
Security Flaws Induced by CBC Padding

Applications to SSL, IPSEC, WTLS...

Serge Vaudenay

Swiss Federal Institute of Technology (EPFL)
Serge.Vaudenay@epfl.ch

Abstract. In many standards, e.g. SSL/TLS, IPSEC, WTLS, messages
are first pre-formatted, then encrypted in CBC mode with a block cipher.
Decryption needs to check if the format is valid. Validity of the format is
easily leaked from communication protocols in a chosen ciphertext attack
since the receiver usually sends an acknowledgment or an error message.
This is a side channel.
In this paper we show various ways to perform an efficient side channel
attack. We discuss potential applications, extensions to other padding
schemes and various ways to fix the problem.

1 Introduction

Variable input length encryption is traditionally constructed from a fixed input
length encryption (namely a block cipher) in a special mode of operation. In
RFC2040 [2], the RC5-CBC-PAD algorithm is proposed, based on RC5 which
enables the encryption of blocks of b = 8 words where words are bytes. Encryp-
tion of any word sequence with an RC5 secret key K is performed as follows.

1. Pad the word sequence with n words, all being equal to n, such that 1 ≤ n ≤ b
and the padded sequence has a length which is a multiple of b.

2. Write the padded word sequence as a block sequence x1, . . . , xN in which
each block xi consists of b words.

3. Encrypt the block sequence in CBC mode with a (either fixed or random or
secret) IV with a permutation C defined by RC5 with key K: get

y1 = C(IV ⊕ x1), yi = C(yi−1 ⊕ xi); i = 2, . . . , N (1)

where ⊕ denotes the XOR operation.

The encryption of the message is the block sequence y1, . . . , yN .
Although decryption is not clearly defined in RFC2040 [2], it makes sense to

assume that the receiver of an encrypted message first decrypts in CBC mode,
then checks if the padding is correct and finally removes it. The question is: how
must the receiver behave if the padding is not correct? Although the receiver
should not tell the sender that the padding is not correct, it is meaningful that
non-procession of a decrypted message ultimately leaks this bit of information.

This leads to an attack that uses an oracle for which any block sequence tells if
the padding of the corresponding CBC-decrypted sequence is correct according
to the above algorithm. The attack works within a complexity of O(NbW) in
order to decrypt the message where W is the number of possible words (typically
W = 256).

A similar attack model was used by Bleichenbacher against PKCS#1 v1.5 [5]
and by Manger against PKCS#1 v2.0 [13]. This paper shows that similar attacks
are feasible in the symmetric key world.

The paper is organized as follows. We first recall some well known properties and
security issues for the CBC mode. We describe several attacks against RC5-CBC-
PAD and we introduce the notion of bomb oracle. We then discuss extensions
to other schemes: ESP, random padding, ... and applications in real life such as
SSL, IPSEC, WTLS, SSH2. Next we present some possible fixes which do not
actually work like replacing the CBC mode by a double CBC mode, the HCBC
mode or other modes which were proposed by the standard process run by NIST.
We further propose a fix which does work.

2 CBC Properties

Several security properties of the CBC mode are already known. We think it is
useful to recall them in order to remind ourselves of the intrinsic security limits
of the CBC mode.

2.1 Efficiency

CBC mode is efficient in practice because we can encrypt or decrypt a stream of
infinite length with a constant memory in linear time. Efficiency is comparable
to the Electronic Code Book (ECB) mode where each block is encrypted in
the same way. The difference between ECB and CBC is a single exclusive or
operation. Since the ECB mode is not suitable in most applications because
of ciphertext manipulation attacks, and lack of increased message entropy, we
prefer to use CBC mode. (See e.g. [14, p. 230] for more details.)

Exhaustive search against CBC mode is related to the length of the secret key.
We have yet other bounds related to the block length. First of all, the electronic
code book attack has a complexity of W b. We have other specific attacks related
to the intrinsic security of the CBC mode no matter which block cipher is used.
These are detailed in following sections.

2.2 Confidentiality Limits

Confidentiality has security flaws. Obviously, when using a fixed IV, one can
easily see when two different messages have a common prefix block sequence by
just looking at the two ciphertexts.

More generally, when two ciphertext blocks yi and yj are equal, one can
deduce from Eq. (1) that yi−1 ⊕ yj−1 = xi ⊕ xj .

1 We can then exploit the
redundancy in the plaintext in order to recover xi and xj from yi−1⊕yj−1. This
flaw is however quite negligible: since the ciphertext blocks get a distribution
which is usually indistinguishable from a uniform distribution, the probability
that two b-words blocks out of N are equal is given by the birthday paradox
theorem

p ≈ 1− e−
1

2
N2.W−b

where W is the number of possible words. The attack is efficient when N reaches
the order of magnitude of

√
W b. Therefore, for b = 8 and W = 256, we need

about 235 bytes (32GigaBytes) in order to get a probability of success equal to
39% for this attack which leaks information on 16 Bytes only.

2.3 Authentication Limits

The CBC mode can be used to create message authentication codes (MAC).
Raw CBC-MAC (i.e. taking the last encrypted block as a MAC) is well known
to have security flaws: with the MAC of three messages m1,m2,m3 where m2

consists of m1 augmented with an extra block, we can forge the MAC of a
fourth message which consists of m3 augmented with an extra block. This is
fixed by re-encrypting the raw CBC-MAC, but this new scheme still has attacks
of complexity essentially

√
W b. (See [15,16,19].)

3 The Attack

Let b be the block length in words, and W be the number of possible words. (We
assume that W ≥ b and that all integers between 1 and b can unambiguously be
encoded into words in order to make the CBC-PAD scheme feasible.)

We say that a block sequence x1, x2, . . . , xN has a correct padding if the last
block xN ends with a word string of n words equal to n with n > 0: 1, or 22, or
333, ... Given a block sequence y1, y2, . . . , yN , we define an oracle O which yields
1 if the decryption in CBC mode has a correct padding. Decryption is totally
defined by a block encryption function C and IV. Oracle O is thus defined by C
and IV.

3.1 Last Word Oracle

For any block y, we want to compute the last word of C−1(y). We call it the
“last word oracle”.

Let r1, . . . , rb be random words, and let r = r1 . . . rb. We forge a fake cipher-
text r|y by concatenating the two blocks r and y. If O(r|y) = 1, then C−1(y)⊕r
ends with a valid padding. In this case, the most likely valid padding is the
one which ends with 1. This means that the last word of C−1(y) is rb ⊕ 1. If

1 This property was notably mentioned in [12, p. 43].

O(r|y) = 0, we can try again (by making sure that we pick another rb: picking
the same one twice is not worthwhile).

If we are lucky (with probability W−1), we find the last word with the first
try. Otherwise we have to try many rbs. On average, we have to try W/2 values.

Odd cases occur when the valid padding found is not 1. This is easy to
detect. The following program eventually halts with the last words of y: one in
the typical case, several if we are lucky.

1. pick a few random words r1, . . . , rb and take i = 0
2. pick r = r1 . . . rb−1(rb ⊕ i)
3. if O(r|y) = 0 then increment i and go back to the previous step
4. replace rb by rb ⊕ i
5. for n = b down to 2 do

(a) take r = r1 . . . rb−n(rb−n+1 ⊕ 1)rb−n+2 . . . rb

(b) if O(r|y) = 0 then stop and output (rb−n+1 ⊕ n) . . . (rb ⊕ n)
6. output rb ⊕ 1

3.2 Block Decryption Oracle

Now we want to implement an oracle which computes C−1(y) for any y: a “block
decryption oracle”.

Let a = a1 . . . ab be the word sequence of C−1(y). We can get ab by using the
last word oracle. Assuming that we already managed to get aj . . . ab for some
j ≤ b, the following program gets aj−1, so that we can iterate until we recover
the whole sequence.

1. take rk = ak ⊕ (b− j + 2) for k = j, . . . , b
2. pick r1, . . . , rj−1 at random and take i = 0
3. take r = r1 . . . rj−2(rj−1 ⊕ i)rj . . . rb

4. if O(r|y) = 0 then increment i and go back to the previous step
5. output rj−1 ⊕ i⊕ (b− j + 2)

We need W/2 trials on average. We can thus recover an additional word within
W/2 trials. Since there are b words per block, we need bW/2 trials on average in
order to implement the C−1 oracle.

3.3 Decryption Oracle

Now we want to decrypt any message y1, . . . , yN with the help of O. It can be
done with NbW/2 2-block oracle calls on average. We just have to call the block
decryption oracle on each block yi and perform the CBC decryption.

One problem remains in the case where IV is secret. Here we cannot decrypt
the first block. We can however get the first plaintext block up to an unknown
constant. In particular, if two messages are encrypted with the same IV, we can
compute the XOR of the two first plaintext blocks.

The attack has a complexity of O(NbW). As an example for b = 8 and
W = 256 we obtain that we can decrypt any N -block ciphertext by making
1024N oracle calls on average. The attack is thus extremely efficient.

3.4 Postfix Equality Check Oracle

There are reasons which will be made clear for which we can be interested in
bomb oracles as defined below. A bomb oracle is an oracle which either gives
an answer or explodes depending on the input. Of course, the bomb oracle is no
longer available after explosion. An attack which uses a bomb oracle fails if the
oracle explodes. For instance, we are interested in a bomb oracle O′ which either
answers 1 when O answers 1 or explodes when O answers 0.

Given a ciphertext y1, . . . , yN and a word sequence w1 . . . wm, we want to
implement a bomb oracle which checks if w1 . . . wm is a postfix of the decryption
of y1, . . . , yN by using O′. Let us first consider that m ≤ b. We perform the
following process.

1. pick a few random words r1 . . . rb−m

2. take rb−m+k = wk ⊕m for k = 1, . . . ,m
3. send r|yN to the oracle O′ where r = r1 . . . rb

4. if m = 1 then
– take r′k = rk for k = 1, . . . , b− 2, b and take r′b−1 = rb−1 ⊕ 1

otherwise
– take r′k = rk for k = 1, . . . , b− 1 and take r′b = wm ⊕ 1

5. send r′|yN to the oracle O′ where r′ = r′1 . . . r
′

b

6. output 1

The second oracle call is used in order to eliminate odd cases which are not
eliminated by the first one, for instance when wm⊕m⊕1 is a postfix. Obviously,
this is a bomb oracle which checks whether w1 . . . wm is a postfix or not.

For m > b, we can cut the ciphertext and use the above oracle dm
b
e times on

each block. As will be noticed, some CBC-PAD variants allow to have paddings
longer than b (namely at most W − 1), so we can generalize the previous oracle
and check postfixes within a single O oracle call. This will be used against
SSL/TLS in Section 5.1.

4 Other Padding Schemes

In Schneier [17, pp. 190–191], a slightly different padding scheme is proposed:
only the last word is equal to the padding length, and all other padded words
are equal to zero. The padded sequence is thus 00 . . . 0n instead of nn . . . n.
Obviously, a similar attack holds.

IP Encapsulating Security Payload (ESP) [10] uses another slightly differ-
ent padding: the padded sequence is 1234. . . n instead of nn . . . n. Obviously, a
similar attack holds.

Another padding scheme consists of padding with a non blank word then the
necessary number of blank words. This is suggested, for instance by NIST [8,
App. A] with W = 2 (here the blank word is the bit 0). Obviously, a similar
attack holds.

One can propose to have the last word equal to the padding length and all
other padded words chosen at random (like SSH2). The attack still enables the

decryption of the last word of any block. We also have another security flaw: if
the same message is encrypted twice, it is unlikely that the last encrypted blocks
are equal, but in the case where the padding is of length one. We can thus guess
the padding length when the ciphertexts are equal.

5 The Attack in Real Life

Here we discuss various applications. In most of cases, the attack can be (and
is) avoided by using appropriate parameters. However, since this is not carefully
specified in the standards, our aim is to warn the users about possible bad
configurations.

5.1 SSL/TLS

Like in SSL, TLS v1.0 [7] uses the CBC-PAD scheme with W = 256 when using
block ciphers (default cipher being the RC4 stream cipher though). The only
difference is that the padding length is not necessarily less than b but can be
longer (but less than W − 1) in order to hide the real length of the plaintext.
We can thus expect to use a TLS server like the O oracle.

TLS v1.0 also provides an optional MAC which failed to thwart the attack:
when the server figures out that the MAC is wrong, it yields the bad_record_mac
error. However, the message padding is performed after the MAC algorithm, so
the MAC does not preclude our attack since it cannot be checked before the
padding in the decryption. The situation is a little different in SSL v3.0 since
both wrong MAC both invalid padding return the same error. However, the
question whether the client can distinguish the two types of error is debatable.

The reason why the attack is not so practical is because the padding format
error (the decryption_failed error) is a fatal alert and the session must abort.
The server thus stops (or “explodes”) as soon as the oracle outputs 0. For this
reason we consider the bomb oracle O′. We can thus perform the postfix equality
check oracle described in Section 3.4. It can be used in order to decrypt by
random trial the last word of a block with a probability of success of W−1, the
last two words of a block with a probability of success of W−2, ...

Interestingly, TLS wants to hide the real message length itself. We can easily
frustrate this feature by implementing a “length equality check bomb oracle” in
a very same way: if we want to check whether or not the padding length is equal
to n, we take the last ciphertext block y, and we send r|y to the server where the
rightmost word of r is set to n ⊕ 1 and the others are random. Acceptance by
O′ means that the right length is n with probability at least 1−W−1. Rejection
means that n is not the right length for sure.

Since the padding length is between 1 and W , the above oracle may not look
so useful. We can still implement another bomb oracle which answers whether or
not the padding length is greater than b, i.e. if the length hiding feature of TLS
was used: let y1 and y2 be the last two ciphertext blocks. We just send r|y1|y2

with a random block r to O′. Acceptance means that the padding length is at

most b with probability at least 1 − W−1. Rejection means that the padding
length is at least b+ 1 for sure.

5.2 IPSEC

IPSEC [9] can use CBC-PAD. Default padding scheme is similar, as specified in
ESP [10]. Standards clearly mention that the padding should be checked, but
the standard behavior in the case of invalid padding is quite strange: the server
just discards the invalid message and adds a notification in log files for audit
and nothing else. This simply means that errors are processed according to non
standard rules or by another protocol layer. It is reasonable to assume that the
lack of activity of the receiver in this case, or the activity of the auditor, can be
converted into one bit of information. So our attack may be applicable.

IPSEC provides an optional authentication mechanism which could protect
against our attack, provided that the authentication check is performed before the
format check of the plaintext. Although used in most of practical applications,
this mechanism still has an optional status in IPSEC. As already recommended
by Bellovin [4], authentication should be mandatory. Bellovin actually used a side
channel which tells the validity of the TCP checksum. His attack was recently
extended to the WEP protocol for 802.11 wireless LANs by Borisov et al. [6].

5.3 WTLS

WTLS [1] (which is the SSL variant for WAP) perfectly implements the ora-
cle O by sending decryption_failed warnings in clear. Actually since mobile
telephones have a limited power and CPU resources, key establishment proto-
cols with public key cryptography are limited. So we try to limit the number
of session initializations and to avoid breaking them. So seldom errors are fatal
alerts. Some implementations of WTLS can however limit the tolerance number
of errors within the same session, which can limit the efficiency of the attack.
This is however non standard.

In the case of mobile telephones (which is the main application of WTLS),
WTLS is usually encapsulated in other protocols which may provide their own
encryption protocol, for instance GSM. In this case, the extra encryption layer
needs to be bypassed by the attacker.

5.4 SSH2

In SSH2, the MAC is optional. When not used, our attack is feasible, but only
recovers one word since the padding is mostly random. When used, the MAC is
computed on the padded message. Therefore, it is checked before the padding
format, which protects against our attack.

6 Fixes which Do not Work

6.1 Padding Before the Message

One can propose to put the padding in the first block. This only works for
CBC modes in which IV is not sent in clear with the ciphertext (otherwise the
same attack holds). This also requires to know the total length (modulo b) of
the message that we want to encrypt before starting the encryption. When the
plaintext is a word stream, this assumption is not usually satisfied. Therefore we
believe that this fix is not satisfactory.

6.2 CBCCBC Mode

Another possibility consists of replacing the CBC mode by a double CBC en-
cryption (i.e. by re-encrypting the y1, . . . , yN sequence in CBC mode). We call
it the CBCCBC mode.

Unfortunately, a similar attack holds: given y and z we can recover the value
of u = C−1(y) ⊕ C−1(y ⊕ C−1(z)) by sending r|y|z trials to the oracle. This is
enough in order to decrypt messages: if y is the (i − 1)th ciphertext block, z is
the ith ciphertext block, and if t is the (i − 2)th ciphertext block, then the ith
plaintext block is nothing but t⊕ u!

The same attack holds with a triple CBC mode...

6.3 On-Line Ciphers and HCBC Mode

We can look for another mode of operation which “provably” leaks no informa-
tion. One should however try to keep the advantages of the CBC mode: being
able to encrypt a stream without knowing the total length, without having to
keep an expanding memory, ... In [3], Bellare et al. presented the notion of on-line
cipher. This notion is well adapted for these advantages of the CBC mode.

They also proposed the HCBC mode as a secure on-line cipher against chosen
plaintext attacks. The idea consists in replacing Eq. (1) by

yi = C(H(yi−1)⊕ xi)

where H is a XOR-universal hash function which includes part of the secret key.
For instance one can propose H(x) = K1x in GF(W b) where K1 6= 0 is part of
the secret key. (For any fixed a, b, c with a 6= b, we have Pr[H(a)⊕H(b) = c] ≤
1/(W b − 1) if K1 is uniformly distributed, thus H is XOR-universal.)

One problem is that this does not protect against the kind of attack we
proposed. For instance we notice that if we get several accepted ri|y messages
with a fixed y, then we deduce that H(ri)⊕ x ends with a valid padding for an
unknown but fixed x. Hence H(ri)⊕H(rj) is likely to end with the word zero.
Since this is the last word of K1(ri⊕ rj), we deduce K1 from several (i, j) pairs.
With the knowledge of K1 we then adapt the attack against the raw CBC. It is
even more dramatic here since we indeed recover a part of the secret key.

We outline that with the particular choice of XOR-universal hash function,
the claimed security result collapses. Of course, there is no contradiction with
the security result since our attack gets extra information from the side channel
oracle O, which was not allowed in the security model of [3]: the notion of on-
line cipher resistant against chosen plaintext attacks does not capture security
against the kind of cryptanalysis that we have proposed.

6.4 Other Modes of Operation

The first stage of the standardization process on modes of operation launched
by NIST also contained problematic proposals.2 Several of the proposals could
be generalized as follows. The CBC mode is modified in order to have a XOR
before and after the block cipher encryption, depending on all previous ciphertext
blocks and all previous plaintext blocks. We replace Eq. (1) by

yi = C(xi ⊕ fi(x, y))⊕ gi(x, y)

with public fi(x, y) and gi(x, y) functions which only depend on i and all xj

and yj for j = 1, . . . , i − 1. (Note that HCBC is not an example since fi is not
public.)

Assuming that an attacker knows several (xj , yj) plaintext-ciphertext pairs
written xj = xj

1| . . . |xj
`j

and yj = yj
1| . . . |yj

`j
, and she wants to compute C−1(y)

for some given y, she can submit some yj
1| . . . |yj

k|(y⊕δ) ciphertexts where k ≤ `j ,
δ = gk+1(x

j , yj). Acceptance would mean that the block C−1(y)⊕ fk+1(x
j , yj)

ends with a valid padding. Therefore we can decrypt the rightmost word with
W samples, two words with W 2 samples, ...

6.5 CBC-PAD with Integrity Check

One can propose to add a cryptographic checkable redundancy code (crypto-
CRC) of the whole padded message (like a hashed value) in the plaintext and
encrypt

message|padding|h(message|padding).
This way, any forged ciphertext will have a negligible probability to be accepted
as a valid ciphertext. Basically, attackers are no longer able to forge valid cipher-
texts, so the scheme is virtually resistant against chosen ciphertext attacks.

Obviously it is important to pad before hashing: padding after hashing would
lead to the a similar attack. The right enciphering sequence is thus

pad, hash, encrypt

Conversely, the right deciphering sequence consists of decrypting, checking the
hashed value, then checking the padding value. Invalid hashed value must abort
the decipherment.

2 See http://csrc.nist.gov/encryption/modes/

There is still a nice security flaw discovered by David Wagner for this scheme
in a subtle attack model.3 We perform a “semi-chosen plaintext attack”: we
assume that we can convince the sender to send a message consisting of an
unknown x (of known length) concatenated by a chosen postfix, and the goal is
to get information on x. We can implement a guess check oracle: if g is a guess
for x, we ask the sender to concatenate x with y|h(g|y) where y is such that
g|y is a valid padded message. The sender then pads x|y|h(g|y) (with a constant
block bb . . . b), appends a message digest, and encrypts the whole sequence in
CBC mode. The attacker can then truncate the ciphertext after the h(g|y). If
the receiver accepts the truncated message, it means that the guess was right!

7 A Fix which May Work

The author of this paper first thought that using authentication in the CBC-
PAD in order to thwart the attacks was an overkill. Wagner’s attack demon-
strates that it actually is not. We thus propose to replace the CBC encryption
by a scheme which simultaneously provides authentication and confidentiality.
As having padding in between authentication and encryption (as is done in
TLS) is not a fortunate idea, the authentication-encryption scheme must apply
on padded plaintexts:

1. take the cleartext
2. pad the message and take the padded message x
3. authenticate and encrypt x
4. transmit the result y

Similarly, the authentication check and decryption must be performed before the
padding check:

1. decrypt and check the authenticity of y
2. take the plaintext x
3. check the padding of x
4. extract the padding and get the cleartext

(Note: we used the subtle difference between “cleartext” and “plaintext” as
specified in RFC 2828 [18]: the cleartext is the original message in clear, and the
plaintext is the input of the encryption process.)

The question whether authentication must be done before encryption or not
is another problem. As an example, Krawczyk [11] recently demonstrated the
security of the authenticate-then-CBC-encrypt scheme. We must however be
careful about the meaning of this security result: in this proof, attackers are not
assumed to have access to side channel oracles like in our model. Therefore the
security result may collapse when using an appropriate oracle as for the HCBC
mode. Therefore it is not quite clear how this result extends in a model where
we can have side channel. We leave this as an open problem.

Despite the lack of formal security result, we believe that this scheme offers
the required security.

3 Private communication from David Wagner.

8 Conclusion

We have shown that several popular padding schemes which are used in order to
transform block ciphers into variable-input-length encryption schemes introduce
an important security flaw. Correctness of the plaintext format is indeed a hard
core bit which easily leaks out from the communication protocol.

It confirms that security analysis must not be limited to the block cipher
but must rather be considered within the whole environment: as was raised by
Bellovin [4] and Borisov et al. [6], we can really have insecure standards which use
unbroken cryptographic primitives. This was already well known in the public
key cryptography world. We have demonstrated that the situation of symmetric
cryptography is virtually the same.

Acknowledgments

I would like to thank Pascal Junod for helpful discussions. I also thank my stu-
dents from EPFL for having suffered on this attack as an examination topic.
After this attack was released at the Rump session of CRYPTO’01, several peo-
ple provided valuable feedback. I would in particular like to thank Bodo Möller,
Alain Hiltgen, Wenbo Mao, Ulrich Kühn, Tom St Denis, David Wagner, and
Martin Hirt. I also thank the anonymous referees for their extensive and perti-
nent comments.

References

1. Wireless Transport Layer Security. Wireless Application Protocol WAP-261-
WTLS-20010406-a. Wireless Application Protocol Forum, 2001.
http://www.wapforum.org/

2. R. Baldwin, R. Rivest. The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algo-
rithms RFC 2040, 1996.

3. M. Bellare, A. Boldyreva, L. Knudsen, C Namprempre. Online Ciphers and the
Hash-CBC Construction. In Advances in Cryptology CRYPTO’01, Santa Bar-
bara, California, U.S.A., Lectures Notes in Computer Science 2139, pp. 292–309,
Springer-Verlag, 2001.

4. S. Bellovin. Problem Areas for the IP Security Protocols. In Proceedings of the 6th

Usenix UNIX Security Symposium, San Jose, California, USENIX, 1996.
5. D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS#1. In Advances in Cryptology CRYPTO’98,
Santa Barbara, California, U.S.A., Lectures Notes in Computer Science 1462, pp.
1–12, Springer-Verlag, 1998.

6. N. Borisov, I. Goldberg, D. Wagner. Intercepting Mobile Communications: The
Insecurity of 802.11. In Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking, ACM Press, 2001.
7. T. Dierks, C. Allen. The TLS Protocol Version 1.0. RFC 2246, standard tracks,
the Internet Society, 1999.

8. M. Dworkin. Recommendation for Block Cipher Modes of Operation. US Depart-
ment of Commerce, NIST Special Publication 800-38A, 2001.

9. S. Kent, R. Atkinson. Security Architecture for the Internet Protocol. RFC 2401,
standard tracks, the Internet Society, 1998.

10. S. Kent, R. Atkinson. IP Encapsulating Security Payload (ESP). RFC 2406, stan-
dard tracks, the Internet Society, 1998.

11. H. Krawczyk. The Order of Encryption and Authentication for Protecting Com-
munications (or: How Secure is SSL?). In Advances in Cryptology CRYPTO’01,
Santa Barbara, California, U.S.A., Lectures Notes in Computer Science 2139, pp.
310–331, Springer-Verlag, 2001.

12. L.R. Knudsen. Block Ciphers — Analysis, Design and Applications, Aarhus Uni-
versity, 1994.

13. J. Manger. A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS#1 v2.0. In Advances in Cryptology

CRYPTO’01, Santa Barbara, California, U.S.A., Lectures Notes in Computer Sci-
ence 2139, pp. 230–238, Springer-Verlag, 2001.

14. A.J. Menezes, P.C. van Oorschot, S.A. Vanston. Handbook of Applied Cryptography,
CRC, 1997.

15. E. Petrank, C. Rackoff. CBC MAC for Real-Time Data Sources. Journal of Cryp-

tology, vol. 13, pp. 315–338, 2000.
16. B. Preneel, P. C. van Oorschot. Mdx-MAC and Building Fast MACs from Hash

Functions. In Advances in Cryptology CRYPTO’95, Santa Barbara, California,
U.S.A., Lectures Notes in Computer Science 963, pp. 1–14, Springer-Verlag, 1995.

17. B. Schneier. Applied Cryptography, 2nd Edition, John Wiley & Sons, 1996.
18. R. Shirey. Internet Security Glossary. RFC 2828, the Internet Society, 2000.
19. S. Vaudenay. Decorrelation over Infinite Domains: the Encrypted CBC-MAC Case.

In Selected Areas in Cryptography’00, Waterloo, Ontario, Canada, Lectures Notes
in Computer Science 2012, pp. 189–201, Springer-Verlag, 2001. Journal version:
Communications in Information and Systems, vol. 1, pp. 75–85, 2001.

