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ABSTRACT. This paper provides an introduction to quantum complexity the-
ory. Two basic models of quantum computers, quantum Turing Machines and
quantum circuits, are defined and shown to be polynomially equivalent. The
quantum complexity class BQP of is defined, and its relationship to classical
complexity classes is established. The basic techniques for proving limits on
quantum computers, by showing a lower bound in the black box model are
surveyed. Finally the quantum analog of the Cook-Levin theorem is sketched.

CONTENTS
1. Introduction
2. Quantum Turing Machines and Quantum Circuits
3. Quantum Complexity Classes:
4. Recursive Fourier Sampling
5.  Quantum Lower Bounds
6. Quantum NP
References

1. Introduction

The main goal of computational complexity theory is to classify computational
problems according to the amount of computational resources — typically time
or number of steps — required to solve them on a computer. That this quantity
is well defined rests upon the modern form of the Church-Turing thesis, which
asserts that any “reasonable” model of computation can be efficiently simulated on
a probabilistic Turing Machine. (An efficient simulation is one whose running time
is bounded by some polynomial in the running time of the simulated machine.)
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This thesis may be informally summarized as follows: All physical implementations
of computing devices can be simulated with polynomial factor overhead in running
time by the probabilistic Turing Machine or the random access machine. Recently,
this paradigm has been fundamentally challenged, since there are strong arguments
showing that the Church-Turing thesis (in this modern form) does not hold at the
level of quantum mechanics.

Early indications of this possibility occurred in the paper by Feynman [14]
which pointed out that it was not clear how to simulate quantum mechanical sys-
tems of n particles (say n spins) on a computer, without paying an exponential
penalty in simulation time. The first formal evidence that quantum computers
violate the modified Church-Turing thesis came a decade later, with the result
of Bernstein and Vazirani [9], which showed that relative to an oracle, quantum
polynomial time properly contains probabilistic polynomial time. This built upon a
previous algorithm due to Deutsch and Jozsa [13]. Simon [24] improved this bound
by showing that relative to an oracle, quantum polynomial time is not contained
in subexponential probabilistic time. Shor [25] followed up with seminal results in
quantum algorithms, showing that the problems of prime factorization and discrete
logarithms can both be solved in polynomial time on a quantum computer. The
computational intractability of these problems for classical computers is the stan-
dard computational assumption underlying modern cryptography. Together, these
results provide very strong evidence that quantum computers violate the modern
Church-Turing thesis.

In view of these developments, one must explore a new complexity theory based
on quantum mechanics. The formal models for quantum computers - quantum Tur-
ing Machines and quantum circuits - were introduced by Deutsch [11]. These two
models were shown to be polynomially equivalent in terms of their computing power
by Yao [31]. Creating a universal quantum Turing Machine (a programmable quan-
tum Turing Machine) has proved to be a much more challenging task than the cor-
responding classical universal constructions. The first part of this paper introduces
these models, and sketches the universal quantum Turing Machince construction
from [9], and the polynomial equivalence of quantum Turing Machines and quantum
circuits from [31]. It also describes universal families of quantum circuits [7].

The class of problems that can be solved in polynomial time (in the length of the
input) has a special place in complexity theory — since it is regarded as the class of
efficiently solvable problems. The class of problems that can be solved in polynomial
time on a probabilistic Turing Machine is denoted by BPP. The corresponding class
problems solvable in polynomial time on a quantum Turing Machine is denoted by
BQP. The best upper bound known for this class is BQP C P#F C PSPACE [9],
i.e., every problem that can be solved in polynomial time on a quantum Turing
Machine can also be solved using polynomial amount of memory space on a clas-
sical Turing Machine. Thus P C BPP C BQP C P#P C PSPACE. Since
P =?"PSPACE is a major open question in computational complexity theory, this
implies that any absolute results showing that quantum computers are more pow-
erful than classical computers (BQP # BPP) will have to await a major break-
through in complexity theory. Until then, we must be satisfied with evidence such
as [9, 24, 25] that quantum computers violate the modern Church-Turing thesis.

Is NP C BQP? In view of the exponential speedups offered by quantum com-
puters for certain computational problems, it is natural to ask whether quantum
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computers can solve NP-complete problems in polynomial time. An affirmative an-
swer would have astounding consequences, since the NP-complete problems include
several thousand of the most important computational problems, and are believed
to be classically intractable. It was shown in [10] that relative to a random oracle,
a quantum Turing Machine must take exponential time to solve NP-complete prob-
lems. This appears to rule out any efficient quantum algorithm for an NP-complete
problem, barring a major breakthrough in computational complexity theory. In the
same paper an exponential lower bound was established on the problem of inverting
a random permutation (thus opening up the possibility of quantum one-way func-
tions). Both results were proved using the hybrid argument. Two other techniques
for establishing lower bounds have been introduced. The first is the method of
polynomials [8], which was used to give a tight linear lower bound on the quan-
tum complexity of the parity function in the black box model. In the same paper
they showed that, in general, the quantum query complexity of any total function
in the black box model is bounded by the sixth power of the deterministic query
complexity. The second technique is the method of quantum adversaries [2]. This
technique appears to be very general, and has been used to obtain tight bounds
for a number of problems. In particular, it was used to prove a tight bound on the
problem of inverting a random permutation.

Does BQP C NP? Since BQP includes the ability to randomize, the fair way
of asking this question is whether BQP is contained in M A — the probabilistic
generalization of NP. There are indications that the answer is negative, since
the recursive Fourier sampling problem, which has an efficient quantum algorithm
[9] is not in M A relative to an oracle. A major question that remains open is
whether BQP € BPPNF i.e., is the ability to do approximate counting sufficient
to simulate BQP in polynomial time?

Perhaps the center piece of classical complexity theory is the Cook-Levin the-
orem, which states that 3 — SAT is NP-complete. Recently, Kitaev [18] proved
the quantum analogue of this result. He showed that the problem of ‘local Hamil-
tonians’, which is a natural generalization of 3 — SAT is complete for BQNP. A
very non-trivial consequence that follows from this result is that BQNP C P#P.
Our exposition of these results is based on the manuscript [1]. We do not know
of any natural examples, other than ‘local Hamiltonians’, of complete problems for
this quantum analog of N P. Developing this theory further is an important open
question in quantum complexity theory.

A number of beautiful and deep results in classical complexity theory have
emerged out of a study of interactive proof systems (see [23]). Recently two strik-
ing results have been proved about QIP, the quantum analog of IP (interactive
polynomial time). The first of these shows that for quantum interactive proofs,
three rounds are as powerful as polynomially many rounds [28, 19]. The second
gives a non-trivial upper bound, showing that QIP C EXP [19].

In addition to time or number of steps, another complexity measure of interest
is space, or number of tape cells used by the computation. In this measure, quantum
computation offers at most a polynomial factor advantage over classical computa-
tion, since it has been shown that a theorem analogous to Savitch’s theorem holds
for quantum computation, i.e., QSPACE(f(n)) C SPACE(f(n)?) [29].
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This survey is based on lecture notes from a course on quantum computation
that T taught recently. The lecture notes from that course are posted on my web
page www.cs.berkeley.edu/~vazirani.

2. Quantum Turing Machines and Quantum Circuits

Just as a bit (an element of {0,1}) is a fundamental unit of classical infor-
mation, a qubit is the fundamental unit of quantum information. A qubit is
described by a unit vector in the 2 dimensional Hilbert space C?. Let |0) and |1)
be an orthonormal basis for this space. In general, the state of the qubit is a linear
superposition of the form «|0) + 3|1). The state of n qubits is described by a
unit vector in the n-fold tensor product C> ® C? ® ---® C2. An orthonormal basis
for this space is now given by the 2" vectors |z), where x € {0,1}"™. This is often
referred to as the computational basis. In general, the state of n qubits is a linear
superposition of the 2" computational basis states. Thus the description of an n
qubit system requires 2" complex numbers. This is the source of the astounding in-
formation processing capabilities of quantum computers. An important constraint
that quantum mechanics places is that the evolution of the state of the n qubits
over time must be unitary. In other words, if |¢g) is the initial state of the n qubits,
and U is the (2" dimensional) unitary transformation that describes the evolution
of the system, then the state after ¢ steps is |¢;) = Ut |¢g). For our purposes, it is
sufficient to consider the results of measuring the state of a quantum system in the
computational basis. If the system is in the superposition [®) = Y a, |x), then
measuring the state of the system yields the outcome |z) with probability \ax\z.
See [22] for an excellent reference for quantum computation.

The two main models of quantum computers: quantum Turing Machines and
quantum circuits were first defined by Deutsch [11, 12]. Quantum Turing Machines
are much more complex than their classical counterparts, and the construction of
universal quantum Turing Machines, as well as implementing programming prim-
itives such as branching and looping requires a considerable amount of work. We
section starts with a sketch of these ideas about quantum Turing Machines. Then
we turn our attention to quantum circuits, which provide a convenient language
in which to describe quantum algorithms. We end with a sketch of Yao’s proof
showing the equivalence of these two models.

2.1. Quantum Turing Machines. The definition of a quantum Turing
Machines incorporates these concepts into the usual definition of a classical Turing
Machine.

Recall that a classical Turing Machine! is defined by a triplet (X, Q,§) where
3} is a finite alphabet with an identified blank symbol #, @ is a finite set of states
with an identified initial state go and final state gy, and 8, the deterministic finite
state control, is a function

6+ Q@ x T—-Y¥x@QxD

with D = {L, R}. The Turing Machine has a two-way infinite tape of cells indexed
by the integers Z and a single read/write tape head that steps along the tape.

1128] is an excellent reference.
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A configuration of the TM consists of the description of the contents of the
tape, the location of the tape head, and the state ¢ € Q). It is standard to restrict
attention to configurations where all but a finite number of tape cells contain the
blank symbol #. Each configuration of the TM has a successor defined as follows:
If 6(p,0) = 1,q,d, then whenever the TM is in state p with symbol ¢ under the
tape head, it replaces the symbol o with the symbol 7, enters state ¢, and steps in
direction d, either left one cell or right one cell.

The TM halts on input z if it eventually enters the final state ¢;. The number
of steps a TM takes to halt on input x is its running time on input x. If a TM halts
then its outputis a string in ¥* consisting of the tape contents from the leftmost
non-blank symbol to the rightmost non-blank symbol, or the empty string if the
entire tape is blank. A TM which halts on all inputs therefore computes a function
from (X — #)* to ¥*.

DEFINITION 1. A quantum Turing Machine (QTM) is defined by a triplet
(3,Q,6), where ¥ is a finite alphabet with an identified blank symbol #, Q is a
finite set of states with an identified initial state qo and final state gy, and 6, the
quantum finite state control is a function

6 QXEH(?EXQXD

with D = {L, R}.?> The quantum Turing Machine has a two-way infinite tape of
cells indexed by the integers Z, and by a single read/write tape head that steps along
the tape.

The state of a quantum Turing Machine is a linear superposition ) a. |a, g, m)
over classical configurations ¢ = |a, g, m), where ¢ is a classical configuration consist-
ing of a tape configuration a, a state ¢ € @), and m € Z. As in the case of classical
Turing Machines, we will consider only those tape configurations a in which all
but finitely many tape cells contain the blank symbol #. Also, we will restrict
ourselves to considering superpositions consisting of finite linear combinations of
configurations ¢. Formally this restricts us to the dense subspace S of the Hilbert
space with a basis element for each configuration |¢). The value 6(p, o) gives the
superposition of updates which the machine will take when in state p reading a o.
In this manner, the transition function ¢ specifies a linear operator on the space
S. Not every transition function ¢ specifies a legal quantum Turing Machine. For
the quantum Turing Machine to be legal, the linear operator specified by § must
be unitary. Such transition functions ¢ are called well-formed. If the state of the
quantum Turing Machine is the superposition )« |c), then performing a mea-
surement on the state of the quantum Turing Machine (in the computational basis)
yields the result ¢ with probability |a.|?.

An Efficient Universal QTM

Unlike in the classical case, the construction of an efficient universal QTM is
quite non-trivial. Here we will sketch the main steps in the construction of [9].

In order to show that there is an efficient universal quantum Turing Machine,
we must show that there is a fixed quantum Turing Machine with a fixed alpha-
bet ¥ and fixed set of states @, that can simulate an arbitrary quantum Turing

2By C~, we mean all those complex numbers x + iy where the j-th bit of x and y can be
computed in time polynomial in j.
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Machine, with possibly a much larger tape alphabet and set of states. To do this,
we must allow the universal quantum Turing Machine to encode each symbol of
M by a block of symbols. Thus we will assume that there is an efficient encod-
ing and decoding scheme to translate between configurations M and those of the
universal quantum Turing Machine. We must also allow the universal quantum
Turing Machine several computational steps to simulate each step of M. Finally,
we will allow the simulation to be e faithful, i.e. for every input z, and every ¢, the
probability distribution that results from measuring the state of M on input x after
t steps must be with in e total variation distance (L; norm) of the corresponding
probability distribution defined by the simulation on the universal QTM.

DEFINITION 2. We say that a quantum Turing Machine is in standard form if
all transitions leading to state ¢ € Q) cause the read/write head to move in direction

d.

For quantum Turing Machines in the standard form, the transition function
can be simplified to

§ : Q xX —(C2xe

This is because the direction d is uniquely determined by the new state ¢ € Q. It
is not hard to see that a quantum Turing Machine in standard form is well-formed
if and only if its transition function § is unitary.

In this case, the main problem in constructing the universal quantum Turing
Machine lies in implementing a close approximation to a specified unitary transfor-
mation ¢ using only the fixed size of unitary transformation allowed to the universal
quantum Turing Machine. Suppose that § is a d dimensional unitary transforma-
tion. The universal quantum Turing Machine accomplishes this by implementing a
sequence of very elementary operations:

DEFINITION 3. An m X m unitary matriz U is near-trivial if it satisfies one of
the following two conditions:

o U is the identity except that one of its diagonal entries is € for some
6 € [0,2m7].

e U is the identity except that the submatrixz in one pair of distinct dimen-
sions i and j is the rotation by some angle 0 € [0, 27].

The following theorem provides one of the key ingredients in showing how to
implement any arbitrary m dimensional unitary transformation § on a universal
quantum Turing Machine:

THEOREM 1. Anym dimensional unitary transformation U can be e-approximated
by a product of near-trivial matrices. Moreover, there is a deterministic algorithm
that outputs such a decomposition in time polynomial in m and log1/e.

Now the simulation of a given quantum Turing Machine M proceeds as follows.
Each tape cell (symbol) of M is encoded by a block of cells of the universal quantum
Turing Machine. Also, the state ¢ € @ of M is written out explicitly on the tape
of the universal quantum Turing Machine. Now, to simulate a step of M, the
universal quantum Turing Machine carries out the unitary transformation § on the
block of cells representing the currently scanned symbol of M, and the block of
cells representing the state ¢ € @ of M. It then updates the scanned symbol by
simulating the movement of the tape head of M.
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Dealing with non-standard form quantum Turing Machines

The states ¢ € @ of a quantum Turing Machine M = (X, Q, §) may be regarded
as an orthonormal basis for the Hilbert space C/?!. Consider a new quantum Turing
Machine M’, whose states B correspond to a different orthonormal basis for this
Hilbert space. Then each state b € B is a linear combination of the states in Q.
Finally, if we define the transition function 8’ of M’ as the natural (linear) extension
of 8§, then it is easy to see that M’ has the same time evolution as M. The key
property that facilitates the simulation of quantum Turing Machines that are not
in standard form is:

THEOREM 2. For any quantum Turing Machine M = (3,Q,06), there is a
unitary change of basis for CI9!, such that the resulting equivalent quantum Turing
Machine M’ is in standard form.

The only remaining problem in carrying out the construction of a universal
quantum Turing Machine is that the start state and final state of M under the
basis change in the theorem above, might correspond to superpositions of states
in M’. To fix this problem, we can simulate each step of M using three steps —
change basis from Q to B, simulate a step of M’, change basis back from B to Q.

Multi-tape quantum Turing Machines

The construction of the universal quantum Turing Machine easily extends to
multi-tape quantum Turing Machines in standard form. However, the construction
given above does not work for multi-tape quantum Turing Machines. The difficulty
is that, for multi-tape QTMs, there is no change of basis, in general that yields an
equivalent QTM in standard form. Nevertheless, Yao’s construction [31], showing
the polynomial equivalence of quantum Turing Machines and quantum circuits,
implies an efficient universal multi-tape QTM. There is a penalty in the simulation
overhead, however, that grows as exponentially in the number of tapes of the QTM.
(Since the number of tapes is a constant, this still gives a polynomial overhead.) It
is an open question whether this simulation overhead is inherent.

2.2. Quantum Circuits. Quantum circuits [11] are another abstract model
for quantum computers. Yao [31] showed that quantum Turing Machines and
uniform families of quantum circuits are equivalent in terms of their computing
power.

A quantum circuit on m qubits implements a unitary transformation U on the
Hilbert space (C?)®™. A unitary transformation on n qubits is ¢ — local if it op-
erates nontrivially on at most ¢ of the qubits, and preserves the remaining qubits.
Quantum computation may be thought of as the study of those unitary transfor-
mations that can be realized as a sequence of ¢ — local unitary transformations, i.e.,
of the form

U=l U,

where the U; are ¢ — local and k is bounded by a polynomial in n.

Indeed, it has been shown that we can simplify the picture further, and restrict
attention to certain special 2 —local unitary transformations, also called elementary
quantum gates [7]:
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Rotation
A rotation or phase shift through an angle 6 can be represented by the matrix

cosf —sinf
U= (sin9 cos@)'
This can be thought of as rotation of the axes (see Figure 1).

| 1>

1>
‘\\\ |O’>

Figure 1. Rotation.

Hadamard transform
If we reflect the axes in the line § = /8, we get the Hadamard transform. (See
Figure 2). This can be represented by the matrix

=7l A

| 1>
| 0" >
K4
H
SH
- }0>
|1 >

Figure 2. Hadamard transform.

Phase Flip
The phase flip gate operates on a single qubit by the following matrix

b4
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Controlled NOT

The controlled NOT gate (Figure 3) operates on 2 qubits and can be represented
by the matrix

1 0 0 0
01 00
0 0 0 1}’
0 010
where the basis elements are (in order) |00), |01), |10), |11). If inputs a and b are

basis states, then the outputs are a and a @ b.

a

b N
Figure 3. Controlled NOT.

Any unitary transformation can be approximated by using rotation by /8, the
Hadamard transform, phase flip and controlled NOT gates [7].

Primitives for quantum computation

Let us consider how we can simulate a classical circuit with a quantum circuit.
The first observation is that quantum evolution is unitary, and therefore reversible.
(The effect of a unitary transformation U can be undone by applying its adjoint).
Therefore, if the classical circuit computes the function f : {0,1}" — {0, 1}, then we
must allow the quantum circuit to output |x) |f(z)) on input |x). It follows from
the work of Bennett [4] on reversible classical computation that, if C (f) is the
size of the smallest classical circuit that computes f, then there exists a quantum
circuit of size O (C (f)) which, for each input x to f, computes the following unitary
transformation Uy on m qubits

Up:lz)ly) = o) |y & f (2))
In general though, we don’t need to feed Uy a classical state |x). If we feed
Uy a superposition

S acle) (o)

z€{0,1}™
then, by linearity,

U > acla)|0) | = D0 aulp(I0)10) = > aule)|f (@)

ze{0,1}"™ z€{0,1}™ z€{0,1}™

At first sight it might seem that we have computed f (x) simultaneously for each
basis state |x) in the superposition. However, were we to make a measurement, we
would observe f (x) for only one value of x.
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Hadamard Transform

The second primitive is the Hadamard transform Hs», which corresponds to
the Fourier transform over the abelian group Z3. The correspondence is based on
identifying {0,1}" with Z%, where the group operation is bitwise addition modulo
2. One way to define Hon is as the 2" x 2™ matrix in which the (z,y) entry is
271/2 (=1)"Y. An equivalent way is as follows. Let H be the unitary transformation
on one qubit defined by the matrix

N
(3 3)
V2 V2
If a quantum circuit consists of subcircuits operating on disjoint qubits, then the
unitary transformation describing the circuit is the tensor product of the unitary
transformations describing the individual subcircuits. Thus, Hon = H®™, or H
tensored with itself n times.

Applying the Hadamard transform (or the Fourier transform over Z%) to the
state of all zeros gives an equal superposition over all 2" states

1
Hon |0---0) = ).
2 | > ﬁxe{;l}n|>

In general, applying the Hadamard transform to the computational basis state
|u) yields:

1 .
H n == —1 w
2 |u> ﬁxe{;l}n ( ) ‘.’L‘>

2.3. Polynomial Equivalence of Quantum Turing Machines and Quan-
tum Circuits. The central issues to be addressed in constructing an efficient
quantum circuit equivalent to a given QTM are the same as those in constructing a
universal QTM. In each case, we must decompose one step of the simulated machine
(which is a mapping from the computational basis to a new orthonormal basis) into
many simple steps, each of which can only map some of the computational basis
vectors to their desired destinations. In general, this partial transformation will not
be unitary, because the destination vectors will not be orthogonal to the computa-
tional basis vectors which have not yet been operated on. The main idea in Yao’s
construction is to create a second copy of the space, and in each step to map some
of the computational basis vectors to their desired destinations, but in the second
copy. Once all of the basis vectors have been mapped, then the copies of the space
can be interchanged.

THEOREM 3. A k tape QTM running for T steps can be simulated by a quantum
circuit with accuracy €, and size O(T? log@™ €).

Proor. Let M = (X, Q, 6) be a well-formed generalized QTM, and fix T, e > 0.

The simulation uses an extra qubit b, to create two copies of the space of
configurations of M. Now if U denotes the unitary transformation carried out by
M, then the goal of the simulation is to carry out the transformation |1) (0|U +
|0) (1| UL,

The main principle that enables the simulation to be carried out is the following.
If U is a unitary transformation acting on the space V, and if {P;} are mutually
orthogonal subspaces of V, then the transformation |1) (0| U+|0) (1/U~! on C€ @ V
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maps |0) ® P; to |1) ® U(P;) and vice versa. For the simulation of M, the subspaces
P; is spanned by all those configurations of M in which the tape head is in tape
cell 4. Since the action of the QTM is local, we may write the transformation
|1) (0] U + 10) (1] U~ acting on P;, as a unitary transformation X; on the smaller
set of qubits describing the contents of the three tape cells i — 1,4,7 + 1, the finite
state control ¥, and the extra qubit b. Since the tape head must be confined
between tape cells —(7'— 1) and T — 1 in the first T steps, to simulate a step of
M, it suffices to carry out the sequence of unitary transformations X; for ¢ ranging
from —(T'—1) to T — 1. Finally, the qubit b must be flipped to restore the state to
the original half of the space.

To finish the proof, we observe that each of the transformations X; is defined
on a bounded number of qubits. To simulate them to with in a constant ¢, we must
invoke a theorem of Kitaev and Solovay (see [22] for an exposition), which states
that if a set of transformations is dense in SU(2) and closed under Hermitian
conjugation, then any single qubit gate can be approximated to within ¢ by a
product of logo(l) € transformations from the set. O

Solovay and Yao [26] point out that the same technique can be used to simulate
a multi-tape QTM on a single-tape QTM. Instead of building a quantum gate that
operates on three adjacent cells to update any configuration with the tape head in
the middle cell, we build a quantum gate that operates on sets of three adjacent cells
from each of the tapes to update any configuration with each of the tape heads in
the middle of the three cells. Since we have ©(T') cells for each tape, this means we
need to apply the quantum gate ©(T*) times to handle every possible combination
of tape head positions. This proof technique therefore only allows a QTM with a
constant number of tapes to be simulated with a polynomial slowdown.

Bernstein [5] showed how to improve the simulation overhead from T* to 3*.
It is an open question whether this exponential dependence on k is necessary.

3. Quantum Complexity Classes:

Recall that a language L C ¥* is in the class P (polynomial time), if there is
a polynomial time deterministic Turing Machine which on input z € ¥* decides
whether or not x is in L. The class of efficiently solvable problems is identified with
the class BPP (bounded-error probabilistic polynomial time).

Definition: A language L C ¥* is in the class BPP if there is a probabilistic
polynomial time Turing Machine which on input x € ¥* accepts with probability
at least 2/3 when x € L, and rejects with probability at least 2/3 when « ¢ L. The
probability of correct answer 2/3 can be boosted to 1—e by running the probabilistic
Turing Machine O(log 1/¢) times and taking the majority answer.

The class of efficiently solvable problems on a quantum computer is BQP
(bounded-error quantum polynomial time).
Definition: A language L C X* is in the class BQP if there is a polynomial time
quantum Turing Machine which on input € ¥* accepts with probability at least
2/3 when = € L, and rejects with probability at least 2/3 when = ¢ L. Once
again the probability of correct answer, 2/3, can be boosted to 1 — € by running
the probabilistic Turing Machine O(log 1/¢) times and taking the majority answer.
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BQP may be equivalently defined as the class of languages accepted by a
polynomial time uniform family of polynomial size quantum circuits.

Since well-formed quantum Turing Machines must have unitary time evolution,
it is not a priori clear that BQ P contains P. To show this, one must appeal to work
by Bennett [4] showing that the class P can be recognized by reversible polynomial
time Turing Machines.

Furthermore, a probabilistic Turing Machine can be simulated by a quan-
tum Turing Machine as follows. If the probabilistic Turing Machine M flips k
coins, then the quantum Turing Machine starts with a block of k qubits initially
in the state |0k> Now it performs a 7/4 rotation on each qubit to end up in

the state (%)k = 27k/2 >_zefo,13k |2). Now, if the quantum Turing Machine
simulates M, using these k bits as the outcomes of the coin flips (but otherwise
leaving these k bits unchanged), then the state at the end of this computation is
2-k/2 > zefo,1y ) [M(2)). Measuring the resulting state yields M (x) for a uni-
formly random value of = as desired.

Thus we have the containments P C BPP C BQP.

Next, we show that BQP C P#. Recall that, given a predicate f(x,y) that
can be computed in time polynomial in |z|, the corresponding counting function
g9(x) = Hy : fz,y)}] is in P#.

THEOREM 4. P C BPP C BQP C P#P C PSPACE.

We give a sketch of the proof that BQP C P#F. It uses the fact from [9]
that we can assume without loss of generality that all the transition amplitudes
specified in the transition function 6 are real. The action of the transition function
6 of QTM M may be described by a tree. The root of the tree corresponds to
the initial configuration, and applying ¢ to the configuration corresponding to any
node yields a superposition of configurations represented by the children of that
node. The leaves of the tree correspond to accepting and rejecting configurations.
Let p be a root-leaf path in this tree. The amplitude of this path 3, is just the
product of the branching amplitudes along the path, and is computable to within
1/27 in time polynomial in j. Several paths may lead to the same configuration
c. Thus the amplitude of ¢ after T steps of computation is the following sum over
all T length paths p: ac = >°,, .Bp. The probability that QTM M accepts is
> accepting |oe|?. Let a, = maz(By,0) and b, = max(—0,,0). Then |a.|* can be
written as |a.|* =3, (ap —bp)> =32, cap +02 =32 4, o 2a,by. Tt follows
that the acceptance probability of M can be written as the difference between the

two quantities Zaccepting c Zp to ¢ CLZ +bz7 and Zaccepting c Zp,p’ to ¢ 2apbp/‘ Since
each of these quantities is easily seen to be in P#F it follows that BQP C P#F.

In view of this theorem, we cannot expect to prove that BQP strictly con-
tains BPP without resolving the long standing open question in computational
complexity theory, namely, whether or not P = PSPACE.

4. Recursive Fourier Sampling

In this section, we shall introduce the recursive Fourier sampling problem, show
that it can be solved in polynomial time on a quantum computer. However, we shall
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also show that it does not even lie in the class M A (the probabilistic generalization
of NP, see section 6 for a definition) relative to some oracle.

The recursive Fourier sampling problem was defined by Bernstein and Vazirani
[9], and was inspired by earlier work by Deutsch and Jozsa [13]. It not only provided
the first example of a problem that demonstrates a superpolynomial speedup of
quantum algorithms over probabilistic algorithms, but it also shows that BQP ¢
M A relative to an oracle. The proof presented here is a modification of the proof
from [9], followed by an elegant argument from [17].

First we introduce the basic primitive, Fourier sampling.

Fourier Sampling

In general, if we start with a state |¢) = > oy |z), then, after applying the
$> = >, |T). Notice that
this transform can be computed by applying only n single qubit gates, whereas it is
computing the Fourier transform on a 2" dimensional vector. However, the output
of the Fourier transform is not accessible to us. To read out the answer, we must
make a measurement, and now we obtain x with probability |a,|?. This process
of computing the Fourier transform and then performing a measurement is called
Fourier sampling, and is one of the basic primitives in quantum computation.

To see the power of Fourier sampling, suppose we are given a function f :
{0,1}" — {1, —1} such that there is an s € {0, 1}" such that for all z, f(z) = s -z,
where s-x denotes the dot product syx1+- - -+$,2, mod 2, i.e., f is one of the Fourier
basis functions. The task is to determine which one it is. The following quantum
algorithm carries out this task using two quantum registers, the first consisting of
n qubits, and the second consisting of a single qubit.

e Start with the registers in the state |0™) |0)

e Compute the Fourier transform on the first register to get >- ¢ 1y [2)®
0).
Compute f to get >~ |x)|f(x)).
Apply a conditional phase based on f(z) to get " (=1)f@) |z) |f(z)).
Uncompute f to get " (—1)7@) |z) ® (0).
Compute the Fourier transform on the first register to get |s) ® |0).

Fourier transform over Z3', we obtain the new state

Measuring the first register now yields the string s. Notice that the quantum
algorithm queried the boolean function f only twice, but obtained n bits of infor-
mation about it in the process! An easy information theoretic argument shows that
any classical (probabilistic) algorithm must make at least n queries to obtain this
information. This single iteration of Fourier sampling is carried out by exactly the
quantum circuit devised by Deutsch and Jozsa [13]. The only difference here is
that, unlike the Deutsch-Jozsa problem, here all the n output bits are measured
(and the promise that f must satisfy is different).

One way to use this difference in the number of queries in order to demonstrate
a gap between quantum and probabilistic algorithms is to make the queries very
expensive. Then the quantum algorithm would be n/2 times faster than any prob-
abilistic algorithm for the given task. The idea behind proving a superpolynomial
gap is to make each query itself be the answer to a Fourier sampling problem. Now
each query itself is much easier for the quantum algorithm than for any probabilistic
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algorithm. Carrying this out recursively for logn levels leads to the superpolyno-
mial speedup for quantum algorithms.

Recursive Fourier sampling

We say that a boolean function f defines a Fourier sampling tree if f(x1,...,z) =
s(x1,...,@k_1) Tk, where - denotes the dot product as defined above. We say that
f is derived from g (and g specifies the Fourier sampling tree f) if f(xq1,...,25_1) =
g(z1,...,2k-1,s). In the recursive Fourier sampling problem, the z;’s form a tele-
scoping series, so that |z;41| = |z;]/2 = 2!=9, down to |z;41] = 1. Now, given an
oracle for g, and the values of f for the leaf nodes (of the form (z1,z2,...,z14+1)),
the challenge is to determine f(xz1).

A recursive implementation of the Fourier sampling primitive introduced above
can be used to give a polynomial time quantum algorithm to solve this problem
as follows. For the base case, since f is known at the leaf nodes, to determine
f(z1,229,...,2;), we simply perform Fourier sampling with respect to the two leaves
in this subtree, to determine s(z1,2,...,2;) and then output g(x1,za,..., 2, s).
In general, to determine f(z1,...,x_1), we perform Fourier sampling (recursively
using the values of f(x1,...,2x—1,21)) to determine s(x1,...,xx_1), and then out-
put g(z1,...,2k-1,8). Since the Fourier sampling requires only two queries to
f(z1,...,25_1,2), the running time of this quantum algorithm satisfies the recur-
rence relation T'(n) < 27'(5) + O(n), whose solution is T'(n) = O(nlogn).

On the other hand, if a classical algorithm were to take the same kind of
recursive approach, it must make n queries at the highest level, each requiring
n/2 queries at the next level, etc. The recurrence relation is now the following —
T(n) < nT(%)+€Q(n), which implies T'(n) = Q(n'°¢™). Proving such a lower bound
for any probabilistic algorithm (and generalizing it to any Merlin-Arthur protocol)
requires more work. We start by proving that if g is chosen uniformly at random
from among functions specifying Fourier sampling trees f, and we condition on
the values of g at any choice of o(n'°8™) points, then the value of f(z1) is almost
unbiased.

Consider a set S of query-answer pairs that are consistent with some legal
Fourier sampling tree. Consider a node y = (x1,...,2,—1) in the tree. Consider
a legal Fourier sampling tree f which agrees with S below y in the tree. Then
f determines string s such that f(x1,...,2%) = xp - s. Say that y is a hit if
(x1,...,Tk-1,8) is a query in S. Let P(y) denote the probability that y is a hit
(with respect to S) when g is chosen uniformly among all functions such that the
derived Fourier sampling tree f agrees with S below y in the tree. Similarly, if z is
an ancestor of y, denote by P,(y) the probability that y is a hit when ¢ is chosen
uniformly among all functions such that the derived Fourier sampling tree f agrees
with S below z in the tree.

LEmMA 1. P,(y) < 2P(y).

Proof Sketch We observe that the queries outside of the subtree rooted at y can
only determine the value of f(y), but not the string s. If y is not a hit, then the
only constraint this places is on g(y, s). The lemma follows.

LEMMA 2. If there are q queries of S in the subtree rooted at y, then P,(y) <

q/v(n/4), where n = 20, and ( is the height of y in the tree. Here ~v(n) is the
product n(n/2)---1 = 20E+1)/2,
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Proof Sketch The proof is by induction on £. For the inductive step, if ¢’ of the
q queries are at y, and there are exactly ¢ hits among the 2™ children of y, then

the probability that y is a hit is at most 23—/,0. Thus the probability that y is a hit

is bounded above by the sum of 22—;2 and the probability that at least n/2 of the
children of y are hits. By the induction hypothesis and an easy manipulation the

latter probability, it can be bounded by %‘ It follows that P(y) < 2—3(;”% +

77 < iy

By the above lemma, it follows that any deterministic algorithm that makes
o(n'°e") queries gives the wrong answer on at least 1/2 — o(1) fraction of inputs g
chosen uniformly at random from among functions specifying Fourier sampling trees
f. Now by Yao’s lemma [30], it follows that any probabilistic algorithm that makes
0(n'°8™) queries must have error probability at least 1/2—o0(1) on some input. This
completes the proof that relative to some oracle, BQP properly contains BPP.

To show that relative to some oracle BQP contains a problem that is not in
MA, we start with the following observation. The above lemma actually shows
that any non-deterministic algorithm that makes o(n'°8™) queries gives the wrong
answer on at least 1/2 — o(1) fraction of inputs g chosen uniformly at random from
among functions specifying Fourier sampling trees f.

Now we show that there is an oracle relative to which the recursive Fourier
sampling problem is not in M A. The proof is by contradiction.

Assume to the contrary that there is a Merlin-Arthur protocol that runs in
time poly(n). Then if the input g is in the language, there is a proof of length
at most poly(n) such that the verifier accepts with probability at least 2/3 (and
running time at most poly(n)). And if the input ¢ is not in the language, then
for every proof the verifier rejects with probability at least 2/3. Since the protocol
is Merlin-Arthur, we can boost the success probability by running the verifier’s
algorithm several times using independent random strings (without increasing the
length of the proof that prover sends). Thus by increasing the running time of the
verifier to O(poly(n) x poly'(n)), we can replace the error probability 1/3 above by
srorcy - Now let us pick g uniformly at random from among functions specifying
Fourier sampling trees f. Then if g is in the language, clearly the verifier rejects
with probability at most m If g is not in the language, then the verifier

accepts each possible proof with probability at most But since there are

1
opoly’ (n) *
at most 2P°(") proofs of length poly(n), it follows that the verifier accepts with
t gpoly(n)

CTETUOR Thus in each case the verifier errs with probability at

probability at mos
t gpoly(n)

Sootecny - 1t follows that there is a fixed random tape for the verifier such that

. poly(n) . .
the verifier errs on at most W fraction of the ¢g’s. But with a fixed random

tape, the verifier is deterministic, and this contradicts the consequence of the lemma
above that any non-deterministic algorithm that makes o(n'°8™) queries must give
the wrong answer on at least 1/2 — o(1) fraction of inputs g. This completes the
proof of the following theorem:

mos

THEOREM 5. There is an oracle relative to which BQP ¢ MA.
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5. Quantum Lower Bounds

In view of the exponential advantage offered by quantum algorithms for certain
computational problems such as prime factorization, it is tempting to ask whether
quantum computers can solve NP-complete problems in polynomial time.

Consider the NP-complete problem — 3-SAT. Given a 3C N F Boolean formula
f(x1,29,...,2,), is there an boolean assignment to x1,...,x, that satisfies f?
Brute force search would take O(N) steps, where N = 2™, Is it possible that the
exponential advantage of quantum computers could be used to determine such a
truth assignment in polynomial time?

We will abstract this problem in a black box or oracle model as follows. Assume
that the input to the problem is a table with N boolean entries, and the task is to
find whether any entry in the table is 1. Classical algorithms are allowed random
access to the table entries, and quantum algorithms can query the entries of the
table in superposition, i.e., a query is of the form )« |z) |0), and the answer to
the query is ) a, |z) |f(x)). It was shown in [10] that any quantum algorithm
for this problem must make Q(v/N) queries to the table. Their proof is based on a
technique called the hybrid argument. In view of this result, resolving the question
whether NP C BQP will require a non-relativizing proof technique, and is not
likely barring a major advance in computational complexity theory. There is a
striking algorithm due to Grover [15] that provides a matching upper bound.

A second technique for proving quantum lower bounds — the method of poly-
nomials — was introduced in [8]. It is based on the fact that the acceptance
probability of a quantum algorithm after T queries to the input can be described
by a polynomial of degree 27". The lower bound on a specific function f is proved
by showing that it cannot be approximated by a polynomial of degree 27 unless T’
is very large. This method was used, for example, to give a tight linear lower bound
for the quantum complexity of the parity function. They also proved that for any
total function, the deterministic query complexity D(h) = O(Q(h)®), where Q(h)
is the quantum query complexity. In this section, we sketch a simpler proof of this
result using the hybrid argument.

Recently, a third technique for proving lower bounds, the method of quantum
adversaries [2] has been introduced. We illustrate the quantum adversary technique
by re-proving the Q(2"/2) lower bound for the search problem using this technique.
This technique appears very general, and indeed has been used to obtain tight
bounds on the query complexity of a number of problems.

A notable example is the following problem. Let f : {0,1}" — {0,1}" be a
random permutation. Find f=1(0"). The best previous bound on this problem was
Q(2"/3), via the hybrid argument [10]. However, [2] gives a tight ©(2"/2) lower
bound using this quantum adversary technique.

There are still important open questions in this area of quantum lower bounds.
Perhaps the most striking is the following: Let f : {0,1}" — {0,1}" be a 2 — 1
function. Find z and y such that f(z) = f(y). No non-trivial lower bound is
known for this problem. An efficient algorithm for this problem would imply that
quantum computation precludes the possibility of collision-intractible hashing —
an important cryptographic primitive.
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5.1. The hybrid argument.

THEOREM 6. Any quantum algorithm, in the black box model, for determin-
ing whether there exist x1,...,x, such that f(zxy,...,2,) = 1 must make Q(v/N)
queries to f.

ProoOF. Consider any quantum algorithm A for solving this search problem.
First do a test run of A on function f = 0. Define the query magnitude of =
to be >, |, ¢|?, where a4 is the amplitude with which A queries = at time ¢.
The expectation value of the query magnitudes E, (Zt \am|2) = T/N. Thus
ming (3, |ag?) < T/N. If the minimum occurs at z, then by the Cauchy-Schwarz
inequality 3", |a.+| < T/V/N.

Let |¢;) be the states of Ay after the t-th step. Now run the algorithm A
on the function g : g(z) = 1,¢9(y) = OVy # z. Suppose the final state of A, is
7). By the claim that follows, || |p7) — |[¢o7) || < 3, || < T/+/N. This implies
that the two states can be distinguished with probability at most O(T/v/N) by
any measurement. Thus any quantum algorithm that distinguishes f from g with
constant probability of success must make T = Q(\/N ) queries. O

CramM 1. |1/JT> = |¢T> + ‘E0> + |E1> + ...+ |ET_1>, where H ‘Et> H < |Oéz7t

ProoF. Consider two runs of the algorithm A, which differ only on the ¢-th
step. The first run queries the function f on the first ¢ steps and queries g for
the remaining T — t steps; the second run queries f on the first t — 1 steps and
g for the remaining T'— t 4+ 1 steps. Then at the end of the ¢-th step, the state
of the first run is |¢;), whereas the state of the second run is |¢¢) + |F;), where
[| |Fi) || < |ow,¢]. Now if U is the unitary transform describing the remaining 7" — ¢
steps (of both runs), then the final state after T steps for the two runs are U |¢;)
and U(|¢:) + |F})), respectively. The latter state can be written as U |¢;) + |Et),
where |E;) = U |F;). Thus the effect of switching the queried function only on the
t-th step can be described by an “error” |E;) in the final state of the algorithm,
where [[[E)]| < |a .

We can transform the run Ay to A, by a succession of T' changes of the kind
described above. Therefore, by the linearity of quantum mechanics, the difference
between the final states of Ay and A, is |Eo) + |Ev) +. ..+ |Er—1), where [||Ey)| <
|Oéz7t O

5.2. Block Sensitivity and the Black Box Model. In this section we will
work more explicitly in the black box model, where the algorithm has to explicitly
query the input w € {0,1}", and the complexity of the algorithm is the number of
queries that the algorithm makes. We give a simple proof via the hybrid argument
of the result of [8] showing that D(f) = O(Q(f)®), where D(f) is the deterministic
query complexity of f and Q(f) is its quantum query complexity:

For a boolean function f : {0,1}" — {0,1}, D(f) is the minimum number of
bits of the input that a deterministic algorithm must query to compute f. Q(f)
is the minimum number of queries to the input w that a quantum algorithm must
make to compute f(w) with error probability at most 1/3.

C(f), the certificate complexity or the nondeterministic complexity of f, is the
minimum number of bits of the input that must be revealed (by someone who knows
all the input bits) to convince a deterministic algorithm about the value of f(w).
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A key result, that was first discovered by Blum [6], shows that in the black box
model the deterministic and nondeterministic (certificate) complexity of a function
are polynomially related. Recall that in the black box model we only count the
number of queries made by the algorithm, not the number of steps of computation
performed by the algorithm between queries. In fact, the C'(f)? upper bound on
the deterministic complexity is established by giving an algorithm that requires
2C¢() steps of computation, but only C(f)? queries.

LEMMA 3. C(f) < D(f) < C(f)2%.

Another closely related property is a structural property of f called its block
sensitivity:
Notation: For a string w € {0,1}" and a set S C {1,2,...,n}, define w®) to be
the boolean string y that differs from w on exactly the bit positions in the set S.

DEFINITION 4. For a boolean function f :{0,1}" — {0,1} the block sensitivity
of f, bs(f) is defined to be the mazimum number t such that there exists an input
w € {0,1}™ and t disjoint subsets Sy, ... Sy C{1,2,...,n} such that for all 1 <i <
t, flw) # fw).

Nisan [21] proved the following fundamental lemma:

LEMMA 4. /C(f) <bs(f) < C(f).
COROLLARY 1. D(f) < bs(f)*.

[8] improve this bound by showing:
LEMMA 5. D(f) < C(f)bs(f) < bs(f)3.
We are now ready to prove the relationship between D(f) and Q(f):

THEOREM 7. Q(f) = Q(\/bs(f)).

PROOF. The proof mirrors the v/N lower bound from the last section. Let
w € {0,1}" be the input defining the block sensitivity of f. Given a quantum
algorithm A define the query magnitude of set S C {1,2,...,n} on input w to
be gs(w) = sumjesqj(w). Now if A runs for T' steps, then since the sets S; are
disjoint, the expected query magnitude for a random set S; is gs,(w) < T/bs(f).
Let z = w59, where gs, (w) is the minimum among these query magnitudes. Let
¢ and Y denote the final states on inputs w and z, respectively. Then, as in
the v/N lower bound from the previous subsection, || [¢7) — |o7) || < T/+/bs(f).
Since A must distinguish these states with constant probability, it follows that

T = Q(\/bs(7). O

COROLLARY 2. D(f) = O(Q(f)").

5.3. The Method of Quantum Adversaries. In this section we illustrate
the method of quantum adversaries, by proving the lowerbound for unstructured
search: given a boolean function f : {0,1}" — {0,1}, is there an x € {0,1}" such
that f(z) =17

We assume that the quantum computer is partitioned into two registers, the
input register (specifying the function f) and the work space register. Now, for the
search problem, the input function f may be identified for convenience by z, the
unique n bit string on which f(xz) = 1. Thus, the initial state of the registers may be
written as |x) ||0). If the quantum algorithm correctly solves the search problem,
when it is done the work space must look like |x) |z)|junk,). But now if the
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algorithm works correctly on every input, it must work correctly on a superposition
of inputs as well. In the case of the search problem, if the input is a uniform
superposition over |z), then the initial state is (3, |)) ®|0), and the final state is
> lx) @ (|z) [junk,)). The main point of the quantum adversary argument is that
the two registers are initially unentangled, whereas they are maximally entangled
at the end of the algorithm. Now establishing an upper bound on the increase
in entanglement per step of the quantum algorithm implies a corresponding lower
bound on the number of steps that the quantum algorithm must take.

The first step towards fleshing out the above argument is to quantify how
entangled the two registers are. Consider the density matrix that describes the
state of the input register when the work register is measured. For the search
problem, this density matrix is initially (at the beginning of the algorithm)

(]

i=1

2=
2=

corresponding to the state 1/v/N 3, |i). The final density matrix at the end of the
algorithm is

1
L 0
pr =
1
0 ~

corresponding to the uniform distribution over all |i).

As a measure of entanglement, consider the sum of absolute values of the off-
diagonal entries. Initially, this quantity is 0 and finally it is (N? — N) x + = §(N).

How fast do the off-diagonal entries of the density matrix increase? Each step
of a quantum algorithm may be regarded as performing a query on the input tape,
followed by a unitary transformation on the work register. Clearly the unitary
transformation on the work register does not affect the reduced density matrix
describing the input register.

To understand the effect of a query, recall how a query is carried out. The
input to be queried is written out on a part of the work register designated to be
the query register. (Thus the contents of the register might be >, «a;[j).) The
reduced density matrix of the input register at this step (just before the query is
actually performed) may be written in the form p =3, p;p;, where p; = o |%.

Each p; can be expanded as 3 , /35%1)6 =3, pELJ) +> p,gi)i =23, pﬁ‘;, since all
the other entries in the sum cannot occur. If the query register contains > «y |4},
the query modifies p; ; with probability a;o;.

To bound the effect of the query on p, it suffices to bound its effect on each
p;. But since this part of the query accesses the input only on location j, the only
entries of p; that change are those in the j-th row and in the j-th column. There
are only O(N) such entries, and the maximum is achieved when they are equal, and
is therefore bounded by N x O(ﬁ) = O(v/N). Since p is a convex combination
of the pj, it follows that each query can change the off-diagonal entries of p by
O(v/'N). Since the total change in the off-diagonal entries is ©(N), it follows that
any quantum algorithm must take Q(\/N ) steps to solve the search problem.



20 UMESH V. VAZIRANI

Thus the changes to the density matrix are only to those summands, and they
change at most || Y |a;| = O <\/N ) Since the starting and ending density

matrices differ by O(v/N), the number of queries required is O(v/N).

So far we assumed that the quantum algorithm gives the correct answer with
certainty. To prove a meaningful lower bound, we must allow the quantum algo-
rithm to give an incorrect answer with a small constant probability €. But it is easy
to see that the above argument still works, since it can be easily verified that the
total change in the off-diagonal entries of the initial density matrix and the final

density matrix is still ©(N), since the final density matrix satisfies |p;;| < %

6. Quantum NP

The class NP (non-deterministic polynomial time) contains many thousand of
the most important computational problems. Of these problems, the vast majority
are NP-complete. This means that these are the hardest problems in NP. By this
we mean that, if anyone of them can be solved by a polynomial time algorithm,
then every problem in NP can be solved by a polynomial time algorithm. The
cornerstone of this theory of NP-completeness is the Cook-Levin theorem, which
states that 3-SAT is NP-complete.

A language L is in NP if there is a polynomial time proof checker C and a
polynomial poly, with the following property: if x € L then there is a string y
with |y| < poly|z|, such that C(z,y) = 1. If x ¢ L, then for every y such that
ly| < poly(|=[), C(x,y) = 0.

Recently Kitaev [18] gave the quantum analogue of the Cook-Levin theorem
by showing that QSAT the quantum analogue of 3-SAT is complete for BQNP or
QMA. Our exposition of this result is based upon the manuscript by Aharonov and
Nave [1].

BQNP or QMA is the quantum generalization of MA — the probabilistic ana-
logue of NP. To define MA, we simply replace the deterministic polynomial time
proof checker with a probabilistic polynomial time proof checker C'. Now if z € L,
then there is a string y with |y| < poly|z|, such that C(x,y) = 1 with probability
at least 2/3. If ¢ L, then for every y such that |y| < poly(|z|), C(z,y) = 0 with
probability at least 2/3.

To define BQNP, the quantum analogue of MA, we replace the probabilis-
tic polynomial time proof checker by a quantum polynomial time proof checker.
Equally important, the witness string y is now allowed to be a quantum witness,
i.e., it can be a superposition over strings of length at most poly(|z|).

BQP is trivially contained in BQNP since it can be simulated by the verifier
alone. MA is also contained in BQNP since quantum machines can perform the
classical computations of their classical counterparts. Kitaev’s proof that QSAT is
BQNP-complete implies a non-trivial upper bound, showing that BQNP C P#F.

A BQNP-Complete Problem
Recall that a Hamiltonian acting on n qubits is a 2" dimensional Hermitian matrix.

Say that a Hamiltonian is c-local if it acts as the identity on all except ¢ of the
qubits. Consider the following problem:
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DEFINITION 5. Local Hamiltonians or Q5SAT: Let H; (for j =1,...7)
be 5-local Hamiltonians on n qubits (each specified by complex 2° x 25 matrices. ).
Assume that each Hj is scaled so that all eigenvalues X of H; satisfy 0 < A < 1. Let
H= Z;Zl Hj. There is a promise about H that either all eigenvalues of H are > b
or there is an eigenvalue of H that is < a, where 0 < a < b <1 and the difference
b — a is at least inverse polynomial in n, i.e., b —a > The problem asks
whether H has an eigenvalue < a.

_1
poly(n) -

The Connection with 3-SAT

In 3-SAT, we are given a formula f on n variables in 3-CNF (conjunctive normal
form.) That is, f is a conjunction of many clauses ¢;:

flxr,mo,...,xp) =c1 Aca Ao AN,

where each clause c; is a disjunction of three variables or their negations. For
example, ¢; may be (z, VTp V z.).

We would like to make a corresponding Hamiltonian H; for each clause c;.
H,; should penalize an assignment which does not satisfy the clause ¢;. In the
example where ¢; = (x4 VTp V 2.), we want to penalize the assignment state |010).
If our notion of penalize is to have a positive eigenvalue, then we can let H; =
|010) (010|, and define the other H;’s similarly, i.e., each H; has a 1 eigenvalue with
a corresponding eigenvector that causes clause ¢; to be false.

Finally, we let

H= iH
=1

so that H is a sum of 3-local Hamiltonians. It is not hard to see that the smallest
eigenvalue of H is the minimum (over all assignments) number of unsatisfied clauses.
In particular, H has a 0 eigenvalue exactly when there is a satisfying assignment
for f.

For general QSAT instances, the Hamiltonians H; cannot be simultaneously
diagonalized in general, and the problem appears much harder.

Membership in BQNP

We can assume without loss of generality that each Hj is just a projection
matrix |¢;) (¢;| ® I. The prover would like to provide convincing and easily veri-
fiable evidence that H = Y H; = Y (A; ® I) has a small eigenvalue A < a. The
proof consists of (a tensor product of) polynomial in n copies of the corresponding
eigenvector 7.

A =>;nlHjn). Given a single copy of |n), the verifier can flip a coin with
bias % as follows:

(1) Pick H; =|¢;) (¢;] at random
(2) Measure |n) by projecting onto |¢;).

This succeeds with probability % Given the promise that A\ < a or A > b,

it suffices for the verifier to repeat this test ﬁ times to conclude with high

confidence that A < a. Thus polynomial in n copies of |) are sufficient. Note that
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since the verifier is performing each test randomly and independently, the prover
gains no advantage by sending an entangled state to the verifier.

BQNP-Completeness

To show that QSAT is complete in BQNP, we need to show that the universal
BQNP problem reduces to it. That is, given a quantum circuit U = UpUp_1...U;
and a promise that exactly one of the following holds:

(1) 3|n), U accepts on input |n) with probability > p; =1 —¢
(2) V|n), U accepts on input |n) with probability < py = e,

The challenge is to design an instance of QSAT which allows us to distinguish
the above two cases. i.e. we wish to specify a sum of local Hamiltonians that has
an eigenvector with small eigenvalue if and only if 3|n) that causes U to accept
with high (> p;) probability.

The construction of the local Hamiltonian is analogous to Cook’s theorem.
The quantum analogue of the accepting tableau in Cook’s theorem will be the
computational history of the quantum circuit:

L
IT) = Z |pe) @ [t)

where |¢o) is a valid initial state and |¢;) = U; |¢;—1). Thus the computation history
|T) is an element of (C?)®" @ CL*+1. It is a superposition over time steps of the
state of the quantum bits as the quantum circuit operates on them.

Now the idea of the BQNP-completeness proof is to design the Hamiltonian H
such that:

(1) if there exists |n) where U |n) accepts with probability at least 1 — ¢, then
the computational history |T) of the quantum circuit U on input 7 is an
eigenvector with eigenvalue at most 5=

(2) if U rejects every input with probability at least 1 — ¢, then all the eigen-

values of H are at least %

H will be the sum Hinitiai +H finat + Hpropagate- The first two terms are simple
and express the condition that the computational history starts with a valid input
state, and ends in an accepting state.

We consider the first m bits of U’s state the input bits and the remaining n—m
bits to be the clean work bits. The design of the Hj;, ;1501 component should then
reflect that at time 0, all of the work bits are clear:

n

Hinitiar = Z 1Y @ [0) (0]
s=m+1

where Hgl) denotes projection onto the s-th qubit with value 1.

Assume that the state of the first qubit at the output determines whether or
not the input is accepted. Then Hy;nq; needs to indicate that at time L the first
qubit is a 1:

Hiina =T\ @ | L) (L]
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The most complicated component of H is H,;.opagate; Which captures transitions
between time steps. Hpropagate = Zle H;, where

1 Ny
Hj=-3U;®1j){j -1
1 ‘ ‘
— U@l = 1) 4|

+5T@ 0 Gl -1 G- 1)

The fact that the computational history is a superposition over time steps is
quite crucial here. To check that the correct operation has been applied in step j, it
suffices to restrict attention to the j — 1-st and j-th bit of the clock (assuming that
the clock is represented in unary). Now the quantum register is in a superposition
over its state at time 5 — 1 and at time j. Locally checking this superposition
is sufficient to determine whether its clock j component is the result of applying
the quantum gate U; to the clock j — 1 component. This is precisely what the
Hamiltonian H; above is designed to do.

Next we show that an accepting history of computation is an eigenvector of H
with eigenvalue 0.

Let |T) = ZtL:O |p:) ® |t). We analyze the contribution from each component
of H. If |T) starts with qubits m + 1 through n clear, H;,;tiq1 does not contribute
to H|T). If |T) is a computation of U, that is, |¢:) = Uy |¢4—1) for all ¢, then from
Hpropagate we get:

1 1
H;T = —Uj |61 i) = 5US 16) 17 = 1)
1 1
+ 5160 ) + 5161 i = 1)
1 1
=581 = 51éj-0) 17 = 1)

1 1
+ 510 1) + 5105015 = 1)
:07

for no contribution from Hy,opagate-

Finally, if U accepts with probability at least 1 — ¢, only Hy;nq contributes a
penalty to the sum, for an eigenvalue of at most +55.

The hard part of the proof lies in showing the converse. That if there is no
|7) which U accepts with high probability, then all eigenvalues of H are large. We

refer the interested reader to [1] for the proof of this.
Upper bound on BQNP

One consequence of this proof of BQNP-completeness is the following:

Theorem: BQNP C P#F,

Consider the trace of H*. This is either at least b* or at most Na*. We can
make sure that b* >> Na*, by choosing k >> nlogN. So we just need to estimate
Tr(H*) in P#P.
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To see this, write Tr(H*) = Tr((>2; H)%) = Tr32;, g HiHy) =
> iv. g Ir(Hj, -+ Hj,.). Each trace in this sum is itself just a sum of exponen-
tially many easy to compute contributions, and thus the entire sum is easily seen
to be estimated in P#7.

Kitaev’s results may well be the first steps towards a rich new theory of BQNP-
completeness. Perhaps the most important open question in this area is to find other
examples of natural BQNP-complete problems.
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