minimize variance by weighting the samples, and we show that for this
model the balance heuristic is optimal: no other combination technique has smaller vari-
ance.

Let pq, ..., p, bethe density functions for the n given sampling techniques. To gen-
erate a sample, one of the density functions p; is chosen at random according to a given
set of probabilitiescy, . . ., ¢, (which sumto one). A single sample is then taken from the
chosen technique. This sampling model is often used in graphics: for example, it describes
algorithms such as path tracing, where sampling the BSDF may require a random choice
between different techniques for the diffuse, glossy, and specular components.

As before, we consider a family of unbiased estimators for the given integral
Jo f(x) du(x), where each estimator is represented by a set of weighting functions w,
..., w,. The process of choosing a sampling technique, taking a sample, and computing a
weighted estimate is then expressed by the one-sample estimator

wr(Xr) f(X))

F =
CIpI(XI)

: (9.15)

where! € {1,...,n} isarandom variable distributed according to the probabilitiesc;, and
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X; isasample from the corresponding technique p;. This estimator is unbiased under the
same conditions on the w; discussed in Section 9.2.1.

We now consider how to choose the weighting functions w;, to minimize the variance
of the resulting estimator. We can show that for thismodel, the balance heuristicis optimal:

Theorem 9.4. Let f, ¢;, and p; begiven, fori = 1, ..., n. Let F' be any unbiased estimator
of the form (9.15), and let £ be the corresponding estimator that uses the balance heuristic
weighting functions (9.8). Then

VIF] < V[F].

(A proof isgiven in Appendix 9.A.) Thus, for this sampling model the improved com-
bination strategies of Section 9.2.3 are unnecessary.

9.3 Results

In this section, we show how multiple importance sampling can be applied to two impor-
tant application areas. distribution ray tracing (in particular, the glossy highlights problem
from Section 9.1), and thefinal gather passof certain light transport algorithms. (Inthe next
chapter we will describe a more advanced example of our technigques, namely bidirectional
path tracing.)

9.3.1 Thedglossy highlights problem

Our first test isthe computation of glossy highlightsfrom area light sources (previously de-
scribed in Section 9.1). As can be seenin Figure 9.8(a) and (b), sampling the BSDF works
well for sharp reflections of large light sources, while sampling the light source works well
for fuzzy reflections of small light sources. In Figure 9.8(c), we have used the power heuris-
ticwith 5 = 2 to combine both kinds of samples. This method worksvery well for all light
source/BSDF combinations. Figure 9.8(d) isavisualization of the weighting functions that
were used to compute thisimage.

To compare the various combination strategies (the balance, cutoff, power, and maxi-
mum heuristics), we have measured the variance numerically as a function of the surface
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(c) The power heuristic with 3 = 2. (d) The weights used by the power heuristic.

Figure9.8: Multipleimportance sampling applied to the glossy highlights problem.(a) and

(b) are the images from Figure 9.2, computed by sampling the BSDF and sampling the light
sources respectively. (¢) was computed by combining the samplesfrom (a) and (b) using the
power heuristic with 5 = 2. Finally, (d) is afalse-color image showing the weights used to
compute (c). Red represents sampling of the BSDF, while green represents sampling of the
light sources. Yellow indicates that both types of samples are assigned a significant weight.
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S spherical
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glossy surface

Figure 9.9: A scale diagram of the scene model used to measure the variance of the glossy
highlights calculation. The glossy surface isilluminated by a single spherical light source,
so that a blurred reflection of the light source is visible from the camera position. Variance
was measured by taking 100,000 samples along the viewing ray shown, which intersects the
center of the blurred reflection at an angle of 45 degrees. This calculation was repeated for
approximately 100 different values of the surface roughness parameterr (which controls
how sharp or fuzzy the reflections are), in order to measure the variance as a function of
surface roughness. The light source occupies a solid angle of 0.063 radians.

roughness parameter r. Figure 9.9 shows the test setup, and the results are summarized in
Figure 9.10. Three curves are shown in each graph: two of them correspond to the BSDF
and light source sampling techniques, while the third corresponds to the combination strat-
egy being tested (i.e. the balance, cutoff, power, or maximum heuristic). Each graph plots
therelativeerror o /1. asafunction of r, where o isthe standard deviation of asingle sample,
and . is the mean.

Notice that all four combination strategiesyield avariance that is close to the minimum
of the two other curves (on an absolute scale). This is in accordance with Theorem 9.2,
which guarantees that the variance ¢ of the balance heuristic is within ;2 /2 of the vari-
ance obtained when either of the given sampling techniquesis used on its own. The plots
in Figure 9.10(a) are well within this bound.

At the extremes of the roughness axis there are significant differences among the var-
ious combination strategies. As expected, the balance heuristic (a) performs worst at the
extremes, since the other strategies were specifically designed to have better performance
in this case (i.e. the case when one of the given sampling techniquesis an excellent match
for theintegrand). The power heuristic (¢) with 5 = 2 works especially well over the entire
range of roughness values.



9.3. RESULTS

relative error s/m

relative error s/m

. .
\ /
o !
154 sample light , sample BSDF
\ /
\
14 \ !
\ /
| balance \\,/
0.5 heuristic N

surface roughness r

(a) The balance heuristic.

\ /'
\

\ /
1.5+ sample light ; sample BSDF

0.5 power V
heuristic

10 10 10 10
surface roughness r

(c) The power heuristic (G = 2).

relative error s/m

relative error s/m

279
24 \ :
\ /
\ /
154 sample light , sample BSDF
\ /
\
1 \ /
\ /
\ /
051 cutoff \/
heuristic N
0

10° 10" 107 10°
surface roughness r

(b) The cutoff heuristic (a = 0.1).
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(d) The maximum heuristic.

Figure9.10: Variance measurementsfor the glossy highlights problem using different com-
bination strategies. Each graph plotstherelative erroro /i asafunction of the surface rough-

ness parameter r (where o2 represents the variance of asingle sample, andy: isthe mean). A

fixed size, spherical light source wasused (as shown in Figure 9.9). Thethree curvesin each
graph correspond to sampling the BSDF, sampling the light source, and aweighted combi-
nation of both sample types using the (a) balance, (b) cutoff, (c) power, and (d) maximum
heuristics. (The three small circles on each graph are explained in Figure 9.11.)

Figure 9.11 shows how these numerical measurementstranslate into actual image noise.
Each image shows a glossy reflection of a spherical light source, using the same test setup
as for the graphs (see Figure 9.9). The three images in each group were computed using
different parameter values (namely » = 107°, 7 = 1073, and » = 10~1), which causes the
reflected light source to be blurred by varying amounts. The noise levels in these images
should be compared against the corresponding circled variance measurementsin the graphs

of Figure 9.10. Notice that the cutoff, power, and maximum heuristics substantially reduce

the noise at the extremes of the roughness axis.
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r=10""° r=10""1
(b) The cutoff heuristic (o = 0.1).

(c) The power heurigtic (G = 2). (d) The maximum heuristic.

Figure 9.11: Each of these test images corresponds to one of the circled points on the vari-
ance curves of Figure 9.10. Their purpose isto compare the different combination strategies
visually, by showing how the numerical variance measurements trandate into actual image
noise. Each image shows a glossy reflection of a spherical light source, as shown in Fig-
ure 9.9 (the same test setup used for the graphs). The three images in each group were com-
puted using different values of the surface roughness parameterr (with one sample per pixel,
box filtered), which causes the reflected light source to be blurred by varying amounts (the
sharpest reflections are on the left). The noise levels in these images should be compared
against the corresponding circled variance measurements shown in Figure 9.10. Notice in
particular that the improved weighting strategies (b), (c), and (d) give much better results
when r = 10~ !, and significantly better results whenr = 105,

In all cases, the additional cost of multiple importance sampling was small. The total
time spent evaluating probabilities and weighting functions in these tests was | ess than 5%.
For scenes of realistic complexity, the overhead would be even smaller (as afraction of the
total computation time).

We have al so made measurements of the cutoff and power heuristics using other values
of o and 3 (which represent the cutoff threshold and the exponent, respectively). In fact,
the graphs in Figure 9.10 already give results for three values of o and 3 each, since the
balance and maximum heuristics are limiting cases of the other two strategies. Specificaly,
the cutoff heuristicfor o« = 0, o = 0.1, and o« = 1 isrepresented by graphs (a), (b), and
(d), while the power heuristicfor 5 = 1, § = 2, and 5 = oo is represented by graphs (a),
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(c), and (d). The graphs we have obtained at other parameter values are not significantly
different than what would be obtained by interpolating these results.

Related work. Shirley & Wang [1992] have also compared BRDF and light source sam-
pling techniques for the glossy highlights problem. They analyze a specific Phong-like
BRDF and a specific light source sampling method, and derive an expression for when to
switch from one to the other (as afunction of the Phong exponent, and the solid angle oc-
cupied by the light source). Their methods work well, but they apply only to this particular
BSDF and sampling technique. In contrast, our methods work for arbitrary BSDF's and
sampling techniques, and can combine samples from any number of techniques.

9.3.2 Thefinal gather problem

In this section we consider a simple test case motivated by multi-pass light transport algo-
rithms. These algorithms typically compute an approximate solution using the finite ele-
ment method, followed by one or more ray tracing passes to replace parts of the solution
that are poorly approximated or missing. For example, some radiosity algorithms use alo-
cal passor final gather to recompute the basis function coefficients more accurately.

We examine avariation called per-pixel final gather. Theideaisto compute an approxi-
mate radiosity solution, and then useit to illuminate the visible surfaces during aray tracing
pass [Rushmeier 1988, Chen et a. 1991]. Essentially, thistype of final gather is equivalent
to ray tracing with many area light sources (one for each patch, or one for each link in a hi-
erarchical solution). That is, we would like to evaluate the scattering equation (9.2) where
L. isgiven by theinitial radiosity solution.

Aswiththeglossy highlightsexample, there are two common sampling techniques. The
brightest patchesaretypically reclassified as“light sources’ [Chen et a. 1991], and are sam-
pled using direct lighting techniques. For example, thismight consist of choosing one sam-
ple for each light source patch, distributed according to the emitted power per unit area.
The remaining patches are handling by sampling the BSDF at the point intersected by the
viewing ray, and casting rays out into the scene. If any ray hitsalight source patch, the con-
tribution of that ray is set to zero (to avoid counting the light source patches twice). Within
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@) (b) (©

Figure 9.12: A simple test scene consisting of one area light source (i.e. a bright patch,
in the radiosity context), and an adjacent diffuse surface. The images were computed by
(a) sampling the light source according to emitted power, usingrn; = 3 samples per pixel,
(b) sampling the BSDF with respect to the projected solid angle measure, usingns = 6
samples per pixel, and (¢) a weighted combination of samples from (a) and (b) using the
power heuristic with 5 = 2.

our framework for combining sampling techniques, thisis clearly a partitioning of the inte-
gration domain into two regions.

Given some classification of patches into light sources and non-light sources, we con-
sider alternative ways of combining the two types of samples. To test our combination
strategies, we used the extremely simple test scene of Figure 9.12, which consists of asin-
gle arealight source and an adjacent diffuse surface. Image (a) was computed by sampling
thelight source according to emitted power, whileimage (b) was computed by sampling the
BSDF and casting rays out into the scene. Twice as many samples were taken in image (b)
than (@); in practice this ratio would be substantially higher (i.e. the number of directional
samples, compared to the number of samplesfor any one light source).

Notice that the sampling technique in Figure 9.12(a) does not work well for points near
the light source, since thistechnique does not take into account the 1 /% distance term of the
scattering equation (9.2). On the other hand Figure 9.12(b) does not work well for pointsfar
away from the light source, where the light subtends a small solid angle. In Figure 9.12(c),
the power heuristic is used to combine samplesfrom (a) and (b). As expected, this method
performswell at al distances. Although (c) uses more samples (the sum of (a) and (b)), this
still isavalid comparison with the partitioning approach described above (which also uses
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Figure 9.13: A plot of the relative error o/, as a function of the distance from the light
source. Three curves are shown, corresponding to the three images of Figure 9.12. The
curves have been normalized to show the variance whenn; = 1 and ny, = 2 (the same
ratio of samples used in Figure 9.12).

both kinds of samples).

Variance measurementsfor these experimentsare plotted in Figure 9.13. Therearethree
curves, corresponding to the three images of Figure 9.12. Each curve plotstherelative error
o/ asafunction of the distance from the light source. Notice that the combined curve (c)
awayslies below the other two curves, indicating that both kinds of samplesare being used
effectively. Also, notice that unlike Figure 9.10, the variance curves do not approach zero
at the extremes of the distance axis (not even asthe distanced goesto infinity). Thisimplies
that neither of the given sampling techniquesisan excellent match for the integrand, so that
the balance, cutoff, power, and maximum heuristics all perform similarly on this problem.
Thisiswhy we have only shown one graph, rather than four.

9.4 Discussion

There are several important issues that we have not yet discussed.

We start by considering how multiple importance sampling is related to the classica
Monte Carlo techniques of importance sampling and stratified sampling. We show that it
unifies and extendsthese ideas within asingle sampling model. Next, we consider the prob-
lem of choosing the n;, i.e. how to alocate a fixed number of samples among the given
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sampling techniques. We argue that this decision is not nearly asimportant as choosing the
weighting functions appropriately. Finally, we discuss some special issues that arise in di-
rect lighting problems.

9.4.1 Relationship to classical Monte Carlo techniques

Multiple importance sampling can be viewed as a generalization of both importance sam-
pling and stratified sampling. It extends importance sampling to the case where more than
one sampling technique is used, while it extends stratified sampling to the case where the
strata are allowed to overlap each other. From the latter point of view, multiple importance
sampling consists of taking one or more samples in each of n given regions 2;. Thesere-
gions do not need to be digoint; the only requirement is that their union must cover the
portion of the domain where f is non-zero.

This generalization of stratified sampling is useful, especially when the integrand is a
sum of several quantities. A good example in graphicsisthe BSDF, which is often written
as asum of diffuse, glossy, and specular components (for reflection and/or transmission).
The process of taking one or more samples from each component is essentially a form of
stratified sampling, where the strata overlap.

When stratified sampling is generalized in this way, however, there is more than one
way to compute an unbiased estimate of the integral (since when two strata overlap, sam-
ples from either or both strata can be used). To address this, multiple importance sampling
assigns an explicit representation to each possible unbiased estimator (as a set of weighting
functions w;). Furthermore it provides a reasonable way to select one of these estimators,
by showing that certain estimators perform well compared to all the rest.

9.4.2 Allocation of samplesamong the techniques

In this section, we consider how to choose the number of samplesthat are taken using each
technique p;. We show that this decision is not as important as it might seem at first: no
strategy is that much better than that of simply setting all the n; equal.

To seethis, supposethat atotal of V sampleswill be taken, and that these samples must
be allocated among the n sampling techniques. Let F' be an estimator that allocates these
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samplesin any way desired (provided that }°, n; = V), and uses any weighting functions
desired (provided that F' is unbiased). On the other hand, let £’ be the estimator that takes
an equa number of samples from each p;, and combines them using the balance heuristic.
Then it is straightforward to show that

. n—1 ,

VIF] < nVI[F] + N

whereasusual, 1 = E|[F| isthe quantity to be estimated (see Theorem 9.5in Appendix 9.A
for a proof).

According to this result, changing the n; can improve the variance by at most a factor
of n, plusasmall additive term. In contrast, a poor choice of the w; can increase variance
by an arbitrary amount. Thus, the sample allocation is not as important as choosing agood
combination strategy.

Furthermore, the sample allocation is often controlled by other factors, so that the opti-
mal sampleallocationisirrelevant. For example, consider the glossy highlightsproblem. In
adistribution ray tracer, the samples used to estimate the glossy highlights are also used for
other purposes. e.g. the light source samples are used to estimate the diffuse shading of the
surface, while the BSDF samples are used to compute glossy reflections of ordinary, non-
light-source objects. Often these other purposeswill dictate the number of samplestaken, so
that the sample allocation for the glossy highlights cal culation cannot be chosen arbitrarily.
On the other hand, by computing an appropriate weighted combination of the samples that
need to be taken anyway, we can reduce the variance of the highlight cal culation essentially
for free.

Similarly, the sample alocation is also constrained in bidirectional path tracing. In this
case, it isfor efficiency reasons: it is more efficient to take one sample from all the tech-
niques at once, rather than taking different numbers of samples using each strategy. (This
will be discussed further in Chapter 10.)

9.4.3 Issuesfor direct lighting problems

The glossy highlights and final gather test cases are both examples of direct lighting prob-
lems. They differ only in the terms of the scattering equation that cause high variance: in
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the case of glossy highlights, it was the BSDF and the emission function L., while for the
final gather problem it wasthe 1/r? distance factor.

Although there are more sophisticated techniques for direct lighting that take into ac-
count morefactorsof the scattering equation[Shirley et al. 1996], itisstill useful to combine
several kinds of samples. There are several reasons for this. First, sophisticated sampling
strategies are generally designed for a specific light source geometry (e.g. the light source
must be atriangle or asphere). Second, they are often expensive: for example, taking asam-
ple may involve numerical inversion of afunction. Third, none of these strategiesis perfect:
there are always somefactors of the scattering equation that are not included in the approx-
imation (e.g. virtualy all direct lighting strategies do not consider the BSDF or visibility
factors). Thus, in parts of the scene where these unconsidered factors are dominant, it can
be more efficient to use a simpler technique such as sampling the BSDF. Thus, combining
samples from two or more techniques can make direct lighting cal culations more robust.

9.5 Conclusonsand recommendations

As we have shown, multiple importance sampling can substantially reduce the variance
of Monte Carlo rendering calculations. These techniques are practical, and the additional
cost issmall — less than 5% of the time in our tests was spent eval uating probabilities and
weighting functions. There are also good theoretical reasonsto use these methods, since we
have shown strong bounds on their performance relative to al other combination strategies.
For most Monte Carlo problems, the balance heuristic is an excellent choice for acom-
bination strategy: it has the best theoretical bounds, and is the simplest to implement. The
additional variance term of (1/ min; n; — 1/N) % isnot an issue for integration problems
of reasonable complexity, because it is unlikely that any of the given density functions p;
will be an excellent match for f. Under these circumstances, even the optimal combination
F* has considerable variance, so that the maximum improvement that can be obtained by
using some other strategy instead of the balance heuristic is a small fraction of the total.
On the other hand, if it is possible that the given integral isalow-variance problem (i.e.
oneof thep; isgood matchfor f), thenthe power heuristicwith 3 = 2 isan excellent choice.
It performssimilarly to the balance heuristic overall, but givesbetter resultson low-variance
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problems (which is exactly the case where better performance is most noticeable). Direct
lighting calculations are a good example of where this optimization is useful.

In effect, multiple importance sampling provides a new viewpoint on Monte Carlo inte-
gration. Unlike ordinary importance sampling, where the goal is to find a single “ perfect”
sampling technique, here the goal isto find a set of techniquesthat cover the important fea-
tures of theintegrand. It does not matter if there are afew bad sampling techniques as well
— some effort will be wasted in sampling them, but the results will not be significantly af-
fected. Thus, multipleimportance sampling givesarecipefor making Monte Carlo software
more reliable: whenever there is some situation that is not handled well, then we can sim-
ply add another sampling technique designed for that situation alone. We believe that there
are many applicationsthat could benefit from this approach, both in computer graphics and
elsewhere.
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Appendix 9.A Proofs

Proof of Theorem 9.2 (from p. 264).  Let F; ; be the random variable

oo wi (X 5) f(Xij)
,] — )
pi(Xi;)
and let p; be its expected value
pi = E[F;;]
~ [ wila) @) du()
(which does not depend onj). We can then write the variance of " as
VIF] = V Zn— > Fy
i=1 " 7=1
n 1 n;
= Z n2 Z V[Fl ]]
i=1 "1 j=1

_ (/ Z e @;)) - (i nii,%?) . (9.16)

Notice that there are no covariance terms, because the.X; ; are sampled independently.

We will bound the two parenthesized expressions separately. To minimize the first expression

/ Z ). (9.17)

it is sufficient to minimize the integrand at each pointx separately. Noting that f2(z) is a constant
and dropping = from our notation, we must minimize

Z”:w

i=1 n’b pZ

R\

subject to the condition ", w; = 1. Using the method of Lagrange multipliers, the minimum value
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is attained when al n + 1 partia derivatives of the expression

- +/\<sz—1>

i
are zero. Thisyieldsn equations of theform—2w; = n; p; A, together with constraint ", w; = 1.

ng; Py

The solution of these equationsis
. ni Pi
R SN
(the balance heuristic). Thusno other combination strategy can makethefirst variance term of (9.16)
any smaller.

We now consider the second variance term of (9.16), namely
L
i—1 n;

Wewill prove an upper bound of (1/ min; n;) 1% and alower bound of (1/ 3", n;) 12, such that these
bounds hold for any functionsw;. (Recall that x = E[F]isthe quantity to be estimated.) Combining
this with the previous result, we immediately obtain the theorem.

For the upper bound, we have

1

— 2 _ 1 2
Zi: n; Hi = Zi:'ul — min; n; (ZM) B mininiu ’

min; n;

where the second inequality holds because al they; are non-negative.

For the lower bound, we minimize ", u?/n; subject to the constraint 3°, 1; = p. Using the
method of Lagrange multipliers, the minimum is attained when alln + 1 partial derivatives of the
expression

ZM_12+/\<Z ,_>
— ‘Nz 2

are zero. Thisyieldsn + 1 equations whose solution isg; = (ni/ >, nk) 1, S0 that the minimum
value of the second variance term of (9.16) is

1 n; 2 1,
> n) = Z
~ N \ XNk >k Nk

asdesired. N
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Proof of Theorem 9.3 (from p. 274).  According to the arguments of the previous theorem, itis
sufficient to prove a bound of the form
2 2 N2 2
3 wi (x) f2(x) > Wi (x) f2(x)
n; pi(x) i n; pi(w)
at each point x, where the w; are the weighting functions given by one of the heuristics of Theo-
rem 9.3, and the w; are given by the balance heuristic. Dropping the argumentz, letting ¢; = n;p;,

and substituting the definition
b — 4
' >k Gk ’

we must show that

wi L a \_ _c
> - Czi:%’ <Equ> =5 (9.18)

IN

For the cutoff heuristic, we have

2 2
wi  _ L O

7’-|qi ZD[ qmax q’L Zk‘qk ZD[ Gmax
1
Zi“]iza dmax qi '
Thus according to (9.18), we must find avalue of ¢ such that
1 c
= <
Zﬂ%za qdmax q7’ Zk) Qk

¢ D w oz X
i|qi ZO& qmax k
i|qi > gmax k 7;|q7; >0 quoas
c—1 > Ll <aqmax 9

Zimi > max qi

To find avalue of ¢ for which thisis true, it is sufficient to find an upper bound for the right-hand
side. Examining the numerator and denominator, we have

Z7’-|qi<a Gmax qi S (n - 1) Q @max — o (n B 1) ‘
Zﬂ%za gmax D Gmax

Thus the variance claim istrue wheneverc > 1+ « (n — 1), asdesired.

Next, we consider the power heuristic with the exponent5 = 2. Starting with the inequality
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(9.18), we have

2 2 \? P
Sy 1 <_qz 2) DY - (9.19)
Thus we must find a value of ¢ such that
3
2 4 S < c
= (Cia) (Dia) < e (Tead)? (9.20)

Noticethat thisinequality isunchanged if all theg; are scaled by aconstant factor. Thuswithout loss
of generality we can assume that

Y@ =D ai (9.21)
so that our goal reduces to finding a value of ¢ such that
> (Tid)) | (i) -

We proceed as before, by finding an upper bound for the right-hand side. Without loss of generality,
let ¢; be the largest of theq;. Observing that

(Xiq) / (Ziqf) < maxg; = qi,
it is sufficient to find an upper bound forg;. According to (9.21), we have

_QI qu_qz

Letting S denote the quantity on theright-hand side, wehaveS < (1/4) (n—1), since the maximum
value of ¢; — ¢? is attained when ¢; = 1/2. Thus using the quadratic formula, we have

IN

(1/4)(n—1
) (L4+1/(~1)2 +4(1/4) (n — 1))
(/)( +\/ﬁ-

Q%—Ch

IN

== q

Thus, the original inequality (9.18) is true for any value ofc larger than this.

For an exponent in therangel < 5 < oo, the argument is similar. We find that

Z uq)—ZZ = (Ziqlg571>/(qu£>2
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(compare this with (9.19)), and we must find a value of ¢ for which

(20) () << (24)

(compare with (9.20)). By scaling al theg; by a constant factor, we can assume without loss of

generality that
Yool =X a (9.22)
so0 that we must find a value of ¢ that satisfies
28-1
¢ > > i .

> 61%3

Letting ¢; bethe largest of theq;, atrivial upper bound for the right-hand side iSqf ~! our strategy
will be to find an upper bound for this quantity, in terms of 5 and n.

Defining
S = Z qi — qiﬁ (923)

and using the restriction (9.22), we have

@ -q = S

Tofind an upper bound for theright-hand side, we must find an upper bound forS, and alower bound
for ¢,. For ¢, we have

¢4 = q+S
S
51/[37

I
=
Y

I
=
v

and inserting thisin (9.24) yields
qf” < 14808, (9.25)
Now to find an upper bound for S, from (9.23) we have

S < (n—1) sup(x —zP). (9.26)
x>0



9.A. PROOFS 293

The maximum value of f(x) = = — 2 occurs when f/(x) = 0, yielding

1—-p2°1 = 0
— v o= (1/pMYe.

Substituting thisin (9.26), we obtain an upper bound for.S:

S

IN

(n—1) ((/B)VE0 — (/)" D)
= (n-1/B)Y N a-1/p).

Finally, we combine this with (9.25) to obtain an upper bound forq{3 —L

B—1

q 1+ 511/8

L+ [n—1) /YD -1/
L+ (/)7 ((n = 1)(1 = 1/8)"= 17

IN

)/B

IN

as desired.

Notice that for the case 5 = 2, this argument gives a bound of
¢ = (1/2)2+Vn—1),

which is dlightly larger than the bound of c = (1/2) (1 + \/n) previously shown. &

Tightness of thebounds. For the cutoff heuristic, the constant ¢ cannot be reduced for any value
of a. (Toseethis letq; = 1,andletq; = a —efordl i = 2,...,n, wheree > 0 can be made as
small as desired.)

For the power heuristic, the given bounds are tight when3 = 1 and 5 = oo (corresponding to
the balance and maximum heuristics respectively, and yielding the constantsc = 1 and ¢ = n. For
other values of 3, the bounds are not tight. However, they are not as loose as might be expected,
considering the simplifications that were made to obtain them. For example, letq; = 1 + /n, and
g; = 1fori=2,...,n. Substituting these values into the defining equation (9.20) forc, we obtain

c = (1/4) (3 +vn).

Thus, the boundsc = (1/2) (1++/n) and ¢ = (1/2) (2+/n — 1) proven above cannot be reduced
by more than a factor of two.
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Proof of Theorem 9.4 (from p. 276). Thevariance of F' is
V[F] = E[F* — E[F]*.

Since E[F]? = p? isthe same for all unbiased estimators, it is enough to show that the balance
heuristic minimizes the second moment E[F2]. We have

wi(z) f

n 21,
AP = Yo [ S e

_ [N @) )
B /Q; ipi(@) ).

C

Except for the substitution of ¢; for n;, this expression isidentical to the second moment term (9.17)
that was minimized in the proof of Theorem 9.2. Thus, the balance heuristic minimizesE[F2], and
wearedone. N

Thefollowing theorem concerns the all ocation of samples among the given sampling techniques.
Before stating it, we first rewrite the multi-sample estimator (9.4) to alow for the possibility that
somen; are zero:

= = wil(X ) f(Xy)
E= ;; nipi(Xij;) (.27)

wheren; > 0 for al i. The possibility that n; = 0 also requires a modification to condition (W2)
for F' to be unbiased:

(W2') w;(x) = 0whenever n;p;(x) =0.

We now have the following theorem (which was informally summarized in Section 9.4.2):

Theorem 9.5. Let f, p1, ..., pn, and the total number of samples NV be given, where N = kn for
someinteger k. Let F' be any unbiased estimator of the form (9.27), and let /" be the corresponding
estimator that uses the weighting functions

Lo nipi()
dilw) = >k Mk Pr ()

(the balance heuristic), and takes an equal humber of samples from eachp;. Then

. -1
VIE] < nVIF] + =5 1.

where ;o = E[F] isthe quantity to be estimated.
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Proof.

295

Given any unbiased estimator F, let F'* be the estimator that uses the same weighting

functions F' (w;” = w;), but takes an equal number of samples using each sampling technique
(n = N/n). Wewill show that V[F*] < nV[F]. Starting with equation (9.16) for V' [F], we

have

VIF] =

v

wi () f2(x ~ 1

/Q; n; pi(x) i) ;mm

“ w?(x) 2 (x
T ni ( R (pj(a{)( ) du(a) - ﬁ)

=1

n 'LUZCU ZCU
Z%(Q—Z( ) —u?)

i—1 pi(z)

L& (w0,
n;N/n<Q s dp () m)
LyviF

We now compare the variance of F'* to the variance of F'. These two estimators take the same

number of samples from eachp;, so that we can apply Theorem 9.2:

VIF]

1 1
< V[FT — 2
- ]+ (mimin;r Zﬂlj) H

1 1
< VIF —_— = — 2
< nV[F] + (N/n N) I
-1

= nV[F]—i—n TR

N
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Chapter 10
Bidirectional Path Tracing

In thischapter, we describe anew light transport algorithm called bidirectional pathtracing.
Thisagorithmisadirect combination of theideasin the last two chapters: namely, express-
ing light transport as an integration problem, and then applying more than one importance
sampling technique to evaluate it. The resulting algorithm handles arbitrary geometry and
materias, is relatively smple to implement, and can handle indirect lighting problems far
more efficiently and robustly than ordinary path tracing.

To sample each transport path, we generate one subpath starting from a light source, a
second subpath starting from the eye, and join them together. By varying the number of ver-
tices generated from each side, we obtain a family of sampling techniques for paths of all
lengths. Each sampling technique has a different probability distribution over the space of
paths, and takes into account a different subset of the factors of the integrand (i.e. the mea-
surement contribution function). Samples from all of these techniques are then combined
using multiple importance sampling.

This chapter is organized as follows. We start in Section 10.1 with an overview of the
bidirectional path tracing algorithm. Thisisfollowed by a more detailed mathematical de-
scription in Section 10.2, where we derive explicit formulas for the sample contributions.
Section 10.3 then discusses the issues that arise when implementing the algorithm, includ-
ing how to generate the subpaths and evaluate their contributions efficiently, how to handle
specular materials, and how to implement the important special cases where the light or

297
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eye subpath contains less than two vertices. In Section 10.4 we describe an important op-
timization to reduce the number of visibility tests, using a new technique called efficiency-
optimized Russian roulette. Section 10.5 then presents some results and measurements of
the algorithm, Section 10.6 compares our algorithm to other related work in this area, and
Section 10.7 summarizes our conclusions.

10.1 Overview

Recall that according to the path integral framework of Chapter 8, each measurement can
be written in the form

I = | £ @), (10.1)

wherez = x; . .. X, isapath, €2 isthe set of such paths (of any length), . isthe area-product
measure du(z) = dA(xg) -+ dA(xy), and f; is the measurement contribution function

[i;(Z) = Le(xo—x1)G(x04>x1) W9 (X1 —Xy)
k—1
] s (xii = xi = xi) G(x 60 Xi41) - (10.2)
=1

Bidirectional path tracing consists of a family of different importance sampling tech-
niques for this integral. Each technique samples a path by connecting two independently
generated pieces, one starting from the light sources, and the other from the eye. For exam-
ple, in Figure 10.1 the light subpath x¢x; is constructed by choosing arandom point x, on
alight source, followed by casting aray in arandom direction to find x;. The eye subpath
X9X3X, 1S constructed by a similar process starting from arandom point x, on the camera
lens. A complete transport path isformed by concatenating these two pieces. (Note that the
integrand may be zero on this path, e.g. if x; and x, are not mutually visible.)

By varying the number of verticesin the light and eye subpaths, we obtain a family of
sampling techniques. Each technique generates paths of a specific length &, by randomly
generating a light subpath with s vertices, randomly generating an eye subpath with ¢ ver-
tices, and concatenating them (wherek = s + ¢ — 1). It isimportant to note that there is
more than one sampling technique for each path length: in fact, for agiven length % it is
easy to seethat there are & + 2 different sampling techniques (by letting s =0, ...,k + 1).
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Figure10.1: A transport path from alight source to the cameralens, created by concatenat-
ing two separately generated pieces.
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Figure 10.2: The four bidirectional sampling techniques for paths of lengtht = 2. In-
tuitively, they can be described as(a) Monte Carlo path tracing with no special handling
of light sources, (b) Monte Carlo path tracing with a direct lighting calculation,(c) tracing
photons from the light sources and recording an image sample whenever aphoton hitsavis-
ible surface, and (d) tracing photons and recording an image sample only when photons hit
the camera lens. Note that technique (&) can only be used with an area light source, while
technique (d) can only be used with a finite-aperture lens.

These techniques generate different probability distributions on the space of paths,
which makes them useful for sampling different kinds of effects. For example, athough
technique (b) works well under most circumstances (for paths of length two), technique (a)
can be superior if the table is very glossy or specular. Similarly, techniques (c) or (d) can
have the lowest variance if the light source is highly directional.
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Figure 10.2 illustrates the four bidirectional sampling techniquesfor paths of length & = 2.

The reason that these techniques are useful is that they correspond to different density
functions p, , on the space of paths. All of these density functions are good candidates for
importance sampling, because they take into account different factors of the measurement
contribution function f; (aswewill explain below). In practical terms, this means that each
technique can efficiently sample a different set of lighting effects.

To take advantage of this, bidirectional path tracing generates samples using all of the
techniques p, , and combines them using multiple importance sampling. Specifically, the
following estimate is computed for each measurement /;:

_ o fil®@a)
F = ;} tg% Wt (Tst) poa(Ton) (10.3)
Here z, , isapath generated according to the density function p, ;, and the weighting func-
tions w, ; represent the combination strategy being used (which is assumed to be one of the
provably good strategies in Chapter 9, such as the balance heuristic). By combining sam-
plesfrom all the bidirectional techniquesin thisway, awide variety of scenes and lighting
effects can be handled well.

Efficiently generating the samples. So far, we have assumed that all the paths z, ;, are
sampled independently, by generating a separate light and eye subpath for each one. How-
ever, in practice it is important to make the sampling more efficient. Thisis achieved by
generating the samplesin groups. For each group, we first generate a light subpath

Yo -Ynr—1

with n; vertices, and an eye subpath

Zpp—1---2

with ny vertices (wherey, isapoint on alight source, and z, is apoint on the cameralens).
Thelength of each subpathisdetermined randomly, by defining aprobability for terminating
the subpath at each vertex (details are given in Section 10.3.3). We can then take samples
from a whole group of techniques p, , a once, by simply joining each prefix of the light
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subpath to each suffix of the eye subpath. The sample from p, , istaken to be

fs,t = Y- - Ys—1%4t—1...2p,

whichisapathwith s+ ¢ verticesand k = s+t — 1 edges (where0 < s < n;,0 <t < ng,
and &k > 1). The verticesy,_; and z,_, are called the connecting vertices, and the edge
between them is the connecting edge.

The contributions of all the samples z, ; are then computed and summed according to
the multi-sample estimator (10.3). In order to evaluate the contribution of each path, the
visibility of the connecting edge must be tested (except when s = 0 or ¢t = 0). If the con-
necting edge is obstructed, or if the BSDF at either connecting vertex does not scatter any
light toward the other, then the contribution for that path is zero. (The following section
givesfurther details.)

There is an important detail that we have not mentioned yet. Notice that we have mod-
eled the multi-sample estimator (10.3) as a sum over an infinite number of samples, one
from each bidirectional technique p, ;. We did this because of the way that multiple impor-
tance sampling was defined: it assumesthat an integer number of samplesn , istaken from
each sampling technique, so in thiscase we set n, , = 1 for @l s, ¢. (Note that if we placed
an upper bound on the allowable values of s and ¢, the result would be biased.) Of course,
the strategy above does not take a sample from all of the techniquesp; ,, since there are an
infinite number of them. However, notice that there isaways somefinite probability of tak-
ing a sample from each technique, no matter how large s and t are. Thisis because for any
given values of s and ¢, there is some probability of generating alight subpath withn, > s
and an eye subpath with n; > ¢ (since there lengths are chosen randomly).

Formally, we can show how thiscorrespondsto the multi-sample model asfollows. First
we introduce the notion of an empty path ¢, which is defined to have a contribution of zero.
We then re-interpret the strategy above to be method for sampling all of the techniquesp;, ;
smultaneously, by defining the ssmplefrom p, ; tobe z, , = e whenever s > n, ort > np.
In other words, athough the estimator (10.3) isformally a combination of samplesfrom an
infinite number of techniques, in fact all but afinite number of them will be the empty path e
on each evaluation, so that their contributions can be ignored. Another way of interpreting
thisis to say that the density functions p, , are allowed to integrate to less than one, since
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any remaining probability can be assigned to the empty path. (Noticethat having aninfinite
number of sampling techniques does not cause any problems when computing the weights
ws (T ¢), Since there are only & + 2 sampling techniques that can generate paths of any
given length £.)

10.2 Mathematical for mulation

In this section we derive the formulas for determining the contribution of each sample, and
we show how to organize the cal culations so that they can be done efficiently.

Letting z, ; be the sample from technique p, ;, we must evaluate its contribution

fj (‘fs,t)

ps,t(xs,t>

Cs,t = ws,t(fs,t)
to the estimator (10.3), which can be rewritten as

F=> > Cy.

s>0 t>0

We will evaluate this contribution in several stages. First, we define the unweighted contri-
bution C7, as

Ci, =
We will show how to write this as a product
Cov = o) copay

where thefactor o> dependsonly on thelight subpath, o/ depends only on the eye subpath,
and ¢, ; depends only on the connecting edgey,_,z;_;. Theweighted contribution then has
the form

Cs,t = Wsyt C:,t )

where w; , depends on the probabilities with which all the other sampling techniques gen-
erate the given path z, ;.
We now discuss how to compute these factorsin detail.
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Thedensity ps ;. We start by showing how to compute the probability density

ps,t = ps,t(fs,t)

with which the path z,, was generated. As previously discussed in Chapter 8.2, thisis
simply the product of the densities P4 (x;) with which theindividual vertices are generated
(measured with respect to surface area). The vertex y; is chosen directly on the surface of
alight source, so that P4(y,) can be computed directly (and similarly for z,).

Theremaining verticesy; are chosen by sampling a direction and casting aray from the
current subpath endpoint y;_;. Welet P, (y;1 — y;) denote the density for choosing the
direction from y;_, to y;, measured with respect to projected solid angle.! Now the density
Py (y;) for choosing vertex y; issimply

Poly;) = Pr(yici =) G(yic1 &%)

recalling that
|cos(6,) cos(6!)]

Gx+x) = V(xex) Tx— x|

(see Section 8.2.2.2 for further details).
We define symbols p> and p# to represent the probabilitiesfor generating the first i ver-
tices of the light and eye subpaths respectively. These are defined by

pg = 1,

pi = Pilw),

pr = Pui(yio—Yyi1) Glyi2¢Yi1) Piy fori>2,
and similarly

py = 1,

pf‘ = PA(Z0)7

pZE = PUJ‘ (Zi72 —)Zifl) G(Zi,Z <—>Zi,1) pfil for i Z 2.

IMore precisely, it should be written as P (yi—1 = yi | yi—2,¥yi—1), Since the probability is conditional
on the locations of the previoustwo vertices in the subpath.
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Using these symbols, the density for generating the path z,; = yp...¥ys—12Zi—1...% IS
simply
ps,t(*fs,t> = psL ptE- (10.4)

The unweighted contribution C;,. Next, we consider the unweighted contribution

fj (fS,t>
ps,t(js,t) '

cr, = (10.5)

To calculate this quantity efficiently, we precompute the weights o> and o given below.
These weights consist of all the factors of the definition (10.5) that can be computed using
thefirst 7 vertices of the light and eye subpaths respectively. Specifically, we have

af = 1,
ay = Lgn(xg)?
Pa(yo)
s\Yi—3 7 Yi—2 7 Yi— .
aiL _ fs(Yica = Yic2 = ¥ic1) OéiL,l fori > 2, (10.6)
P.(yi2—Yi1)
and similarly
ap = 1,
. B m(o)(zo)
1 N PA(Z()) ’
of = R TEaTm) b (10.7)

PO_J_ (Zi,z — Zifl)

Here we have used the conventions previously described in Section 8.3.2: the emitted radi-
anceis split into a product

L(y—yi) = LO(y) LY (—3)»

where L and LY representsthe spatial and directional componentsof L, respectively, and
wedefine f,(y., = yo—yi) = LY (yo—y1). ThequantitiesW.”) and f,(z; — 2o —2z_,) =
W, are defined similarly. The purpose of thisconventionisto reduce the number of special
cases that need to be considered, by interpreting the directional component of emission as
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a BSDF. Also, notice that the geometry factors G(x «++ x’) do not appear in the formulas
for of and of, because these factors occur in both the numerator and denominator of (10.5)
(see the definitions of p} and p?).

As mentioned above, the unweighted contribution can now be computed as
Cy, = agcspaf, (10.8)

where ¢, ; consists of the remaining factors of the integrand f; that are not included in the
precomputed weights. Examining the definitions of f;, o/, and o.F, we obtain

Cot = Le(thl _>th2) )
CS,O - M(ys—Q%YS—1> ) and
Cst = fs(Vsm2 = ¥sm1 = Ze—1) G(Ysm1 < 2im1) fo(Yoo1 = Zem1 — Z4—2)

fors,t > 0.

Note that the factor G/(y; 1 <> z; 1) includes a visibility test (for the case s,t > 0), which
isthe most expensive aspect of the evaluation.

Theweighting function ws¢. Finally we consider how to evaluate

ws,t = ws,t(js,t)v

whose value depends on the probability densities with which z is generated by all of the
s + t + 1 possible sampling techniques for paths of thislength. We define p; asthe density
for generating z, ;, using a light subpath with ¢ vertices, and an eye subpath with s + ¢ — ¢
vertices:

pbi = pi,(s+t)fi(.fs)t) fori=0,...,s+t.

In particular, p, isthe probability with which the given path was actually generated, while
Do---Ps_1@dp,iq...ps represent al the other ways that this path could have been gen-
erated.

Theevaluation of the p; can be simplified by observing that their valuesonly matter upto
an overall scalefactor. For example, if the samples are combined using the power heuristic
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with 5 = 2, we must compute

o 1
- Zz‘p? B Ei(pz‘/pﬁ?'

Thesameistruefor all the other combination strategies of Chapter 9. Thuswe can arbitrar-

ws,t

ily set p, = 1, and compute the values of the other p; relativeto p,.

To do this, we consider theratio p; ;1 /p;. It will be convenient to ignore the distinction
between verticesin the light and eye subpaths, and to write the path z, , as

r = Xp...Xg

wherek = s+t — 1. Inthisnotation, the only difference betweenp; and p; . ; liesin how the
vertex x; is generated: for p;, it is generated as part of the eye subpath x; . . . x;, while for
piy1 itisgenerated as part of thelight subpath x, . . . x;. All other verticesof = are generated
with the same probability by both techniques. Thus, the ratio of p;,; to p; is

o Pa(xo)
Po PUJ_ (X1 —>X0) G(Xl HX()) '
i P.(x;_ i) G(xi— i )
Pirt _ Lp(xi =) Glxio1 i) foro<i<k, (10.9)
i P. (Xip1 = X;) G(Xi41 ¢ X5)
Pe+1 Po(xp—1 = xp) G(Xpo1 <> Xp)
Pk PA(ch)

This equation can be applied repeatedly starting with p, to find p,1, ..., pry1. Similarly,
the reciprocal ratio p; /p; 1 can be used to computep,_1, . . ., po.

Once the p; have been calculated, it is straightforward to compute w, , according to the
combination strategy being used. The final weighted sample contribution is then

Cs,t = Wspt C:,t
= Wsy Cl/f Cst OétE .
Note that the samples in each group are dependent (since they are all generated from the

same light and eye subpath). However this does not significantly affect the results, since
the correl ation between them goesto zero as we increase the number of independent sample
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groups for each measurement. For example, if NV independent light and eye subpaths are
used, then all of the samples from each p, , are independent, and each sample from p, ; is
correlated with only one of the N samples from any other given technique p, . From this
fact it is easy to show that the variance results of Chapter 9 are not affected by more than a
factor of (IV — 1)/ due to the correlation between samplesin each group.

10.3 Implementation issues

This section describes several aspects of our implementation. We start by explaining how
the image is sampled and filtered. Next we describe how the light and eye subpaths are
generated. Thisincludesasummary of the information that is precomputed and stored with
each subpath (in order to evaluate the sampl e contributions more efficiently), and the meth-
ods used to determine the length of each subpath. Following this, we describe how to im-
plement the important special cases where the light or eye subpath has at most one vertex.
Finally, we consider how to handle specular surfaces correctly, and we consider several sit-
uations where the weighting functionsw; , cannot be computed exactly (so that approxima-
tions must be used).

10.3.1 Image sampling and filtering

So far, our discussion of bidirectional path tracing could be applied to any kind of mea-
surements ;. Here we discuss the special issues that arise when computing an image (as
opposed to some other set of measurements).

Overall, theimage sampling of bidirectional path tracingissimilar to ray tracing or path
tracing. The camera and lens model determine a mapping from rays in world space onto
the image plane. This mapping is used to define an image function I such that I(u,v) is
proportional to the irradiance on the image plane at the point (u, v).? Each pixel value [; is

2Strictly speaking, the units of (u,v) are sensor response per unit area [S - m~2] rather than irradiance.
(When I(u,v) isintegrated, the resulting pixel values have units of sensor response [S] rather than power.)
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then defined as a weighted average

I; = //Dhj(u,v)f(uw)dudv,

where D is the image region, and h; is the filter function for pixel j (which integrates to
one). In general, thefilter functions are all translated copies of one another, and each oneis
zero except on asmall subset of D.

To estimate the values of all the pixels Iy, . . ., I, alarge number of sample pointsare
chosen across the image region. We do this by taking a fixed number of stratified samples
per pixel (e.g. to take n = 25 samples, the nominal rectangle corresponding to each pixel
would be subdivided into a5 by 5 grid). Each sample can contribute to the value of severa
pixels, since the filter functions /; generally overlap one another. Specifically, the pixel
values are estimated using®

I ~ S by (g, v9) I (ug, v;)
’ SN R (ug,v;) ’
where N = n)M isthe total number of samples. This equation can be evaluated efficiently

by storing the current value of the numerator and denominator of (10.11) at each pixel, and
accumul ating samples as they are taken. Note that each sample (u;, v;) contributesto only

(10.11)

afew nearby pixels (because of the filter functions/;), and that it is not necessary to store
the samples themsel ves.

10.3.2 Estimation of theimage function

Theimage function I (u, v) is estimated using bidirectional path tracing. Theinitial vertex
of thelight subpath is chosen according to the emitted power at each surface point, whilethe
remaining vertices are chosen by sampling from the BSDF (or some convenient approxima-
tion). Sampling the camera lensis dightly trickier: the vertex z, can be chosen anywhere

3Note that this estimate is slightly biased. The corresponding unbiased estimate is simply
I, = E[(IDI/N) S, hlui, o) L) (10.10)

where|D| istheareaof theimageregion D. However, equation (10.11) typically givesbetter results (asmaller
mean-squared error) because it compensates for random variations in the sum of the filter weights.
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on the lens surface, but the direction z, — z; isthen uniquely determined by the given point
(u, v) on the image plane (since thereis only one direction at z, that is mapped to the point
(u, v) by the lens).* Note that the density P.. (zo — z,) is determined by the fact that (u, v)
isuniformly distributed over the image region.

After generating the light and eye subpaths, we consider all possible connections be-
tween them as described above. In order to do this efficiently, we cache information about
the verticesin each subpath. The vertex itself is stored in the form of a special Event object
that has methods for sampling and evaluating the BSDF, and for evaluating the probability
withwhich agivendirectionissampled (according to abuilt-in sampling strategy associated
with each BSDF). The verticesy;, and z, are also stored in thisform, so that the distribution
of emitted radiance and importance at these vertices can be queried using the same methods.

Other per-vertex information includes the cumulative subpath weights o and oF de-
fined above, the geometric factors G(x;_, <+ x;), and the probability densities P (x; —
x;—1) and P.(x; — x;41) for sampling the adjacent subpath vertices on either side. The
latter three fields are used in equation (10.9) to efficiently evaluate the probabilitiesp; with
which a given path is sampled using all the other possible techniques.

When information about the subpathsis cached, then the work required to evaluate the
contributionsC' ; isminimal (except for thevisibility test, if necessary). Theonly quantities
that need to be eval uated are those associated with the connecting edgey,_1z;_; (sincethis
edge is not part of either subpath).

10.3.3 Determining the subpath lengths

To control the lengths of the light and eye subpaths (n;, and n.z), we define a probability for
the subpath to be terminated or absorbed after each vertex is generated. We let ¢; denote
the probability that the subpath is continued past vertex x;, while 1 — ¢; is the probability
that the subpath isterminated. Thisisaform of Russian roulette (Chapter 2).

“4For real lensmodels[Kolb et al. 1995], it is difficult to determine the direction z, — z; once the point z
has already been chosen, since this requires usto find a chain of specular refractionsthat connects two given
points on opposite side of the lens (i.e. zo and the point (u, v) on the film plane). A better approach in this
caseisto generate zo and zo — z together, by starting on thefilm planeat (u, v) and tracing aray toward the
exit pupil .
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In our implementation, we set ¢; = 1 for the first few vertices of each subpath, to avoid
any extra variance on short subpaths (which typically make the largest contribution to the
image). After that, ¢; is determined by first sampling a candidate direction x; — x;,;, and

then letting
fs(Xi—l —X;— Xi—i—l)

P:J_ (Xi — Xi+1)

¢; = min{l,

?

where P is density function used for sampling the direction x; — x;,;. Notice that if
P (x;—x;41) isproportional to the BSDF, then ¢; issimply the albedo of the materid, i.e.
the fraction of energy that is scattered rather than absorbed for the given incident direction.

This procedure does not require any modification to the formulas for the sample contri-
butions described in Section 10.2. However, it isimportant to realize that the final proba
bility density for sampling each direction is now a product:

PO_J_ (Xi —)Xi+1) = q; P:J_ (Xi —)Xi+1) .

Thedensity P . (x; — ;41 ) canintegrateto lessthan one, sincethereisadiscrete probability
associated with terminating the subpath at x;.

10.3.4 Special casesfor short subpaths

Subpathswith lessthan two verticesrequire special treatment for variousreasons. The most
important issues are: taking advantage of direct lighting cal culations when the light subpath
hasonly onevertex, and allowing samplesto contributeto any pixel of theimagein the cases
when the eye subpath has zero or one vertices. In addition, the cases when the light or eye
subpath is empty require special handling since no visibility test is needed.

10.3.4.1 Zerolight subpath vertices (s = 0)

These samples occur when the eye subpath randomly intersects a light source. For thisto
occur, the light sources must be modeled as part of the scene (so that it is possible for aray
to intersect them). We also require the ability to determine whether the current eye sub-
path endpoint z;_; is on alight source, and to evaluate the emitted radiance along the ray
z;1 — Z;_». In order to evaluate the combination weight w, ;, we must also compute the
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probability densities for generating the point z,_; and the direction z,_; — z,_, by sam-
pling the light sources (in order to compute the densities p; with which the other sampling
techniques generate this path).

The s = 0 sampling technique is very important for the rendering of certain lighting
effects. These include: directly visible light sources; lights that are seen by reflection or
refraction in a specular surface; caustics due to large area light sources; and caustics that
are viewed indirectly through a specular surface.

A nice thing about this sampling technique isthat no visibility test isrequired. Thusits
contributions are cheap to evaluate, compared to the other C, ;. In our implementation, we
accumul ate these contributions as the eye subpath is being generated.

10.3.4.2 Onelight subpath vertex (s = 1)

This sampling technique connects a given eye subpath z,_; . ..z, to a randomly chosen
point on the light sources. Recall that in the basic algorithm, this point is simply the first
vertex y, of the light subpath (which was chosen according to emitted power). However,
the variance of these samples can be greatly reduced by choosing the vertex using special
direct lighting techniques. That is, we simply ignore the vertex y;, and connect the eye sub-
path to anew vertex yg' chosen using a more sophisticated method (such as those described
by Shirley et a. [1996]). Thisstrategy is applied to each eye subpath suffix z; ; ...z, sep-
arately, by choosing a different light source vertex for each one.

This optimization is very important for direct illumination (i.e. paths of length two),
sinceit allowsthe samelow-variancelighting techniquesused in ray tracing to be applied. It
isalso an important optimization for longer paths; this correspondsto standard path tracing,
where each vertex of the path is connected to a point on the light source. A direct lighting
strategy is essentially an importance sampling technique that chooses a light source vertex
yi according to how much it contributes to the illuminated point z; , (or some approxima-
tion of thisdistribution).

This strategy requires some changesin the way that sample contributions are eval uated:

e The unweighted contribution C7, is computed using the density P! (ys') with which
the light vertex yg' was chosen. This calculation isidentical to standard path tracing.
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e The evaluation of the combination weight w, , is slightly trickier, because the direct
lighting strategy does not affect the sampling of light subpaths with two or more ver-
tices. Thuswe must eval uate the density with whichy;! is sampled according to emit-
ted power; thisis used to compute the probabilities p; for sampling the current path
using the other possible techniques.

e Thedirect lighting strategy also affects the combinationsweightsfor pathswhere s #
1. The correct probabilities p; can be found by computing them as usual, and then
multiplying the density for p; by Pd(xg) / Pa(xo). Here Py(xo) is the density for
generating x, according to emitted power, and P(x,) is the density for generating
X using direct lighting for the point x;.

It isalso possible to use adirect lighting strategy that takes more than one sample, e.g.
a strategy that iterates over the light sources taking a few samples from each one. Thisis
equivalent to using more than one sampling technique to generate these paths; the samples
are simply combined as usual according to the rules of multiple importance sampling.

10.3.4.3 Oneeyesubpath vertex (t = 1)

These samplesare generated by connecting each light subpath prefixyg . . . y, 1 tothevertex
7, on the cameralens. These samplesare important for rendering caustics (especially those
from small or point light sources), some forms of direct illumination, and a variety of other
lighting effects.

Themainissuewiththistechniqueisthat the samplesit generatescan lieanywhereinthe
image, not just at the current point (u, v). One way to handle thisisto discard samples that
do not contribute to the current measurement /;. However, this is inefficient; much more
information can be obtained by letting these samples contribute to any pixel of the image.

To implement this, we allocate a separate image to record the contributions of paths
where 0 or 1 vertices are generated from the eye. We call this thelight image, as opposed
to the eye image that holds the contributions of paths wheret > 2 eye subpath vertices are
used.

To accumulate each sample, wefirst determinethe point (v, v') on theimage plane that
corresponds to theray y,_, — z,. We then compute the contribution C, ; of this sample as
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usual, and record it at the location (u’, v"). Thisis done by finding al of the pixels whose
filter value h;(u’,v") is non-zero, and updating the pixel values I of the light image using

I7 «— If + hi(u',v") Cyy

Note that the estimate 7 (u, v) at the current image point is not affected by this calculation.
Also notethat it isnot necessary to store the light and eyeimagesin memory (although this
iswhat is done in our implementation). The eye image can be sampled and written to disk
in scanline order, while the light image can be handled by repeatedly accumulating a fixed
number of samples in memory, sorting them in scanline order, and merging them with an
image on disk.

When the algorithm has finished, the final estimate for each pixel has the form
I = (ID|/N)Ij + I},

where |D| is the area of the image region, NV is the total number of bidirectional samples
that weretaken, and 1 jE isthe estimate for pixel j from the eye image (sampled and filtered
as described in Section 10.3.1). Note that the eye and light images are filtered differently:
the eyeimageisnormalized at each pixel by dividing by the sum of thefilter weights, while
the light image is not (see equations (10.11) and (10.10) respectively). Thusthe final pixel
values of thelight image are determined by the sample density aswell asthe sample values,
more samples per pixel correspond to a brighter image.

Note that to evaluate the contribution C, ; of each sample, we must evaluate the impor-
tance emitted from z, towardy, ; (or more precisely, the directional component W, of the
importance). The function W."" is defined so that

/D WO (zq,w) do (w)

isequal to the fraction of theimage region covered by the points (u, v) that are mapped by
thelensto directionsw € D. Itisimportant to realize that this function is not uniform for
most lens models in graphics, since pixels near the center of the image correspond to a set
of rays whose projected solid angleis larger than for pixels near the image boundary.
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10.3.4.4 Zeroeyesubpath vertices (t = 0)

These samples occur when the light subpath randomly intersects the cameralens. Because
the camera lens is a relatively small target, these samples do not contribute significantly
for most scenes. On the other hand, these samples are very cheap to evaluate (because no
visibility test is required), and can sometimes make the computation more robust. For ex-
ample, this can be an effective sampling strategy for rendering specular reflections of small
or highly directional light sources.

To implement this method, the lens surface must have a physical representation in the
scene (so that it can be intersected by aray). In particular, this sampling technique cannot
be used for pinhole lens models. Aswith the case for ¢ = 1 eye subpath vertices, samples
can contribute to any pixel of theimage. The image point (v, v") is determined from the
ray y,_» — vys—1, and samples are accumulated and filtered in the light image as before.

10.3.5 Handling specular surfaces

Specular surfaces require careful treatment, because the BSDF and the density functions
used for importance sampling both contain Dirac distributions. Thisisnot a problem when
computing the weights o and o7, since theratio

fs(Xi—3 — X2 Xi—l)
PUJ_ (Xi_g —>Xi_1)

of equation (10.6) is well-defined. Although thisratio cannot be directly evaluated (since
the numerator and denominator both contain a Dirac distribution), it can be returned as a
“weight” when the specular component of the BSDF is sampled.

Similarly, specular surfaces do not cause any problemswhen computing the unweighted
contribution C'; , that connects the eye and light subpaths. The specular components of the
BSDF's can simply be ignored when computing the factor

Csp = fs(Ys72 —¥s—1 —>th1) G(stl Hthl) fs(YSfl —Zt1 —>th2) )

sincethereisazero probability that these BSDF swill have anon-zero specular component
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in the direction of the given connecting edge.®

On the other hand, specular surfaces require careful treatment when computing the
weights w; ; for multiple importance sampling. To compute the densities p, for the other
possible ways of sampling this path, we must evaluate expressions of the form

Pit1 P.(xio1—x;) G(Xi-1 ¢ X;)

= 10.12
Dbi P. (Xip1 —=X;) G(Xi41 < X;) ( )

(see equation (10.9)). In this case the denominator may contain a Dirac distribution that is
not matched by a corresponding factor in the numerator.

We handle this problem by introducing a specular flag for each vertex. If the flag is
true, it means that the BSDF and sampling probabilities at this vertex are represented only
up to an unspecified constant of proportionality. That is, the cached values of the BSDF
fs(xi-1 — x; = x;41) and the probability densities P. (x; — x;_1) and P+ (x; — X;11)
are al considered to be coefficients for asingle Dirac distribution ¢ that is shared between
them.® When applying equation (10.12), we use only the coefficients, and simply keep track
of the fact that the corresponding density also contains a Dirac distribution.

Specifically, consider a path whose connecting edge isx,_x,. We start with the nomi-
nal probability p, = 1, and compute the relative values of the other p; by applying (10.12)
repeatedly. It is easy to check that a specular vertex at x; causes a Dirac distribution to
appear in the denominator of p; and p;, SO that these probabilities are effectively zero.
(Notice that these densities correspond to the sampling techniques wherex; isaconnecting
vertex.) However, these arethe only p; that are affected, since for other valuesof i the Dirac
distributionsin P (x; —x;_1) and P+ (x; —x;1) are canceled by each other.

The end result is particularly ssimple: we first compute all of the p; exactly aswe would
for non-specular vertices, without regard for the fact the some of the densities are actually
coefficientsfor Dirac distributions. Thenfor every vertex wherex; isspecular, weset p; and

SEvenif the connecting edge happened to have adirection for which one of the BSDF'sis specul ar (aset of
measure zero), the value of the BSDF isinfinite and cannot be represented as areal number. Thuswe choose
to ignore such paths (by assigning them aweight o, , = 0), and instead we account for them using one of the
other sampling techniques.

5From another point of view, we can say that BSDF and probability densities are expressed with respect
to a different measure function, one that assigns a positive measure to the discrete direction x; o — x;_1 .
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p;+1 t0 zero (since these probabilities include a symbolic Dirac distribution in the denom-
inator). Note that these techniques apply equally well to the case of perfectly anisotropic
reflection, where light from a given direction is scattered into a one-dimensional set of out-
going directions. In this case, the unspecified constant of proportionality associated with
the specular flag is a one-dimensional Dirac distribution.

10.3.6 Approximating the weighting functions

Up until now, we have assumed that the densities p; for sampling the current path using
other techniques can be computed exactly (as required to evaluate the weight w, ;). How-
ever, there are some situation where it is difficult or impossibleto do this; exampleswill be
given below. In these situations, the solution is to replace the true densities p; with approx-
imations p; when evaluating the weights. As long as these approximations are reasonably
good, the optimality properties of the combination strategy being used will not be signifi-
cantly affected. But even if the approximationsare bad, the resultswill at |east be unbiased,
since the weighting functions sum to one for any values of thep;.” We now discussthe rea-
sons that approximations are sometimes necessary.

Adaptive sampling isonereason that the exact densities can be difficult to compute® For
example, suppose that adaptive sampling is used on the image plane, to take more samples
where the measured variance is high. Inthis case, it isimpossible to compare the densities
for sampling techniques wheret > 2 eye vertices are used to those wheret < 1, since
the densitiesfor ¢ > 2 depend on the eventual distribution of samples over theimage plane
(which has not yet been determined). A suitable approximation in this caseisto assumethat
the density of samplesis uniform across the image.

Similarly there are some direct lighting strategies where approximations are necessary,
because the strategy makes random choices that cannot be determined from the final light
source vertex ys'. For example, consider the following strategy [Shirley et al. 1996]. First,

"Note that to avoid bias, the unweighted contribution C' ; must always be evaluated exactly; this part of
the calculation is required for any unbiased Monte Carlo algonthm The evaluation of C, should never be
a problem, since all the random choices that were used to generate the current path are epr|C|tIy available
(including random choices that are cannot be determined from the resulting path itself).

8Note that adaptive sampling can introduce bias, unless two-stage sampling is used [Kirk & Arvo 1991].
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a candidate vertex x; is generated on each light source S;. Next we compute the contribu-
tion that each vertex x; makesto the illuminated point z;_;, under the assumption that the
corresponding visibility ray isnot obstructed. Finally, we choose one of the candidatesx; at
random according to its contribution, and return it as the light source vertex y. The prob-
lemwith thisstrategy isthat given an arbitrary point x on alight source, itisvery difficult to
evaluate the probability density P (x) with which x is sampled. Thisis because the sam-
pling procedure makes random choices that are not reflected in the final result yi: namely,
the locations of the other candidate points x;, which are generated and then discarded. To
evaluate the density exactly would require analytic integration over the all possible loca-
tions of the x;. A suitable approximation in this case is to use the conditional probability
A"(x;] S;), i.e. the density for sampling x; given that the light source S; has already been
chosen.

10.4 Reducingthe number of visibility tests

To make bidirectiona path tracing more efficient, it isimportant to reduce the number of
visibility tests. The basic algorithm assumesthat all of the O(nn ) contributionsare eval-
uated; however, typically most of these contributionsare so small that avisibility test is not
justified. In this section, we develop a new technique called efficiency-optimized Russian
roulette that is an effective solution to this problem. We start with an introduction to ordi-
nary Russian roulette and a discussion of its shortcomings. Next, we describe efficiency-
optimized Russian roulette as a genera technique. Finally we describe the issues that arise
when applying this technique to bidirectional path tracing.

We consider the following abstract version of the visibility testing problem. Suppose
that we must repeatedly evaluate an estimator of the form

F = Ci+tCy,

wherethe number of contributionsn isarandom variable. We assumethat each contribution
C; can bewritten asthe product of atentative contributiont;, and avisibility factor v; (which
iseither O or 1).

The number of visibility tests can be reduced using Russian roulette. We define the
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roulette probability ¢; to be the probability of testing the visibility factor v;. Each contri-
bution then has the form

I otherwise.

It iseasy to verify that E[C;] = E[v; t;], i.e. thisestimator is unbiased.
The main question, of course, is how to choose the roulette probabilities ¢;. Typically
thisis done by choosing a fixed roulette threshold §, and defining

¢; = min(1,¢;/0).

Thus contributions larger than ¢ are always evaluated, while smaller contributions are ran-
domly skipped in away that does not cause bias.

This approach is not very satisfying, however, because the threshold ¢ is chosen arbi-
trarily. If the threshold is chosen too high, then there will be a substantial amount of extra
variance (dueto visibility teststhat are randomly skipped), whileif the threshold istoo low,
then many unnecessary visibility testswill be performed (leading to computation times that
are longer than necessary). Russian roulette thus involves a tradeoff, where the reduction
in computation time must be balanced against the corresponding increase in variance.

10.4.1 Efficiency-optimized Russian roulette

In this section, we show how to choose the roul ette probabilities ¢; so as to maximize the
efficiency of the resulting estimator F'. Recall that efficiency is defined as

1
02T’

where o2 isthe variance of the given estimator, and 7’ is the average computation time re-
quired to evaluateit. We assume the computation timeis simply proportional to the number
of raysthat are cast (n). Note that »n includes all types of rays, not just visibility rays; e.g.
for bidirectional path tracing, it includes the rays that are used to generate the light and eye
subpaths.
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To begin, we consider the effect that ¢; has on the variance and cost of £'. For the vari-
ance, we return to the definition

o — (1/q;) vi t; with probability ¢; ,
C 0 otherwise.

We can treat t; as afixed quantity (since we are only interested in the additional variance
relative to the case ¢; = 1), and we can also assume that v; = 1 (a conservative assump-
tion, sinceif v; = 0 then Russian roulette does not add any variance at all). The additional
variance due to Russian roul ette can then be written as

ViG] = E[C]] - E[CF
= [qi (t:/@)* + (1 —q) 0] —
= t7(1/a—1).

Asfor the cost, it is easy to see that the number of raysisreduced by 1 — ¢; on average.

Next, we examine how this affects the overal efficiency of . Here we make an im-
portant assumption: namely, that F' is sampled repeatedly, so that estimates of its average
variance o} and average sample cost n, can be computed. Then according to the discussion

above, the modified efficiency dueto ¢; can be estimated as
1
€= T5 ) (10.13)
[‘70 +t; (L — 1)] +(no = (1= a:))

The optimal value of ¢; is found by taking the derivative of this expression and setting it

egual to zero. After some manipulation, thisyields

G =t/ /(03 —2)/(no —1).

Conveniently, this equation has the same form that is usually used for Russian roul ette cal-
culations, where the tentative contribution is compared against a given threshold §. Since
¢; islimited to the range (0, 1], the optimal value is

¢; = min(1,t;/0)
where 6 = /(08 —3)/(no —1). (10.14)
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However, this choice of the threshold 6 has two undesirable properties. First, itsvalue
depends on the current tentative contribution ¢;, so that it must be recalculated for every
sample. Second, there is the possibility that an unusually large sample will have t? > o3,
in which case the formulafor ¢ does not make sense (although by returning to the original
expression (10.13), it is easy to verify that the optimal choiceinthiscaseisg; = 1).

To avoid these problems, we look for a fixed threshold ¢* that has the same transition
point at which ¢; = 1. It iseasy to check that ¢; > 1 if and only if 2 > o2/ny. Thus, the

fixed threshold
& = yJad/ng

leadsto Russian roul ette being applied to the same set of contributionsasthe original thresh-
old (10.14).° Notice that §* is simply the estimated standard deviation per ray.

Summary. Efficiency-optimized Russian roulette consists of the following steps. Given
an estimator F' that is sampled anumber of times, we keep track of its average variance o3
and average ray count n,. Before each sample is taken we compute the threshold

6" = /ot /ng,

and apply thisthreshold to al of the individual contributionst; that require avisibility test.
The roulette probability ¢; isgiven by

¢; = min(1,¢;/6).

Note that this technique does not maximize efficiency in a precise mathematical sense,
since we have made several assumptionsin our derivation. Rather, it should be interpreted
as a heurigtic that is guided by mathematical analysis; its purpose is to provide theoretical
insight about parameter values that would otherwise be chosen in an ad hoc manner.

9The roulette probabilities will be slightly different for ¢; < 1; it is easy to check that §* resultsin values
of ¢; that are slightly larger, by afactor between 1 and y/no/(no — 1). Thus, visibility istested slightly more
often using the fixed threshold ¢* than the original threshold 6.
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10.4.2 Implementation

The main requirement for implementing this technique is that we must be able to estimate
the average variance and cost of each sample (i.e. o7 and n,). Thisis complicated by the
fact that the mean, variance, and sample cost can vary substantially over the image plane.
It is not sufficient to simply compute the variance of all the samples taken so far, since the
average variance of samples over the whole image plane does not reflect the variance at any
particular pixel. For example, suppose that the left half of the current image is white, and
theright half isblack. The variance at most pixels might well be zero, and yet the estimated
variance will be large if all the image samples are combined.

|deally, we would like o2 and n, to estimate the variance and sample cost within the
current pixel. This could be done by taking samplesin random order over the whole image
plane, and storing the location and value of each sample. We could then estimate o2 and n
at agiven point (u, v) by computing the sample variance and average cost of the nearest IV
samples.

In our implementation, we use a simpler approach. The image is sampled in scanline
order, and we estimate o2 and n, using the last N, samples (for some fixed value of ).
Typically we let N, be the number of samples per pixel; this ensures that all variance and
cost estimates are made using samples from either the current pixel or the one before. (To
ensure that the previous pixel is aways nearby, scanlines are rendered in alternating direc-
tions. Alternatively, the pixels could be traversed according to a space-filling curve.)

The calculation of ¢} and n, can be implemented efficiently asfollows. Let n; be the
number of rays cast for the j-th sample, and let F); be its value. We then simply maintain
partial sumsof n;, F;, and F7; for thelast Ny, samples, and set the Russian roulette threshold
for the current sample to

5 = \Jod /me = \IZFJZ_QZ/]:ZQ (=)

wherethe sumsare over the most recent v, samplesonly. (Notethat thevariance calculation
isnot numerically stablein thisform, but we have not found thisto be a problem.) It ismost

efficient to update these sumsincrementally, by adding the values for the current sample j
and subtracting the values for sasmple j — N,,. For this purpose, thelast N, values of F}; and
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n; are kept in an array. We have found the overhead of these calculations to be negligible
compared to ray casting.

An aternative would be to compute a running average of each quantity. Thisis done
using the update formula

Sj = axj + (1—04)53'_1,

where o isasmall real number that determines how quickly the influence of each sample
drops off with time. (Thistechniqueis aso known as exponential smoothing.)

10.5 Reaults

We have compared bidirectional path tracing against ordinary path tracing using the test
scene shown in Figure 10.3. The scene contains a floor lamp, a spotlight, a table, and a
large glass egg. Observethat diffuse, glossy, and pure specular surfaces are all present, and
that most of the room isilluminated indirectly.

Figure 10.3(a) was created by sampling pathsup tolength £ = 5 using bidirectional path
tracing, and combining the sampling techniques p, , using the power heuristic with 5 = 2
(see Chapter 9). The image is 500 by 500 with 25 samples per pixel. Observe the caustics
on the table, both directly from the spotlight and indirectly from light reflected on the ceil-
ing. The unusual caustic pattern to the left is caused by the square shape of the spotlight’s
emitting surface.

For comparison, Figure 10.3(b) was computed using standard path tracing with 56 sam-
plesper pixel (the same computationtimeas Figure 10.3(a)). Each path was generated start-
ing from the eye, and direct lighting cal culations were used to calculate the contribution at
each vertex. Russian roulette was applied to reduce the number of visibility tests. Caus-
ticswere rendered using paths that randomly intersected the light sources themselves, since
these paths would otherwise not be accounted for. (Direct lighting calculations cannot be
used for paths where a light source shines directly on a specular surface.)

Recall that bidirectional path tracing computes a weighted sum of the contributions
made by each sampling technique p,,. Figure 10.4 is a visualization of how much each
of these techniques contributed toward the final imagein Figure 10.3(a). Each row r shows
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(a) Bidirectiona path tracing with 25 sam- (b) Standard path tracing with 56 samples per
ples per pixel pixel (the same computation time as (a))

Figure 10.3: A comparison of bidirectional and standard path tracing. The test scene con-
tains a spotlight, afloor lamp, atable, and alarge glass egg. Image(a) was computed with
bidirectional path tracing, using the power heuristic with3 = 2 to combine the samples for
each path length. The image is 500 by 500 with 25 samples per pixel. Image(b) was com-
puted using standard path tracing in the same amount of time (using 56 samples per pixel).

the sampling techniques for a particular path length £ = r + 1 (for example, the top row
shows the sampling techniques for paths of length two). The position of each imagein its
row indicates how the paths were generated: the s-th image from the left corresponds to
paths with s light source vertices (and similarly, the ¢-th image from the right of each row
corresponds to paths with ¢ eye subpath vertices). Notice that the complete set of sampling
techniques p, , is not shown; paths of length £ = 1 are not shown because the light sources
are not directly visible, and paths with zero eye or light subpath vertices are not shown be-
cause these images are virtually black (i.e. their weighted contributions are very small for
this particular scene). Thus, the full set of images (for paths up to length 5) would have
one more image on the left and right side of each row, plus an extrarow of three imageson
the top of the pyramid. (Even though these images are not shown, their contributions are
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included in Figure 10.3(a).)

The main thing to notice about these images is that different sampling techniques ac-
count for different lighting effects in the final image. Thisimpliesthat most paths are sam-
pled much more efficiently by one technique than the others. For example, consider the
image in the middle of the second row of Figure 10.4, corresponding to the sampling tech-
nique p.» (the full-size image is shown in Figure 10.5(a)). These paths were generated by
sampling two vertices starting from the eye, and two vertices starting from a light source.
Overall, thisimage is brighter than the other images in its row, which implies that samples
from this technique make a larger contribution in general. Yet observe that the glass egg
is completely black, and that the inside of the spot light looks at though it were turned off.
Thisimpliesthat the paths responsible for these effects were sampled more efficiently (i.e.
with higher probability) by the other two sampling techniquesin that row.

As paths get longer and more sampling techniques are used, the effects become much
more interesting. For example, consider the rightmost image of the bottom row in Fig-
ure 10.4 (enlarged in Figure 10.5(b)), which correspondsto pathswith five light verticesand
one eye vertex (p;,). Observe the caustics from the spotlight (especially the long “horns’
stretching to the right), which are due to internal reflectionsinside the glass egg. This sam-
pling technique al so captures pathsthat are somehow associated with the corners of theroom
(where thereisa1/r? singularity in the integrand), and paths along the silhouette edges of
the floor lamp’s glossy surfaces. Notice that it would be very difficult to take all of these
factors into account if we needed to manually partition paths among the sampling tech-
niques; multipleimportance sampling is absol utely essential in order to make bidirectional
path tracing work well.

It is also interesting to observe that the middle images of each row in Figure 10.4 are
brighter than the rest. Thisimpliesthat for the majority of paths, the best sampling strategy
isto generate an equal number of vertices from both sides. This can be understood in terms
of the diffusing properties of light scattering, i.e. the fact that although the emitted radiance
IS quite concentrated, each scattering step spreads the energy more evenly throughout the
scene. The same can be said for the emitted importance function; thus by taking several
steps from the light sources and the eye, we have abigger “target” when attempting to con-
nect the two subpaths.
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Figure 10.4: Thisfigures shows the weighted contribution that each bidirectional sampling
technique p, ; makesto Figure 10.3(a). Each rowr shows the contributions of the sampling
techniques for a particular path lengthk = r + 1. The position of each image in its row
indicates how the paths were generated: thes-th image from the left in each row usess

light subpath vertices, while thet-th image from the right usest eye subpath vertices. (For
example, thetop right image usess = 2 light verticesandt = 1 eyevertex, whilethe bottom
leftimage usess = 1 light vertex andt = 5 eye vertices.) Note that these images have been
over-exposed so that their details can be seen; specifically, the images in rowr were over-
exposed by r f-stops. The images were made by simply recording the contributionsC ; in
adifferent image for each value of s and ¢.
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(a) Two light vertices, two eye vertices (p; »). (b) Five light vertices, one eye vertex (ps 1).

Figure 10.5: These are full-size images showing the weighted contributions to Fig-
ure 10.3(a) that are due to samples from two particular techniques p» » and ps ;). These
are enlarged versions of the images in Figure 10.4, wherep; » is the middle image of the
second row, and ps ; isthe rightmost image of the bottom row.

10.6 Comparison with related work

A similar bidirectional path tracing algorithm has been described independently by Lafor-
tune & Willems [1993, 1994]. This section compares the two frameworks in detail, and
discusses some possible extensions of the algorithms.

Themost important difference between our algorithmand L af ortune’ sisthat the samples
are combined using a provably good strategy. This requires a substantially different theo-
retical basis for the algorithm, in order that multiple importance sampling can be applied.
In particular, the path integral formulation of Chapter 8 makes two essential steps: it ex-
presses light transport in the form of an integration problem, and it provides a well-defined
basisfor comparing the probabilitieswith which different sampling techniques generate the
same path. On the other hand, Lafortune formulatesbidirectional path tracing asarecursive
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evaluation of theglobal reflectance distribution function (GRDF).1° Thisiscertainly avalid
theoretical basis for bidirectional path tracing; however, it does not express the problem in
the form needed for multiple importance sampling.

Another difference isthat our framework includes several important estimatorsthat are
missing from Lafortune’s. Theseinclude the estimators where zero or one vertices are gen-
erated from the eye, and also the naive path tracing estimator where zero vertices are gener-
ated from the light source. These estimators are very important for generating caustics and
other “difficult” transport paths, and help to make the calculations more robust. We have
found that the estimator with one eye vertex (t = 1) issurprisingly useful for low-variance
renderingin general (itisessentially aparticletracing technique where samplesare recorded
directly in the image). Also note that although Lafortune describes the estimator with one
light vertex (s = 1), his framework does not allow the use of direct lighting techniques.
This optimization is very important for making bidirectional path tracing competitive with
standard path tracing on “normal” scenes, i.e. those where most surfaces are directly lit.

More generally, the two frameworks have a different conception of what bidirectional
path tracing is. Lafortune describesit as a specific technique for generating a path from the
eye, apath from the light sources, and connecting all pairs of vertices via shadow rays. On
the other hand, we view bidirectional path tracing as a family of sampling techniques for
paths. The samples from each technique can be generated in any way desired; the specific
strategy of connecting every prefix of a light subpath to every suffix of an eye subpath is
simply an optimization that allowsthese samplesto be generated moreefficiently. Any other
desired method of generating the paths could be used instead, e.g. by connecting severd
different eye subpathsto the same light subpath, or by maintaining a“pool” of eye and light
subpaths and making random connections between them, or by generating the pathsin more
than two pieces (by sampling one or more pieces starting from the middle).

A minor difference between the two frameworks is that Lafortune assumes that light
sources are sampled according to emitted power, and that materials are sampled according
to the BSDF (exactly). Our formulation of bidirectional path tracing allows the use of ar-
bitrary probability distributionsto choose each vertex. The direct lighting strategy applied

10The“GRDF” is simply a new name for the kernel of the solution operator S defined by equation (4.16).



328 CHAPTER 10. BIDIRECTIONAL PATH TRACING

to the case s = 1 isasimple example of why thisis useful. Other possibilities include:
selecting certain scene objects for extra sampling (e.g. portals between adjacent rooms, or
small specular objects); using non-local sampling technigques to generate chains of spec-
ular vertices (see Section 8.3.4); or using an approximate radiance/importance solution to
increase the sample densities in bright/important regions of the scene. Bidirectional path
tracing is designed to be used in conjunction with these other sampling technigues, not to
replace them.

Another minor differenceisthat our development isin terms of general linear measure-
ments /;, rather being limited to pixel estimates only. This means that bidirectional path
tracing could be used to compute a view-independent solution, where the equilibrium radi-
ance function L is represented as alinear combination of basis functions{ By, . .., By }.1t
Each measurement /; is simply the coefficient of B;, and is defined by

I; = (W9, L)

whereW.”) = B; isthecorresponding dual basisfunction.’? Inthissituation, each “ eye sub-
path” startsfrom asurface of the scene rather than the cameralens. By using afixed number
of eye subpathsfor each basisfunction, we can ensurethat every coefficient receivesat least
some minimum number of samples. This bidirectional approach is an unexplored alterna-
tive to particle tracing for view-independent solutions, and may help to solve the problem
of surface patchesthat do not receive enough particles. (Notethat particletracing itself cor-
responds to the case where ¢ = 0, and isincluded as a specia case of this framework.)

Lafortune & Willems [1995b] has described an alternative approach to reducing the
number of visibility tests. His methods are based on standard Russian roulette and do not
attempt to maximize efficiency. We have not made a detailed numerical comparison of the
two approaches.

UTypically this representation is practical only when most surfaces are diffuse, so that the directional de-
pendence of L(x,w) does not need to be represented.

The dua basis functions satisfy (B;, B;) = 1 wheni = j, and (B;, B;) = 0 otherwise. For example,
when {By, ..., By} isan orthonormal basis, then B’j = B,.
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10.7 Conclusions

Bidirectional path tracing is an effective rendering algorithm for many kinds of indoor
scenes, with or without strong indirect lighting. By using arange of different sampling tech-
niques that take into account different factors of the integrand, it can render awide variety
of lighting effects efficiently and robustly. The algorithmisunbiased, and supportsthe same
range of geometry and materials as standard path tracing.

It is possibleto construct scenes where bidirectional path tracing improves on the vari-
ance of standard path tracing by an arbitrary amount. To do so, it suffices to increase the
intensity of the indirect illumination. In the test case of Figure 10.3, for example, the vari-
ance of path tracing increases dramatically as we reduce the size of the directly illuminated
area on the ceiling, while bidirectional path tracing isrelatively unaffected.

On the other hand, one weakness of the basic bidirectional path tracing algorithmisthat
there is no intelligent sampling of the light sources. For example, if we were to simulate
the lighting in asingle room of alarge building, most of the light subpaths would start on a
light source in aroom far from the portion of the scene being rendered, and thus would not
contribute. This suggests the idea of sampling light sources according to some estimate of
their indirect lighting contribution. Note that methods have already been developed to ac-
celerate thedirect lighting component when there are many lights, for example by recording
information in a spatial subdivision [Shirley et a. 1996]. However, these methods do not
help with choosing theinitial vertex of alight subpath. In general, we would like to choose
alight source that is nearby physically, but is not necessarily directly visible to the viewer.

Similarly, bidirectional path tracing is not suitable for outdoor scenes, or for scenes
where the light sources and the viewer are separated by difficult geometry (e.g. a door
dightly gar). In these cases the independently chosen eye and light subpaths will proba-
bly not be visible to each other.

Finally, note that bidirectional path tracing can miss the contributions of some paths if
point light sources and perfectly specular surfaces are allowed. (Thisis true of standard
path tracing as well.) For example, the algorithm is not capable of rendering caustics from
a point source, when viewed indirectly through a mirror using a pinhole lens. Thisis be-
cause bidirectional path tracing is based on local path sampling techniques and thus it is
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will miss the contributions of paths that do not contain two adjacent non-specular vertices
(see Section 8.3.3). However, recall that such paths cannot exist if afinite-aperture lensis
used, or if only area light sources are used, or if there are no perfectly specular surfacesin
the given scene. Thus bidirectional path tracing is unbiased for al physically valid scene
models.



Chapter 11
Metropolis Light Transport

We propose anew Monte Carlo agorithmfor solving the light transport problem, called Me-
tropolislight transport (MLT). Itisinspired by the Metropolis sampling method from com-
putational physics, whichisoften used for difficult sampling problemsin high-dimensional
spaces. We show how the M etropolis method can be combined with the path integral frame-
work of Chapter 8, in order to obtain an effective importance algorithm for the space of
paths.

Paths are sampled according to the contribution they make to theideal image, by means
of arandom walk through path space. Starting with a single seed path, we generate a se-
guence of light transport paths by applying random mutations (e.g. adding a new vertex to
the current path). Each mutation isaccepted or rejected with a carefully chosen probability,
to ensure that paths are sampled according to the contribution they make to the ideal image.
Thisimageis then estimated by sampling many paths, and recording their locations on the
image plane.

The resulting algorithm is unbiased, handles general geometric and scattering models,
uses little storage, and can be orders of magnitude more efficient than previous unbiased
approaches. It performs especially well on problems that are usually considered difficult,
e.g. thoseinvolving bright indirect light, small geometric holes, or glossy surfaces. Further-
more, it is competitive with previous unbiased algorithms even for scenes with relatively
simple illumination.

We start with ahigh-level overview of the MLT algorithm in Section 11.1, and then we

331
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describe its components in detail. Section 11.2 summarizes the classical Metropolis sam-
pling algorithm, as developed in computational physics. Section 11.3 shows how to com-
binethisideawith the path integral framework of Chapter 8, toyield an effectivelight trans-
port algorithm. Section 11.4 discusses the properties that a good mutation strategy should
have, and describes the strategies that we have implemented. In Section 11.5, we describe
several refinements to the basic algorithm that can make it work more efficiently. Results
are presented in Section 11.6, followed by conclusions and suggested extensions in Sec-
tion 11.7. To our knowledge, thisisthe first application of the Metropolis method to trans-
port problems of any kind.

11.1 Overview of the MLT algorithm

To make an image, we sample paths from the light sources to the lens. Each path 7 isa
sequence xpx; . . . X, Of points on the scene surfaces, where & > 1 isthe length of the path
(the number of edges). The numbering of the vertices along the path follows the direction
of light flow.

We will show how to define afunction f on paths, together with a measure 1, such that
Ip f(Z) du(z) represents the power flowing from the light sources to the image plane along
aset of paths D. We call f the image contribution function, since f(z) is proportional to
the contribution made to the image by light flowing along z. (It is closely related to the
measurement contribution function f; (described in Chapter 8), which specifies how much
each path contributes to a given pixel value.)

Our overall strategy isto sample pathswith probability proportional to f, and record the
distribution of paths over the image plane. To do this, we generate a sequence of paths X,
X1, ..., Xy, where each X, is obtained by arandom mutation to the path X;_;. The muta-
tions can have almost any desired form, and typically involve adding, deleting, or replacing
asmall number of vertices on the current path.

However, each mutation has a chance of being rejected, depending on the relative con-
tributions of the old and new paths. For example, if the new path passes through a wall,
the mutation will be rejected (by setting X; = X;_;). The Metropolis framework gives a
recipe for determining the acceptance probability for each mutation, such that in the limit
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function METROPOLIS-LIGHT-TRANSPORT()

T < INITIALPATH()
image «+— { array of zeros }
fori < 1toN
7 + MUTATE(T)
a < ACCEPTPROB (T — 7))
if RANDOM () < a
thenz «+ y
RECORDSAMPLE(image, T)
return image

Figure 11.1: Pseudocode for the Metropolis light transport algorithm.

the sampled paths X; are distributed according to f (thisisthe stationary distribution of the
random walk).

As each path is sampled, we update the current image (which is stored in memory as a
two-dimensional array of pixel values). To do this, we find the image location (u, v) corre-
sponding to each path sample X;, and update the values of those pixels whose filter support
contains (u,v). All samples are weighted equally; the light and dark regions of the final
image are caused by differences in the number of samplesrecorded there?

The basic structure of the MLT algorithm is summarized in Figure 11.1. We start with
an image of zeros, and a single path z that contributes to the desired image. We then re-
peatedly propose a mutation to the current path, randomly decide whether or not to accept
it (according to a carefully chosen probability), and update the image with a sample at the
new path location.

The key advantage of the Metropolis approach is that the path space can be explored
locally, by favoring mutationsthat make small changes to the current path. Thishas several
consequences. First, the average cost per sample is small (typically only one or two rays).

1At least, thisistrue of the basic algorithm; in Section 11.5, we describe optimizations that allow the sam-
plesto be weighted differently.
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Second, once an important path is found, the nearby paths are explored as well, thus amor-
tizing the expense of finding such paths over many samples. Third, themutation setiseasily
extended. By constructing mutationsthat preserve certain properties of the path (e.g. which
light source is used) while changing others, we can exploit various kinds of coherence in
the scene. It is often possible to handle difficult lighting problems efficiently by designing
a specialized mutation in this way.

In the remainder of this chapter, we will describe the MLT algorithm in more detail.

11.2 TheMetropolis sampling algorithm

In 1953, Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller introduced an algorithm for
handling difficult sampling problemsin computational physics[Metropoliset al. 1953]. It
was originally used to predict the material properties of liquids, but has since been applied
to many areas of physics and chemistry.

The method works as follows (our discussion is based on Kalos & Whitlock [1986]).
We are given a state space?, and a non-negative function f : Q2 — IR*. We are also given
someinitial state X, € 2. The goal isto generate arandom walk X, X1, ... such that X
iseventually distributed proportionally to f, no matter which state X, we start with. Unlike
most sampling methods, the Metropolis algorithm does not require that f must integrate to
one.

Each sample X;; is obtained by making arandom changeto X;_; (in our case, these are
the path mutations). Thistype of random walk, where X; dependsonly on X;_,, iscaled a
Markov chain. Welet K'(z — i) denotethe probability density of going to state 77, given that
we are currently in state z. Thisis called the transition function, and satisfies the condition

/K(:E—>gj)du(g) — 1 fordl zeQ.
Q

11.2.1 Thestationary distribution

Each X, isarandom variable with some density function p;, which is determined from p;_;
by
pi(e) = | K(z=2)pia(9)du(y). (11.1)
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With mild conditionson K (discussed further in Section 11.4.1), the p; will converge to a
unique density function p*, called the stationary distribution. Note that p* does not depend
on theinitial state X,,.

To give a simple example of thisidea, consider a state space consisting of n? vertices
arranged inann x n grid. Each vertex is connected to its four neighbors by edges, where
the edges “wrap” from left to right and top to bottom as necessary (i.e. with the topology of
atorus). A transition consists of randomly moving from the current vertex = to one of the
neighboring vertices ;7 with a probability of 1/5 each, and otherwise staying at vertex z.

Suppose that we start at an arbitrary vertex X, = 7, so that po(z) = 1 for z = 7,
and py(Z) = 0 otherwise. Then after onetransition, X isdistributed with equal probability
among z, and its four neighbors. Similarly, X, israndomly distributed among 13 vertices
(although not with equal probability). If this process is continued, eventually p; converges
to a fixed density function p*, which necessarily satisfies

pi(x) = X K(y—x)p'(y).

For this example, p* isthe uniform density p*(7) = 1/n?.

11.2.2 Detailed balance

In atypical physical system, the transition function K is determined by the physical laws
governing the system. Given some arbitrary initial state, the system then evolves towards
equilibrium through transitions governed by K.

The Metropolis algorithm works in the opposite direction. Theideaisto invent or con-
struct atransition function K whose resulting stationary distribution will be proportional to
the given f, and which will convergeto f as quickly as possible. The technique is simple,
and has an intuitive physical interpretation called detailed balance.

Given X;_;, weobtain X; asfollows. First, we choose atentative sample X, which can
be done in almost any way desired. Thisis represented by the tentative transition function
T, where T'(x — y) givesthe probability density that X! = y giventhat X; | = z.
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Thetentative sampleisthen either accepted or rejected, according to an acceptance prob-
ability a(z — g) which will be defined below. That is, we let

(11.2)

s\ —

) X! with probability a(X; ; — X!),
X otherwise.

To see how to set a (7 — 77), suppose that we have already reached equilibrium, i.e. p;_;
is proportional to f. We must define K'(z — ) such that the equilibrium is maintained. To
do this, consider the density of transitions between any two states = and 3. From z to 7,
the transition density is proportional to f(z) 7(z — 7) a(Z — y), and asimilar statement
holds for the transition density from 7 to z. To maintain equilibrium, it is sufficient that
these densities be equal:

f@)T(E—=y)a(z—=y) = [(HTH—=T)a(f—1), (11.3)

acondition known as detailed balance. We can verify that if p;,_; o« f and condition (11.3)
holds, then equilibrium is preserved:
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Thus the unique equilibrium distribution must be proportional to f.

11.2.3 The acceptance probability

Recall that f is given, and T was chosen arbitrarily. Thus, equation (11.3) is a condition
on theratio a(z — y)/a(y — ). In order to reach equilibrium as quickly as possible, the
best strategy isto make a(z — ¢) and a(y — ) aslarge as possible [Peskun 1973], which
isachieved by letting

W(T—g) = min{l,W} . (11.4)
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According to thisrule, transitions in one direction are always accepted, while in the other
direction they are sometimes rejected, such that the expected number of moves each way is
the same.

11.2.4 Comparison with genetic algorithms

The Metropolis method differs from genetic algorithms [Goldberg 1989] in several ways.
First, they have different purposes: genetic algorithms are intended for optimization prob-
lems, while the Metropolis method is intended for sampling problems (there is no search
for an optimum value). Genetic algorithms work with a population of individuals, while
Metropolis stores only a single current state. Finally, genetic algorithms have much more
freedom in choosing the allowable mutations, since they do not need to compute the condi-
tional probability of their actions.

Beyer & Lange [1994] have applied genetic algorithms to the problem of integrating
radiance over a hemisphere. They start with a population of rays (actually directional sam-
ples), which are evolved to improve their distribution with respect to the incident radiance
at a particular surface point. However, their methods do not seem to lead to afeasible light
transport algorithm.

11.3 Theoretical formulation of M etropolislight transport

To complete the MLT algorithm outlined in Section 11.1, there are several tasks. First, we
must formulate the light transport problem so that it fits the Metropolisframework. Second,
we must show how to avoid start-up bias, a problem that affects many Metropolis applica-
tions. Most importantly, we must design a suitable set of mutations on paths, such that the
Metropolismethod will work efficiently. In thissection we deal with thefirst two problems,
by showing how the Metropolis method can be adapted to estimate all of the pixel values
of an image simultaneously and without bias.

Recall that according to the path integral framework of Chapter 8, each measurement /;
can be expressed in the form

I = [ @) du),
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where( istheset of all transport paths, 1 isthe area-product measure, and f; isthe measure-
ment contribution function. In our case, the measurements /; are pixel values. Thisimplies
that each integrand f; has the form

fi(x) = n;(@) f(7), (11.5)

where h; representsthefilter function for pixel j, and f representsall the other factorsof f;
(which are the same for all pixels). In physical terms, [, f(Z) du(z) represents the radiant
power received by the image region of the image plane along a set D of paths.? Note that
h; depends only on the last edge x;,_x;, of the path, which we call the lens edge.

An image can now be computed by sampling N paths X; according to some density
function p, and using the identity

_ B [i i M] | (11.6)

Notice that if we could take samples according to the density functionp = (1/b) f (where
b isthe normalization constant |, f(z) du(x)), the estimate for each pixel would simply be

I = E l%ébhj(xi)] .

This equation can be evaluated efficiently for all pixelsat once, since each path contributes
to only afew pixel values.

Thisapproach requiresthe evaluation of b, and the ability to samplefrom adensity func-
tion proportional to f. Both of these are hard problems. For the second part, the Metropolis
algorithm will help; however, the samples X; will have the desired distribution only in the
limit asi— oo. Intypical Metropolis applications, thisis handled by starting in some fixed
initial state X, and discarding the first & samples until the random walk has approximately
converged to the equilibrium distribution. However, it is often difficult to know how large
k should be. If it istoo small, then the sampleswill be strongly influenced by the choice of
theinitia path X, which will bias the results (thisis called start-up bias).

2We define f(z) to be zero for paths that do not contribute to any pixel value (so that we do not waste any
samples there).
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11.3.1 Eliminating start-up bias

We show how the MLT algorithm can be initialized to avoid start-up bias. The ideaisto
start thewalk in arandom initial state X, which is sampled from some convenient density
function p, on paths (we use bidirectional path tracing for this purpose). To compensate for
the fact that p, is not the desired equilibrium distribution p* = (1/b) f, the sample X is
assigned aweight:

Wy = f(Xo) /po(Xo) :

Thus after one sample, the estimate for pixel j is W h;(Xy) (see equation (11.6). All of
these quantities are computable since X, is known.

Additional samples X, X,, ..., Xy are generated by mutating X, according to the Me-
tropolis algorithm (using f as the target density). Each of the X; has a different density
function p;, which only approaches the stationary distribution p* = (1/b) f asi— oco. To
avoid bias, however, it is sufficient to assign these samples the same weight W, = W, as
the original sample, and use the following estimate for pixel j:

1 X _
I = E [— > m(x»] . (11.7)
N =1

We give aproof that this estimate is unbiased in Appendix 11.A. However, the follow-
ing explanation may give some additional insight. Recall that the initial path is a random
variable, so that the expected value in (11.7) is an average over all possible values of X.
Thus, consider alarge group of initial paths X, ; obtained by sampling p, many times. If p,
isthe stationary distribution (1/b) f, and all the paths are weighted equally, then this group
of pathsisin equilibrium: the distribution of paths does not change as mutationsare applied.
Now suppose that we again samplealarge group of initial paths, thistimefrom an arbitrary
density function py, and that we assign each path theweight f (X, ;) /po(Xo ;). Eventhough
thisdoes not give the desired distribution of paths, the distribution of weight is proportional
to the desired equilibrium f. The equilibriumis preserved as the paths are mutated (just as
in the first case), which leads to an unbiased estimate of /;.

This technigque for removing start-up biasis not specific to light transport. However, it
requires the existence of an alternative sampling method p,, which is difficult to obtain in
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some cases. (Often the reason for using the Metropolis method in the first place is the lack
of suitable alternatives.)

11.3.2 Initialization

In practice, initializing the MLT algorithm with a single seed path does not work well. 1f
we generate only one path X, (e.g. using bidirectional path tracing), itislikely that W, = 0
(for example, the path may go through awall). Since al subsequent samples use the same
weight W; = W, thiswould lead to a completely black final image. Conversely, theinitial
weight W, on other runs may be much larger than expected. This does not contradict the
fact that the algorithmisunbiased, since biasrefersonly to the expected value on aparticular
run.

The obvious solution is to run n copies of the algorithm in parallel (with different ran-
dom initial paths), and accumulate all the samples into one image. The strategy we have
implemented has two phases. First we sample a moderately large number of paths Xj 1,
ooy Xon, andlet Wy, ..., Wy, bethe corresponding weights. We then select a represen-
tative sample of n’ of these paths (where n’ is much smaller than n), and assign them equal
weights. (Thereasonsfor doing thisare discussed below.) These paths are used asindepen-
dent seeds for the Metropolis phase of the algorithm.

Specifically, each representative path X ; is chosen from among the initial paths X, ;
according to discrete probabilities that are proportional to 1 ;. All of these paths X, 0; e
assigned the same weight:

1 n
|/1/, —_— |/|/ .
0 — E: 0.j -
nis

It is straightforward to show that this resampling procedure is unbiased.®

The value of n is determined indirectly, by generating a fixed number of eye and light
subpaths (e.g. 10000 pairs), and considering al the ways to link the vertices of each pair.
Note that it is not necessary to save all of these pathsin order to apply the resampling step;
they can be regenerated by restarting the random number generator with the same seed.

3The resampling can be optimized slightly by choosing the new pathswith equal spacing in the cumulative
weight distribution of the X ;; thisensuresthat the same pathiis not selected twice, unlessitsweight is at least
afraction 1/n' of thetotal.



11.3. THEORETICAL FORMULATION OF METROPOLIS LIGHT TRANSPORT 341

It is often reasonable to choose n’ = 1 (i.e. to initialize the Metropolis algorithm with
a single representative seed path). In this case, the purpose of sampling n pathsin the first
phaseisto estimate the mean value of W, which determines the absol uteimage brightness*
If theimage is desired only up to a constant scale factor, then the first phase can be termi-
nated as soon asa single path with f(z) > 0 isfound. The main reasons for retaining more
than one seed path (i.e. for choosingn’ > 1) aretoimplement convergence tests (see bel ow)
or lens subpath mutations (see Section 11.4.4).

Effectively, we have separated the image computation into two subproblems. The ini-
tialization phase estimates the overall image brightness, while the Metropolis phase deter-
minesthe relative pixel intensities across the image. The effort spent on each phase can be
decided independently. In practice, however, the initialization phase is a negligible part of
the total computation time. (Observe that even if the algorithm isinitialized using 100 000
bidirectional samples, thiswould represent less than one sample per pixel for an image of
reasonable size.)

11.3.3 Convergencetests

Another reason to run several copies of the algorithm in parallel is that it facilitates con-
vergence testing. (We cannot apply the usual variance tests to the samples generated by a
single run of the Metropolis algorithm, since consecutive samples are highly correlated.)
To test for convergence, the Metropolis phase can be started with »’ independent seed
paths, whose contributions to the image are recorded separately (in the form of n’ separate
images). Thisisdoneonly for asmall representative fraction of the pixels, sinceit would be
too expensive to maintain many copies of alargeimage. For each such pixel, we thus have
availablen’ independent, unbiased samples of itstruevalue. (Each samplevalue changesas
the algorithm proceeds, since it depends on how many path mutations have contributed to
the specified pixel of aparticular test image.) The sample variance of these pixels can then
be tested periodically, until the results are within prespecified bounds. Notice that unlike
most graphics problems, the number of independent samples per pixel remains constant (at

“More precisely, E[W,] = [ f = b, which represents the total power falling on the image region of the
film plane.
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n') asthe algorithm proceeds — it is the values of the samples that change.

If the radiance values that contribute to a given pixel can be bounded in advance, more
advanced convergence techniques could in theory be applied. In particular Dagum et al.
[1995] have proposed an algorithm that can estimate the expected value of a random vari-
able Z to within a factor of (1 + ¢) with a guaranteed probability of at least 1 — §. They
assume only that Z is bounded within a known range [0, M|]. Furthermore, the number of
independent samples used by their algorithm is proven to optimal for every givene, ¢, and
Z to within a constant factor. In the case of the Metropolis light transport, observe that an
arbitrary number of independent samples can be generated by restarting the algorithm with
new seed paths. However, once again it seemsimpractical to apply thistechnique to every
pixel of an image.

These convergence testing procedures add a small amount of bias, but thisisinevitable
for any technique that makes guarantees about the quality of its results. Note that the first
technique we described boundsthe sample variance of thetest pixels, whilethe second tech-
nique boundsthe actual error. Also notethat unbiased techniques such astwo-stage adaptive
sampling [Kirk & Arvo 1991] do not make any guarantees about the final image quality, due
to the possibility of outlying samples during the second stage of sampling.

Finally, notethat in all of our teststhe number of mutationswas specified manually, both
to eliminate bias and so that we would have explicit control over the computation time.

11.3.4 Spectral sampling

Our discussion so far has been limited to monochrome images, but the modifications for
color are straightforward.

We represent BSDF's and light sources as point-sampled spectra (although it would be
easy to use some other representation). Given a path, we compute the energy delivered to
the lens at each of the sampled frequencies. The resulting spectrum is then converted to a
tristimulus color value (we use RGB) before it is accumulated in the current image.

The image contribution function f is redefined to compute the luminance of the corre-
sponding path spectrum. Thisimpliesthat path sampleswill be distributed according to the
luminance of theideal image, and that the luminance of every filtered image sample will be
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the same (irrespective of itscolor). Effectively, each color component ¢; is sampled with an
estimator of the form ¢; /p, where p is proportional to the luminance.

Since the human eyeis substantially more sensitive to luminance differences than other
color variations, this choice helps to minimize the apparent noise.®

11.4 Good mutation strategies

The main disadvantage of the Metropolis method isthat consecutive samplesare correlated,
which leads to higher variance than we would get with independent samples. This can hap-
pen either because the proposed mutations to the paths are very small, or because too many
mutations are rejected.

Correlation can be minimized by choosing a suitable set of path mutations. We first con-
sider some of the propertiesthat these mutations should have, in order to minimizethe error
in the final image. Then we describe three specific mutation strategies that we have imple-
mented, namely bidirectional mutations, perturbations, and lens subpath mutations. These
strategies are designed to satisfy different subsets of the goals mentioned below; our imple-
mentation uses a mixture of all three (aswe will discussin Section 11.4.5).

11.4.1 Desirable mutation properties

In this section, we describe the properties that a good mutation strategy should have. These
are the main factors that need to be considered when a mutation strategy is designed.

High acceptance probability. |If the acceptance probability a(z — ) isvery small onthe
average, there will be long path sequences of theform z, z, . . ., Z due to rgjections. This
leads to many samples at the same point on the image plane, and appears as noise.

SAnother way to handle color is to have a separate run for each frequency. However, this is inefficient
(we get less information from each path) and leads to unnecessary color noise. Note that it is not necessary
to have a separate run at each wavelength in order to handle dispersion (i.e. arefractive index that varies with
wavelength). It can be handled perfectly well in the model described above, by randomly sampling a spectral
band only when a dispersive material is actually encountered (and using aweight of the usual form f/p).
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Figure11.2: If only additions and deletions of asingle vertex are alowed, then paths cannot
mutate from one side of the barrier to the other.

Largechangestothepath. Evenif theacceptance probability for most mutationsishigh,
samples will still be highly correlated if the proposed path mutations are too small. It is
important to propose mutations that make substantial changes to the current path, such as
increasing the path length, or replacing a specular bounce with a diffuse one.

Ergodicity. If theallowable mutationsaretoo restricted, itispossiblefor the random walk
to get “stuck” in some subregion of the path space (i.e. one where the integral of f isless
than b). To see how this can happen, consider Figure 11.2, and suppose that we only allow
mutations that add or delete a single vertex. In this case, there is no way for the path to
mutate from one side of the barrier to the other, and we will miss part of the path space.
Technically, we want to ensure that the random walk convergesto anergodic state. This
means that no matter how X, is chosen, it converges to the same stationary distribution p*.
To do this, it is sufficient to ensure that 7'(z — 7) > 0 for every pair of states z, § with
f(z) > 0and f(g) > 0. Inour implementation, thisis always true (see Section 11.4.2).

Changes to the image location. To minimize correlation between the sample locations
on theimage plane, it isdesirable for mutationsto change the lens edge x;._; x,. Mutations
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to other portions of the path do not provide information about the path distribution over the
image plane, which is what we are most interested in.

Stratification. Another potential weakness of the Metropolis approach isthe random dis-
tribution of samples across theimage plane. Thisiscommonly known asthe“ballsin bins’
effect: if we randomly throw n ballsinto n bins, we cannot expect one ball per bin. (Many
bins may be empty, while the fullest bin islikely to contain ©(log n) balls.) In animage,
this unevenness in the distribution produces noise.

For some kinds of mutations, this effect is difficult to avoid. However, it isworthwhile
to consider mutations for which some form of stratification is possible.

Low cost. It isalso desirable that mutations be inexpensive. Generally, thisis measured
by the number of rays cast, since the other costs are relatively small.

We now consider some specific mutation strategies that address these goals. Note that
the Metropolisframework allows us greater freedom than standard Monte Carlo algorithms
in designing sampling strategies. Thisis because we only need to compute the conditional
probability 7'(z — ) of each mutation: in other words, the mutation strategy is allowed to
depend on the current path.

11.4.2 Bidirectional mutations

Bidirectional mutations are the foundation of the MLT algorithm. They are responsible for
making large changes to the path, such as modifying its length. The basic ideais simple:
we choose a subpath of the current path z, and replace it with adifferent subpath. Wedivide
thisinto severa steps.

First, the subpath to delete is chosen. Given the current pathz = xq . . . x;, we assign a
probability pq[l, m| to the deletion of each subpath x; . . . x,,,. The endpoints of this subpath
are not included, so that x; . . .x,, consistsof m — [ edgesand m — [ — 1 vertices (with
indicessatisfying —1 <l <m < k + 1).

In our implementation, the deletion probability p4[l, m] is a product two factors. The
first factor p4 ; depends only on the subpath length (i.e. the number of edges); its purpose
isto favor the deletion of short subpaths. (These are less expensive to replace, and yield
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mutations that are more likely to be accepted, since they make a smaller change to the cur-
rent path). The purpose of the second factor p, » iSto avoid mutations with low acceptance
probabilities; it will be described in Section 11.5.

The density function pq[l, m] is normalized and sampled to determine the deleted sub-
path. At thispoint, z hasbeen splitinto two (possibly empty) piecesx, . .. x; and x,, . . . X.
To compl ete the mutation, we must generate a new subpath that connects these two pieces.

We start by choosing the number of vertices !’ and m' to be added to each side. This
is done in two steps: first, we choose the new subpath length, k£, = I +m' + 1. Itisde-
sirable that the old and new subpath lengths be similar, since this will tend to increase the
acceptance probability (i.e. it represents a smaller change to the path). Thus we choose k.,
according to adiscrete distribution p, ; which assigns a high probability to keeping the total
path length the same. Then, we choose specific valuesfor !’ and m' (subject to the condition
I'+m' + 1 = k,), according to another discrete distribution p, » that assigns equal proba-
bility to each candidate value of I’. For convenience, welet p,[l’, m’] denote the product of
Pa1 @ p,o.

To sample the new vertices, we add them one at atime to the appropriate subpath. This
involves first sampling a direction according to the BSDF at the current subpath endpoint
(or aconvenient approximation, if sampling from the exact BSDF is difficult), followed by
casting aray to find the first surface intersected. An initially empty subpath is handled by
choosing arandom point on a light source or the lens as appropriate.

Finally, we join the new subpaths together, by testing the visibility between their end-
points. If the path is obstructed, the mutation isimmediately rejected. This aso happens if
any of the ray casting operations failed to intersect a surface.

Notice that there is a non-zero probability of throwing away the entire path, and gen-
erating a new one from scratch. This automatically ensures the ergodicity condition (Sec-
tion 11.4.1), so that the algorithm can never get “ stuck” forever in a small subregion of the
path space. (However, if the mutationsare poorly chosen then the algorithm might get stuck
for along finite time.)

Parameter values. The following values have provided reasonable results on our test
cases. For the probability pq [k4] Of deleting a subpath of length &y = m — [, we use
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pai[l] = 0.25, pq1[2] = 0.5, and pqi[ka] = 27 for kg > 3. For the probability
Pa1|k,) Of adding a subpath of length k,, we use p, ; (k4] = 0.5, pa1lka £ 1] = 0.15, and
Pailka £j] =0.2(277) for j > 2.

11.4.2.1 Evaluation of the acceptance probability.

Observe that the acceptance probability «(z — ) from (11.4) can be written as the ratio

f()
T(x—y)

a(t—y) = % where  R(z—y) =

(11.8)
Theform of R(z — 7) isvery similar to the sample value f(7)/p(7) that is computed by
standard Monte Carlo algorithms; we have simply replaced an absolute probability p(y) by
aconditional probability T'(z — 7).

Specifically, T'(z — 7) is the product of the discrete probability pq[l, m] for deleting
the subpath x; . . . x,,,, and the probability density for generating the I’ + m’ new vertices
of §. To calculate the latter, we must take into account all I’ + m’ + 1 ways that the new
vertices can be split between subpaths generated from x; and x,,,. (Although these vertices
were generated by a particular choice of (', the probability 7'(z — ) must take into account
all of these ways of going from state z to 77.) Note that the unchanged portions of z do not
contribute to the calculation of 7'(z — 7). Itisalso convenient to ignore the factors of f(7)
and f(7) that are shared between the paths, since this does not change the result.

An example. Let T be a path x,x;x5x3, and suppose that the random mutation step has
deleted the edge x; x5 (see Figure 11.3). It isreplaced by new vertex z; by casting a ray
from x;, so that the new path is

:lj = X0X17Z1 X2X3.

This corresponds to the random choices! = 1, m = 2,1’ =1, m' = 0.
Let P.(x — x') denote the probability density of sampling the direction from x to x/,
measured with respect to projected solid angle.® Then the probability density of sampling

®Recall that if P, (x — x') is the density with respect to ordinary solid angle, then P.. = P, / [cos(6,)],
where 6, isthe angle between x — x’ and the surface normal at x.
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zl‘\‘ new subpath

old subpath

Figure 11.3;: A simple example of a bidirectiona mutation. The original pathz =
xox1x2x3 ISmodified by deleting the edgex;x, and replacing it with anew vertexz;. The
new vertex is generated by sampling adirection atx; (according to the BSDF) and casting
aray. ThlsyleldS amutated pathg = X(X1Z1X2X3.

the vertex x’ (measured with respect to surface area) isgiven by P (x —x') G(x <> x/).
We now have all of the information necessary to compute R(z — 7). From definition
(8.7), the numerator is

f(g) = fS(X0—>X1—>Z1) G(Xl HZl) fS(Xl—)Z1—>X2)
. G(Zl HXQ) fs(Zl — X9 —>X3> R
where the factors shared between R(z — ) and R(§— ) have been omitted. The denom-
inator is
T(F—7) = pall,2]{p[l,0] P (x1 > 21) G(x1 4> 21)
+pa[0,1] P (2= 21) G(x2 6321 |

Inasimilar way, wefind that thefactor R(y — ) for themutationin thereversedirection

isgiven by

fs(XO — X3 —)Xz) G(Xl <—>X2) fs(Xl — X9 —>X3)
pd[lv 3] pa.[oa O] 7

R(y—z) =

where p4 and p, now refer to the path 7.

Implementation. We now describe how to compute the acceptance probability for bidi-
rectional mutationsin general form, and we also discuss how to implement this calculation
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efficiently.
Let z = x¢...x; bethe old path, let x;...x,, be the deleted subpath, and let
71 . ..7;, 1 bethevertices of the new subpath. Thisyields a mutated path y of the form

Yy = Yo.--Yr

= X0..-X121... 2,1 Xm .. XL,

where k' = k — kq + k, isthe length of the new path y. (Recall that £y = m — [ and
k., =1+ m' + 1 represent the number of edges in the old and new subpaths respectively.

Rather than evaluating the ratio R(z — ) as we did in the example above, it is more
convenient to evaluate its reciprocal:’

I 1 _ T(z—y)
QET—y) = Rion ) (11.9)

This quantity can be evaluated efficiently using the same techniques that were devel oped

for bidirectional path tracing in Chapter 10. In particular, suppose that we split i into two
pieces, using the i-th edge of the new subpath as the connecting edge. In other words, con-
sider the light subpath

Yo-- - Yi4i-1 = X0...X121...%4_1,

and the eye subpath

Yiti- - Y = Zj. . L, Xy - - X,

wherel < i < k,. Thesesubpathshaves = [ +iandt = (k' + 1) — (I + 7) vertices
respectively. Now let C?? be the unweighted contribution from bidirectional tracing that
would be computed in this situation:

Czbd = C*

s,t

"The quantity Q(z — y) has an interesting interpretation: it is simply the probability density of sampling
thepath g, .measured with respect to the image contribution measure defined by pi (D) = Jp f(®) u(z). This
measure ' is closely related to the measurement contribution measure ;" defined in Appendix 8.A, except
that it correspondsto the contribution made by a set of paths D to the entireimage rather than to an individual
measurement 7.
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where C; , has already been defined in equation (10.5) . Thevalue of Q(z — 7) can then be

expressed as

Fa a ) — 7ka_ -
QT —17) = pall,m] Y Lol C’lbd d

=1

(11.10)

To evaluate this sum efficiently we first compute the unweighted bidirectional contribution
cpt
and m’ new eye vertices). Thisis done using the weights aX, oF and the connecting fac-
tor ¢, , defined in Chapter 10. If the contribution C¢, evaluatesto zero (for exampleif the
visibility test fails), then the mutation isimmediately rejected. Otherwise, we compute the
reciprocal valuel/Cp{,, andfind the values of the other factors1/CP? by iteratively apply-

ing the relationship (10.9) given in Chapter 10. This calculation is just a ssmple loop and

, (corresponding to the way the path was actually generated, using !’ new light vertices

can be done very efficiently.

11.4.3 Perturbations

There are some lighting situations where bidirectional mutationswill almost always be re-
jected. This happens when there are small regions of the path space in which paths con-
tribute much more than average. This can be caused by caustics, difficult visibility (e.g. a
small hole), or by concave cornerswheretwo surfaces meet (aform of singularity intheinte-
grand). The problem isthat bidirectional mutationsare relatively large, and so they usually
attempt to mutate the path outside the high-contribution region.

One way to increase the acceptance probability isto use smaller mutations. The princi-
pleisthat nearby paths will make similar contributions to the image, and so the acceptance
probability will be high. Thus, rather than having many rejections, we can explore the other
nearby paths that also have a high contribution.

Our solution is to choose a subpath of the current path, and move the vertices dlightly.
We call thistype of mutation aperturbation. While the idea can be applied to arbitrary sub-
paths, our main interest isin perturbations that include the lens edge x;_;x; (since other
changes do not help to prevent long sample sequences at the same image point). We have
implemented two specific kinds of perturbationsthat change the lens edge, termed lens per-
turbations and caustic perturbations (see Figure 11.4). These are described bel ow.
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Lens perturbation Caustic perturbation

Figure 11.4: The lens edge can be perturbed by regenerating it from either side: we call
these lens perturbations and caustic perturbations

Lensperturbations. We delete a subpath x,,, . . . x; of theform (L|D)DS* E (wherethe
symbols S, D, E, and L stand for specular, non-specular, lens, and light vertices respec-
tively).® Thisiscalled the lens subpath, and consists of £ — m edgesand k£ —m — 1 vertices
(the vertex x,,, isnot included). Note that we require both x,,, and x,,,,1 to be non-specular,
since otherwise any perturbation would result in a path  for which f(7) = 0.

To replace the lens subpath, we perturb the image | ocation of the old subpath by moving
it arandom distance R in arandom direction ¢ on the image plane. The angle ¢ is chosen
uniformly, while R is exponentially distributed between two valuesr; and r5:

R = ry exp(—In(ry/r)U), (11.12)

where U isuniformly distributed on [0, 1].

We then cast aray at the new image |location, and extend the subpath through additional
specular bouncesto be the same length asthe original. The mode of scattering at each spec-
ular bounce is preserved (i.e. specular reflection or transmission), rather than making new
random choices. (If the perturbation moves a vertex from a specular to a non-specular ma-
terial, then the mutation isimmediately rejected.) This allows us to efficiently sample rare

8Thisis Heckbert's regular expression notation, as described in Section 8.3.1. We have not used the full-
path notation of Section 8.3.2, although we assume that the light source has type L(S|D)D and the lens has
type D(S|D)E with respect to the classifications introduced there.
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combinations of events, e.g. specular reflection from a surface where 99% of the light is
transmitted. Thisisimportant when only some of these combinations contribute to the im-
age: for example, consider a scene model containing a glass window, where the environ-
ment beyond the window is dark. In this case, only reflections from the window will con-
tribute significantly to the image.

The calculation of a(z — ) issimilar to the bidirectional case. The main differenceis
the method used to select a sample point on the image plane (i.e. equation (11.11) is used,
rather than choosing a point uniformly at random within the image region).

Caustic perturbations. Lens perturbations are not possible in some situations; the most
notable example occurs when computing caustics. These paths have the form LSTDFE,
which is not acceptable for lens perturbations.

Fortunately there is another way to perturb these paths, or in fact any path with a suffix
X, - .. X Of theform (D|L)S* DE (seeFigure 11.5). To do this, we generate anew subpath
starting from the vertex x,,,. The direction of the segment x,, — x,,,1 IS perturbed by a
random amount (0, ¢), wherethef = 0 axis correspondsto the direction of the original ray.
Asbefore, theangle ¢ ischosen uniformly, whilef isexponentially distributed between two
valuesd; and 05:

0 = 0y exp(—In(6,/6,)U),

where U is uniformly distributed on [0, 1]. The technique is otherwise similar to lens per-
turbations, i.e. the new subpath is extended to the same length as the original, and the mode
of scattering at each bounceis preserved.

Multi-chain perturbations. Neither of the above can handle paths with a suffix of the
form (D|L)DSTDSTE, i.e. caustics seen through a specular surface. This can be handled
by perturbing the path through more than one specular chain. A lens perturbation is used
for thefirst chain DS E, and anew direction is chosen for thefirst edge of each subsequent
chain DS D by perturbing the direction of the corresponding edge in the original subpath
(using the same method described for caustic perturbations). Figure 11.6 showsan example
of a situation where this technique is useful.
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I

Figure 11.5: A caustic perturbation. A new path is generated by perturbing the direction of
the ray from the light source by a small amount, and then tracing the perturbed ray through
the same sequence of specular reflections and refractions as the original path.

X X'

Figure 11.6: Using atwo-chain perturbation to sample caustics in a pool of water. First,
the lens edge is perturbed to generate a pointx’ on the pool bottom. Then, the direction
from original point x toward the light source is perturbed, and aray is cast fromx’ in this

direction.
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Parameter values. For lens perturbations, the image resolution is a guide to the useful
range of values. We use a minimum perturbation size of r; = 0.1 pixels, whiler, ischosen
such that the perturbation region is 5% of theimage area. For caustic perturbations, we also
make use of the image resolution. Specifically, the maximum perturbation angle is defined

as
X — x4 1]

Y X = x|

92 = 9(7“2)

wherex,, .. . x; isthe perturbed subpath, and 0(r) isthe angle through which theray x;, —
x;_1 heeds to be perturbed to change the image location by a distance of r pixels. A sim-
ilar rule defines 0, in terms of r,. The purpose of these formulas is to ensure that caustic
perturbations change the image location by an amount that is similar to that used for lens
perturbations.

Finally, for multi-chain perturbations, weusef; = 0.0001 radiansand 6, = 0.1 radians.
The image resolution cannot be used as a guide here, so the range of useful perturbation
valuesislarger. Note that in our experiments, we have not found the MLT algorithm to be
particularly sensitive to any of these values.

11.4.4 Lenssubpath mutations

We now describe lens subpath mutations, whose goal is to stratify the samples over theim-
age plane, and also to reduce the cost of sampling by re-using subpaths. Each mutation con-
sists of deleting the lens subpath of the current path, and replacing it with anew one. (As
before, the lens subpath has the form (L|D)S*E.) The lens subpaths are stratified across
the image plane, such that every pixel receives the same number of proposed lens subpath
mutations.

We briefly describe one way to do this. We initialize the algorithm with »” independent
seed paths (Section 11.3), which are mutated in a rotating sequence. At all times, we also
storeacurrent lenssubpath z.. A lens subpath mutation consistsof deleting thelens subpath
of the current path z, and replacing it with z.. Thishappenswhenever alens subpath muta-
tionis selected for the current path (as opposed to a perturbation or bidirectional mutation).
After the lens subpath z.. has been re-used a fixed number of timesn,, itisdiscarded and a
new oneisgenerated. We chosen’ >> n,, to prevent the same lens subpath from being used
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more than once on the same path.

Each lens subpath .. is generated by casting aray through arandom point on the image
plane, and following zero or more specular bounces until a non-specular vertex is found.
(At amaterial with specular and non-specular components, we randomly choose between
them.) To stratify the samples on the image plane, we maintain a taly of the number of
lens subpaths that have been generated at each pixel. When generating a new subpath, we
choose a random pixel and increment its tally. If that pixel already has its quota of lens
subpaths, we search for anon-full pixel using the concept of arover (named after asimilar
ideain certain memory management schemes). Therover issimply an index into a pseudo-
random ordering of the image pixels, such that every pixel appears exactly once® If the
randomly chosen pixel from the first step is full, we check the pixel corresponding to the
rover, and if necessary we visit additional pixelsin pseudo-random order until a non-full
one is found. Note that we also control the distribution of samples within each pixel, by
computing a Poisson minimum-disc pattern and tiling it over the image plane.

The acceptance probability a(z — ) is computed in asimilar way to the bidirectional
case, except that the new subpath can be generated in only one way. (Subpath re-use does
not influence the calculation.)

11.4.5 Selecting between mutation types

At each step, we assign a probability to each of the three mutation types. This discrete dis-
tribution is sampled to determine which kind of mutation is applied to the current path.

We have found that it isimportant to make the probabilitiesrelatively balanced. Thisis
because the mutation types are designed to satisfy different goals, and it isdifficult to predict
in advance which types will be the most successful. The overall goal isto make mutations
that are aslarge as possible, while still having a reasonable chance of acceptance. This can
be achieved by randomly choosing between mutations of different sizes, so that thereisa
good chance of trying an appropriate mutation for any given path.

These observation are similar to those of multipleimportance sampling (Chapter 9). We
would like a set of mutations that cover al the possibilities, even though we may not (and

9The low-order bits of alinear congruential generator can be used for this purpose.
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need not) know the optimum way to choose among them for a given path. It is perfectly
fineto include mutationsthat are designed for special situations, and that result in rejections
most of thetime. Thisincreasesthe cost of sampling by only asmall amount, and yet it can
increase robustness considerably.

11.5 Refinements

This section describes a number of general techniques that improve the efficiency of MLT.

Direct lighting. We use standard techniques for direct lighting (e.g. see Shirley et a.
[1996]), rather than the Metropolis algorithm. In most cases, these standard methods give
better results at lower cost, since the Metropolis samples are not as well-stratified across
the image plane (Section 11.4.1). By excluding direct lighting paths from the Metropolis
calculation, we can apply more effort to the indirect lighting.

This optimization is easy to implement; it can be done as part of the lens subpath muta-
tion strategy, which already generates afixed number of subpaths at each pixel. To compute
thedirect lighting, we perform astandard ray tracing cal culation as each lens subpathisgen-
erated (independent of the current MLT path). These contributions are accumulated in the
same image as the Metropolis samples.’® We also need to remove the direct lighting paths
from the Metropolis portion of the algorithm, but thisis easy: when a mutation generates a
direct lighting path, we simply reject it. An even better approach isto modify the mutation
strategies themselves, in order to avoid generating these pathsin the first place.

Finally, note that if the lighting is especialy difficult (e.g. dueto visibility), then the di-
rect lighting “optimization” may be a disadvantage. For example, imagine alarge building
with many rooms and lights, but where only one room isvisible. Unless the direct lighting
strategy does a good job of excluding all the unimportant lights, then MLT can be substan-
tially more efficient.

10To do this, we must know in advance how many direct lighting samplestherewill be at each pixel; adap-
tive sampling of the image planeis not allowed.
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Use of expected values. For each proposed mutation, there is a probability a(z — 7) of
accumul ating animage sampleat 7, and aprobability 1 —a(z — ) of accumulating asample
at z. We can make this more efficient by always accumulating a sample at both locations,
weighted by the corresponding probability. Effectively, thisoptimization replaces arandom
variable by its expected value (see [Kalos & Whitlock 1986, p. 105]). Thisis especialy
useful for sampling the dim regions of the image, which would otherwise receive very few
samples. Note that this optimization does not affect the random walk itself; each transition
is accepted or rejected in the same way as before.

Two-stage MLT. For images with large brightness variations, the MLT algorithm can
spend most of itstime sampling the brightest regions. Thisisundesirable, sinceit meansthat
brighter pixels are estimated with a higher relative accuracy. Specifically, the variance of
pixel j isproportional to /;, the standard error is proportional to ,//;, and the relative error
isproportional to 1/ \/Z . Asafirst approximation, it would be better for the relative errors
at al the pixelsto be the same (because the human eye is sensitive to contrast differences).
To achieve this, we would like an algorithm that generates approximately the same number
of samples at every pixel (with asample value that varies according to the brightness of the
ideal image).

The MLT algorithm can easily be modified to approach this goal, by precomputing a
test image I, at alow sampling density. Then rather than sampling according to the image
contribution function f, we sample according to

(@) = f(x)/ L), (11.12)

where Iy(z) depends only on the image location of z. This function f’ is used instead of
f everywhere in the MLT algorithm, including the computation of the paths weights W,
duringinitialization. To compensatefor this, each MLT samplevalueis multiplied by 7, (z)
just before it is accumulated in the image.

The end result is that the MLT sample values are no longer constant across the image;
instead, they vary according to thetest image I,. Thisdoesnot introduce any bias; it simply
means that the bright parts of the image are estimated using a smaller number of samples
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with larger values.!t

Thisoptimizationismainly useful for imageswheretherange of intensitiesisvery large.
Note that the brightest regions of an image are often light sources or directly lit surfaces, in
which case handling the direct lighting separately will solve most of the problem.

I mportance sampling for mutation probabilities. We describe atechnique that can in-
creasetheefficiency of MLT substantially, by increasing the average acceptance probability
a(z — 7). Theideaistoimplement aform of importance sampling with respect to a(z — 7)
when deciding which mutation to attempt, by weighting each possible mutation according
to the probability with which the del eted subpath can be regenerated. (Thisisthefactor pq -
mentioned in Section 11.4.2.)

LetT = xq...x; bethe current path, and consider a mutation that del etes the subpath
X;...X,,. Theinsightisthat givenonly the del eted subpath, it isalready possibleto compute
some of the factors in the acceptance probability a(z — 7). In particular, from equation
(11.8) we see that a(z — ) is proportional to

Qy—z) = 1/R(y—71),

and from equation (11.10) we see that given only the path z, it is possible to compute all the
componentsof Q (7 — ) except for the discrete probabilitiespy and p,. (These probabilities
depend on the path 7, which has not been generated yet). If we simply set these unknown

guantitiesto one, we obtain
ka

paz = Y (1/CPY), (11.13)

=1
where i refers to the i-th edge of the deleted subpath x; . . . x,,, and C?? is the unweighted
contribution defined below equation (11.10).
This quantity is proportional to a subset of the factors in the acceptance probability
a(T — 7). Thus by weighting the discrete probabilities for each mutation type by this fac-
tor, we can avoid mutations that are unlikely to be accepted. With bidirectional mutations,

"Note that if not enough samples are used to create the test image, then some pixelswill be zero (whichis
not allowed by the estimate (11.12)). This problem can be solved by filtering the test image before it is used.
The simplest approachisto extract the brightest parts of the test image, and weight the other pixelsuniformly.
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for example, thisfactor is applied to each of the O(%?) possibilitiesfor the deleted subpath
X; ... Xm,. Thecomputation can be made more efficient by approximating pq » even further.
For example, equation (11.13) can be evaluated for many mutationsin parallel by replacing
the sum of the 1/CP4 by their maximum.

11.6 Resaults

We have rendered test images that compare Metropolis light transport with classical and
bidirectional path tracing. Our path tracing implementations support efficient direct lighting
calculations, importance-sampled BSDF's, Russian roulette on shadow rays, and several
other optimizations.

Figure 11.7 shows a test scene with difficult indirect lighting. All of the light in this
scene comes through a dlightly open doorway, which lets through about 0.1% of the light
in the adjacent room. The light source is a diffuse ceiling panel at the far end of that room
(which is quite large), so that most of the light coming through the doorway has already
bounced several times.

For equal computationtimes, Metropolislight transport givesfar better resultsthan bidi-
rectional path tracing. Notice the details that would be difficult to obtain with many light
transport algorithms. contact shadows, caustics under the glassteapot, light reflected by the
white tiles under the door, and the brighter strip along the back of the floor (due to the nar-
row gap between the table and the wall). This scene contains diffuse, glossy, and specular
surfaces, and the wall is untextured to clearly reveal the noise levels.

For this scene, MLT gains efficiency from its ability to change only part of the current
path. The portion of the path through the doorway can be preserved and re-used for many
mutations, until it is successfully mutated into a different path through the doorway. Note
that perturbations are not essential to make this process efficient, since the path through the
doorway needs to change only infrequently.

Figure 11.8 compares MLT against bidirectional path tracing for a scene with strongin-
direct illumination and caustics. Both methods give similar resultsin the top row of images
(where indirect lighting from the floor lamp dominates). However, MLT performs much
better as we zoom into the caustic, due to its ability to generate new paths by perturbing
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(b) Metropolis light transport with 250 mutations per pixel [the same computation time as (9)].

Figure11.7: All of thelight in this scene comesthrough aslightly open doorway, which letsthrough
about 0.1% of thelight in the adjacent room. The MLT algorithm is able to generate paths efficiently
by always preserving a path segment that goes through the small opening between the rooms. The
images are 900 by 500 pixels, and include paths up to length 10.
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existing paths. The image quality degrades with magnification (for the same computation
time), but only slowly. Thisis due to the fact that the average mutation cost goes up as we
zoom into the caustic (since each successful perturbation requires at least four ray-casting
operations). Oncethe caustic fillsthe entire image, theimage quality remainsvirtually con-
stant.*?

Notice the streaky appearance of the noise at the highest magnification. Thisis dueto
caustic perturbations. each ray from the spotlight is perturbed within a narrow cone; how-
ever, the lens maps this cone of directions into an elongated shape. The streaks are due to
long stringsof caustic mutationsthat were not broken by successful mutations of some other
kind.

Even in the top row of images, there are dlight differences between the two methods.
The MLT agorithm leads to lower noise in the bright regions of the image, while the bidi-
rectional algorithm gives lower noise in the dim regions. Thisis what we would expect,
since the number of Metropolis samples varies according to the pixel brightness, while the
number of bidirectional samples per pixel is constant.

Figure 11.9 shows another difficult lighting situation: caustics on the bottom of a small
pool, seen indirectly through the ripples on the water surface. Path tracing does not work
well inthis case, because when a path strikes the bottom of the pool, areflected directionis
sampled according to the BRDF. Only avery small number of these paths contribute to the
image, because the light source occupies about 1% of the hemisphere of directions above
the pool.*® (Bidirectional path tracing does not help for these paths, because they can be
generated only starting from the eye.) Asin the previous example, perturbations are the
key to sampling these caustics efficiently. However, for this scene it is multi-chain rather
than caustic perturbations that are important (recall Figure 11.6). Oneinteresting feature of
MLT isthat it obtains these results without special handling of the light sources or specular
surfaces — see Mitchell & Hanrahan [1992] or Collins [1995] for good examples of what

12Note that the according to the rules for caustic perturbations described in Section 11.4.3, the average per-
turbation angle decreases with linearly with the magnification. Thisimpliesthat the average perturbation size
is constant when measured in image pixels.

13Note that the brightness of the caustic is proportional to the solid angle occupied by the light source, as
seen from the bottom of the pool. Thusin regions where the caustics are dim, the chance of aray hitting the
light sourceis actually much less than one percent.
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(b)

Figure 11.8: These images show caustics formed by a spotlight shining on aglass egg. Column (a)
was computed using bidirectional path tracing with 25 samples per pixel, while (b) uses Metropolis
light transport with the same number of ray queries (varying between 120 and 200 mutations per
pixel). The solutions include paths up to length 7, and the images are 200 by 200 pixels.
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™,

(b) Metropolis light transport with 100 mutations per pixel [the same computation time as (a)].

Figure 11.9: Causticsin apool of water, viewed indirectly through the ripples on the surface. Itis
difficult for unbiased Monte Carlo algorithms to find the important transport paths, since they must
be generated starting from the lens, and the light source only occupies about 1% of the hemisphere
as seen from the pool bottom (which is curved). The MLT algorithm samples these paths efficiently
by means of perturbations. The images are 800 by 500 pixels.
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Test Case PT vs. MLT BPT vs. MLT

L [y lo ly lo loo
Figure 11.7 (door) 77117 |400| 52| 49132
Figure 11.8 (egg, topimage) | 24| 48214 | 09| 21| 137
Figure 11.9 (pool) 32| 47| 50| 42| 65| 6.1

Table 11.1: Thistable shows numerical error measurements for path tracing (PT) and bidi-
rectional path tracing (BPT) relative to Metropolis light transport (MLT), for the same com-
putation time. The entries in the table were determined as follows. For each test image, we
computed therelative errore; = (I;—1;) /I, at each pixel, wherel; corresponds to the al go-

rithm being measured, and /; is the value from areference solution. Next, we computed the
l1, 12, and [, norms of the resulting array of errorse;. Finaly, we divided the error norms
for path tracing and bidirectional path tracing by the corresponding error norm for MLT, to
obtain the normalized results shown in the table above. Note that the gain in efficiency of
MLT over the other algorithms is proportional to the square of the table entries.

can be achieved if thisrestriction islifted.

We have al so made numerical measurementsin order to compare the performance of the
various algorithms on each test scene. To do this, wefirst computed images using path trac-
ing (PT), bidirectiona path tracing (BPT), and Metropolis light transport (MLT), with the
same computation timein each case. Next, we computed therelativeerrore; = (I;—1I;)/1;
at each pixel, Wherefj correspondsto the al gorithm being measured, and /; isthevaluefrom
areference solution (created using bidirectional path tracing with a large number of sam-
ples, at alower imageresolution). Wethen computed thel,, I», and [, normsof theresulting
array of errorse;, and divided the error normsfor PT and BPT by the corresponding error
norm for MLT. Thisyielded the results shown in Table 11.1.

Notethat the efficiency gain of MLT over the other methodsis proportional to thesquare
of thetable entries, since the error obtained using path tracing and bidirectional path tracing
decreases according to the square root of the number of samples. For example, the RMS
relative error in the three-teapots image of Figure 11.7(a) is 4.9 times higher than in Fig-
ure 11.7(b), which impliesthat approximately 25 timesmore bidirectional path tracing sam-
pleswould be required to achieve the sasmeerror levelsasMLT. Even in the topmost images
of Figure 11.8 (for which bidirectional path tracing iswell-suited), notice that the results of
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MLT are competitive.

For comparison, we consider the techniques proposed by Jensen [1995] and L afortune
& Willems [19953] for sampling difficult paths more efficiently. Basically, their ideaisto
build an approximate representation of the radiance in a scene, and use it to modify the di-
rectional sampling of the basic path tracing algorithm. The radiance information can be
collected either with a particle tracing prepass [Jensen 1995], or by adaptively recording it
in aspatia subdivision asthe agorithm proceeds [Lafortune & Willems 1995a]. However,
these techniques have several problems, including insufficient directional resolution to be
able to sample concentrated indirect lighting efficiently, and substantial space and time re-
guirements. In any case, the best variance reductionsthat have been reported arein therange
of 50% to 70% (relative to standard path tracing), as opposed to the reductions of 96% to
99% reported in Table 11.1. (Similar ideas have aso been applied to particle tracing algo-
rithms [Pattanaik & Mudur 1995, Dutre & Willems 1995], with similar results.)

In our tests, the computation times were approximately 4 hours for the each image in
Figure 11.7 (the door gar), 15 minutesfor theimagesin Figure 11.8 (the glassegg), and 2.5
hoursfor theimagesin Figure 11.9 (the pool), where all timeswere measured ona190 MHz
MIPS R10000 processor. The memory requirements are modest: we only store the scene
model, the current image, and a single path (or a small number of paths, if the mutation
technique in Section 11.4.4 is used). For high-resolution images, memory usage could be
reduced further by collecting the samples in batches, sorting them in scanline order, and
applying them to an image on disk.

11.7 Conclusions

We have presented a novel approach to global illumination problems, by showing how to
adapt the Metropolis sampling method to light transport. Our algorithm starts from a few
seed light transport paths and applies a sequence of random mutationsto them. In the steady
state, the resulting Markov chain visits each path with a probability proportional to that
path’s contribution to the image. The MLT algorithm is notable for its generality and sim-
plicity. A single control structure can be used with different mutation strategiesto handle a
variety of difficult lighting situations. In addition, the MLT algorithm needs little memory,
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and always computes an unbiased resullt.

The MLT agorithm offers interesting new possibilities for adaptive sampling without
bias, since the mutation strategy is allowed to depend on the current path. For example,
consider the strategy of replacing the light source vertex x, with a new randomly sampled
position onthe samelight source. Thisispotentially asimple, effective strategy for handling
scenes with many lights: once an important light source is found, the MLT algorithm can
efficiently generate many samplesfromit. (More generally, mutations could be proposed to
nearby light sources by constructing aspatial subdivision.) Thisisclearly aform of adaptive
sampling, since more samples are taken in regions nearby existing good samples. Unlike
with standard Monte Carlo algorithms, however, no biasisintroduced.

Thisalsoraisesinteresting possibilitiesfor handling specular surfaces. For example, we
could try a strategy similar to that above: when mutating a subpath containing a specular
vertex, generate a new vertex on the same specular object. If only a small fraction of the
specular surfaces in the scene made a large contribution to the image, thiswould provide a
means of sampling them efficiently. Note that this technique is more powerful than ssmply
flagging specular surfaces for extra sampling, since we do not need to assign an a priori
probability to the sampling of each surface. Thisisimportant when alarge number of spec-
ular surfaces are present, sincein the MLT case the sampling efficiency is not affected once
an important surface has been found.

The MLT framework could also be an advantage for techniques that generate specular
verticesdeterministically. In particular, recall theidea of generating achain of specular ver-
tices connecting two given points (as mentioned in Section 8.3.4). A simple exampleisthat
giventwo pointsx; and x; and aplanar mirror, we might cal cul ate the point x, onthemirror
that reflects light between them. (Note that it is also possibleto handle non-planar surfaces,
or sequences of such surfaces, using techniques described by Mitchell & Hanrahan[1992].)
However, these analytic techniques have problems when there are many specular surfaces,
since each possible surface and sequence of surfaces must be checked separately for a so-
[ution.

The MLT framework helps to solve the combinatorial aspect of this problem. Once an
important specular chainisfound, anew chain could be generated by simply perturbing one
of its endpoints, and then regenerating the intermediate vertices using the same sequence
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of specular surfaces. For example, this could be used to efficiently sample caustics seen
indirectly through specular reflectors, even a point light source is used, and when there are
possibly many specular surfacesin the scene. On the other hand, recall that we cannot hope
to solve all such problems efficiently, since provably difficult configurations of mirrors do
exist [Reif et al. 1994].

The MLT agorithm can also be extended in other ways. For example, with modest
changes we could use it to compute view-independent radiance solutions, by letting the I;
be the basis function coefficients, and defining f (7) = >, f;(z). Wecould alsouse MLT to
render a sequences of images (as in animation), by sampling the entire space-time of paths
at once (thus, amutation might try to perturb a path forward or backward in time). Another
interesting problem is to determine the optimal settings for the various parameters used by
the algorithm. The valueswe use have not been extensively tuned, so that further efficiency
improvements may be possible. Genetic algorithms may be useful in this regard, to opti-
mize the parameter settings on a suite of test images. We hope to address some of these
refinements and extensionsin the future.
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Appendix 11.A Proof of Unbiased Initialization

In this appendix, we show that the estimate

1 & .
I, = F lﬁ ; W; hj(Xi)]

is unbiased (see Section 11.3.1). To do this, we show that the followingweighted equilibrium con-
ditionis satisfied at each step of the random walk:

/wpi(w,:)?) dw = f(z), (11.14)
R

where p; isthe joint density function of thei-th weighted sample (W;, X;). Thisisasufficient con-
dition for the above estimate to be unbiased, since

EWin (%] = [ [ wh;@ piw. ) duw du(@)

= [ @ 7@ duta)
I;.

To show that the weighted equilibrium condition holds for all samples(WW;, X;), we proceed by
induction. Fori = 0, we have

_ f@)
po(7)

po(w,7) = o(w ) po(Z)

where § (w—wjq ) isaDirac distribution, corresponding to the fact thatiV ischosen asadeterministic
function of X rather than by random sampling. It iseasy to verify thatp, satisfies condition (11.14).

Next we verify that the Metropolis algorithm preserves the weighted equilibrium condition from
one sample to the next. Since the mutations setW; = W, 1, thefirst part of equation (11.4) is still
true when p;(z) isreplaced by p;(w, z):

pilw.d) = pa(wd) + [ {poi(wn) TE>paE—)
—pi1(w,5) T([F—7) a(f—7) | du(7)

Multiplying both sides by w and integrating, we obtain

1

Jrwpi(w,z)dw = [gwpi—1(w,z)dw + /Q{[wapi,l(w,f)dw] T(Z—7)a(z

y
— [rwpi1(w,§) dw] T(F—7) a(§—7) } du(5)
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= Jrwpia(w.)dw + [ {1@T@—~5)a@=7)
~ f@) T(F—>7) ali—7) } du()
= wapifl(wvj) dw

where we have used the detailed balance condition (11.3). Thus every mutation step preserves the
weighted equilibrium condition (11.14). B

It is interesting to note that even though the random walk is aways in weighted equilibrium,
the distributions of paths and weights change at each step. In particular, the path distribution isini-
tially given by some arbitrary density functionp(z), and converges toward the stationary distri-
bution p*(z). Similarly, the weight distribution p;(w | ) at a given point Z starts out as a Dirac
distribution @)

X
ow = Po(f)) 7
and gradually evolves toward an equilibriump* (w | ). Furthermore this equilibrium does not de-
pend on z, since

po(w|z) =

p*(wl|z)p*(z) = p*(z|w)p*(w),

and the density functionsp*(z | w) and p*(z) are equa (i.e. the paths at each weight evolve toward
the same equilibrium, since the transition rules do not depend on weight). Thus we have

pH(w|z) = p*(w) = po(w),

observing that the marginal weight densityp, (w) doesnot changewithtime (recall thati; = W;_4).

The net effect isthat the path and weight distributions may start far from equilibrium, and gradu-
ally converge toward it. However, thisisdone in such away that the weighted equilibrium condition
(11.14) isinitially satisfied, and preserved at every step. Thus we can obtain unbiased results imme-
diately, rather than waiting for the path and weight distributions to converge separately.
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Chapter 12
Conclusion

We conclude by summarizing the main results of this dissertation, in somewhat more detall
than they were described in Chapter 1.

12.1 Bidirectional light transport theory

Inthefirst part of thisthesis, we haveinvestigated the theoretical basisof bidirectional light
transport algorithms. We proposed two different linear operator formulations of light trans-
port, based on different sets of assumptions. First we considered the general case, where no
assumptionsare made about the physical validity of the scattering modelsused. Inthiscase,
we cannot rely on the properties of light transport in the real world: for example, energy
might not be conserved. Nevertheless, there is still a well-defined mathematical problem
to be solved (with mild restrictions discussed in Chapter 4), and we describe the manipul a-
tions that are necessary to ensure that algorithms based on radiance transport, importance
transport, light particles, and importance particles al converge to the same mathematically
correct solution. We have given adetailed analysis of the framework, including the norms,
inverses, and adjoints of the various transport operators. We have also given explicit rules
for handling all the various combinations of incident and exitant quantities.

We have shown that the above model is useful whenever the scene contains materials
whose bidirectional scattering distributionfunction (BSDF) isnot symmetric. Therearetwo
distinct situations where this can arise. First, some scattering modelsin computer graphics

371
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arenot physically valid. Itisimportant to be ableto handle non-physical materialscorrectly,
since they are sometimes very convenient. As a particular example we consider the use of
shading normals, which are commonly applied to make polygonal surfaces look smooth or
to add detail to coarse geometric models. We show that shading normals modify BSDF's
and make them non-symmetric. However, using the linear operator formulation above we
show that it is still possible to handle shading normals correctly and consistently in bidirec-
tional algorithms, by using the correct adjoint BSDF (which we derive).

We also show that non-symmetric BSDF's can arise even for materials that are physi-
cally valid. Thisoccurswhenever light istransmitted between two substanceswith different
indices of refraction. Again we show how to handle this situation correctly within the gen-
eral framework above, by deriving the adjoint BSDF for refraction. The use of this adjoint
BSDF is necessary to ensure that bidirectional algorithmswill converge to correct results.

However, when all materials in the scene model are physically valid, we have shown
that there isamuch better way to formulate the light transport problem. Thisformulationis
based on a new reciprocity principle that holds for materials that transmit as well as reflect
light. In particular, for physically valid materials we have shown that it is not the BSDF
fs(w; — w,) that is symmetric, but instead the quantity f,(w; — w,)/n? (Where ), isthere-
fractive index of the medium containing w,). We establish this principle using the laws of
thermodynamics, in particular Kirchhoff’slawsand the principle of detailed balance. These
laws hold for systemsin thermodynamic equilibrium, but the resulting reciprocity principle
isvalid generally. We have investigated the historical origins of such principles, including
Helmholtz and Rayleigh reciprocity, and clarified the important point that Helmholtz him-
self did not make any statement that would imply the symmetry of BRDF's. We have also
discussed the subtle issues that arise in justifying such principles: the roles of thermody-
namic equilibrium, timereversal invariance, and detailed balance. Finally, we have consid-
ered the conditions under which reciprocity does not hold, i.e. in the presence of absorbing
media or external magnetic fields.

Taking advantage of this reciprocity principle, we have proposed a new light transport
model where the transport operators are symmetric (self-adjoint) for any physically valid
scene model. This symmetry simplifies both the theory of light transport algorithms (by
eliminating the need for adjoint operators), and also their implementation (since the same



12.2. GENERAL-PURPOSE MONTE CARLO TECHNIQUES 373

transport rules apply to light and importance, or to path tracing and particle tracing). Fur-
thermore, the transport quantitiesin the new model are optical invariants, which createsin-
teresting connections to classical geometric optics. The modifications relative to the previ-
ousformulation are straightforward, and simply involve scaling the various transport quan-
tities by the square of the refractive index of the surrounding medium. We have also pro-
vided a detailed analysis of the norms, inverses, and adjoints of the new operators.

We have proposed athird theoretical model for light transport, where each measurement
is expressed as an integral over a space of paths (rather than as the solution to an integral
equation or linear operator equation). The main advantage of this approach is its ssmple
abstract form: by reducing light transport to a set of integrals, it allows general-purpose in-
tegration and sampling techniques to be applied (such as multiple importance sampling, or
the Metropolis method). It is also useful from a conceptual point of view, since this for-
mulation makes it clear that paths can be sampled in virtually any way desired, not just by
recursively sampling atransport equation. We have described a variety of natural measures
on paths with well-defined physical meanings, and we have devel oped an extended regul ar
expression notation for paths that describes the properties of sources and sensorsaswell as
the scattering properties at intermediate vertices. We have used this model to analyze the
capabilities of unbiased Monte Carlo sampling algorithms, and we have shown that there
are certain kinds of paths that cannot be generated by standard sampling techniques. This
implies that certain lighting effects will be missing from the images generated using these
techniques. We have analyzed the conditions under which this occurs, and we have pro-
posed methods for making these path sampling a gorithms compl ete.

12.2 General-purpose Monte Carlo techniques

The second area of this dissertation concerns new general-purpose techniques for Monte
Carlo integration. Our main contribution in this area is multiple importance sampling, a
method for combining several different sampling techniques for the same integral in order
to obtain low-variance estimators for a broad class of integrands. We started by proposing
agenera model for combining samples from different techniques, called the multi-sample
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model. Using this model, we showed that any unbiased combination strategy could be rep-
resented as a set of weighting functions. This gave us a large space of possible combina-
tion strategiesto explore, and a uniformway to represent them. We then proposed a specific
combination strategy called the balance heuristic, and we proved that the variance obtained
using thisstrategy isoptimal to withinasmall additiveterm. Wethen proposed several other
combination strategies, which are basically refinements of the balance heuristic: their vari-
anceisalso provably closeto optimal, but they givebetter resultsin certainimportant special
cases.

We tested these methods on a variety of integration problemsin computer graphics, and
we found that multiple importance sampling can reduce variance substantially at little extra
cost. The method is simple and practical to implement, and can make Monte Carlo calcu-
lations significantly more robust.

We have aso proposed a new technique called efficiency-optimized Russian roulette.
We started by showing that the variance of Russian roulette can be analyzed as a function
of its threshold parameter (whose value is usually chosen in an ad hoc manner). We then
described atechnique for choosing the value of this parameter in order to maximize the ef-
ficiency of the resulting estimator. The main application of thistechniquein graphicsisto
reduce the number of visibility testsin rendering problems.

12.3 Robust light transport algorithms

We have shown how these theories and techniques can be applied to the construction of
robust Monte Carlo light transport algorithms. The first algorithm we described was bidi-
rectional path tracing, which is based on the path integral framework: it generates paths
using afamily of different importance sampling techniques, and then combinesthem using
multiple importance sampling. Specifically, each path is constructed by concatenating two
subpaths, one generated starting from alight source and another generated starting from the
camera. We have shown that each such technique can efficiently sample a different set of
paths, and that these pathsare responsiblefor different lighting effectsin thefinal image. By
combining samples from al the techniques, we can efficiently render scenes under awide
variety of illumination conditions.
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In addition to describing the mathematical basis of the method, we also discussed the
implementation issues in detail. Thisincludes how to sample and filter of the image, how
to generate the paths and evaluate their contributions efficiently, and how to implement the
important special cases wherethe light or eye subpath contains at most one vertex. We have
al so described the extensions required to handle ideal specular surfaces, and we have shown
how efficiency-optimized Russian roulette can be used to reduce the number of visibility
tests.

Bidirectional path tracing is unbiased, straightforward to implement, and supports the
same range of geometry and materials as standard path tracing. It is an effective rendering
algorithm for many kinds of indoor scenes, and is particularly useful for scene modelswith
concentrated indirect lighting. On the other hand, the main weakness of the algorithm is
that the light and eye subpaths are generated independently. This makes it unsuitable for
outdoor environments, or scenes with many light sources, or scenes with constricted geom-
etry between the light sources and the viewer.

Finally, we have introduced a new algorithm called Metropolis light transport. This
method is also based on the path integral framework, but it samples pathsin adifferent way.
Specificaly, it usesthe M etropolis sampling al gorithm, which generates a sequence of paths
by following a random walk through path space. Each path is generated from the previous
one by proposing arandom mutation. Thismutation isthen either accepted or rejected with
a carefully chosen probability, in order that the probability density of sampling each path
is proportional to the contribution it makes to the desired final image. The resulting algo-
rithm is unbiased, handles general geometric and scattering models, and can be far more
efficient than previous algorithms on scenes with complex illumination. Furthermore, it is
competitive with previous unbiased algorithms even for scenes whose lighting isrelatively
simple.

To derive thismethod we first proposed a slight modification to the path integral frame-
work that allows paths to be sampled across the entire image (rather than within each pixel
separately). We showed that the Metropolis agorithm can then be used to determine the
relative pixel intensities across the image, while the overall image brightness needs to be
determined during a separate initialization phase. We addressed the issue of start-up bias
during initialization (a common problem with Metropolis applications), and showed that in



376 CHAPTER 12. CONCLUSION

the case of light transport this bias can be eliminated completely. For the Metropolis phase
of the algorithm, we proposed a set of criteriafor designing path mutationsin order to mini-
mizethe error inthe final image. We have also described three different mutation strategies
we haveimplemented that partially satisfy these goals, namely bidirectional mutations, lens
subpath mutations, and perturbations. Finally, we described several refinements to the ba-
sic algorithm that improve its performance in practice.

The main advantage of Metropolis light transport is its ability to handle complex illu-
mination efficiently, by exploring the space of paths that actually contribute to the image.
Unlike bidirectiona path tracing, it can also handle problems where only a small fraction
of the emitted light in the scene reaches the viewer (e.g. dueto difficult visibility). Further-
more, since it is a Monte Carlo algorithm it can support complex geometry and materials
efficiently. Wefeel that the ability to handle complex geometry, materials, and illumination
isan important goal, since light transport algorithms need to producereliable, consistent re-
sults over the widest possible range of real environmentsif they are ever going to be widely
used.
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perturbations, 350-354
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Lord Rayleigh's, 189
reduced wave equation, 26
reducing the dimensionality, 4647
reflectance equation, 86
reflected hemisphere, 87
reflection
ideal diffuse, 17
refraction
adjoint BSDF, 147-148
adjoint BSDF, derivation of, 171
basic BSDF, 217
BSDF, 145146
angular form, 172
invariance of basic throughput, 209
non-symmetric scattering due to,
139-150
radiance scaling, 141-143
refractive index
continuously varying, 16
regression methods, 70-71
regular expression, 231
regular expressions for paths



404

classifying sources and sensors, 232—
235
interpretation as scattering events,
235-237
classifying specular vertices, 247-—
248
full-path expressions, 232-237
formal definition, 234-235
Heckbert’s notation, 231-232
rejection method, 41
rendering algorithm
image space, 161
resolvent operator, 112
responsivity, 89
flux, 115
reversal map, 127
reversibleray, 127
reversible ray space, 127
RMS error, 35
robust estimator, 252
robust light transport algorithm, 1
roughness parameter, 253
roulette probability, 318
roulette threshold, 318
rover, 355
running average, 322
Russian roulette, 67—68, 309
efficiency-optimized, 317-320

sample, 43
sample contribution, 263
sample size, 43
sampling random variables, 41-42
sampling the BSDF, 254
sampling the light source, 254
scattered radiance, 90
scattering

elastic, 23

ideal specular, 17

instantaneous, 23
scattering equation, 86
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three-point form of, 254
scattering kernel, 155
adjoint, 155
scattering theory, 199
scattering throughput measure, 244
scrambled net, 64
scrambled sequence, 64
second law of thermodynamics, 178
insufficiency of, 182
selecting between mutation types, 355—
356
self-adjoint operator, 116
self-adjoint operator formulation, 201—
207
consequences for implementations,
206207
new transport operators, 205
sensor, 89, 114
sensor response, 114
sequential sampling, see adaptive sam-
pling
shading normal, 150
adjoint BSDF, 152-153
aternativesto, 162—165
brightness discontinuities, 160-162
examples of adjoint BSDF's, 153—
155
modified BSDF, 151-152
non-symmetric scattering due to,
150-165
pseudocode for adjoint BSDF, 155—
160
o-algebra, 96
o-finite, 96
Smith-Helmholtz invariant, 208
solid angle measure, 77
basic, 202
basic projected, 203
projected, 77
solution operator, 112, 119
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existence of, 112
sources of variation, 56
spectral phase space density, 100
spectral radiance, 82, 101
spectral radiant sterisent, 100
splitting, 68—69, 160
standard deviation, 35
star discrepancy, 58
start-up bias, 338
stationary distribution, 335
stratified sampling, 50-52
stratum, 50
striated medium, 199
strong law of large numbers, 40
surface radiance function, 95
surface roughness parameter, 253
symmetry

of BRDF's, 87

of BSDF's, 180-182

tangent plane, 77
tangent space, 77
tensor product rules quadrature rule, 31
tentative contribution, 317
tentative transition function, 335
thermodynamic equilibrium, 177
thermodynamics, 177-180
second law, 178
three-point form of the light transport
equation, 220222
three-point form of the scattering equa-
tion, 254
throughput, 106
basic, 203, 208
throughput measure, 105
time reversal, 190
time reversal invariance, 180, 190-191
time-harmonic, 26
(t,m, s)-net, 63
randomly permuted, 64
trajectory space, 79
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transformation method, 41
transition function, 190, 334
tentative, 335
transmission, 17
transmissivity, 194
transport operators
adjoints of, 129-133, 212-213
invertibility of, 126-129
norms of, 133-134, 213-216
properties of, 126-134, 212-216
transport theory, 23, 78
(t, s)-sequence, 63
randomly permuted, 64
two-factor interactions, 56
two-stage sampling, 66

unbiased estimator, 14, 43

unweighted contribution, see bidirec-
tional path tracing

upward hemisphere, 77

van der Corput sequence, 61
variance, 35
variance reduction methods, 45
adaptive sampling, 66
antithetic variates, 69-70
based on adaptive sample placement,
65-69
based on analytic integration, 45-49
based on correlated estimators, 69—71
based on uniform sample placement,
50-65
control variates, 48-49
expected values, the use of, 4647
importance sampling, 4748
Latin hypercube sampling, 52-53
multi-jittered sampling, 58
multiple importance sampling, 251—
287
N-rooks sampling, 52
orthogonal array sampling, 54-57



406

orthogonal array-based Latin hyper-
cube sampling, 57-58
guasi-Monte Carlo methods, 58-65
reducing the dimensionality, 4647
regression methods, 70-71
Russian roulette, 6768
efficiency-optimized, 318-320
splitting, 6869
stratified sampling, 50-52
two-stage sampling, 66
variation in the sense of Hardy and
Krause, 59
vector space, 108
complete, 108
vertex normal, 150
view-dependent light transport algorithm,
12
view-independent light transport algo-
rithm, 12
visibility factor, 317
volume emission, 97

wave equation, 26
wave optics, 18-20
weighted equilibrium condition, 368
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