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Abstract. We present abstract refinement types which enable quantification over
the refinements of data- and function-types. Our key insight is that we can avail
of quantification while preserving SMT-based decidability, simply by encod-
ing refinement parameters as uninterpreted propositions within the refinement
logic. We illustrate how this mechanism yields a variety of sophisticated means
for reasoning about programs, including: parametric refinements for reasoning
with type classes, index-dependent refinements for reasoning about key-value
maps, recursive refinements for reasoning about recursive data types, and in-
ductive refinements for reasoning about higher-order traversal routines. We have
implemented our approach in a refinement type checker for Haskell and present
experiments using our tool to verify correctness invariants of various programs.

1 Introduction

Refinement types offer an automatic means of verifying semantic properties of pro-
grams by decorating types with predicates from logics efficiently decidable by modern
SMT solvers. For example, the refinement type {v: Int | v > 0} denotes the ba-
sic type Int refined with a logical predicate over the “value variable” v. This type
corresponds to the set of Int values v which additionally satisfy the logical predicate,
i.e., the set of positive integers. The (dependent) function type x: {v:Int| v >
0} -> {v:Int]| v < x} describes functions that take a positive argument x and
return an integer less than x. Refinement type checking reduces to subtyping queries of
the form I' - {7:v | p} < {7:v | ¢}, where p and ¢ are refinement predicates. These
subtyping queries reduce to logical validiry queries of the form [I'] A p = g, which can
be automatically discharged using SMT solvers [6].

Several groups have shown how refinement types can be used to verify properties
ranging from partial correctness concerns like array bounds checking [27/23] and data
structure invariants [16] to the correctness of security protocols [2], web applications
[14] and implementations of cryptographic protocols [10]].

Unfortunately, the automatic verification offered by refinements has come at a price.
To ensure decidable checking with SMT solvers, the refinements are quantifier-free
predicates drawn from a decidable logic. This significantly limits expressiveness by
precluding specifications that enable abstraction over the refinements (i.e., invariants).
For example, consider the following higher-order for-loop where set i x v returns
the vector v updated at index i with the value x.
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for :: Int -> Int -> a -> (Int -> a -> a) -> a
for lo hi x body loop lo x
where loop i x

| i < hi = loop (i+1l) (body i x)
| otherwise = x
initUpto :: Vec a -> a -> Int -> Vec a

initUpto a x n = for 0 n a (\i -> set i x)

We would like to verify that initUpto returns a vector whose first n elements are
equal to x. In a first-order setting, we could achieve the above with a loop invariant
that asserted that at the i" iteration, the first i elements of the vector were already
initalized to x. However, in our higher-order setting we require a means of abstracting
over possible invariants, each of which can depend on the iteration index i. Higher-
order logics like Coq and Agda permit such quantification over invariants. Alas, validity
in such logics is well outside the realm of decidability, and hence their use precludes
automatic verification.

In this paper, we present abstract refinement types which enable abstraction (quan-
tification) over the refinements of data- and function-types. Our key insight is that we
can preserve SMT-based decidable type checking by encoding abstract refinements as
uninterpreted propositions in the refinement logic. This yields several contributions:

— First, we illustrate how abstract refinements yield a variety of sophisticated means
for reasoning about high-level program constructs (§2), including: parametric re-
finements for type classes, index-dependent refinements for key-value maps, re-
cursive refinements for data structures, and inductive refinements for higher-order
traversal routines.

— Second, we demonstrate that type checking remains decidable (§3) by showing a
fully automatic procedure that uses SMT solvers, or, to be precise, decision proce-
dures based on congruence closure [19], to discharge logical subsumption queries
over abstract refinements.

— Third, we show that the crucial problem of inferring appropriate instantiations for
the (abstract) refinement parameters boils down to inferring (non-abstract) refine-
ment types (§3), which we have previously automated via the abstract interpretation
framework of Liquid Types [23]].

— Finally, we have implemented abstract refinements in HSOLVE, a new Liquid Type-
based verifier for Haskell. We present experiments using HSOLVE to concisely
specify and verify a variety of correctness properties of several programs ranging
from microbenchmarks to some widely-used libraries (§4)).

2 Overview

We start with a high level overview of abstract refinements, by illustrating how they can
be used to uniformly specify and automatically verify various kinds of invariants.
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2.1 Parametric Invariants

Parametric Invariants via Type Polymorphism. Suppose we had a generic compar-
ison (<=):: a -> a -> Bool asin OCAML. We could use it to write:

max it a ->a -> a

max X y = if x <= y then y else x

maximum :: [a] -> a
maximum (x:xs) = foldr max x Xs

In essence, the type given for maximum states that for any a, if a list of a values is
passed into maximum, then the returned result is also an a value. Hence, for example,
if a list of prime numbers is passed in, the result is prime, and if a list of even numbers
is passed in, the result is even. Thus, we can use refinement types [23] to verify

[}

type Even = {v:Int | v $ 2 = 0 }

maxEvens :: [Int] -> Even
maxEvens xs = maximum (0 : xs')
where xs’ = [ x | x <- xs, x '‘mod' 2 = 0]

Here the % represents the modulus operator in the refinement logic [6] and we type

the primitive mod :: x:Int -> y:Int -> {v: Int | v = x % y}. Ver-
ification proceeds as follows. Given that xs :: [Int], the system has to verify that
maximum (0 : xs’):: Even. To this end, the type parameter of maximum is

instantiated with the refined type Even, yielding the instance:

maximum :: [Even] -> Even

Then, maximum’s argument should be proved to have type [Even]. So, the type pa-
rameter of (:) is instantiated with Even, yielding the instance:

(:) :: Even -> [Even] -> [Even]

Finally, the system infers that 0 : : Evenandxs’ :: [Even], i.e., the arguments of
( :) have the expected types, thereby verifying the program. The refinement type instan-
tiations can be inferred from an appropriate set of logical qualifiers using the abstract
interpretation framework of Liquid Types [23]. Here, once v%2 = 0 is added to the
set of qualifiers, either manually or (as done by our implementation) by automatically
scraping predicates from refinements appearing in specification signatures, the refine-
ment type instantiations, and hence verification, proceed automatically. Thus, parametric
polymorphism offers an easy means of encoding second-order invariants, i.e., of quan-
tifying over or parametrizing the invariants of inputs and outputs of functions.

Parametric Invariants via Abstract Refinements. Instead, suppose that the com-
parison operator was monomorphic, and only worked for Int values. The resulting
(monomorphic) signatures

max :: Int -> Int -> Int
maximum :: [Int] -> Int
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preclude the verification of maxEvens (i.e., typechecking against the signature shown
earlier). This is because the new type of maximum merely states that some Int is
returned as output, and not necessarily one that enjoys the properties of the values in
the input list. This is a shame, since the property clearly still holds. We could type

max :: forall t <: Int. t -> t -> t

but this route would introduce the complications that surround bounded quantification
which could render checking undecidable [22].

To solve this problem, we introduce abstract refinements which let us quantify or
parameterize a type over its constituent refinements. For example, we can type max as

max :: forall <p::Int->Bool>. Int<p> -> Int<p> -> Int<p>

where ITnt<p> is an abbreviation for the refinement type {v:Int | p(v)}. Intu-
itively, an abstract refinement p is encoded in the refinement logic as an uninterpreted
Sfunction symbol, which satisfies the congruence axiom [19]

VX,Y: (X =Y)= P(X) = P(Y)

Thus, it is trivial to verify, with an SMT solver, that max enjoys the above type: the
input types ensure that both p (x) and p (y) hold and hence the returned value in
either branch satisfies the refinement {v:Int | p(v) }, thereby ensuring the output
type. By the same reasoning, we can generalize the type of maximum to

maximum :: forall <p :: Int -> Bool>. [Int<p>] -> Int<p>

Consequently, we can recover the verification of maxEvens. Now, instead of instan-
tiating a type parameter, we simply instantiate the refinement parameter of maximum
with the concrete refinement {\v -> v % 2 = 0}, after which type checking pro-
ceeds as usual [23]]. Later, we show how to retain automatic verification by inferring
refinement parameter instantiations via liquid typing (§ B.4).

Parametric Invariants and Type Classes. The example above regularly arises in prac-
tice, due to type classes. In Haskell, the functions above are typed

(<=) :: (Oxrd a) => a -> a -> Bool
max :: (0xrd a) => a -> a -> a
maximum :: (Ord a) => [a] -> a

We might be tempted to ignore the typeclass constraint and treat maximumas [a] ->
a. This would be quite unsound, as typeclass predicates preclude universal quantifica-
tion over refinement types. Consider the function sum :: (Num a)=> [a] -> a
which adds the elements of a list. The Num class constraint implies that numeric op-
erations occur in the function, so if we pass sum a list of odd numbers, we are not
guaranteed to get back an odd number.
Thus, how do we soundly verify the desired type of maxEvens without instantiating
class predicated type parameters with arbitrary refinement types? First, via the same
analysis as the monomorphic Int case, we establish that

max:: forall <p::a->Bool>. (Ord a)=> a<p> -> a<p> -> a<p>
maximum: : forall <p::a ->Bool>. (0rxd a) => [a<p>] -> a<p>
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Next, at the call-site for maximum in maxEvens we instantiate the type variable a
with Int, and the abstract refinement p with {\v -> v % 2 = 0} after which, the
verification proceeds as described earlier (for the Int case). Thus, abstract refinements
allow us to quantify over invariants without relying on parametric polymorphism, even
in the presence of type classes.

2.2 Index-Dependent Invariants

Next, we illustrate how abstract invariants allow us to specify and verify index-
dependent invariants of key-value maps. To this end, we develop a small library of
extensible vectors encoded, for purposes of illustration, as functions from Int to some
generic range a. Formally, we specify vectors as

data Vec a <dom :: Int -> Bool, rng :: Int -> a -> Bool>
=V (i:Int<dom> -> a <rng 1i>)

Here, we are parameterizing the definition of the type Vec with two abstract refine-
ments, dom and rng, which respectively describe the domain and range of the vector.
That is, dom describes the set of valid indices, and r specifies an invariant relating each
Int index with the value stored at that index.

Creating Vectors. We can use the following basic functions to create vectors:

empty :: forall <p::Int->a->Bool>.Vec<{\_ -> False}, p> a
empty = V (\_ -> error "Empty Vec")

create :: x:a -> Vec <{\_ -> True}, {\_ v -> v = x}> a
create x = V (\_ -> x)

The signature for empty states that its domain is empty (i.e., is the set of indices sat-
isfying the predicate False), and that the range satisfies any invariant. The signature
for create, instead, defines a constant vector that maps every index to the constant x.

Accessing Vectors. We can write the following get function for reading the contents
of a vector at a given index:

get :: forall <d :: Int -> Bool, r :: Int -> a -> Bool>
i:Int<d> -> Vec<d, r> a -> a<r 1>
get 1 (V £) = £ 1

The signature states that for any domain d and range r, if the index 1 is a valid index,
i.e., is of type, Int<d> then the returned value is an a that additionally satisfies the
range refinement at the index i. The type for set, which updates the vector at a given
index, is even more interesting, as it allows us to extend the domain of the vector:

set :: forall <d :: Int -> Bool, r :: Int -> a -> Bool>
i:Int<d>
-> a<r 1i>
-> Vec<d && {\k -> k !'= 1}, r> a

-> Vec<d, r> a
set 1 v (V£f) =V (\k -> if k == 1 then v else f k)
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The signature for set requires that (a) the input vector is defined everywhere at d
except the index i, and (b) the value supplied must be of type a<r 1>, i.e., satisfy the
range relation at the index i at which the vector is being updated. The signature ensures
that the output vector is defined at d and each value satisfies the index-dependent range
refinement r. Note that it is legal to call get with a vector that is also defined at the
index 1 since, by contravariance, such a vector is a subtype of that required by (a).

Initializing Vectors. Next, we can write the following function, init, that “loops”
over a vector, to set each index to a value given by some function.

initialize :: forall <r :: Int -> a -> Bool>.
(z: Int -> a<r z>)
-> 1i: {v: Int | v >= 0}
-> n: Int

-> Vec <{\v -> 0 <= v && v < i}, r> a
-> Vec <{\v -> 0 <= Vv && v < n}, r> a

initialize £ i n a
| i >=n = a
| otherwise = initialize £ (i+l) n (set i (f 1) a)

The signature requires that (a) the higher-order function £ produces values that satisfy
the range refinement r, and (b) the vector is initialized from 0 to i. The function ensures
that the output vector is initialized from 0 through n. We can thus verify that

idvec :: Vec <{\v -> 0<=v && v<n}, {\i1 v -> v=i}> Int
idVvec n = initialize (\i -> i) 0 n empty

i.e., 1dVec returns a vector of size n where each key is mapped to itself. Thus, abstract
refinement types allow us to verify low-level idioms such as the incremental initializa-
tion of vectors, which have previously required special analyses [[12J1515].

Null-Terminated Strings. We can also use abstract refinements to verify code which
manipulates C-style null-terminated strings, represented as Char vectors for ease of
exposition. Formally, a null-terminated string of size n has the type

type NullTerm n
= Vec <{\v -> 0O<=v<n}, {\1 v -> i=n-1 => v='\0’'}> Char

The above type describes a length-n vector of characters whose last element must be
a null character, signalling the end of the string. We can use this type in the specifi-
cation of a function, upperCase, which iterates through the characters of a string,
uppercasing each one until it encounters the null terminator:

upperCase :: n:{v: Int| v>0} -> NullTerm n -> NullTerm n
upperCase n s = ucs 0 s where
ucs 1 s = case get 1 s of
"\0’ -> s
c -> ucs (1 + 1) (set i (toUpper c) s)
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Note that the length parameter n is provided solely as a “witness” for the length of the
string s, which allows us to use the length of s in the type of upperCase; n is not used
in the computation. In order to establish that each call to get accesses string s within
its bounds, our type system must establish that, at each call to the inner function ucs,
i satisfies the type {v: Int | 0 <= v && v < n}. Thisinvariant is established
as follows. First, the invariant trivially holds on the first call to ucs, as n is positive
and 1 is 0. Second, we assume that i satisfies the type {v: Int | 0 <= v &&

v < n}, and, further, we know from the types of s and get that c has the type

{v: Char | 1 = n - 1 => v = “\0’}.Thus,if c is non-null, then i cannot
be equal ton - 1. This allows us to strengthen our type for i in the else branch to
{v: Int | 0 <= v & v < n - 1} and thus to conclude that the value 1 +

1 recursively passed as the i parameter to ucs satisfies the type {v: Int | 0
<= Vv && Vv < n}, establishing the inductive invariant and thus the safety of the
upperCase function.

Memoization. Next, let us illustrate how the same expressive signatures allow us to
verify memoizing functions. We can specify to the SMT solver the definition of the
Fibonacci function via an uninterpreted function £ib and an axiom:

measure fib :: Int -> Int
axiom: forall i. fib(i) = i<=1 ? 1 : fib(i-1) + fib(i-2)

Next, we define a type alias FibV for the vector whose values are either 0 (i.e., unde-
fined), or equal to the Fibonacci number of the corresponding index.

type FibV = Vec<{\_->True}, {\1 v-> v!=0 => v=£fib(i)}> Int

Finally, we can use the above alias to verify fastFib, an implementation of the Fi-
bonacci function which uses a vector to memoize intermediate results

fastFib :: n:Int -> {v:Int | v = fib(n)}
fastFib n = snd $ fibMemo (create 0) n

fibMemo :: FibV -> i:Int -> (FibVv, {v: Int | v = fib(i)})
fibMemo t 1
| i <=1 = (t, 1)

| otherwise = case get i t of
0 -> let (tl, nl)

fibMemo t (i-1)

(t2, n2) = fibMemo tl (i-2)
n = nl + n2
in (set i n t2, n)
n -> (t, n)

Thus, abstract refinements allow us to define key-value maps with index-dependent
refinements for the domain and range. Quantification over the domain and range refine-
ments allows us to define generic access operations (e.g., get, set, create, empty)
whose types enable us establish a variety of precise invariants.
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2.3 Recursive Invariants

Next, we turn our attention to recursively defined datatypes, and show how abstract
refinements allow us to specify and verify high-level invariants that relate the elements
of a recursive structure. Consider the following refined definition for lists:

data [a] <p :: a -> a -> Bool> where
[1 :: [al<p>
(:) :: h:a -> [a<p h>]<p> -> [al<p>

The definition states that a value of type [a]<p> is either empty ([]) or constructed
from a pair of a head h: : a and a tail of a list of a values each of which satisfies the
refinement (p h).Furthermore, the abstract refinement p holds recursively within the
tail, ensuring that the relationship p holds between all pairs of list elements.

Thus, by plugging in appropriate concrete refinements, we can define the following
aliases, which correspond to the informal notions implied by their names:

type IncrList a [al<{\h v -> h <= v}>
type DecrList a = [al<{\h v -> h >= v}>
type UnigList a = [al<{\h v -> h != v}>

Thatis, IncrList a (resp. DecrList a)describes a list sorted in increasing (resp.
decreasing) order, and UnigList a describes a list of distinct elements, i.e., not con-
taining any duplicates. We can use the above definitions to verify

[1, 2, 3, 4] :: IncrList Int
[4, 3, 2, 1] :: DecrList Int
[4, 1, 3, 2] :: UnigList Int

More interestingly, we can verify that the usual algorithms produce sorted lists:

insertSort :: (Ord a) => [a] -> IncrList a
insertSort [] = [1
insertSort (x:xXs) = insert x (insertSort xs)
insert :: (Ord a) => a -> IncrList a -> IncrList a
insert y [1 = [vy]
insert y (x:xXs)

| v <= x =y : X : Xs

| otherwise = x : insert y xs

Thus, abstract refinements allow us to decouple the definition of the list from the actual
invariants that hold. This, in turn, allows us to conveniently reuse the same underlying
(non-refined) type to implement various algorithms unlike, say, singleton-type based
implementations which require up to three different types of lists (with three different
“nil” and “cons” constructors [24]). This, makes abstract refinements convenient for
verifying complex sorting implementations like that of Data.List.sort which, for
efficiency, use lists with different properties (e.g., increasing and decreasing).
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Multiple Recursive Refinements. We can define recursive types with multiple pa-
rameters. For example, consider the following refined version of a type used to encode
functional maps (Data .Map):

data Tree k v <1 k->k->Bool, r k->k->Bool>
= Bin { key ok
, value :: v
, left Tree <1, r> (k <1 key>) v
, right Tree <1, r> (k <r key>) v }
| Tip

The abstract refinements 1 and r relate each key of the tree with all the keys in the left
and right subtrees of key, as those keys are respectively of type k <1 key> and k
<r key>. Thus, if we instantiate the refinements with the following predicates

type BST k v =
type MinHeap k v =
type MaxHeap k v =

then BST k v, MinHeap

Tree<{\x v -> x> v}, {\x y-> X< y}>
Tree<{\x y -> x<=y},{\x y—> x<=y}>
Tree<{\x y -> x>=y},{\x y—> x>=y}>

AN A
< <<

k v and MaxHeap k v denote exactly binary-search-

ordered, min-heap-ordered, and max-heap-ordered trees (with keys and values of types
k and v). We demonstrate in (§ ) how we use the above types to automatically verify
ordering properties of complex, full-fledged libraries.

2.4 Inductive Invariants

Finally, we explain how abstract refinements allow us to formalize some kinds of struc-
tural induction within the type system.

Measures. First, let us formalize a notion of length for lists within the refinement logic.
To do so, we define a special 1en measure by structural induction

measure len [a] -> Int
len [] =0
len (x:xs) =1 + len(xs)

We use the measures to automatically strengthen the types of the data constructors[16]:

where
forall a.{v:[a] | len(v) = 0}
forall a.a -> xs:[a]l -> {v:[a]|len(v)=1l+len(xs)}

data [a]
[]
(:)

Note that the symbol len is encoded as an uninterpreted function in the refinement
logic, and is, except for the congruence axiom, opaque to the SMT solver. The mea-
sures are guaranteed, by construction, to terminate, and so we can soundly use them as
uninterpreted functions in the refinement logic. Notice also, that we can define multiple
measures for a type; in this case we simply conjoin the refinements from each measure
when refining each data constructor.
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With these strengthened constructor types, we can verify, for example, that append
produces a list whose length is the sum of the input lists’ lengths:

append :: 1l:[a] -> m:[a] -> {v:[a]|1en(v):1en(l)+len(m)}
append [] ZsS = zZS
append (y:ys) zs =y : append ys zs

However, consider an alternate definition of append that uses foldr
append ys zs = foldr (:) zs ys

where foldr :: (a -> b -> b)-> b -> [a] -> b. It is unclear how to
give foldr a (first-order) refinement type that captures the rather complex fact that
the fold-function is “applied” all over the list argument, or, that it is a catamorphism.
Hence, hitherto, it has not been possible to verify the second definition of append.

Typing Folds. Abstract refinements allow us to solve this problem with a very ex-
pressive type for foldr whilst remaining firmly within the boundaries of SMT-based
decidability. We write a slightly modified fold:

foldr :: forall <p :: [a] -> b -> Bool>.
(xs:[a] -> x:a -> b <p xXs> -> <p (x:xX8)>)
-> b<p []>
-> ys: [a]
-> b<p ys>
foldr op b [] =Db

foldr op b (x:xs) = op xs x (foldr op b xs)

The trick is simply to quantify over the relationship p that foldr establishes between
the input list xs and the output b value. This is formalized by the type signature, which
encodes an induction principle for lists: the base value b must (1) satisfy the relation
with the empty list, and the function op must take (2) a value that satisfies the relation-
ship with the tail xs (we have added the xs as an extra “ghost” parameter to op), (3) a
head value x, and return (4) a new folded value that satisfies the relationship with x : xs.
If all the above are met, then the value returned by foldr satisfies the relation with the
input list ys. This scheme is not novel in itself [3] — what is new is the encoding, via
uninterpreted predicate symbols, in an SMT-decidable refinement type system.

Using Folds. Finally, we can use the expressive type for the above foldr to verify
various inductive properties of client functions:

length :: zs:[a] -> {v: Int | v = len(zs)}
length = foldr (\_ _n ->n + 1) 0
append :: 1l:[a] -> m:[a] -> {v:[a]| len(v)=1len(l)+len(m) }

append ys zs = foldr (\_ -> (:)) zs ys

The verification proceeds by just (automatically) instantiating the refinement parameter
p of foldr with the concrete refinements, via Liquid typing:

{\xs v -> v = len(xs)} -- for length
{\xs v -> len(v) = len(xs) + len(zs)} -- for append
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Expressions e:=x | c| Ax:7.e | ee | Aae | e[r] | Ar:T.e | ele]
Abstract Refinements p ::=true | pATe
Basic Types b ::= int | bool | «
Abstract Refinement Types 7 ::={v :b(p) |e} | {v:(xz:7)— 7 |e}
Abstract Refinement Schemas o := 71 | YVa.o | Vr: 1.0

Fig. 1. Syntax of Expressions, Refinements, Types and Schemas

3 Syntax and Semantics

Next, we present a core calculus Ap that formalizes the notion of abstract refinements.
We start with the syntax (§ B.1)), present the typing rules (§ B.2)), show soundness via a
reduction to contract calculi [17/1]] (§ 3.3), and inference via Liquid types (§ 3.4).

3.1 Syntax

Figure [I] summarizes the syntax of our core calculus Ap which is a polymorphic -
calculus extended with abstract refinements. We write b, {v : b | e}, and b(p) to abbre-
viate {v : b{true) | true}, {v : b(true) | e}, and {v : b(p) | true} respectively. We say a
type or schema is non-refined if all the refinements in it are frue. We write z to abbrevi-
ate a sequence 27 . . . Zn.

Expressions. \p expressions include the standard variables x, primitive constants c, A-
abstraction Az : 7.e, application e e, type abstraction A«.e, and type application e [7].
The parameter 7 in the type application is a refinement type, as described shortly. The
two new additions to Ap are the refinement abstraction A : 7.e, which introduces a
refinement variable 7 (together with its type 7), which can appear in refinements inside
e, and the corresponding refinement application e [e].

Refinements. A concrete refinement e is a boolean valued expression e drawn from
a strict subset of the language of expressions which includes only terms that (a) nei-
ther diverge nor crash, and (b) can be embedded into an SMT decidable refinement
logic including the theory of linear arithmetic and uninterpreted functions. An abstract
refinement p is a conjunction of refinement variable applications of the form 7 e.

Types and Schemas. The basic types of A p include the base types int and bool and
type variables «v. An abstract refinement type T is either a basic type refined with an ab-
stract and concrete refinements, {v : b(p) | e}, or a dependent function type where the
parameter x can appear in the refinements of the output type. We include refinements for
functions, as refined type variables can be replaced by function types. However, type-
checking ensures these refinements are trivially true. Finally, types can be quantified
over refinement variables and type variables to yield abstract refinement schemas.
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Fig. 2. Static Semantics: Well-formedness, Subtyping and Type Checking

3.2 Static Semantics

Next, we describe the static semantics of Ap by describing the typing judgments and
derivation rules. Most of the rules are standard [21123l17/2]]; we discuss only those
pertaining to abstract refinements.

Judgments. A type environment I is a sequence of type bindings z : o. We use
environments to define three kinds of typing judgments:

— Wellformedness judgments (I' | o) state that a type schema o is well-formed
under environment I, that is, the refinements in ¢ are boolean expressions in the
environment /.
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— Subtyping judgments (I' - 01 < 09) state that the type schema o is a subtype
of the type schema o5 under environment I, that is, when the free variables of o
and o2 are bound to values described by I, the set of values described by o is
contained in the set of values described by os.

— Typing judgments (I' - e : o) state that the expression e has the type schema
o under environment I, that is, when the free variables in e are bound to values
described by I, the expression e will evaluate to a value described by o.

Wellformedness Rules. The wellformedness rules check that the concrete and ab-
stract refinements are indeed bool-valued expressions in the appropriate environment.
The key rule is WF-BASE, which checks, as usual, that the (concrete) refinement e is
boolean, and additionally, that the abstract refinement p applied to the value v is also
boolean. This latter fact is established by WF-RAPP which checks that each refinement
variable application 7 e v is also of type bool in the given environment.

Subtyping Rules. The subtyping rules stipulate when the set of values described by
schema o is subsumed by the values described by 2. The rules are standard except for
=-VAR, which encodes the base types’ abstract refinements p; and ps with conjunctions
of uninterpreted predicates [p, v] and [p v] in the refinement logic as follows:

[true v] = true
[((pAme)v] = [pol Ax(ledd, - [en],v)

where 7(e) is a term in the refinement logic corresponding to the application of the
uninterpreted predicate symbol 7 to the arguments e.

Type Checking Rules. The type checking rules are standard except for T-PGEN and
T-PINST, which pertain to abstraction and instantiation of abstract refinements. The
rule T-PGEN is the same as T-FUN: we simply check the body e in the environment
extended with a binding for the refinement variable 7. The rule T-PINST checks that the
concrete refinement is of the appropriate (unrefined) type 7, and then replaces all (ab-
stract) applications of 7 inside o with the appropriate (concrete) refinement e’ with the
parameters x replaced with arguments at that application. Formally, this is represented
as o[m > Az : 7.€’] which is o with each base type transformed as

{v:b(p) | e}lr > 2] = {v:b(p") [ene”}

where (p”,e”) = Apply(p, 7, 2, true, true)

Apply replaces each application of 7 in p with the corresponding conjunct in e”, as

Apply(true, B 'ap/a el) = (pla 6/)

Apply(p Ame,m  z:T.e”,p e') = Apply(p,m, Az : 7.€”,p e’ Ne'le,v/x])
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In other words, the instantiation can be viewed as two symbolic reduction steps: first re-
placing the refinement variable with the concrete refinement, and then “beta-reducing”
concrete refinement with the refinement variable’s arguments. For example,

{v:iint(my) |v > 10}[m > Az1 : 7. Az2 t oxy < 2] = {v:int|v>10Ay < v}

3.3 Soundness

As hinted by the discussion about refinement variable instantiation, we can intuitively
think of abstract refinement variables as ghost program variables whose values are
boolean-valued functions. Hence, abstract refinements are a special case of higher-order
contracts, that can be statically verified using uninterpreted functions. (Since we focus
on static checking, we don’t care about the issue of blame.) We formalize this notion by
translating A p programs into the contract calculus Fy of [1] and use this translation to
define the dynamic semantics and establish soundness.

Translation. We translate Ap schemes o to Fy schemes (o) as by translating abstract
refinements into contracts, and refinement abstraction into function types:

(true v)) = true (Vr : T.0) (m:{7)) = (o)
{(pAme)v) = (pv)Amew (Va.o) = Va.{o)
({v:0{p) le}h = {v:blen(puv)} (@:m) = n) = (@:(nh) = (n)

Similarly, we translate A p terms e to F'y terms (e by converting refinement abstraction
and application to A-abstraction and application

o) = o (e = o
Az :7e) = Az (7]).{e) {le1 e2) = {er) (e2)
(Aace) = Aa.(e) {e[r]) = {eb (7D
(Am:Te) = Ar: (7). {e) {eife2] ) = {e1) (e2)

Translation Properties. We can show by induction on the derivations that the type
derivation rules of Ap conservatively approximate those of Fy;. Formally,

- IfI'+ 7then (') kg (7).
-IfI'tn < mthen (') by (mi) <: (72),
- If'ke:rthen (I') Fu {e) : 7).

Soundness. Thus rather than re-prove preservation and progress for A p, we simply use
the fact that the type derivations are conservative to derive the following preservation
and progress corollaries from [[1]:

— Preservation: If () -e: 7and (e)) — e/ then () Fp € : {7)
— Progress: If () - e : 7, then either (e — € or {e]) is a value.

Note that, in a contract calculus like F;, subsumption is encoded as a upcast. How-
ever, if subtyping relation can be statically guaranteed (as is done by our conservative
SMT based subtyping) then the upcast is equivalent to the identity function and can be
eliminated. Hence, Fyy terms (e|) translated from well-typed Ap terms e have no casts.
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3.4 Refinement Inference

Our design of abstract refinements makes it particularly easy to perform type inference
via Liquid typing, which is crucial for making the system usable by eliminating the
tedium of instantiating refinement parameters all over the code. (With value-dependent
refinements, one cannot simply use, say, unification to determine the appropriate instan-
tations, as is done for classical type systems.) We briefly recall how Liquid types work,
and sketch how they are extended to infer refinement instantiations.

Liquid Types. The Liquid Types method infers refinements in three steps. First, we cre-
ate refinement templates for the unknown, to-be-inferred refinement types. The shape of
the template is determined by the underlying (non-refined) type it corresponds to, which
can be determined from the language’s underlying (non-refined) type system. The tem-
plate is just the shape refined with fresh refinement variables x denoting the unknown
refinements at each type position. For example, from a type (z : int) — int we create
the template (x : {v: int | k. }) — {v : int | k}. Second, we perform type checking
using the templates (in place of the unknown types.) Each wellformedness check be-
comes a wellformedness constraint over the templates, and hence over the individual
K, constraining which variables can appear in . Each subsumption check becomes a
subtyping constraint between the templates, which can be further simplified, via syn-
tactic subtyping rules, to a logical implication query between the variables x. Third,
we solve the resulting system of logical implication constraints (which can be cyclic)
via abstract interpretation — in particular, monomial predicate abstraction over a set
of logical qualifiers [9423]]. The solution is a map from x to conjunctions of qualifiers,
which, when plugged back into the templates, yields the inferred refinement types.

Inferring Refinement Instantiations. The key to making abstract refinements practi-
cal is a means of synthesizing the appropriate arguments e’ for each refinement appli-
cation e [¢’]. Note that for such applications, we can, from e, determine the non-refined
type of e/, which is of the form 73 — ... — 7, — bool. Thus, e’ has the template
A1 :T1....\Zy . Tn.k Where k is a fresh, unknown refinement variable that must
be solved to a boolean valued expression over x1, ..., x,. Thus, we generate a well-
formedness constraint x1 : T1,..., %, : T, = K and carry out typechecking with tem-
plate, which, as before, yields implication constraints over «, which can, as before, be
solved via predicate abstraction. Finally, in each refinement template, we replace each
x with its solution e, to get the inferred refinement instantiations.

4 Evaluation

In this section, we empirically evaluate the expressiveness and usability of abstract re-
finement types by exploring the process of typechecking a set of challenging benchmark
programs using a prototype type checker for Haskell. (We defer the task of extending
the metatheory to a call-by-name calculus to future work.)

HSOLVE. We have implemented abstract refinement in HSOLVE, a refinement type
checker for Haskell. HSOLVE verifies Haskell source one module (.hs file) at a time. It
takes as input:
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Table 1. (LOC) is the number of non-comment Haskell source code lines as reported by sloc-
count, (Specs) is the number of lines of type specifications, (Annet) is the number of lines of
other annotations, including refined datatype definitions, type aliases and measures, required for
verification, (Time) is the time in seconds taken for verification.

Program LOC Specs Annot Time (s)
Micro 32 19 4 2
Vector 56 56 2 14
ListSort 29 4 1 3
Data.List.sort 71 3 1 8
Data.Set.Splay 136 15 11 15
Data.Map.Base 1399 119 31 235
Total 1723 216 50 277

A target Haskell source file, with the desired refinement types specified as a special
form of comment annotation,

An (optional) set of type specifications for imported definitions; these can either be
put directly in the source for the corresponding modules, if available, or in special
. spec files otherwise. For imported functions for which no signature is given,
HSOLVE conservatively uses the non-refined Haskell type.

An (optional) set of logical qualifiers, which are predicate templates from which
refinements are automatically synthesized [23]]. Formally, a logical qualifier is a
predicate whose variables range over the program variables, the special value vari-
able v, and wildcards *, which HSOLVE instantiates with the names of program
variables. Aside from the qualifiers given by the user, HSOLVE also uses qualifiers
mined from the refinement type annotations present in the program.

After analyzing the program, HSOLVE returns as output:

Either SAFE, indicating that all the specifications indeed verify, or UNSAFE, indi-
cating there are refinement type errors, together with the positions in the source
code where type checking fails (e.g., functions that do not satisfy their signatures,
or callsites where the inputs don’t conform to the specifications).

An HTML file containing the program source code annotated with inferred refine-
ment types for all sub-expressions in the program. The inferred refinement type for
each program expression is the strongest possible type over the given set of logi-
cal qualifiers. When a type error is reported, the programmer can use the inferred
types to determine why their program does not typecheck: they can examine what
properties HSOLVE can deduce about various program expressions and add more
qualifiers or alter the program as necessary so that it typechecks.

Implementation. HSOLVE verifies the contents of a single file (module) at a time
as follows. First, the Haskell source is fed into GHC, which desugars the program to
GHC’s “core” intermediate representation [26]. Second, the desugared program, the
type signatures for the module functions (which are to be verified) and the type sig-
natures for externally imported functions (which are assumed to hold) are sent to the
constraint generator, which traverses the core bindings in a syntax-directed manner to



Abstract Refinement Types 225

generate subtyping constraints. The resulting constraints are simplified via our sub-
typing rules (§ B)) into simple logical implication constraints. Finally, the implication
constraints, together with the logical qualifiers provided by the user and harvested from
the type signatures, are sent into an SMT- and abstract interpretation-based fixpoint
computation procedure that determines if the constraints are satisfiable [[139]]. If so, the
program is reported to be safe. Otherwise, each unsatisfiable constraint is mapped back
to the corresponding program source location that generated it and a potential error is
reported at that line in the program.

Benchmarks. We have evaluated HSOLVE over the following list of benchmarks
which, in total, represent the different kinds of reasoning described in § 2l While we
can prove, and previously have proved [16], many so-called “functional correctness”
properties of these data structures using refinement types, in this work we focus on the
key invariants which are captured by abstract refinements.

— Micro, which includes several functions demonstrating parametric reasoning with
base values, type classes, and higher-order loop invariants for traversals and folds,
as described in § 2.1and § 2.4t

— Vector, which includes the domain- and range-generic Vec functions and several
“clients” that use the generic Vec to implement incremental initialization, null-
terminated strings, and memoization, as described in § 2.2}

— ListSort, which includes various textbook sorting algorithms including insert-,
merge- and quick-sort. We verify that the functions actually produce sorted lists,
i.e., are of type ITncrList a, as described in § 2.3}

— Data.List.sort, which includes three non-standard, optimized list sorting al-
gorithms, as found in the base package. These employ lists that are increasing and
decreasing, as well as lists of (sorted) lists, but we can verify that they also finally
produce values of type ITncrList a;

— Data.Set.Splay, which is a purely functional, top-down splay set library from
the 11rbtree package. We verify that all the interface functions take and return
binary search trees;

— Data.Map.Base, which is the widely-used implementation of functional maps
from the containers package. We verify that all the interface functions preserve
the crucial binary search ordering property and various related invariants.

Table[I] quantitatively summarizes the results of our evaluation. We now give a qualita-
tive account of our experience using HSOLVE by discussing what the specifications and
other annotations look like.

Specifications are Usually Simple. In our experience, abstract refinements greatly
simplify writing specifications for the majority of interface or public functions. For
example, for Data.Map.Base, we defined the refined version of the Tree ADT
(actually called Map in the source, we reuse the type from § 2.3] for brevity), and then
instantiated it with the concrete refinements for binary-search ordering with the alias
BST k v as described in § 2.3] Most refined specifications were just the Haskell types
with the Tree type constructor replaced with the alias BST. For example, the type
of fromList is refined from (Ord k)=> [(k, a)] -> Tree k ato (Ord
k)=> [(k, a)] -> BST k a.Furthermore, intra-module Liquid type inference
permits the automatic synthesis of necessary stronger types for private functions.
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Auxiliary Invariants Are Sometimes Difficult. However, there are often rather thorny
internal functions with tricky invariants, whose specification can take a bit of work. For
example, the function trimin Data.Map .Base has the following behavior (copied
verbatim from the documentation): “trim blo bhi t trims away all subtrees that
surely contain no values between the range blo to bhi. The returned tree is either
empty or the key of the root is between blo and bhi.” Furthermore blo (resp. bhi)
are specified as option (i.e., Maybe) values with Nothing denoting —oo (resp. +00).
Fortunately, refinements suffice to encode such properties. First, we define measures

measure isJust :: Maybe a -> Bool
isJust (Just x) = true

isJust (Nothing) = false

measure fromJust :: Maybe a -> a
fromJustS (Just x) = x

measure 1isBin :: Tree k v -> Bool
isBin (Bin _ _ _ _) = true

isBin (Tip) = false

measure key :: Tree k v -> k

key (Bin k _ _ _) =k

which respectively embed the Maybe and Tree root value into the refinement logic,
after which we can type the trim function as

trim :: (Ord k) => blo:Maybe k
-> bhi:Maybe k
-> BST k a
-> {v:BST k a | bound(blo, v, bhi)}

where bound is simply a refinement alias

refinement bound(lo, v, hi)
= 1isBin(v) => isdJust(lo) => fromJust(lo) < key(v)
&& 1isBin(v) => isJust(hi) => fromJust(hi) > key(v)

That is, the output refinement states that the root is appropriately lower- and upper-
bounded if the relevant terms are defined. Thus, refinement types allow one to formalize
the crucial behavior as machine-checkable documentation.

Code Modifications. On a few occasions we also have to change the code slightly,
typically to make explicit values on which various invariants depend. Often, this is for
a trivial reason; a simple re-ordering of binders so that refinements for later binders can
depend on earlier ones. Sometimes we need to introduce “ghost” values so we can write
the specifications (e.g., the foldr in § 2.4). Another example is illustrated by the use
of list append in quickSort. Here, the append only produces a sorted list if the
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two input lists are sorted and such that each element in the first is less than each element
in the second. We address this with a special append parameterized on pivot

append :: pivot:a
-> IncrlList {v:a | v < pivot}
-> IncrList {v:a | v > pivot}
-> IncrList a
append pivot [] ys pivot : ys
append pivot (x:xs) ys = x : append pivot xs ys

5 Related Work

The notion of type refinements was introduced by Freeman and Pfenning [[11]], with
refinements limited to restrictions on the structure of algebraic datatypes, for which
inference is decidable. Our present notion of refinement types has its roots in the in-
dexed types of Xi and Pfenning [27], wherein data types’ ranges are restricted by in-
dices, analogous to our refinement predicates, drawn from a decidable domain; in the
example case explored by Xi and Pfenning, types were indexed by terms from Pres-
burger arithmetic. Since then, several approaches to developing richer refinement type
systems and accompanying methods for type checking have been developed. Knowles
and Flanagan [[17]] allow refinement predicates to be arbitrary terms of the language
being typechecked and present a technique for deciding some typing obligations stati-
cally and deferring others to runtime. Findler and Felleisen’s [8] higher-order contracts,
which extend Eiffel’s [[18] first-order contracts — ordinary program predicates acting
as dynamic pre- and post-conditions — to the setting of higher-order programs, eschew
any form of static checking, and can be seen as a dynamically-checked refinement type
system. Bengtson et al. [2] present a refinement type system in which type refinements
are drawn from a decidable logic, making static type checking tractable. Greenberg et
al. [1] gives a rigorous treatment of the metatheoretic properties of such a refinement
type system.

Refinement types have been applied to the verification of a variety of program prop-
erties [270712/10]. In the most closely related work to our own, Kawaguchi et al. [16]
introduce recursive and polymorphic refinements for data structure properties. The
present work unifies and generalizes these two somewhat ad-hoc notions into a single,
strictly and significantly more expressive mechanism of abstract refinements.

A number of higher-order logics and corresponding verification tools have been de-
veloped for reasoning about programs. Example of systems of this type include NuPRL
[4]], Coq [3]], F* [25] and Agda [20] which support the development and verification
of higher-order, pure functional programs. While these systems are highly expressive,
their expressiveness comes at the cost of making logical validity checking undecidable.
To help automate validity checking, both built-in and user-provided tactics are used to
attempt to discharge proof obligations; however, the user is ultimately responsible for
manually proving any obligations which the tactics are unable to discharge.
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