
Design, Implementation and Verification of an

eXtensible and Modular Hypervisor Framework*

Amit Vasudevan∗, Sagar Chaki†, Limin Jia∗, Jonathan McCune‡, James Newsome§ and Anupam Datta∗

∗CyLab, Carnegie Mellon University (amitvasudevan@acm.org, liminjia@cmu.edu, danupam@cmu.edu)
†SEI, Carnegie Mellon University (chaki@sei.cmu.edu)

‡Google Inc. (jonmccune@google.com)
§Independent Consultant (jim@jimnewsome.net)

Abstract— We present the design, implementation, and
verification of XMHF– an eXtensible and Modular Hypervisor
Framework. XMHF is designed to achieve three goals – modu-
lar extensibility, automated verification, and high performance.
XMHF includes a core that provides functionality common
to many hypervisor-based security architectures and supports
extensions that augment the core with additional security or
functional properties while preserving the fundamental hyper-
visor security property of memory integrity (i.e., ensuring that
the hypervisor’s memory is not modified by software running
at a lower privilege level). We verify the memory integrity of
the XMHF core – 6018 lines of code – using a combination of
automated and manual techniques. The model checker CBMC

automatically verifies 5208 lines of C code in about 80 seconds
using less than 2GB of RAM. We manually audit the remaining
422 lines of C code and 388 lines of assembly language code that
are stable and unlikely to change as development proceeds. Our
experiments indicate that XMHF’s performance is comparable
to popular high-performance general-purpose hypervisors for
the single guest that it supports.

Keywords-Hypervisor Framework, Memory Integrity, Verifi-
cation, Hypervisor Applications (“Hypapps”)

I. INTRODUCTION

Hypervisor-based architectures for improving system se-

curity have been extensively explored in recent years [1]–

[16]. These systems are designed to provide interesting se-

curity and functional properties including secrecy of security

sensitive application code and data [7], trusted user and

application interfaces [2], [4], [13], application integrity and

privacy [3], [5], [10], [11], [17], debugging support [8],

malware analysis, detection and runtime monitoring [6],

[9], [14]–[16] and trustworthy resource accounting [1]. A

majority of these hypervisor-based solutions are designed

and written from scratch with the primary goal of achieving

a low Trusted Computing Base (TCB) while providing a

specific security property and functionality in the context

of an operating system or another (more traditional) hyper-

visor [2]–[10]. Other hypervisor-based approaches leverage

existing general-purpose virtualization solutions (e.g., Xen,

VMware, Linux KVM) for convenience, but generally don’t

require such functionality [1], [11], [13]–[17].

∗XMHF is open-source software and is available at: http://xmhf.org

This paper describes the design, implementation and ver-

ification of an open-source eXtensible and Modular Hyper-

visor Framework (XMHF) that can serve as a platform for

performing security-oriented hypervisor research and devel-

opment. Observing that hypervisor-based security solutions

often rely on a common core functionality given a particular

CPU architecture, XMHF is designed to provide this core

functionality while at the same time supporting extensions

that can provide custom hypervisor-based solutions (“hyp-

ervisor applications” or “hypapps”) for specific functional

and security properties. The core of XMHF thus has a small

TCB. All extensions reuse the core, avoiding the need to

re-implement it correctly. Furthermore, the XMHF design

enables automated verification of relevant security properties

of its core and ensures that the properties are preserved as

extensions (hypapps) are added as long as the extensions ma-

nipulate security-sensitive state using prescribed interfaces

provided by the core. At the same time XMHF’s performance

is comparable to popular high-performance general-purpose

hypervisors for the single guest that it supports.

XMHF supports a single full-featured commodity guest

OS (“rich” guest). We make this design decision in order

to achieve our design goals—modular extensibility, au-

tomated verification, and high performance. Specifically,

XMHF leverages hardware virtualization primitives to allow

the guest direct access to all performance-critical system

devices and device interrupts. This model results in re-

duced hypervisor complexity (since all devices are directly

controlled by the OS) and consequently TCB, as well as

promising high guest performance (since device interrupts

do not trap to the hypervisor). Further, the single-guest

model allows XMHF to be designed for sequential execution

(e.g., no interrupts within the hypervisor) while allowing the

guest to use multiple CPUs, be multi-threaded and handle

device interrupts. As a result, the automated component

of our verification only requires model checking sequential

programs, rendering it more tractable.

The focus of our verification efforts is memory integrity, a

fundamental hypervisor security property. Roughly, memory

integrity denotes that hypervisor memory regions can only

be modified by instructions that are an intended part of

the hypervisor. Without memory integrity, portions of the

hypervisor that manage the isolation of memory pages

are open to malicious modifications, thereby allowing one

guest to modify the code or data of another guest or the

hypervisor itself. Memory integrity is therefore essential for

realizing other important security goals of the hypervisor

and hypapps, such as data secrecy and availability of the

hypervisor as well as guests.

We call our design methodology DRIVE – “Designing

hypervisors for Rigorous Integrity VErification”. DRIVE is

composed of a set of hypervisor properties and system

invariants. The hypervisor properties entail the invariants,

which in turn imply the hypervisor’s memory integrity.

Some of the properties and invariants are guaranteed by

the hardware and the system architecture, while others are

discharged via automated verification. DRIVE makes explicit

which (properties and invariants) must be verified, which are

assumed and which are guaranteed. Thus, DRIVE enables

a synergy between architecture and automated analysis to

ensure hypervisor memory integrity.

There have been several efforts to verify security-relevant

properties of hypervisor systems [18]–[21]. However, these

approaches rely on theorem proving, and are less automated.

In addition, they are not focused on designing the target

hypervisor in a way that reduces re-verification efforts upon

changes to its implementation. XMHF is architected such

that the portions requiring manual re-auditing are small,

stable and unlikely to change as development proceeds.

We emphasize automated verification of the portions of the

XMHF code base that are subject to change as development

proceeds, e.g., guest event handling and new hypapps. Com-

pared to existing efforts, XMHF allows verification during its

development. This fulfills the design goal of XMHF to serve

as a framework on which developers build their specific

hypapp(s) without sacrificing memory integrity.

The XMHF implementation currently supports both Intel

and AMD x86 hardware virtualized platforms and is ca-

pable of running unmodified legacy multiprocessor capable

OSes such as Windows and Linux. The XMHF core has a

TCB of 6018 SLoC, and its performance is comparable

to popular high-performance general-purpose hypervisors.

We verify memory integrity of XMHF following the DRIVE

methodology. Most of the DRIVE verification conditions are

discharged using the software model checker CBMC [22].

Out of the 6018 lines of code that comprise the XMHF core,

CBMC automatically verifies 5208 lines in about 80 seconds

using less than 2GB of RAM. We manually audit the remain-

ing 422 lines of C code and 388 lines of assembly language

code which we anticipate to remain mostly unchanged as

development proceeds. The manual audits include constructs

that CBMC cannot verify, including loops that iterate over

entire page tables, platform hardware initialization and inter-

action, and concurrent threads coordinating multiple CPUs

that are challenging for current model-checkers.

We list the contributions below, which also serves as a

roadmap to the paper:

• We present the DRIVE methodology for designing, devel-

oping, and verifying hypervisor memory integrity (§III).

• We design and implement XMHF, a hypervisor framework

based on DRIVE which supports modular development of

future hypapps (§IV).

• We verify the memory integrity of the XMHF runtime

implementation using DRIVE, and show how to discharge

the DRIVE verification conditions on XMHF using the

software model checker CBMC [22] (§V).

• We carry out a comprehensive performance evaluation of

XMHF (§VI).

II. GOALS, BACKGROUND AND ATTACKER MODEL

A. Modular Development and Verification

Our overarching goal is to create a hypervisor framework

that promotes development of custom hypapps, while simul-

taneously allowing verification of security properties. We

focus on verifying memory-integrity – a fundamental secu-

rity property and a major component of the tamperproofness

of any hypapp. This enables the development of hypapps

without having to worry about the low-level infrastructure

grunge or the hypervisor’s memory integrity.

We strive for a minimal TCB hypervisor design that

enables automatic verification of its implementation. Ac-

cordingly, we propose a rich single-guest execution model

(§IV-A). Thus, XMHF supports only a single-guest that

directly accesses and manages platform devices after ini-

tialization. XMHF consists of a core and small supporting

libraries. These are extended, and leveraged, by each hypapp

to implement its functionality. Our specific design goals are:

1) Modular Core and Modular Extensibility: The XMHF

core is built in a modular way. It handles a set of events from

the guest (e.g., hypercall, nested page-faults) using distinct

event handlers. Each event is handled in a sequential manner,

either directly by the XMHF core or handed over to a hypapp

handler, which then performs the desired functionality by

leveraging a set of APIs exposed by XMHF (§IV-B1). This

modular extensibility allows a hypapp to extend XMHF to

offer custom features and desired properties.

2) Verifiability: The rich single-guest model results in

reduced hypervisor complexity (since all devices are directly

controlled by the guest) and consequently TCB. Further,

XMHF’s modular core design allows independent automated

analysis of the event handlers, which constitute the runtime

attack surface. In particular, it enables a software model

checker to ignore irrelevant code (e.g., via slicing) when

verifying a particular property (§V).

3) Performance: The rich single-guest model promises

high guest performance as all performance-critical system

devices and device interrupts are directly handled by the

guest without the intervention of XMHF (§VI-B).

B. Hardware Virtualization Primitives

We focus on the following hardware virtualization prim-

itives offered by the system platform. These primitives are

supported by current x86 platforms [23], [24], and are also

making their way on embedded ARM architectures [25].

• The CPU executes in two modes, each with a separate

address space: (a) host-mode (or privileged mode) –

where the hypervisor executes, and (b) guest-mode (or

unprivileged mode) – where the guests execute.

• At system boot time, the hypervisor is able to execute a

designated piece of code in complete isolation.

• At system runtime, the hardware provides mechanisms to

ensure that all accesses to system memory are subjected

to an access control mechanism.

• The execution state of the guest is maintained in a data

structure that is inaccessible and/or access controlled from

unprivileged mode.

• The hypervisor is able to associate intercept handlers

with certain events caused by a guest (e.g., instructions,

I/O operations, exceptions and interrupts). The hardware

ensures that upon the occurrence of an event e, the

following sequence of actions occur: (1) the execution

state of the guest is saved, (2) execution is switched to

host mode, (3) the intercept handler for e is executed,

(4) execution is switched back to guest mode, and (5) the

execution state of the guest is restored and guest execution

is resumed.

C. Attacker Model

We consider attackers that do not have physical access

to the CPU, memory and the chipset (our hardware TCB).

Other system devices and the guest constitute the attacker.

This is a reasonable model since a majority of today’s attacks

are mounted by malicious software or system devices. An

attacker can attempt to access memory either (i) during

hypervisor initialization; or (ii) from within the guest and

by using system devices; or (iii) via hypervisor intercept

handlers triggered by the guest.

D. System Assumptions

We assume that the our hardware TCB provides the

correct functionality and that the hypervisor has control flow

integrity [26], i.e., the control flow during the execution of

the hypervisor respects its source code. Ensuring CFI for

systems software is an orthogonal challenge to verifying

memory integrity. As future work, we plan to reinforce

XMHF with CFI and verify its correctness. We also assume

that a hypapp built on top of XMHF uses the prescribed

XMHF core APIs (e.g., changing guest memory protections

and performing chipset I/O) and that it does not write to ar-

bitrary code and data. In fact, these are the only assumptions

required of any new hypapp to ensure the memory integrity

property of XMHF. We plan to explore modular verification

of the XMHF core composed with hypapps as future work.

III. THE DRIVE METHODOLOGY

We model the virtualized system as a tuple V =
(H,G,D,M), where H is the hypervisor, G represents

the guest, D represents devices, and M is the hypervisor

memory containing both hypervisor code and data. Both G

and D are attacker controlled. We omit the guest memory,

which is separate from M and irrelevant to memory in-

tegrity, from the model. DRIVE consists of a set of properties

about H , system invariants, and a proof that if H satisfies

those properties then the invariants hold on all executions of

V . This, in turn, implies the memory integrity of H in V .

A. Hypervisor Properties Required by DRIVE

DRIVE identifies the following six properties that restrict

the hypervisor design and implementation, response to the

attacker’s actions, and writes to memory.

Modularity (MOD). Upon hypervisor initialization, control

is transferred to a function init(). When an intercept is

triggered, the hardware transfers control to one of the

intercept handlers ih1(), . . . , ihk().

Atomicity (ATOM). This property ensures the atomicity

of initialization and intercept handling on the CPU(s). It

consists of two sub-properties: ATOMinit – at the start of

V ’s execution, init() runs completely in a single-threaded

environment before any other code executes; ATOMih –

the intercept handlers ih1(), . . . , ihk() always execute in a

single-threaded environment.

Memory Access Control Protection (MPROT). H uses

a memory access control mechanism MacM. All MacM

related state is stored in M. MacM consists of two parts: (1)

MacMG – for the guest, and (2) MacMD – for the devices.

Correct Initialization (INIT). After H’s initialization,

MacM protects M from the guest and devices. The intercept

entry points into H points to the correct intercept handler.

Proper Mediation (MED). MacM is active whenever

attacker-controlled programs execute. This implies: (1) be-

fore control is transfered to the guest (G), the CPU is set to

execute in guest mode to ensure that MacMG is active, and

(2) MacMD is always active.

Safe State Updates (SAFEUPD). All updates to system state

including M and control structures of the hardware TCB

(e.g., guest execution state and chipset I/O), by an intercept

handler: (1) preserve the protection of M by MacM in guest

mode and for all devices; and (2) do not modify the intercept

entry point into H , and (3) do not modify H’s code.

B. System Invariants

We define two system invariants for V that imply H’s

memory integrity. We say that V preserves an invariant ϕ, if

when init() finishes, ϕ holds; and at all intermediate points

during the execution of V , ϕ holds. The memory invariants,

denoted ϕM, require that M is properly protected and that

both the entry point to H and the code stored in the entry

point have not been modified. Invariant ϕMed requires that

DMA protection has not been disabled.

ϕM = M is designated read-only in MacM and

intercept i jumps to the starting address of ih i().
ϕMed = MacMD is always active.

Informally, ensuring that these invariants hold on all

executions of V requires both H and G to preserve these

invariants. The properties in Section III-A entail that H

preserves the invariants. The hardware and the protections

set up prior to the execution of the guest ensures that G

cannot violate the invariants as well.

Based on the system invariants and DRIVE properties, we

extract a sequentialized execution model for V , which makes

automated verification of DRIVE properties feasible. As we

discuss in Section V, we use a software model checker

CBMC to verify properties of the C implementation of

XMHF. CBMC assumes sequential execution, and therefore,

the sequentialized execution model makes sure that using

CBMC is appropriate. Properties MOD and ATOM allow V ’s

execution to be sequentialized assuming that the entry point

from G to H remain unchanged. The first step after system

power-on is initialization. Subsequently, the system executes

either: (1) G (e.g., guest OS) in unprivileged mode; or (2)

D (e.g., network and graphics card) and is able to perform

direct memory accesses (DMA); or (3) H (e.g., intercept

handlers triggered by G) in privileged mode.

Given two sequential programs f and g, f + g denotes

the sequential program that non-deterministically executes

either f or g (but not both), and f | g denotes the parallel

composition of f and g. Both + and | are commutative

and associative. We write f(∗) to denote the execution

of function f given an arbitrary input. The sequentialized

executions of V , denoted Seq(V) is defined formally as:

Seq(V) = init(∗);
while(true) {(G+ ih1(∗) + · · ·+ ihk(∗)) |D}

C. Proof of Memory Integrity

The key part of the proof is Lemma 1 stating that the

hypervisor properties ensure the invariants ϕM and ϕMed

hold at all times on all execution traces of V . In other

work, we have formally modeled the program logic of V

and verified Lemma 1 using a novel logic [27]. Briefly, the

proof is by induction over the length of the execution trace.

Lemma 1. If H satisfies MOD, ATOM, MPROT, MED, INIT

and SAFEUPD, then ϕM and ϕMed are invariants of all

executions of V .

Theorem 2. If H satisfies MOD, ATOM, MPROT, MED,

INIT and SAFEUPD, then in all executions of V , any write

to M after initialization is within ihi().

Proof (sketch): Given any write to M, using Lemma 1 and

the property of the hardware, we know that write must occur

��������	
������

�������

�
�����

������

���
��
���

���������

��������	
����
�
���

�
����	���

���	

���������
���
��	 �
�����!	"���
�

��� ���

��
���	
����
�
��

��
������

#�
$	���������
�

#�
$	�
���
�����
�

"��������!	%������
�

&�	������
'	������'	(������
�')��*

�������

�
��������������

�������

���!�
��

������
�	���
	

&
+!+'	�������	��	

!�
��	���
*

����

����

����	
��
���

Figure 1. XMHF rich single-guest architecture. XMHF consists of the
XMHF core and small supporting libraries that sit directly on top of
the platform hardware. A hypapp extends the XMHF core to implement
the desired (security) functionality. XMHF allows the guest direct access
to all performance-critical system devices and device interrupts resulting
in reduced hypervisor complexity, consequently Trusted Computing Base
(TCB), as well as high guest performance. Shaded portions represent code
isolated from the rich guest.

in host mode. Thus, it must be the case that the guest has

exited to enter H . Using MOD and ATOM and that the entry

point to H and the code of H has not been modified, we

know that the write must have been called from one of the

intercept handlers ihi().

IV. XMHF DESIGN AND IMPLEMENTATION

We highlight the design and implementation decisions that

help make XMHF minimalistic, enable verification of DRIVE

properties on XMHF’s C implementation, and make auto-

mated re-verification in the process of hypapp development

possible. We first discuss the rich single-guest execution

model of XMHF, show how it enables us to achieve our

design goals (§II), and provide details of its implementation.

We then show how XMHF’s design and implementation

achieve the properties mandated by DRIVE to ensure memory

integrity. The high-level design principles behind XMHF are

platform independent. The XMHF implementation currently

supports both Intel and AMD x86 hardware virtualized plat-

forms, and unmodified multi-processor Windows (2003 and

XP) and Linux as guests. However, XMHF design principles

apply to other architectures, such as ARM, as well.

A. Rich Single-guest Execution Model

We design XMHF as a Type-1 (or native, bare metal) hyp-

ervisor that runs directly on the host’s hardware to control

the hardware and to manage a guest OS. The guest runs on

another (unprivileged) level above the hypervisor. The bare-

metal design allows for a small-TCB and high performance

hypervisor code base. Recall that XMHF consists of the

XMHF core and small supporting libraries that sit directly

on top of the platform hardware. A hypapp extends the

XMHF core and leverages the basic hypervisor and platform

functionality provided by the core to implement the desired

(security) functionality (Figure 1). XMHF supports only a

single-guest and allows the guest to directly access and

manage platform devices. The single-guest model allows (cf.

Cloudvisor [5] and Turtles [28]) its guest to be another (more

traditional) hypervisor running multiple guest OSes1.

1) Achieving XMHF Design Goals: We now describe how

the rich single-guest model enables us to achieve XMHF’s

design goals previously presented in §II.

Modular Core and Modular Extensibility: In the rich

single-guest execution model, the hypervisor interacts with

the guest via a well-defined hardware platform interface. In

XMHF, this interface is handled by the XMHF core or hypapp

handlers. The XMHF core and supporting libraries expose a

small set of APIs that allow a hypapp to extend the XMHF

core to offer custom features and security guarantees.

Verifiability: Since all devices are controlled directly

by the guest, XMHF does not have to deal with per-

device idiosyncrasies that arise from devices that are not

completely standards-compliant. In addition, XMHF does

not need to perform hardware multiplexing, an inherently

complex mechanism that can lead to security issues [30],

[31]. This results in a small and simple hypervisor code-

base. Further, the system devices (including interrupt con-

trollers) are directly in control of the guest. Therefore, all

(device) interrupts are configured and handled by the guest

without the intervention of XMHF. This allows XMHF to be

designed for sequential execution (i.e., no interrupts within

the hypervisor) while at the same time allowing the guest to

use multiple CPUs and be concurrent. The sequentialization

together with the small and simple hypervisor code-base

enables us to discharge DRIVE verification conditions on

the XMHF code-base automatically using a software model

checker (§V).

Performance: Since all (device) interrupts are config-

ured and handled by the guest without the intervention

of XMHF, guest performance overhead is minimal (the

guest still incurs hardware memory/DMA protection over-

head) and comparable to popular high-performance general-

purpose hypervisors (§VI-B).

1This requires emulation of hardware virtualization support, which is
feasible in around 1000 lines of additional code as evidenced by KVM [29].

2) Implementation Features: We discuss the salient im-

plementation features of the XMHF rich single-guest execu-

tion model below.

Prevent access to critical system devices: Critical sys-

tem devices – such as the DMA protection hardware and the

system memory controller – expose their interfaces through

either legacy or memory-mapped I/O. For example, Intel and

AMD x86 platforms expose the DMA protection hardware

through the Advanced Configuration and Power Manage-

ment Interface (ACPI) and the Peripheral Component Inter-

connect (PCI) subsystems, respectively. With the rich single-

guest model, the guest could perform direct I/O to these

devices, effectively compromising the memory and DMA

protections. XMHF marks the ACPI and PCI configuration

space of critical system devices as not-present using the

Hardware Page Tables (HPT) (see § IV-B3), and makes the

memory-mapped I/O space of these devices inaccessible to

the guest. A well-behaved guest OS should never attempt to

access these regions.

Guest memory reporting: A native OS during its bootup

uses the BIOS (INT 15h E820 interface) to determine

the amount of physical memory in the system. However,

with XMHF loaded, there must be a mechanism to report

a reduced memory map excluding the hypervisor memory

regions to the guest. If not, the guest at some point during its

initialization will end up accessing the protected hypervisor

memory areas, which is difficult to recover from gracefully.

Currently, this causes XMHF to halt. XMHF leverages HPTs

to report a custom system memory map to the guest. During

initialization XMHF replaces the original INT 15 BIOS

interface handler with a hypercall instruction. The XMHF

hypercall handler then presents a custom memory map

with the hypervisor memory region marked as reserved and

resumes the guest.

B. Ensuring Memory Integrity

To achieve DRIVE properties, XMHF relies on platform

hardware support, which includes hardware virtualization,

two-level Hardware Page Tables (HPT), DMA protection,

and dynamic root of trust (DRT) support. These capabilities

are found on recent Intel and AMD x86 platforms. Similar

capabilities are also forthcoming in ARM processor plat-

forms [25]. While this breaks backward compatibility with

older hardware, it allows XMHF’s design to be much smaller

and cleaner while achieving the DRIVE properties to ensure

memory integrity.

1) Ensuring MOD: The XMHF core and a hypapp interact

with a guest environment via an event-based interface. Un-

like regular application interfaces, this event-based interface

is supported by the underlying hardware and is well-defined.

The XMHF core only handles a small subset of this interface

and allows a hypapp to configure and handle only the

required events. This reduces the interface surface and avoids

unnecessary guest event traps at runtime. Nevertheless, the

event-based interface is versatile enough to enable develop-

ment of a variety of applications with interesting security

properties and functionality [1]–[11], [13]–[16], [32].

XMHF leverages CPU support for hardware virtualization

to capture and handle events caused by a guest operating

environment. For example, recent x86 and embedded ARM

hardware virtualized platforms define a set of intercepts that

transfer control to the hypervisor upon detecting certain

guest conditions [23]–[25]. The XMHF core gets control

for all intercepted guest events and in turn invokes the

corresponding XMHF/hypapp callback to handle the event

(Figure 1). The XMHF/hypapp callback has the option of

injecting the event back into the guest for further processing

if desired. The event-callback mechanism therefore allows

hypapps to easily extend core XMHF functionality to realize

desired functionality in the context of a particular guest.

Both Intel and AMD x86 platforms transfer control to a

single designated entry point within the hypervisor upon a

guest intercept. The core’s eventhub component is the top-

level intercept entry point in XMHF. For each intercepted

class of event the eventhub component invokes a distinct

hypapp callback with the associated parameters in the con-

text of the CPU on which the intercept was triggered.

2) Ensuring ATOM: For the initialization init (), XMHF

leverages DRT to ensure its execution atomicity (ATOMinit).

A DRT is an execution environment created through a

disruptive event that synchronizes and reinitializes all CPUs

in the system to a known good state. It also disables all

interrupt sources, DMA, and debugging access to the new

environment. XMHF’s launch process consists of a XMHF

boot-loader that establishes a DRT and loads the XMHF

secure-loader in a memory constrained hardware protected

environment (Figure 1).

The XMHF boot-loader uses the GETSEC[SENTER]

and SKINIT CPU instructions on Intel and AMD x86

platforms respectively, to create a DRT and bootstrap the

XMHF secure-loader in a memory-protected single-threaded

environment. The XMHF secure-loader in turn sets up the

initial memory paging and DMA protection and transfers

control to the XMHF core startup component which performs

the runtime initialization.

The rich single-guest execution model allows XMHF to be

designed for sequential execution (i.e., without any interrupts

within the hypervisor). However, on multicore platforms

there can still be concurrent execution within the hyper-

visor during intercept handling. Thus, to ensure ATOMih,

XMHF uses a technique called CPU-quiescing. Using CPU-

quiescing, the moment an intercept is triggered on a specific

CPU, XMHF stalls the remaining CPUs. Once the intercept

has been handled, the stalled CPUs are resumed and control

is transferred back to the guest. The quiescing latency is

low enough so as not to break any delay-sensitive device

I/O (see §VI-B2).

XMHF uses the Non-Maskable Interrupt (NMI) for CPU-

quiescing. Specifically, when an intercept is triggered on a

CPU C, XMHF acquires a global intercept lock and sends an

NMI to all other CPUs (excluding C itself). Since the NMI

cannot be masked, this causes the target CPUs to receive an

NMI. The NMI handler is invoked, which is an idle spin-lock

loop that stalls the CPU on which it runs. Once the intercept

has been handled on C, XMHF signals the spin-lock which

causes the other CPUs to resume.

Note that DRT automatically disables NMI generation,

so the XMHF secure-loader and runtime initialization are

guaranteed to be single-threaded. The XMHF core then sets

up the NMI handler as described above. At runtime, a NMI

handler execution on a given CPU is also guaranteed to be

atomic. The CPU initiating the quiescing will wait for all

the other CPU NMI handlers to enter the idle spin-lock loop

before proceeding to execute an intercept handler.

3) Ensuring MPROT: XMHF uses HPTs for efficient guest

memory access control. In particular, the hardware ensures

that all memory accesses by guest instructions go via a

two-level translation in the presence of the HPT. First, the

virtual address supplied by the guest is translated to a guest

physical addresses using guest paging structures. Next, the

guest physical addresses are translated into the actual system

physical addresses using the permissions specified within

the HPT. If the access requested by the guest violates the

permissions stored in the HPT, the hardware triggers an

intercept indicating a violation.

XMHF leverages hardware DMA protections to protect its

memory regions from direct access by devices. The DMA

protection is part of the hardware platform (e.g., chipset) and

is specified using a DMA table within XMHF. In particular,

the hardware ensures that all memory accesses by system

devices are translated using the permissions specified within

the DMA table. The hardware disallows DMA if the access

requested violates the permissions stored in the DMA table.

XMHF uses the Extended Page Tables (EPT) and Nested

Page Tables (NPT) on Intel and AMD x86 platforms respec-

tively for guest memory access control. On Intel platforms,

XMHF uses the VT-d (Virtualization Technology for Directed

I/O) support to provide DMA protection. The VT-d page ta-

bles contain mappings and protections for the DMA address

space as seen by system devices. On AMD platforms, XMHF

relies on the Device Exclusion Vector (DEV) for DMA

protection. DEV’s bitmap structure allows DMA protection

to be set for a given memory address range.

4) Ensuring INIT: During initialization XMHF sets up the

HPTs and DMA table permissions so that memory addresses

corresponding to the hypervisor memory regions are marked

read-only and therefore cannot be modified by either the

guest or system devices.

The XMHF core memprot and dmaprot components set

up the EPT/NPTs and the VT-d/DEV DMA protection

permissions on Intel and AMD x86 platforms respectively.

5) Ensuring MED: During initialization, XMHF activates

the platform hardware DMA protection mechanism that en-

forces DMA access control for hypervisor memory accesses

by system devices. More concretely, the XMHF core dmaprot

component activates the VT-d and DEV DMA protection

mechanisms on Intel and AMD x86 platforms respectively,

to prevent system devices from accessing memory regions

belonging to XMHF.

Access control protections for guest memory accesses

are described by the HPTs and enforced by the CPU

when operating within guest-mode. XMHF uses partitions2

to contain guest code and data. A partition is essentially a

bare-bones CPU hardware-backed execution container that

enforces system memory isolation for the guest or a portion

of it based on HPTs that are initialized by the hypervisor.

XMHF creates a primary partition in order to run the guest

operating environment. XMHF can also instantiate secondary

partitions on demand when requested by a hypapp. These

secondary partitions are capable of running specified code

within a low-complexity isolated environment, which is

explicitly designed without support for scheduling or device

interaction (Figure 1). This is useful when a hypapp wishes

to implement desired security properties at a fine granularity,

e.g., portions of an untrusted application within the operating

environment (e.g., TrustVisor [7] and Alibi [1]).

The XMHF core partition component uses the

VMLAUNCH/VMRESUME and VMRUN CPU instructions on

Intel and AMD x86 platforms respectively to instantiate

partitions. The following paragraphs describe how XMHF

supports multi-processor guests while ensuring hypervisor

memory protection.

On x86 platforms, only one CPU – called the boot-strap

processor (BSP) – is enabled when the system starts. The

other CPUs remain in halted state until activated by software

running on the BSP. During its initialization, XMHF activates

the remaining CPUs and switches all the CPUs (including

the BSP) to host-mode. Next, XMHF sets up the HPTs on

all the cores and switches the BSP to guest-mode to start

the guest; the remaining CPUs idle in host-mode within

XMHF. Finally, the XMHF core smpguest component uses

a combination of HPTs and intercept handling (described

below) to ensure that the remaining cores are switched to

guest-mode before they execute guest code. This ensures that

HPT access control is always enabled for all CPU cores.

A native multicore capable OS, on the x86 platform, uses

the CPU Local Advanced Programmable Interrupt Controller

(LAPIC) for multicore CPU initialization [23], [24]. More

specifically, the LAPIC Interrupt Control Register (ICR) is

used to deliver the startup sequence to a target core. On

x86 platforms, the LAPIC is accessed via memory-mapped

2Such CPU execution containers are often called hardware virtual ma-
chines in current parlance. However, this is a misnomer in our case since,
technically, a virtual machine presents to the guest a virtualized view of
the system devices in addition to enforcing memory isolation.

I/O encompassing a single physical memory page. XMHF

leverages Hardware Page Tables (HPTs) to trap and intercept

accesses to the LAPIC memory page by the guest OS.

Subsequently, any writes to the LAPIC ICR by the guest

causes the hardware to trigger a HPT violation intercept. The

XMHF core handles this intercept, disables guest interrupts

and sets the guest trap-flag and resumes the guest. This

causes the hardware to immediately trigger a single-step

intercept, which is then handled by the XMHF core to process

the instruction that caused the write to the LAPIC ICR. If

a startup command is written to the ICR, XMHF voids the

instruction and instead runs the target guest code on that

core in guest-mode.

6) Ensuring SAFEUPD: XMHF requires both the XMHF

core and the hypapp to use a set of well-defined interfaces

provided by the core to perform all changes to the HPTs.

These interfaces upon completion, ensure that permissions

for the hypervisor memory regions remain unchanged. In

the current XMHF implementation, a single XMHF core

API function setprot provided by the core memprot

component allows manipulating guest memory protections

via the HPTs.

V. XMHF VERIFICATION

In this section we present our verification efforts on the

XMHF implementation. We discuss which DRIVE properties

are manually audited and why they are likely to remain valid

during XMHF development. We also show how most of the

verifications of DRIVE properties are reduced to inserting

assertions in XMHF’s source code, which is then checked

automatically using CBMC [22]. As our focus is on verifying

the memory integrity of the XMHF core, we use a simple

hypapp for verification purposes. The hypapp implements

a single hypercall interface to manipulate guest memory

protections via Hardware Page Tables (HPT).

A. Overview

The XMHF verification process is largely automated. We

manually audit 422 lines of C code and 388 lines of

assembly language code. The manual auditing applies to

functions in XMHF core that are unlikely to change as

development proceeds. The automatic verfication of 5208

lines of C code uses CBMC.

In addition to the system assumptions presented in §II,

the soundness of our verification results depends on two

additional assumptions: (i) CBMC is sound. i.e., if CBMC

reports that XMHF passes an assertion, then all executions

of XMHF satisfy that assertion; and (ii) the XMHF core

interface – determined by the available types of hardware

virtualization intercepts – is complete, i.e., XMHF handles

all possible intercepts from guests.

B. Verifying Modularity (MOD)

We verify MOD by engineering the source code of

XMHF to ensure that the implementations of init() and

ih1(), . . . , ihk() are modular (recall §III-A). The XMHF

core startup component implements the init() function

in XMHF. It first performs required platform initialization,

initializes memory such that MPROT holds, then starts the

guest in guest-mode. The XMHF core eventhub component

implements ih1(), . . . , ihk() in XMHF. More specificially,

the eventhub component consists of a single top-level inter-

cept handler function which is called whenever any guest

intercept is triggered. We refer to this function as ihub().
The arguments of ihub() indicate the actual intercept that

was triggered. Based on the value of these arguments, ihub()
executes an appropriate sub-handler.

C. Verifying Atomicity (ATOM)

We rely on the hardware semantics of Dynamic Root-

of-Trust (DRT) (§IV-B2) to discharge ATOMinit. There are

preliminary verification results of the correctness of DRT

at the design-level [33], which forms the basis of our

assumptions on DRT’s semantics.

We check ATOMih by manually auditing the functions

implementing CPU-quiescing (§IV-B2). More specifically

we manually audit three C functions which are responsible

for stalling and resuming the CPUs and for handling the

NMI used for CPU quiescing, to ensure proper intercept

serialization. While these checks are done manually, we

believe that it is acceptable for several reasons. First, the

functions total to only 60 lines of C code. They are largely

self-contained (no dependent functions and only four global

variables) and invoked as wrappers at the beginning and

end of the intercept handlers. Therefore, we only need to

perform manual re-auditing if any of the CPU-quiescing

functions themselves change. Given the simple design and

functionality of quiescing, and based on our development

experience so far, we anticipate the quiescing functions to

remain mostly unchanged as development proceeds.

D. Verifying MPROT

MPROT is always preserved by XMHF since the HPTs and

DMA protection data structures are statically allocated. We

verify MPROT automatically by employing a build script

that inspects relevant symbol locations in the object and

executable files produced during the build process to ensure

that the DMA protection and HPT data structures reside

within the correct data section in hypervisor memory M.

E. Verifying INIT

INIT is checked by a combination of manual audits and

automatic verification on the XMHF source to ensure that

before XMHF’s init() function completes, the following are

true: DMA table and HPTs are correctly initialized so that

memory addresses corresponding to the hypervisor memory

regions cannot be changed by either the guest or system

devices; and the intercept entry point in XMHF points to

ihub().

//start a partition by switching to guest-mode

//cpu = CPU where the partition is started

void xmhf_partition_start(int cpu)

{

...

#ifdef VERIFY

assert(cpu_HPT_enabled);

assert(cpu_HPT_base == HPT_base);

assert(cpu_intercept_handler == ihub);

#endif

//switch to guest-mode

}

Figure 2. Outline of xmhf_partition_start, the function
used to execute a target cpu in guest-mode. cpu_HPT_enabled

and cpu_HPT_base enforce hardware page table (HPT) protections.
cpu_intercept_handler is where the CPU transfers control to when
an intercept is triggered in guest-mode. HPT_base and ihub are the
XMHF initialized HPTs and the intercept handler hub respectively. These
assertions allow automatic verification of DRIVE properties INIT and MED

in XMHF using a model checker.

The manual audits involve 311 lines of C code and 338

lines of assembly language code which include platform

hardware initialization, loops including runtime paging and

DMA table and HPT setup, and concurrency in the form

of multicore initialization within XMHF. Given the stable

hardware platform and multicore initialization logic as well

as paging, DMA and HPT data structure initialization re-

quirements, we postulate that the manually audited code

will remain mostly unchanged as development proceeds,

ensuring minimal manual re-auditing effort.

1) DMA table and HPT initialization: The XMHF secure-

loader and the XMHF core startup component set up the

DMA table to prevent system devices from accessing XMHF

memory regions. We manually audit the C functions respon-

sible for setting up the DMA table to verify that the functions

assign entries in the DMA table such that all addresses in

M are designated read-only by devices.

Before the XMHF init() function transfers control to the

guest, it calls a C function to setup the HPTs for the guest.

We manually audit this C function to verify that the function

assigns each entry in the HPTs such that all addresses in M
are designated read-only by the guest.

2) Intercept entry point: The XMHF init() function

finally invokes the xmhf_partition_start function to

start the guest in guest-mode. We insert an assertion

in xmhf_partition_start and use CBMC to auto-

matically verify the assertion. The inserted assertion in

xmhf_partition_start checks that the CPU is setup to

transfer control to ihub() on an intercept (Figure 2).

F. Verifying MED

MED is verified by ensuring the following: (1) XMHF’s

init() function in the end sets the CPU to execute in guest-

mode with the appropriate hardware memory protections

in place. In particular, in a multicore system, every CPU

that is initialized is set to execute in guest-mode. (2) DMA

protection is always active during XMHF runtime. We insert

assertions in XMHF source code and use CBMC to automat-

ically verify these assertions.

1) Guest-mode execution: XMHF initializes

memory protection for a CPU and finally uses the

xmhf_partition_start function to execute a target CPU

in guest-mode. Therefore, we verify that CPU transitions

to the correct guest-mode by model-checking the validity

of assertions inserted in the xmhf_partition_start

function (Figure 2). The assertions check that appropriate

fields in the MMU data structures are set to point to the

correct HPTs and that HPT protections are in effect before

using the CPU instruction that performs the switch to

guest-mode.

On a multicore platform, XMHF uses a combination of

the nested page fault (ih npf) and the single-step (ih db)

intercepts to ensure that each CPU that is initialized is set to

execute in guest-mode (via return from ihub()) before it ex-

ecutes any attacker code (recall §IV-B5). More specifically,

XMHF maps the LAPIC to a page in M during initialization.

Subsequently, assuming SAFEUPD holds, ensuring MED on

multicore systems reduces to verifying that: (i) ih npf()
disables guest interrupts and sets the guest trap-flag on

access to the LAPIC memory-mapped I/O page, and (ii)

ih db() prevents a direct write to the LAPIC Interrupt

Control Register (ICR) upon detecting a startup command

and instead runs the target guest code on C in guest-mode.

We check this property by a combination of manual

audits and automatic verification by model-checking the

validity of assertions inserted in ihub(), ih npf and ih db

(Figure 3). The assertions check that the appropriate core

is switched to guest-mode if the single-step intercept is

triggered. The manual audits comprise of 51 lines of C code

which correspond to the LAPIC page mapping setup and

handling within init(), ih npf and ih db.

2) DMA protection: The XMHF secure-loader is started

via a DRT operation which ensures that the secure-loader

memory is automatically DMA-protected by the hardware

(§IV-B2). The XMHF secure-loader activates DMA protec-

tion for the XMHF runtime before transferring control to the

XMHF core startup component which, during initialization,

re-activates DMA protection before transferring control to

the guest. The DMA protection activation is done by setting

the appropriate bits in the DMA protection hardware regis-

ters to enforce DMA protection. We verify this by model-

checking the validity of a properly inserted assertion in

XMHF, as shown in Figure 4. The inserted assertion checks

that the relevant (enable) bit is set in the DMA protection

hardware register value before writing to the register to

enable DMA protection.

G. Verifying SAFEUPD

Under the assumption that the XMHF core and the hypapp

only modify guest memory protections through the core

API function setprot, and that neither the XMHF core

//top-level intercept handler

//cpu = CPU where intercept triggered

//x = triggered intercept

void ihub(int cpu, int x){

//...main body of ihub

#ifdef VERIFY

assert(cpu_HPT_enabled);

assert(cpu_HPT_base == HPT_base);

assert(cpu_intercept_handler == ihub);

#endif

}

//nested page fault handler

void ih_npfe(){

#ifdef VERIFY

int pre_npfe = NPFELAPIC_TRIGGERED();

#endif

//...main body of ih_npfe

#ifdef VERIFY

assert (!pre_npfe || GUEST_TRAPPING(cpu));

#endif

}

//single-step exception handler

void ih_db(){

#ifdef VERIFY

int pre_dbe = LAPIC_ICRWRITE();

#endif

//...main body of ih_db

#ifdef VERIFY

assert (!pre_dbe || CORE_PROTECTED(cpu));

#endif

}

Figure 3. Outline of ihub(), the top-level intercept handler function,
and ih npf and ih db, the nested page fault and single-step handlers.
NPFELAPIC_TRIGGERED() = true iff the npf intercept was trig-
gered in response to the guest accessing the LAPIC memory-mapped
I/O page. GUEST_TRAPPING(cpu) = true iff the CPU identified by
cpu has interrupts disabled and is set to generate a db intercept.
LAPIC_ICRWRITE() = true iff a write was performed to the LAPIC
ICR. CORE_PROTECTED(cpu) = true iff the LAPIC ICR write was
disallowed upon detecting a startup command. cpu_HPT_enabled and
cpu_HPT_base are the MMU fields that enforce hardware page tables
(HPT). cpu_intercept_handler is the field that the CPU transfers
control to when an intercept is triggered in guest-mode. HPT_base and
ihub are the XMHF initialized HPTs and the intercept handler hub respec-
tively. These macros and assertions allow a model checker to automatically
verify DRIVE MED in XMHF.

or the hypapp modify their own code regions and the entry

point to the hypervisor, verification of SAFEUPD is reduced

to checking that when setprot completes, all hypervisor

memory addresses are still protected. We additionally know

that after XMHF’s init() function completes, the hypervisor

memory is protected (§V-E), so we further reduce the

verification obligation to checking that setprot does not

alter the protection bits of hypervisor memory regions

Similar to before, we use CBMC to automatically verify

setprot does not alter the protection bit of the hypervisor

memory by inserting an assertion preceding every write op-

eration to the HPTs, checking that the address being written

to does not belong to the hypervisor. More concretely, the

hypervisor memory is maintained in a contiguous set of ad-

dresses beginning at HVLO and ending at HVHI. Therefore,

every statement that potentially modifies the permission of

//activate DMA protection

...

#ifdef VERIFY

assert(controlreg_value & DMAP_ENABLE);

#endif

DMAPwrite(controlreg, controlreg_value);

...

Figure 4. Outline of DMA protection activation in XMHF. controlreg
and controlreg_value are the DMA protection hardware control
register and register value respectively. DMAP_ENABLE enables the DMA
protection and DMAPwrite writes a value to a given DMA protection
hardware register. The assertion allows a model checker to automatically
verify DMA protection activation and consequently DRIVE MED in XMHF.

//set permission of address a to p

void xmhf_memprot_setprot(int a,int p)

{

...

//the following assertion precedes every

//statement that sets permission of

//address a to p

#ifdef VERIFY

assert (a < HVLO || a > HVHI);

#endif

...

}

Figure 5. Outline of the XMHF core API function setprot, which is
used to modify guest memory protections via the Hardware Page Tables
(HPT). The assertion allows a model-checker to verify DRIVE SAFEUPD.

a memory address a is preceded by an assertion that checks

that a < HVLO ∨ a > HVHI, as shown in Figure 5.

H. Discussion

1) Modular Development and Verification: XMHF’s ver-

ification is intended to be used as part of the XMHF build

process automatically. Developers of hypapps are not re-

quired to deal with the verification directly. This is similar to

other approaches such as the SDV tool [34] which packages

the device driver verifier as part of the driver verifier kit

for Windows. Developers, however, must adhere to the

prescribed XMHF core APIs when changing guest memory

protections or accessing the hardware TCB control structures

(e.g., performing chipset I/O or accessing hardware virtual

machine control structures). Developers must also ensure

that hypapp code does not perform writes to code or write

to arbitrary data that is not part of the hypapp.

Note that the assertions and verification statements in-

serted in the XMHF code are for use by CBMC only. Once

CBMC reports a successful verification, these statements and

assertions are proven unnecessary, and can therefore be

removed in the production version of XMHF, so that they

do not hinder performance.

2) Manual Audits: The manual audits described in the

previous sections include constructs that CBMC cannot ver-

ify, including loops that iterate over entire page tables (e.g.,

runtime paging, DMA table and HPTs), platform hardware

initialization and interaction (e.g., CPU, LAPIC, BIOS and

PCI) and concurrency (e.g., multicore initialization within

XMHF and multicore guest setup). These are verification

challenges that continue to garner attention from the re-

search community. For example, a number of other tools

(see [35] for a list) are being developed for verifying

concurrent C programs. There are design-level verification

techniques [36], [37] that could be employed to address the

scalability problem (e.g. loops) with current model-checkers,

for hypervisor designs. We plan to explore their applicability

in the future.

VI. EVALUATION

We present the TCB size of XMHF’s current implemen-

tation and describe our efforts in porting several recent

hypervisor-based research efforts as hypapps running on

XMHF. We then present the performance impact on a legacy

guest operating system running on XMHF and evaluate the

performance overhead that XMHF imposes on a hypapp.

We also compare XMHF’s performance with the popular

open-source Xen hypervisor. These results explain the basic

hardware virtualization overhead intrinsic to the design of

XMHF. Finally, we discuss our verification results.

A. XMHF TCB and Case Studies with hypapps

XMHF’s TCB consists of the XMHF core, the hypapp

and supporting libraries used by the hypapp. The XMHF

supporting libraries (totaling around 8K lines of C code)

currently include a tiny C runtime library, a small library of

cryptographic functions, a library with optional utility func-

tions such as hardware page table abstractions and command

line parsing functions, and a small library to perform useful

TPM operations. From a hypapp’s perspective, the minimum

TCB exposed by XMHF comprises the XMHF core which

consists of 6018 SLoC.

We demonstrate the utility of XMHF as a common frame-

work for developing hypapps by porting several recent open-

source research efforts in the hypervisor space to XMHF. Fig-

ure 6 shows the SLoC metrics and platform support for each

hypapp before and after the port to XMHF. TrustVisor [7] and

Lockdown [2] are fully functional, and their code sizes are

precise. The development of HyperDbg [8], XTRec [6] and

SecVisor [10] is sufficiently advanced to enable estimation

of their final sizes via manual inspection of their existing

sources and differentiation between the hypervisor core and

hypapp-specific logic. Figure 6 shows that the XMHF core

forms 48% of a hypapp’s TCB, on average. This supports

our hypothesis that these hypervisors share a common

hypervisor core that is re-used or engineered from scratch

with every new application. Also, using XMHF endows the

hypapps with support for x86 muticore platforms from both

Intel and AMD for free.

B. Performance Measurements

We measure XMHF’s runtime performance using two

metrics: 1) guest overhead imposed solely by the framework

Original On XMHF

hypapp SLoC Arch. Support Multicore
Support

XMHF

core
SLoC

hypapp
+ libs.
SLoC

Total
SLoC

% XMHF

core
Arch. Support Multicore

Support

TrustVisor 6481 x86 AMD No 6018 9138 15156 40% x86 AMD, Intel Yes
Lockdown ~10000 x86 AMD No 6018 9391 15409 40% x86 AMD, Intel Yes
XTRec* 2195 x86 AMD No 6018 3500* 9500* 63%* x86 AMD, Intel Yes
SecVisor* 1760 x86 AMD No 6018 2200* 8200* 73%* x86 AMD, Intel Yes
HyperDbg* 18967 x86 Intel No 6018 17800* 23800* 25%* x86 AMD, Intel Yes

Figure 6. Porting status of several hypervisor-based open-source research efforts as XMHF hypapps. Note (*) the development of HyperDbg, XTRec and
SecVisor is sufficiently advanced to enable estimation of their final sizes via manual inspection of their existing sources and differentiation between the
hypervisor core and hypapp-specific logic

(i.e., without any hypapp), and 2) base overhead imposed by

XMHF for a given hypapp.

Our platform is an HP Elitebook 8540p with a Quad-Core

Intel Core i7 running at 3 GHz, 4 GB RAM, 320GB SATA

HDD and an Intel e1000 ethernet controller, using Ubuntu

12.04 LTS as the guest OS running the Linux kernel v3.2.2.

For network benchmarks, we connect another machine via a

1 Gbps Ethernet crossover link and run the 8540p as a server.

We use XMHF with both 4K and 2MB hardware page table

(HPT) mappings for measurement purposes.

1) Guest Performance: With the rich single-guest execu-

tion model (§IV-A) all platform devices are directly accessed

and managed by the guest without any intervention (traps)

by XMHF. Further, the XMHF runtime gets control only when

a configured guest event is explicitly triggered (§IV-B1).

Thus, when a well-behaved legacy guest runs, the perfor-

mance overhead is exclusively the result of the hardware

virtualization mechanisms, particularly the Hardware Page

Tables (HPT) and the DMA protection.

We execute both compute-bound and I/O-bound appli-

cations with XMHF. For compute-bound applications, we

use the SPECint 2006 suite. For I/O-bound applications,

we use the iozone (disk read and write), compilebench

(project compilation), and unmodified Apache web server

performance. For iozone, we perform the disk read and

write benchmarks with 4K block size and 2GB file size.

We use the compile benchmark from compilebench. We run

Apache on top of XMHF, and use the Apache Benchmark

(ab) included in the Apache distribution to perform 200,000

transactions with 20 concurrent connections.

Our results are presented in Figure 7. Most of the SPEC

benchmarks show less than 3% performance overhead. How-

ever, there are four benchmarks with over 10%, and two

more with 20% and 55% overhead. For I/O application

benchmarks, read access to files and network access incurs

the highest overhead (40% and 25% respectively). The

rest of the benchmarks show less than 10% overhead. We

attribute the high compute and I/O benchmark latency to

benchmark operations that stress the paging logic involving

the HPT and I/O DMA logic involving the DMA access con-

trol tables. These overheads are comparable to other general-

purpose high-performance hypervisors using hardware vir-

tualization including HPT and DMA protections (§VI-C).

We expect these overheads to diminish with newer HPT

and DMA protection hardware. In general, for both compute

and I/O benchmarks, XMHF with 2MB HPT configuration

performs better than XMHF with 4KB HPT configuration.

2) Performance of hypapps: A hypapp built on top of

XMHF incurs two basic runtime overheads: (a) when the

hypapp is invoked via intercepted guest events (including

a hypercall), and (b) when the hypapp quiesces cores in a

multi-core system in order to perform HPT updates.

When the hypapp is invoked, the CPU switches from guest

to host mode, saving the current guest environment state and

loading the host environment state. After the hypapp finishes

its task, the CPU switches back to guest mode by performing

the reverse environment saving and loading. Thus, there is

a performance impact from cache and TLB activity. We

measure this overhead by invoking a simple hypercall within

the guest and measuring the round-trip time.

As described in §IV-B2, XMHF employs CPU-quiescing

on SMP platforms to ensure intercept serialization. As XMHF

uses the NMI for this purpose (§IV-B2), it results in a

performance overhead. We measure this overhead by using

a simple hypapp that quiesces all other cores, performs a

NOP, and then releases them, all in response to a single guest

hypercall event. We use a guest application that invokes the

hypercall and measure the round-trip time.

The hypapp overheads on XMHF for both 4K and 2MB

HPT configurations, for intercepted guest events and quiesc-

ing are on average 10 and 13.9 micro-seconds respectively.

We note that these hypapp overheads occur every time

a guest event is intercepted. Depending on the hypapp

functionality this may happen less frequently (a typical

and desirable approach today, as evidenced by the hypapps

discussed in §VI-A) or more frequently. In either case, the

overheads are chiefly due to the hardware (intercept world-

switch and NMI signaling). We expect this to diminish as

hardware matures. As these overheads reduce, we could

conceivably have hypapps interact with the guest in the same

spirit as regular applications interact with OS kernels today.

Figure 7. XMHF Application Benchmarks; xmhf-4K = 4K HPT mapping; xmhf-2M = 2MB HPT mapping.

Figure 8. XMHF Performance Comparison with Xen: XMHF and Xen have
similar performance for compute-bound and disk I/O-bound applications;
XMHF performance is closer to native speed than Xen for network-I/O.

C. Performance Comparison

We now compare XMHF’s performance with the popular

Xen (v 4.1.2) hypervisor. We use three hardware virtual

machine (HVM) configurations for domU, that are identical

in memory and CPU configuration to the native system:

HVM domU (xen-domU-hvm), HVM domU with paravirtu-

alized drivers (xen-domU-pvhvm) and HVM domU with pci-

passthrough (xen-domU-passthru). We also use dom0 (xen-

dom0) as a candidate for performance evaluation. We use the

compute and I/O-bound application benchmarks as described

previously (see §VI-B1). Figure 8 shows our performance

comparison results. For compute-bound applications XMHF

and Xen have similar overheads (around 10% on average)

with the 2MB XMHF HPT configuration performing slightly

better. For disk I/O benchmarks, XMHF, xen-dom0 and xen-

domU-pvhvm have the lowest overheads (ranging from 3-

20%). Both XMHF and Xen have higher overheads on the

disk read benchmark when compared to other disk bench-

marks. For network-I/O benchmark, XMHF has the lowest

Prog. OP SP VCC Vars CLS TD T M

P 1654 1452 111 437K 1560K 25 76 1.9

P
M

1
1667 1465 116 438K 1561K 27 81 1.9

P
M

2
1668 1466 116 438K 1561K 25 79 1.9

P
M

3
1669 1467 116 438K 1561K 25 79 1.9

P
M

4
1653 1451 117 463K 1668K 25 80 1.9

P
L

1
1679 1477 111 476K 1728K 28 82 1.9

P
L

2
1654 1452 111 437K 1559K 25 79 1.9

P
L

3
1652 1450 111 437K 1559K 25 79 1.9

P
L

4
1634 1441 111 437K 1560K 25 79 1.9

P
L

5
1652 1450 111 437K 1560K 24 78 1.9

P
L

6
1652 1450 111 437K 1560K 25 79 1.9

Figure 9. XMHF verification results with CBMC. OP = number of
assignments before slicing; SP = number of assignments after slicing; VCC
= number of VCCs after simplification; Vars = number of variables in SAT
formula; CLS = number of clauses in SAT formula; TD = time (sec) taken
by SAT solver; T = total time (sec); M = maximum memory (GB)

overhead (20-30%). xen-dom0 and xen-domU-passthru incur

a 45% and 60% overhead respectively, while xen-domU-hvm

and xen-domU-pvhvm have more than 85% overhead.

D. Verification Results

We now describe our experiments in verifying DRIVE

properties and invariants by model-checking the XMHF

implementation. These verification problems are reduced

to proving the validity of assertions in a sequential C

program P (§V). We discuss our experience in using several

publicly available software model checkers to verify P . All

experiments were performed on a 2 GHz machine with a

time limit of 1800 seconds and a memory limit of 10GB.

1) Experience with CBMC: CBMC [22] is a bounded

model checker for verifying ANSI C programs. It supports

advanced C features like overflow, pointers, and function

pointers, and can find bugs such as pointer dereferencing

to unallocated memory and array out-of-bounds accesses.

It is therefore uniquely suited to verify system software

such as XMHF. CBMC is only able to verify programs

without unbounded loops; P (XMHF core) complies with this

requirement. During verification of P , CBMC automatically

sliced away unreachable code and unrolled the remaining

(bounded) loops.

The version of CBMC available publicly when we began

our experiments was 4.0. This version did not handle two C

features that are used in P – function pointers and typecasts

from byte arrays to structs. We believe that these features

are prevalent in system software in general. We contacted

CBMC developers about these issues, and they incorporated

fixes in the next public release CBMC 4.1. CBMC 4.1 verifies

P successfully.

We also seeded errors in P to create ten additional buggy

programs. Four of the buggy programs (PM
1

– PM
4

) contain

memory errors that dereference unallocated memory. The

remaining six buggy programs (PL
1

– PL
6

) have logical

errors that cause assertion violations. In each case, CBMC

finds the errors successfully. Table 9 summarizes the overall

results for CBMC 4.1. Note that the SAT instances produced

are of non-trivial size, but are solved by the back-end SAT

solver used by CBMC in about 25 seconds each. Also, about

75% of the overall time is required to produce the SAT

instance. This includes parsing, transforming the program to

an internal representation (called a GOTO program), slicing,

simplification, and generating the SAT formula.

2) Experience with Other Model Checkers: We also tried

to verify P and the ten buggy programs with three other

publicly available software model checkers that target C

code – BLAST [38], SATABS [39], and WOLVERINE [40].

All these model checkers are able to verify programs with

loops and use an approach called Counterexample Guided

Abstraction Refinement (CEGAR) [41], [42] combined with

predicate abstraction [43]. BLAST 2.5 could not parse any

of the target programs. In contrast, SATABS 3.1 timed out

in all cases after several iterations of the CEGAR loop. On

the other hand, WOLVERINE 0.5c ran out of memory in all

cases during the first iteration of the CEGAR loop.

VII. RELATED WORK

BitVisor [44] and NoHype [45], [46] are hypervisors that

eliminate runtime complexity by running guests with pre-

allocated memory, and direct access to devices. XMHF also

advocates the rich single-guest execution model (§ IV-A).

However, XMHF is designed to provide a common hyper-

visor core functionality given a particular CPU architecture

while at the same time supporting extensions that can

provide custom hypervisor-based solutions (“hypapps”) for

specific functional and security properties. The extensibility

of XMHF allows hypapps to be built around it while preserv-

ing memory integrity. Xen [47], KVM [29], VMware [48],

NOVA [49], Qubes [50] and L4 are general purpose (open-

source) hypervisors and micro-kernels which have been used

for hypervisor based research [11]–[16], [28]. However,

unlike XMHF, they do not present clear extensible interfaces

for hypapp developers or preserve memory integrity. Further,

complexity arising from device multiplexing and increased

TCB make them prone to security vulnerabilities [51]–[55].

OsKit [56] provides a framework for modular OS devel-

opment. XMHF provides a similar modular and extensible

infrastructure for creating hypapps.

A sound architecture [57], [58] is known to be essential

for the development of high quality software. Moreover,

there has been a body of work in using architectural

constraints to not only to drive the analysis of important

quality attributes – but also to make such analysis more

tractable [59]. Our work reaffirms these ideas, and demon-

strates concretely the synergy between – and importance of

– architecture and analysis in the context of developing an

integrity-protected hypervisor.

The idea of an interface constrained adversary [33], [60]

has been used to model and verify security properties of a

number of systems. In particular, pinning down the attacker’s

interface enables systematic and rigorous reasoning about

security guarantees. This idea appears in our work as well.

Specifically, restricting the attacker’s interface to a set of

intercept handlers is crucial for the feasibility of DRIVE.

A number of projects have used software model checking

and static analysis to find errors in source code, without

a specific attacker model. Some of these projects [61]–[63]

target a general class of bugs. Others focus on specific types

of errors, e.g., Kidd et al. [64] detect atomic set serializ-

ability violations, while Emmi et al. [65] verify correctness

of reference counting implementation. All these approaches

require abstraction, e.g., random isolation [64] or predicate

abstraction [65], to handle source code, and therefore, are

unsound and/or incomplete. In contrast, we focus on a

methodology to develop a hypervisor that achieves a specific

security property against a well-defined attacker.

Finally, there has been several projects on verifying se-

curity of operating system and hypervisor implementations.

Neumann et al. [66], Rushby [67], and Shapiro and We-

ber [68] propose verifying the design of secure systems by

manually proving properties using a logic and without an

explicit adversary model. A number of groups [18]–[20]

have employed theorem proving to verify security properties

of OS implementations. Barthe et al. [69] formalized an

idealized model of a hypervisor in the Coq proof assistant

and Alkassar et al. [70], [71] and Baumann et al. [72] anno-

tated the C code of a hypervisor and utilized the VCC [21]

verifier to prove correctness properties. Approaches based

on theorem proving are applicable to a more general class

of properties, but also require considerable manual effort.

For example, the seL4 verification [20] shows a form of

functional correctness, essentially relating the C implemen-

tation with a high level specification and required several

man years effort. Since the high-level specification does not

include an explicit adversary that is trying to break memory

integrity, the verification does not imply the security property

of interest to us. In contrast, our approach is more automated

but we focus on a specific security property (memory

integrity) with an explicit adversary model. However, since

we do not verify full functional correctness, we cannot, for

example, claim that our system will not crash.

VIII. CONCLUSION AND FUTURE WORK

We propose an eXtensible and Modular Hypervisor

Framework (XMHF) which strives to be a comprehensible

and flexible platform for building hypervisor applications

(“hypapps”). XMHF is based on a design methodology

that enables automated verification of hypervisor memory

integrity. In particular, the automated verification was per-

formed on the actual source code of XMHF – consisting

of 5208 lines of C code – using the CBMC model checker

We believe that XMHF provides a good starting point for

research and development on hypervisors with rigorous and

“designed-in” security guarantees. Given XMHF’s features

and performance characteristics, we believe that it can

significantly enhance (security-oriented) hypervisor research

and development.

One direction for future work is modular verification of

the XMHF core composed with hypapps. Another direction

is to extend DRIVE to other security properties such as

secrecy. A challenge here is that for such a property, the

attacker’s interface is much less well-defined compared to

memory integrity, due to the possibility of covert channels

etc. Yet another direction is to include support for concurrent

execution within XMHF and the hypapps. The question here

is whether, or how, we can still guarantee memory integrity.

Acknowledgements. We thank our shepherd, William

Enck, for his help with the final version of this paper, as well

as the anonymous reviewers for their detailed comments.

We also want to thank Adrian Perrig, Virgil Gligor and

Zongwei Zhou for stimulating conversations on XMHF. This

work was partially supported by NSF grants CNS-1018061,

CCF-0424422, CNS-0831440, and an AFOSR MURI on

Science of Cybersecurity. Copyright 2012 Carnegie Mellon

University and IEEE3.

REFERENCES

[1] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and V. Sekar,
“Towards verifiable resource accounting for outsourced com-
putation,” in Proc. of ACM VEE, 2013.

[2] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig,
“Lockdown: Towards a safe and practical architecture for
security applications on commodity platforms,” in Proc. of
TRUST, Jun. 2012.

[3] Z. Wang, C. Wu, M. Grace, and X. Jiang, “Isolating commod-
ity hosted hypervisors with hyperlock,” in Proc. of EuroSys
2012.

3This material is based upon work funded and supported by the De-
partment of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center. This material has been
approved for public release and unlimited distribution. DM-0000090

[4] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune,
“Building verifiable trusted path on commodity x86 comput-
ers,” in Proc. of IEEE S&P, May 2012.

[5] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor:
retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization,” in Proc. of SOSP, 2011.

[6] A. Vasudevan, N. Qu, and A. Perrig, “Xtrec: Secure real-time
execution trace recording on commodity platforms,” in Proc.
of IEEE HICSS, Jan. 2011.

[7] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig, “TrustVisor: Efficient TCB reduction and
attestation,” in Proc. of IEEE S&P, May 2010.

[8] A. Fattori, R. Paleari, L. Martignoni, and M. Monga, “Dy-
namic and transparent analysis of commodity production
systems,” in Proc. of IEEE/ACM ASE 2010.

[9] L. Litty, H. A. Lagar-Cavilla, and D. Lie, “Hypervisor sup-
port for identifying covertly executing binaries,” in Proc. of
USENIX Security Symposium, 2008.

[10] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity for
commodity OSes,” in Proc. of SOSP, 2007.

[11] X. Xiong, D. Tian, and P. Liu, “Practical protection of kernel
integrity for commodity os from untrusted extensions,” in
Proc. of of NDSS 2011.

[12] L. Singaravelu, C. Pu, H. Haertig, and C. Helmuth, “Reducing
TCB complexity for security-sensitive applications: Three
case studies,” in Proc. of EuroSys, 2006.

[13] R. Ta-Min, L. Litty, and D. Lie, “Splitting Interfaces: Making
Trust Between Applications and Operating Systems Config-
urable,” in Proc. of SOSP, 2006.

[14] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether:
malware analysis via hardware virtualization extensions,” in
Proc. of of ACM CCS 2008.

[15] D. Quist, L. Liebrock, and J. Neil, “Improving antivirus
accuracy with hypervisor assisted analysis,” J. Comput. Virol.,
vol. 7, no. 2, May 2011.

[16] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm
monitoring using hardware virtualization,” in Proc. of ACM
CCS, 2009.

[17] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. K. Ports,
“Overshadow: A virtualization-based approach to retrofitting
protection in commodity operating systems,” in Proc. of
ASPLOS, Mar. 2008.

[18] B. J. Walker, R. A. Kemmerer, and G. J. Popek, “Specifi-
cation and verification of the UCLA Unix security kernel,”
Communications of the ACM (CACM), vol. 23, no. 2, 1980.

[19] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. D. McLean,
“Formal specification and verification of data separation in a
separation kernel for an embedded system,” in Proc. of ACM
CCS, 2006.

[20] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood, “seL4: formal
verification of an OS kernel,” in Proc. of SOSP, 2009.

[21] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies, “VCC:
A Practical System for Verifying Concurrent C,” in Proc. of
TPHOLs, 2009.

[22] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking
ANSI-C Programs,” in Proc. of TACAS, 2004.

[23] Intel Corporation, “Intel 64 and IA-32 Architectures Software
Developer’s Manual Combined Volumes:1, 2A, 2B, 2C, 3A,
3B, and 3C,” 2011.

[24] Advanced Micro Devices, “AMD64 architecture program-
mer’s manual: Volume 2: System programming,” AMD Pub-

lication no. 24594 rev. 3.11, Dec. 2005.

[25] ARM Limited, “Virtualization extensions architecture speci-
fication,” http://infocenter.arm.com, 2010.

[26] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-
Flow Integrity principles, implementations and applications,”
TISSEC, vol. 13, no. 1, 2009.

[27] L. Jia, D. Garg, and A. Datta, “Compositional security
for higher-order programs,” Carnegie Mellon University,
Tech. Rep. CMU-CyLab-13-001, 2013, online at http://www.
andrew.cmu.edu/user/liminjia/compositional.

[28] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and B.-
A. Yassour, “The turtles project: design and implementation
of nested virtualization,” in Proc. of OSDI 2010.

[29] RedHat, “KVM – kernel based virtual machine,” http://www.
redhat.com/f/pdf/rhev/DOC-KVM.pdf, 2009.

[30] P. Karger and D. Safford, “I/O for virtual machine monitors:
Security and performance issues,” IEEE Security and Privacy,
vol. 6, no. 5, 2008.

[31] N. Elhage, “Virtunoid: Breaking out of kvm,” Defcon, 2011.

[32] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity,” in Proc.
of IEEE S&P, 2010.

[33] A. Datta, J. Franklin, D. Garg, and D. Kaynar, “A logic of
secure systems and its application to trusted computing,” in
Proc. of IEEE S&P, 2009.

[34] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichten-
berg, “The static driver verifier research platform,” in Proc.
of CAV, 2010.

[35] J. Alglave, D. Kroening, and M. Tautschnig, “Partial or-
ders for efficient bmc of concurrent software,” CoRR, vol.
abs/1301.1629, 2013.

[36] J. Franklin, S. Chaki, A. Datta, and A. Seshadri, “Scalable
Parametric Verification of Secure Systems: How to Verify
Reference Monitors without Worrying about Data Structure
Size,” in Proc. of IEEE S&P, 2010.

[37] J. Franklin, S. Chaki, A. Datta, J. M. McCune, and A. Vasude-
van, “Parametric Verification of Address Space Separation,”
in Proc. of POST, 2012.

[38] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy
Abstraction,” in Proc. of POPL, 2002.

[39] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav,
“SATABS: SAT-Based Predicate Abstraction for ANSI-C,” in
Proc. of TACAS, 2005.

[40] D. Kroening and G. Weissenbacher, “Interpolation-Based
Software Verification with Wolverine,” in Proc. of CAV, 2011.

[41] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbolic
model checking,” Journal of the ACM, vol. 50, no. 5, 2003.

[42] T. Ball and S. K. Rajamani, “Automatically Validating Tem-
poral Safety Properties of Interfaces,” in Proc. of SPIN, 2001.

[43] S. Graf and H. Saı̈di, “Construction of Abstract State Graphs
with PVS,” in Proc. of CAV, 1997.

[44] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,
E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato,
“Bitvisor: a thin hypervisor for enforcing i/o device security,”
in Proc. of ACM SIGPLAN/SIGOPS VEE 2009.

[45] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating
the hypervisor attack surface for a more secure cloud,” in
Proc. of ACM CCS, 2011.

[46] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “Nohype:
virtualized cloud infrastructure without the virtualization,” in
Proc. of ISCA, 2010.

[47] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. of SOSP, 2003.

[48] VMware Corporation, “VMware ESX, bare-metal hypervisor
for virtual machines,” http://www.vmware.com, Nov. 2008.

[49] U. Steinberg and B. Kauer, “Nova: a microhypervisor-based
secure virtualization architecture,” in Proc. of the Eurosys.

[50] J. Rutkowska and R. Wojtczuk, “Qubes os architecture,” http:
//qubes-os.org, 2010.

[51] R. Wojtczuk, “Detecting and preventing the Xen hypervisor
subversions,” Invisible Things Lab, 2008.

[52] “Elevated privileges,” CVE-2007-4993, 2007.

[53] “Multiple integer overflows allow execution of arbitrary
code,” CVE-2007-5497, 2007.

[54] R. Wojtczuk and J. Rutkowska, “Xen 0wning trilogy,” Invis-
ible Things Lab, 2008.

[55] R. Wojtczuk, “Subverting the Xen hypervisor,” Invisible
Things Lab, 2008.

[56] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers, “The flux oskit: A substrate for os and language
research,” in Proc. of ACM SOSP 1997.

[57] M. Shaw and D. Garlan, Software architecture - perspectives
on an emerging discipline. Prentice Hall, 1996.

[58] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice. Addison Wesley, 2003.

[59] K. Wallnau, “Volume III: A Technology for Predictable
Assembly from Certifiable Components,” Software Engineer-
ing Institute, Carnegie Mellon University, Technical report
CMU/SEI-2003-TR-009, 2003.

[60] D. Garg, J. Franklin, D. K. Kaynar, and A. Datta, “Composi-
tional System Security with Interface-Confined Adversaries,”
ENTCS, vol. 265, 2010.

[61] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and
language for building system-specific, static analyses.”

[62] H. Chen and D. Wagner, “MOPS: an infrastructure for ex-
amining security properties of software,” in Proc. of CCS,
2002.

[63] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi, “Using
model checking to find serious file system errors,” in Proc.
of OSDI, 2004.

[64] N. Kidd, T. Reps, J. Dolby, and M. Vaziri, “Finding
Concurrency-Related Bugs Using Random Isolation,” in Proc.
of VMCAI, 2009.

[65] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar, “Verifying
Reference Counting Implementations,” in Proc. of TACAS,
2009.

[66] P. Neumann, R. Boyer, R. Feiertag, K. Levitt, and L. Robin-
son, “A provably secure operating system: The system, its
applications, and proofs.” SRI International, Tech. Rep., 1980.

[67] J. M. Rushby, “Design and Verification of Secure Systems,”
in Proc. of SOSP, 1981.

[68] J. S. Shapiro and S. Weber, “Verifying the EROS Confinement
Mechanism,” in Proc. of IEEE S&P, 2000.

[69] G. Barthe, G. Betarte, J. D. Campo, and C. Luna, “Formally
Verifying Isolation and Availability in an Idealized Model of
Virtualization,” in Proc. of FM, 2011.

[70] E. Alkassar, M. A. Hillebrand, W. J. Paul, and E. Petrova,
“Automated Verification of a Small Hypervisor,” in Proc. of
VSTTE, vol. 6217, 2010.

[71] E. Alkassar, E. Cohen, M. A. Hillebrand, M. Kovalev, and
W. J. Paul, “Verifying shadow page table algorithms,” in Proc.
of FMCAD, 2010.

[72] C. Baumann, H. Blasum, T. Bormer, and S. Tverdyshev,
“Proving memory separation in a microkernel by code level
verification,” in Proc. of AMICS, 2011.

