Ordering Multiple Continuations on the Stack

Dimitrios Vardoulakis

Olin Shivers

Northeastern University

dimvar@ccs.neu.edu

shivers@ccs.neu.edu

February 17, 2011
Technical Report NU-CCIS-11-01

Note This technical report accompanies our publication in PEPM
2011 with the same name. In this report, we give a more general
definition of Restricted CPS that does not require the image of
call/cc for first-class control. We also provide a proof of the
theorem for the stackability of continuation arguments.

Abstract

Passing multiple continuation arguments to a function in CPS form
allows one to encode a wide variety of direct-style control con-
structs, such as conditionals, exceptions, and multi-return function
calls. We show that, with a simple syntactic restriction on the CPS
language, one can prove that these multi-continuation arguments
can be compiled into stack frames in the traditional manner. The
restriction comes with no loss in expressive power, since we can
still encode the same control mechanisms.

In addition, we show that tail calls can be generalized efficiently

for many continuations because the run-time check to determine

which continuation to pop to can be avoided with a simple static
analysis. A prototype implementation in Scheme48 shows that our
analysis is very precise.

a boolean and two continuations:

(%if bool continen conteise)
Control branches t@ontnen if the boolean argument is true,
and toconteseif it is false. By representing control operators as
functions, the compiler can wring even more utility out of its
general capabilities for reasoning about functions. This tech-
nigue has been explored in detail in the literature [5].

The “multi-return\ calculus” Q) [12] can be considered a
generalization of the aforementioned Orbit technique. Where
Orbit uses this technique internally, dur the mechanism is
exported to the language level: the direct-style term language is
designed to provide the power of passing multiple return points
to user procedures, yet ensure that these return points can be
stack allocated. The multi-return mechanism was specifically
designed to fit naturally with an IR that uses multiple continua-
tions to represent the multiple return points.

Finally, multiple-continuation function calls can be used to
implement “stream processing” computations, such as DSP
pipelines|[13].

These two extensions are a standard part of the lore of engineer-

1. Introduction ing compilers using CPS. Hc_Jweve_r, they raise issues that h_ave yet
.]) . . tobe addressed. First, compiler writers work on the assumption that
Continuation-passing style (CPS) has a long history as a compiler satically partitioned CPS allows continuation closures to be treated
intermediate representation [1,'5, 7, 11], going back to Steele’s 55 stack frames. The question arises: why is this a safe assumption?
Rabbit compiler [14]. More recently, Kennedy studied the engi- |f\e only have single-continuation calls, then it is fairly simple
neering benefits afforded by CPS-based intermediate representay show that the continuation environment records can be managed
tions [4]. When used in compilers, CPS is usually extended in two \yith a LIFO policy. But what happens when, as is often the case
ways from the simple form we see in more foundational develop- i, practice, we pass multiple continuations across procedure calls?
ments [8].) The compiler assumes that the continuations being passed all lie
First, every element of a CPS term (lambdas, variable refer- o the same stack, and so can all be passed as pointers into that
ences, and calls) is statically marked as either a “user” or a “contin- gtack. Is this in fact always true? Does it remain true when one lifts
uation” term. There is a similar user/continuation partition among the jdea of multiple return points from a limited, compiler-internal
dynamic values, which respects thg static partition: continuation technique to a general user mechanism, a%,ip ?
values are p(oduceql only from ‘fcontlnuatlo)n’termS, bound only Further, when a function call is made, tail recursion requires that
to “continuation” variables, and invoked only at “continuation” call - the compiler clear the stack back to the caller’s continuation. Even
sites; likewise for “user” values. This partition enables the compiler it is safe to suppose that all continuation arguments point into the
to produce code that uses a stack to manage procedure calls. Congame stack, the compiler must now pop the stack back to the most
tinuations are simply procedures whose environment record is argcent of these continuations. At a fixed call site, the continuation
stack frame. _ .. that is the “high-water” one can vary dynamically from call to
Second, CPS-based compilers often pass many continuationsg|; in these cases, the compiler must emit code to compare the
across function calls: continuations at run time, in order to correctly adjust the stack.

e The SML/NJ compiler implements exceptions by passing two This paper addresses the issues raised by the demands of stack-

continuations to each function: one for the normal return point Managing procedure calls in a CPS setting that permits multiple
and one for the current exception handler. continuations to be passed across function calls.

¢ ORBIT [5] encodes conditionals as primitives that take two con-
tinuations. Instead of having special syntax for if/then/else; O
BIT employs a primitive proceduréiz, with three arguments,

e First, we describe a reasonable static restriction on CPS that
ensures that multiple continuations can be safely passed across
function calls as pointers into a single stack (sectighs 2-5).

¢ Second, we describe a higher-order flow analysis that resolves pr € PR == [(\(halt) calD)]
the order of various continuations on a common stack, permit- ve Var = UVar + CVar
ting a program to avoid computing the “high water” continua- u, woar € UVar = asetof identifiers
tion at run time. This helps to make complex multi-return-point k, cvar € CVar = a set of identifiers
program structure a more pay-as-you-go feature (sdction 6). lame Lam = ULam + CLam

e Third, we developAvr as a motivating example: it can be ulam € ULam == [\ (“*H)w”)ﬂ
naturally converted into our Restricted CPS form using multiple clam € CLam == [A (™) calDD]
continuations; these continuations can be safely represented call € Call = UCalf ++C’lCall
as stack frames; andyr programs that call procedures with UCall == [(fe" ¢')7]
many return points can be analyzed by our flow analysis. . C%‘l” = [[U(qu e)V]]CE
It's worth noting that, while Fisher and Shivers developag: fre GEUEiz - Uvzf i Uchfn
with an eye towards representing programs written in it with ’ qge CExp = CVar + CLam
multi-continuation CPS, they did not exhibit a CPS conversion e lLab = ULab+ CLab
algorithm for their language. The conversion we show is inter- lc ULab = asetoflabels
esting in that it handles the issue of “control polymorphism” N, CE€CLab = asetoflabels
that arises by means of a simple type system; the CPS conver- ’
sion is thus type-directed (section 7). Figure 1. Partitioned CPS

Fourth, we report on experimental results from a prototype im-
plementation of our analysis in Scheme48. Our findings show
that the analysis can find the youngest continuation in most
cases, and it requires little increase in compilation time and im-
plementation effort ovek-CFA (section 8).

(define (square n cc h)
(number? n (\;(test)
(%if test
(A2() (* nn cc))

These results are obtained in a setting that permits continuations (A3 (h "not a number"))))))
to be captured by operators suchcad1/cc, which can force the
run-time stack to be copied to, and restored from, the heap. The Figure 2. Non-local exit

net result is to put CPS intermediate representations as they are
employed in practice onto a more solid footing, and to make multi-

continuation function calls more efficient, in a general setting. Many applications of multiple continuations use them in a
“downward” fashion: after its creation, a continuation is passed
2. Restricted CPS as an argument to a number®@ims and then called — it is never

captured in a user closure. Thus, a simple syntactic constraint can
We propose Restricted CPS as a variant of Partitioned CPS [7]. forhid first-class control: alam may only refer to continuations
Partitioned CPS splits the variables, lambdas and calls of a CPSfrom its list of formals, it cannot have freaars [9].
program into disjoint sets, the “user” and the “continuation” set, We want to allow first-class control, but in a way that per-
so that it is easy to distinguish the two syntactically. Elements of mits effective reasoning about the stack behavior of continuations.
the direct-style source program end up in the “user” set in CPS. Therefore, we propose another syntactically-restricted variant of
Continuations and calls added by the CPS transform end up in theCPS, which we call “Restricted Continuation-Passing Sty (
“continuation” set. brev. RCPS).

We begin with a brief description of Partitioned CPS (Fig. 1).

The partitioning between the user and the continuation world hap- Definition 1 (Restricted CPS)A programisin Restricted CPSiff a
pens by assigning labels to CPS terms from two disjoint sets; usercontinuation variable can appear freein a user lambda in operator
elements get labels frorfiLab and continuation elements get la- Position only.

bels from CLab. Hence,UVar, ULam and UCall refer to user jith this definition, continuations escape in a well-behaved \say:

Val‘iables, |ambdaS and Ca”s reSpeCtiVely. Slm”mﬂy&?", CLam continuation can 0n|y be called after its e&ape, it cannot be passed

and CCall refer to continuation variables, lambdas and calls. as an argument again. The CPS translationzdfl/cc, which is
We assume that all variables in a program have distinct names () (f cc) (f (A(z k) (cc 2)) cc)), is valid in RCPS. In sectidn 5

and all labels are unique. In such a program, the funciiditv) we show that even in the presenceaafll/cc the continuation

returns the label of the lambda that binds the variatéad LV (1) arguments of alam are still on the stack.

returns the list oftontinuation parameters of thelam labeledi. The simple function in F|d72 takes two continuations. It com-

For a lambda terndam, F'P(lam) is its set of formal parameters. putes the square of its argument and passes it to the current con-
The functionf'V' (h) returns the set of free variables of the téém tinyation, or it calls the handler continuation if it is passed a non-

We write iux (h) for the innermost user lambda that contains the number. The program is in RCPS since the user functions only refer
term h as a subterm. Concrete syntax enclosedl J-denotes an to continuations that are passed to tfiem.
item of abstract syntax.
We use two notations for tuple&:, . .., e,) and{es, ..., en), .
to avoid confusion when tuplespaeri3 deeply n)ested<. We use tr>1e Iatters' Stack management irRCPS
for lists as well; ambiguities are resolved by the context. Lists are Might and Shivers [7] generalizedrR®IT's stack policy to handle
also described by a head-tail notatiery., 3 :: (1,3, —47). multiple continuations. Here, we give an outline of this stack policy.
User functions take any number of user arguments and one Atruntime, continuations are closures whose environments live
or more continuation arguments. Continuation functions take only on the stack. A continuation is represented as a(eais) wherec
user arguments. In CPS, “returning” happens by calling a continu- is a pointer to its code anda pointer into the stack. Continuations
ation. Hence, onlylams can be returned, netams. Thus, a con-
tinuation can only escape when it is bound tewar that occurs L Note that although we use thecalculus to develop our theory, we add
free in aulam. constants and primitives in the examples to keep them shortlead

access their free variables from a pointer into the stack, never from Let’s return to our example and see how the stack looks after we
the heap. To ensure this in the presence of first-class continuationspush (2|. Since the frames fonumber? and %if have been
we have to copy the stack when a continuation escapes and restorg@opped, the stack i&square|(1|(2|. So, by repeatedly cancelling

it later when it is called. adjacent push/pop actions for the same frame, we get a picture of
Before a call to a user functiof(fe1...en q1...qm)], We the stack. We call thisetting the frame-string:
want to retain the frames needed fgr. .. g, and remove any
redundant frames. There are two possibilities: p] = { |p1 p2] Elpl,pz:(p =pu (VY)p2) V(P =p1]Y)(Y |p2)
e In atail call, all ¢;s are variables, so they are bound to closures p otherwise

already born. The frames pushed after the birth of the youngest . .
closure are not needed. We pop these frames to restore theln our example, if we net the frame string that starts whand

stack to the environment of the youngest closure. This way, all ends with (halt| we get|2)[1)[square) {hai|. This gives us the

tinuati tained wh change to the stack aftef2|.
continuations are retained when we enfer The associative operato+ concatenates two frame-strings.

e In anon tail call, someg;s are lambdas. These are newly born Might and Shivers showed that frame-strings modulo netting form
continuation closures, closed over the current stack pointer. a group with respect to concatenation. So, for every frame-string
Thus, all frames are needed and we leave the stack intact. there exists another ope * suchthaip+p~'| = |[p~ ' +p| =&

. Intuitively, the inverse string undoes the actigndid to the stack.
After this adjustment, the environment of the youngest continuation \yhen inverting the concatenation of two frame strings, we know
is at the top of the stack. We push a frame fég arguments and that (pr +p2) ' = p2 ' +p1 ! ,
jump to . Generally, this policy maintains the following invariant: To summarize, if the execution of a program is at tinaed we
when aulam is executing, the second frame is the youngest [ivé o4 the frame string from the initial time to ¢, we will calculate

cor}tlntl:]atlon. irit bef li tinuati 9T it the stack at time. Also, if we net the frame string from some past
hthe satme ng' ' etﬁretca 'rf‘?ha cton ll(nua ipty e ﬂt’tLS ¢ time ¢, to ¢, we will see the stack change singe The ability to
environment must be on the top of the stack, so we reset the stack,,q frame strings both for recording all stack actions and for finding

to th? stack of its bi_rtﬂ.V_/e then _pus_h a frame _for its argu_n?ents net stack change makes them a particularly helpful mechanism to
and jump tog. The invariant maintained here is that durigg reason about the stack.

execution the second frame points to its environment.
Returning to our example, if we rufsquare 5 halt err)

the actions on the stack afequare| (number?| |number?) (1| 5. Concrete semantics and stack properties

(Ui£| [41€) (2] [2) 1) |square) (x| [*) (halt|. The notation(s| - Lone ckprop

means pushing a frame for,, and|y) pops it. Initially we push In thI.S sgctlon, we prove that Fhe continuations passed to a user
frames forsquare andnumber?. When we evaluaté; we pop function live on the stack, even in the presence of first-class control

a frame to restore the stack of its birth and then push a frame for (cf. Eval case of theorem 3). To do this, we use the concrete
its argument. The execution continues along these lines. The onlysemantics of theACFA analysis [7]. This semantics extenkis

thing to note is the evaluation ¢k n n cc); ccis bound tchalt, CFA with a log that records frame string&CFA uses the log only
S0 to maintain the stack invariant we have to pop to the stack at the for recording frame strings, not for variable binding or return-point
time ofhalt’s birth. Thus, we pop three frames before pushiig information; these are accomplished using environments,kike

CFA. The log shows the stack actions that would happen at runtime
if the program was compiled usingrRBIT’s stack policy. Here, we
4. Frame strings use the log to study the stack behavior of continuations in RCPS.
In order to formally express stack properties and prove them, we The semantics and the relevant domains are shown iri Fig. 3.
must have a way to describe actions on the stack. In Ianguagesywith-At every transitions refers to the state on the I.Gﬂ of the arrow.
out tail calls, these push and pop actions correspbnd 0 sequences OEoldface letters indicate tuples of values. Execution traces alternate
X etweenEval and Apply states. At arFval state, we evaluate the

calls and returns that nest properly. The call-string mechanism [10] subexpressions of a call site before performing a call. Atlaply

can be used to describe these sequences. However, in properly ta'l'state, we perform the call.

recursive languages calls and returns no longer nest, because iter- . . .
ative function% grform many calls and a single returh First-class The last component of each state is a unique timestamp, taken
P Y 9 ’ from the setTime. The functionsucc increments the time at every

contln.uatlons b(eak call-return nesting even more. Howestaak transition. Byt; =< t¢» we mean that, is a later time thart;.
operations (that 1S, pushes and pops) still nest in th_ese Ianguages,.nmes indicate points in the execution when variables are bound.
?of g?elgfeefrgﬂr%gehtsa?]d SS[[;I]V e;z ngt?;ec?i Otzeth(;atlll\;vsgﬂ(nsgwn;ﬁ?g??;?" The binding environmen$ is a partial function from variables to
guages with exotic cgiling i)ehavior their binding times. The variable environmest maps variable-

) L . time pairs to values. To find the value of a variableve look up

We already gained some intuition about the use of frame-strings . : .

in the last se():/ti%nstack actions are pushes/pops and they contair? thel_tlarpseﬁc\)/;isguttﬁgﬂt,rgnsi t?osr?st?r?ct):g Séi?égﬂ,f%t&%ﬂuggge
the label of the procedure being pushed/popped. We also markwe evaluate the operator and the arguments using fungtigmle

. . . ’YB .

tsrtlzgﬁgglsophsevgﬁgJLT:;??;?E;N% m;n%nivgggﬁ's':gpth;ggngﬁ [UEA]). Lambdas evaluate to closures, which contain the binding
. R 3 . environment and also the time of creation. Variables are looked up
time 4. A frame-string is a sequence of stack actions. in ve using 3. Note that in the resultind/Apply state, we usel

peEF i=¢ | F (¥ | F|Y) andc to refer to the user and continuation arguments regpectively,

t ¢ although formally there is only one tuple of argumentsdipply

states. This harmless pattern matching helps us distinguish the two
2Withoutcall/cc this is just popping, witltall/cc it might also include easily. TheCEwval-to-CApply transition is similar (ruldCEA]).
pushing some frames. From an Apply to an Eval state, we bind the formals of a
3First-class continuations allow the same frame to be pushee than procedurg(lam, 3, t,) to the arguments and jump to its body. The
once. new binding environment’ is an extension of, with the formals

s € State = Ewval + Apply so it suffices to show that the net stack change fggbirth tog is
Eval = UEwval + CEval push-monotonic, meaning a frame string that contains just pushes.
UBEval = UCall x BEnv x VEnv x Log x Time (We write F for the set of push-monotonic frame strings.) In this
CEval = CCall x BEnv X VEnv x Log x Time case, the stack adjustme¥ftyjoungest(c)) " in [UEA] transitions
Apply = Proc x Proc* x VEnv x Log x Time consists solely of pops.
B € BEnv = Var — Time By observing the CPS translation @11/cc you can see why
ve € VEnv = Var X Time — Proc our claim holds even when we allow first-class control: when a
¢, d, proc € Proc = Clo + halt 4 continuation is captured by @am, it can only be called later on,
clo € Clo = Lam x BEnv x Time it cannot be passed as an argument to anather.
0 € Log = Time = F To prove push-monotonicity, we will show that each state satis-
t € Time = a countably infinite, totally ordered set fies a tighter set of constraintsf(theoren 3). The first constraint is
arguably the most important because it talks about stack properties
[UEA] ([¢(fe* qM)], B, ve, §, t) — (proc, dc, ve, &', t') of any continuation closure ine. The stack motion between the
t" = succ(s) birth of such a closure and the current state can be arbitrary. The
proc = A(f, B, ve, t) constraint guarantees that when a continuation closure is created, it
d; = A(es, B, ve, t) captures continuations that are still on the stack.
c; = Alg;, B, ve, t) Let's look more closely at the creation of continuation-closures.
pa = §(youngest(c)) For every continuation lambda,, there is an innermost user
8 = W) +pa))[t — €] lambdaJ; that contains it. Because of RCPS, can only refer
to continuation variables bound by. To create a closure over
[CEA] ([(qe®)], B, ve, §, t) — (proc, d, ve, &, t') A, we must first call\;. Assume that at the time of the call we
t' = suce(s) pass continuations; . . . ¢, that are still on the stack. Then, if the
proc = Alq, B3, ve, t), of the form(clam, 8, ty) net stack motiom from the call to); to the creation ot is push-
d; = Alei, 3, ve, t), monotonic,c; . . . ¢, WiIll still be on the stack wher is created.
pa =6(ty) " There are two cases foy,: it can appear directly undey;, e.g.,
8§ =AW W) +pad|t — g (A\i(u k1 k2) (u 15 (A, (res) (+ 4 res k1))))

or after a series of ' Evals whose operators are lambdas,,
[AE] (([Ow ™) calD)], B,ty),d, ve, 8,t) — (call, B, ve; 5;t")

t' = suce(s) i (k1) (A4, ()
B = pBlv — '] (A, (u2) (A, (u) (k1 u)) "hello"))
ve' = vel (vs, ') — d;] foo"))
b "bar"))
pa =yl)
5 = X (5(t) + pad) [t/ €] In both casesp is push-monotonic.
ve(h, B(h)) h € Var Definition 2 £Continuation ordering) _
(h, B, ve,t) & {(h7 5.1) he Lam Ord([O\ (u* k1 ... kn)call)], B, ve, 8, t) istrueiff:
- , o Let k€ {ki,...,k,} and ve(k, ﬁ(k)) = (clam, 3, t').
Figure 3. Semantics oACFA Then, we havethat 16(t') + 6(t)~ J cF
o et kl,kg S {k1,...,k‘n}
. i . ’Ue(k1,ﬁ(l€1)) = (claml,ﬁl,tl),
mapped to the current time. The new variable environment ve(ka, B(k2)) = (clamsz, B2, t2) and t1 < ta.
maps eaclfv;, t') to the corresponding closutk. Then, we havethat |§(t1) + 6(t2) '] € F

States use a log to keep track of the actions they would
perform on the stack. We writ&t) ' to mean(d(t))". At each Theorem 3. Let s be a state of theform (. . . , ve, 6, t).
transition froms to ¢, pa records the stack change. To find the For every continuation closure (clam, 3,t') € range(ve),
stack actions from a time, in the past tat’, we concatenate the we have Ord(iux(clam), 3, ve, 6,t").

actions from,, to t with pa. Thus, the logh’ of ¢’ is (A (¢) (§(¢) + Moreover, depending on the kind of state, we have:

pa)) [t — e]. Naturally,6’(¢') is e because some time must elapse ‘

for stack change to happen. e If ¢ € Eval, (call, 3, ve, 4, t) then Ord (iux(call), B, ve, d,t)
The stack policy dictates the stack actigns at each transi- o If ¢ € UApply, ((ulam,B,t'),dei ... cn, ve,d,t) and

tion. At [UEA], we must undo all actions that happened since the ¢ = (clams;, 53i, t:) then OTd(wA(clamz) Bi, ve,d,t;) and

creation of the youngest continuation argument. We use the func- [6(;)] € F and for each ta,t, € {ti1,...,t,} such that

tion youngest, which takes a set of closures, compares their cre- to = tp we havethat |6(t,) + 6(tb)71J cF

ation times and returns the most recent time. Then, the stack change o If ¢ e CApply, ((clam, ,t'), d, ve, 5, t) then

should be¥(youngest(c)) ™. We computea for the other transi- Ord(iux(clam), B, ve, 6,)

tions in a similar way. Before calling a continuation, we must reset

the stack to the stack of its birth (rul€EA]). Before entering a We include the proof of the theorem in the appendix. Note

function, we push a frame for its arguments (r[Ad)]). that in a CEwal state, if the operator is a variable but it is not in
We usehalt to denote the top-level continuation of a program FP(iux(call)), then Ord(iux(call), 3, ve, d,t) guarantees noth-

pr. The initial stateZ (pr) is ((pr, 0, to), (halt), D, [to — €], o). ing about it; it may be bound to a continuation that has escaped.
With the formal machinery in place, we can now show that in Therefore, its environment may be popped.

a UFwal stateg, the frames that make up the environments for However, in a program without first-class control we can guar-

the continuation arguments . .. ¢, are still on the stack. When antee that continuation environments are never popped because
a continuatiory; is born, its environment is on the top of the stack, user lambdas do not have free references to continuation variables.

6. Continuation-Age analysis

We now know that continuation environments are still on the stack
in UEwal states. This means that we never need to push frames to
restore environments iEwval. Also, it means that the environ-
ments are totally ordered on the stack at run time. Put formally, if
t1 andt, are the birthdays of two continuations then eith(t:) |

is a suffix of | §(¢2) | or vice versa. So, if, is the birthday of the
youngest continuation theld(t,)| is a suffix of | §(¢.) | wheret.

is the birthday of any other continuation.

So far there has not been an analysis that finds the youngest

We AR

continuation, and one would have to resort to dynamic checks.
present Continuation-Age analysabbrev. Cage analysis) that can
find the youngest continuation statically in most cases. We first
show the workings of the analysis by example and then proceed to
develop a formal semantics for it. Consider the following snippet
of some RCPS programv:

()\(U1 . Us k1 kz k)g)
(uz k1 ks (O (ue)call) (e Cur) call))'...)

Assume that we lepr run and execution reaches the call dite

We know thatk:, k2 and ks are bound to closures whose envi-
ronments are totally orderedg., with k3 being the youngest and
ko the oldest. Also, assume that is bound to a closure over

[CEA

[UEA] ([(fe* qi-..qm)], B,ve,cet)— (do,d c,ve,ce,ages,t’)

t' = succ(s)

do = A(f, B, ve, t), of the form([(\; (W) calD], ...)

d; = Alei, 3, ve, t)

Cj = A(qj7 B, ve, t)

ce(VL(q;), B(q;)) FL<j<m.q;€ Var
") V1<j<m.q€Lam

rename(S) = Get(Ind(S,{(q1 ...qm)), LV (1))

ages = (rename(CLam) :: map(rename, tor)) \ {0}

tor

(do,d, ve, ce, ages, t) — (call, 8, ve', ce', ')
do = ([[()\l(v+)call)]]7ﬁ, t)

t' = suce(s)

B =plv—t]

ve' = ve[(v, V') — d;]
ce’ = ce[(l, t') — ages]

([Cqge1--.en)], B, ve, ce, t) — (proc,d, ve, ce,t')
t' = suce(s)

proc = A(Q7ﬁ7 U@,t)

di = A(e’ivﬁa ve, t)

]

[, Cka ks ke k7) call”)]. To find the ordering of the environ- [CAE] (([(A (u*) call)], B,t~), d, ve, ce,t) — (call, B, ve', ce, t")

ments at we first observe that, is not used at the call site, so we
do not take it into account. Alsa\, and A, will evaluate to newly
born closures, so the ordering after control enierwiill be “ks
andk- followed by ks followed by k4”. Because of RCPS, this is
the only information we need to keep to decide the order of con-
tinuations insidecall”; remember that 7V (call”’) N CVar) C

{ka, ks, ke, k7 }. For this reason, our analysis can simply record to-
tal orders ofcvars bound by the samelam /4 It can forget which
closures thesevars are bound to.

6.1 Concrete semantics

The concrete semantics 6age and some auxiliary definitions are
shown in Figl 4. To remove elements from lists we use the set-
difference operator, with its meaning adapted in the obvious way.
We usemap(f, Ist) to apply a functionf to all elements oflst.
The functionind(elm, Ist) finds the 1-based index efm in Ist
andget(, Ist) returns the element at indéxn [st. We also liftget
andind to sets of elements/indices respectively.

The semantic domains are the samé&-#3FA with the addition
of two domains to record the ordering of continuations.

ages, tor € Tor = (Pow(CVar))*
ce € CEnv = ULab x Time — Tor

We represent a total order as a list of setg@frs, rather than just

a list of cvars, because we want to make explicit the case when two
closures are born at the same time. In our example, the order will
be ({ks, k7}, {ks}, {k4}). The continuation environmemt maps
pairs of user-labels and times to total orders. We wWritg:,, &’ to
mean that the index df is smaller than or equal to the index iof

in tor, i.e, k is younger thark’.

k=iork' =35,S" keS AK'eS Aind(S, tor) < ind(S', tor)

In UEwal, we gather order information about théam we are
in, and use it to compute order information about #iem we are
about to enter. Since the new bindingscintake place inUA pply,
ages serves as the carrier of that information between states.

4Even though the CPS translation afall/cc contains the term
[(A(z k) (cc x))] with a free cvar, this is not a problem since this
ulam does not contain a user call site. Thus, we do not need to fendgh
of continuations while if (A (z k) (cc x))].

t' = succ(s)

B = Blui —t']
ve' = ve[(us, t') — d;]
[

Ist ={(e1,...,em), elm =¢;

1 otherwise

ind(elm, lst) = {
Ind(S,lst) = {ind(s,lst) | s € S}\ {L}

e, Ist=/{e1,...,em), 1<i<m

1 otherwise

get (i, lst) = {

Get(I,lst) = { get(i,lst) | i € I} \ {L}

Figure 4. Concrete semantics @fage Analysis

Let’s see how to find the order for the nextum using the order
of the currentulam. If there are any lambdas among. . . g,
the variables they will be bound to will be the youngest. So
rename(CLam) gathers the indices of lambdas amang . . ¢,
and uses them to index in the list of formals.Xaf If every ¢; is
a variable,rename(CLam) returns the empty set. If there are
variables amongy; ... g, they are bound by the saméam,
and ce(VL(q;), B(g;)) gathers the order information for that
ulam. Then, we filter out variables that are not amang . . gm
and index the rest in the list of formals of. In our example,
ce(VL(ks), B(ks)) returns({ks}, {k1}, {k2}) andmap(rename,
({ks}, {k1}, {k2})) returns({ks}, {k4},?). We remove possible
empty sets from our list and we have the neyes.

Since only user states can influence the ordering, the semantics
for CEval and CApply are the same as-CFA. Note that we can
compute continuation ages without using information about the
stack actions, thus we do not need a log in@lage semantics.

6.2 Abstract semantics

Abstracting the semantics Gage raises no difficulty. Likes-CFA,

making the setTime finite ensures computability of the abstract
state-space. The abstract counterpart®ofand CEnv are

[UEA]

[UAE]

[CEA]

[CAE]

([fe ar. am)], B, e, ée,)~ (do, d &, ve, ée, ages, 1)
i —succ(é)

do € A(f, B, te,), of the form([(\ () calD)], ...)

1 = A(es, B3, ve, ©)

di =

tors = E\B(VL(qJ)a /él(qj)) 31 m q; S Var
V1 é] <m.qg; € Lam
ren(S) = Get(Ind(S,{q1 ...qm)), LV (1))

:: map(ren, tor))\{0} | tor € tors}

(do, d, Te, ce, ages, t) ~ (call, ', ve’, é&', 1)
do = ([@) calld], B, 1)

t' = suce($)

B =pBlvet]

o' = ve U [(v,) — di]

ce' = céeu|(l, ') — ages)

([Cqer...en)], B, G, ce,t) ~ (proc,d, de, ée, ')

t = succ(g)

proc € A(g, B, ve, 1)

d; = (67,5, ve, t)

([@) calld], B, 1), 4, te, &, £)~ (call, 3, ve’, ée, 1)
' = suce(Q)

B = Blui— 1]

ﬁz':feu[(ui,

Figure 5. Abstract semantics fa€age Analysis

ages, tors € Tor = Pow(Tor)
ce € CEnv = ULab x Time — Tor

<2 OA@z+) A@ z+2)> — (A (@) z+1) 2) — 3

<2 #2> (A@)z+1D) @) x> — <2 (A(@) x> — 2

((A(E) if test
alf 2)
a«f 3

AWy *)

A (@) x+1)
#1)

(@) z - Do

Figure 6. Examples ob\vr

Secondly, we show that the abstract semantics simulates the con-
crete semantics, which means that our approximation is safe.

Theorem 5(Soundness ofage analysis) If |(|E¢ ands — ¢
then there exists ¢’ such that ¢ ~» ¢" and |¢'| C |¢'].

Regarding the time complexity @age: sincen elements can
be totally ordered im! ways, and the range @'Env records sets
of total orders, the analysis is exponentiaimax-len;c yrq, LV (1).
This is not a problem in practice, since the number of continuation
arguments is usually small. A factor that can influence the speed of
Cage more dramatically is the choice @fime, since fork greater
than zeradk-CFA is exponential in the size of the program [15].
/ilter@ti\vely, there is a less precise lattice we can use for
CEnv. CEnv can record partial orders ofvars and the join
would be set-intersection. Thek; would be younger thark;
in ce; U ceq iff (ki, kj) € cer and (ki, kj) € cea. However,
join introduces more approximation than we would like. For
example, considee: = {(ki, k2), (k1, k3), (k2, k3)} and
ey = {(k‘g7 k’z), (kg,]4:1), (k'z, kl)}E Then,ce, U ces is () even
though we know thak- is never the youngest. In other words, this
representation cannot express properties like “eitheor k3 is
younger thark..”

6.4 Cagevs ACFA for age analysis

Since one abstract state corresponds to many concrete states, Weheoretically, we could usA\CFA to find the youngest continu-
have to fold many total orders to one elementTafr. Thus, the
elements ofTor are sets of total orders, with set-union being the change between the birthdays of two closures is push monotonic.
join operation. For avar to be the youngest ivors, it has to be

the youngest in every total order containediims. This happens
because different elements ffs correspond to different flows of
control in the abstract semantics. Some of these flows may havecheck that every closure in one set is younger than every closure
occurred due to imprecision introduced by the static analysis, but in the other set. But then we would end up comparing closures
most of them will have a concrete counterpart, so we make sure thatfrom different flows, which causes imprecisioBage decouples

all concrete flows agree on the agewfirs. We also define maps
from the concrete to the abstract domains.

|tor| = {tor}
|eel = (A Ly [ee(@ 1))

ation. SinceACFA tracks stack change, we would check if the

In practice, this does not work well for the following reasons.
First, variables in the abstract are bound to sets of closures. So,
if we want to compare the age of twaars at a call site, we must

variables from their bindings and remembers distinct flows as dis-
tinct total orders, thus avoiding these problems.

Second, the stack informatiahCFA computes in the abstract
can be imprecise in the presence of recursion. It does roughly the
following: it can remember exactly one push or one pop action for

The abstract semantics is shown in Fig. 5. Contrary to the some\,, but if we push two (or more) frames faw, , ACFA will

concrete semantics, it is non-deterministic. Also, when we add new record this agy|
elements tare and ¢e we join them instead of doing a destructive

update. The two semantics are otherwise similar.

6.3 Soundness

There are two results we need to establish for our analysis to be7.

sound. We first show that a total order @fars “agrees” with the
birthdays of the closures to which these variables are bound.

Theorem 4. Let ¢ be any state of the form (. ..
ce(l,t) = tor.

,ve, ce,...) and

If ki <tor k; and ve(ki, t) = (clam, By, ty)

and ve(k;,t) = (clam/, B¢, t¢) then tc <X t, i.e, ve(k;,t)was
born later than ve(k;,t).

*. Therefore, if we enter a recursive procedure and
later return,ACFA will not net the pushes and popgSage does

not suffer from this problem because it does not use the stack to
compute continuation age.

From A\ to RCPS

The multi-return\-calculus [12] is a variant of tha-calculus in
which functions may have many return points. Return points are
not first-class continuations, hence they give the programmer the
ability to express a wide variety of algorithms without paying the

5For readability, we omitted the reflexive pairs from the fiefas.

cost of general-purpose, heap-allocated continuations. Search algoPlacing L instead of a type at indexmeans that never returns
rithms that take a success and a failure continuation, functional treeto that return point. For example]l1 #2p> has type(L, int). But
transformations and LR-parsers are typical examples of programs<11 #2> never returns to any return point for ¢ > 2. Hence

that are naturally and efficiently expressed with this mechanism.
The multi-return formae 1 ...7r,> IS how we get contexts
with many return points. The expressienis evaluated withm
return points in scope. I& does not use the multi-return form
internally, it will always return to the first one, as in the first
example of Fig. b. However, i is of the form<e’ #i> then the
result ofe’ will be passed to;, as in the second example. A return
point#: passes its input to thé" return point of its own context.
Restricted CPS, with the restrictions it places on continuations,
would seem like a natural target fasr. However, a subtlety of
Amr IS that functions are polymorphic in the number of return
points that they expect, they do not specify it explicitly in their

it can also have typé.L,int, L), (L,int, L, 1), etc. Moreover,
(int, int) is also a possible type since the requiremenatif #2>
returns to its first return point it gives back an integer” is vacuously
true. To model these, our type system has a notion of subtyping.

Types include integers and functions, and type vectoese
finite maps from natural numbers to types. Théfi] =L means
thati ¢ dom(7).

int| (1, n) — 7
fin

N—=T

TeT
FfeT

Function types include a natural numbgrmeaning that return

syntax. The last snippet of Figl 6 is one such example. Depending Points must be provided when a functignis applied. Obviously,
on the result of the test, the square function will be evaluated in a We run into trouble iff tries to return tor; for i > n. Therefore,

context with one or two return points, even though it always returns
to the first. Since in RCPS alam has to specify the number of
continuations it expects, we cannot translate this code to RCPS.

A control-monomorphic variant however has a simple transform
to RCPS. We require that a function take a specific number of return
points, which we pass when we apply the function. We change the
syntax and semantics ofyr slightly to reflect this (section 7.1).
We provide a type system that rejects control-polymorphig:
programs and prove it sound (section 7.2). Then, we give a type-
directed transform fromur to RCPS (section 713).

7.1 Syntax and semantics

Expressions in control-monomorphigr include variables, num-
bers, functions, applications with a specified number of return
points and multi-return forms. Numbers and functions are values:

lam € Lam = (\ () €)
eeE:bp:::xlnllamlq(eleg) rl...rml>|<le 1. b
r € RP = lam |#i

The semantics is call-by-value (Fig. 7). To evaluate 71 ... 7m>,
we first evaluates in a context withm return points (multi-prog).
If it reduces to a value and there is a single return point which is
a function, we apply it ta (fst-lam). If the single return point is
#1 we returnu to the context (fst-sharp). When there are multiple
return pointsp is returned to the first one (multi-drop). dfevalu-
ates tocw #i> in a context withi or more return points then we
passv to r; (multi-select).

In an application we start with the operator (rator), then the

we require that7| < n where|7| ismin{i | Vj > i. 7[j] =L1}.
The subtyping rules for types and vectors are

. . Cr 2 C7
int C int Tb=Ta Ta=Th

(Taa n) — Ta C (Tb7 n) — Ty

Vi € dom(7,). 1 € dom(7) A Ta[t] T Tp[d]

7__‘a E'Fb

The type system is shown in Fig. 8. It assigns type vectors to
expressions under an environméhtvhich is a partial map from
variables to types.

The rules for numbers and variables are standard (num, var).
To typecheck a functior{\ (x) e), we typecheck its body in an
environment extended with. The side condition states that if the
function use$7| return points then it must request at least as many
in its type.

For an applicatiork(e; e2) r1...r,> We require thate;
have a function type with exactlyn return points (appl). The
type of the argument must be a subtype of what the function
expects (side condition 1). If thg® return point is alam with
type ((r;, m;) — 75), then anything that; returns to it must
be a subtype of;. Additionally, anything that-; returns to the
context must be consistent with what the whole expression returns.
For this, we requiré’; C7,,,, (side condition 2). On the other hand,
if the return point is of the forng%: then whatevee; returns to its
41 return point will be sent to the context8' return point, which
is why we requirer[j] C 7,pp[¢] (side condition 3).

For a<e ri...r,>expression (multi) the typing constraints

operand (rand) and then the body of the function (app). These rulesrequired from return points are the same as in the application case

highlight the difference from control-polymorphigyr. Unlike
the last example of Fig./6, we have to mention the return points
when applying a function. Our type system checks that a function
is always applied in contexts with the same number of return points.
A note about the stack behavior afir deserves a mention.
When a return point is a function, it requires a frame to be pushed,
while a+#ti return point just points to an older frame. Thus, when
all return points oke r; ...r,> are not functions, the stack does
not grow, and it might even shrink. This is essentially the tail call
mechanism applied tayr [°

7.2 Types for control-monomorphism

We modify the original type system ofyir to annotate function
types with the number of return points that a function expects.
Each expressionis assigned a type vectdri, ...,) mean-

ing that if e returns a value to its :*" return point, has typer;.

6 For details, see [12] where semi-tail calls and super-ti# eze explained.

(side conditions 2, 3). We also require tlabnly try to return to
r1...7rm (Side condition 1).

We can now see why the type system rejects control-polymorphic
AMr programs. The operator of our last example is

(\(£) if test
<(f 2 A@zxz+1)
<(f 3) #1p)

The true-branch requiresto have a type of the formi(int, 2) —
T) and the false-branch requirgsto have a type of the form
((int, 1) — 7). Since none of these types is a subtype of the
other, the body cannot be typechecked with a unique typ¢.for

We split the type-soundness proof in the progress and preserva-
tion theorems.

(@) z - Do

Theorem 6 (Progress)
If ' F e : 7andeisclosed then either e isavalug, or e isof the
form <v #i> where i > 1,0re — €.

’
€ — €

multi — pro fst — lam
[prog] e T TmD — < T Ty [] w (A(@) e — [v/z]e
[fst — sharp] S — [multi — drop]
w #1l>— v QW Tr1...Tmb— W >
1 P < ’
[multi — select] - stsm [rator] a—a -
A4AV FHD T T — < T A(er e2) r1...Tmb> —A(e] e2) ri...T;b
/
[rand] 2 2 y [app]
ACA (@) e) e2) r1...1m> — (A (X) e) e3) T1...7mb> A @) e v) T1...rm> — <u/zle T1... TR>
Figure 7. Operational Semantics ofuir
r Fe:7T
mum] T - n : (int) [var] z € dom(I) [abs] eorbe:? oA
L' ax:(D(z)) LE O@e : ((r,n) — 7)
F'be :((,m)—7) Tke:7 1) BC(r)
lappl] L 7t (75, mg) — 7)(Vrj € Lam) (2) Vrj € Lam. (T[j]=L Vv 7[j] C 75) A 75 C Tapp
I'F <Cerea) ri...rmb : Tapp () Vrj=#i.7lj] =L V 7j] C Tappli]
F"EZ’]_"E (l) |7_—‘e‘<m
mutt] L F it (rgomg) = 75) (Ve € Lam) (@) Vry € Lam. (%l =L V &[] C 7)) A FEF
'k <e ri...7m> : T (B) Vry=#i.7e[jl =L V Te[j] T 7[4]

Figure 8. Types

Trivial Term:
Tz] ==
Tn]=n
TIA@ e)] = A @xki...kn)Ie] k1 ... km) where (A (z) e) hastype((r, m) — T)

Return Point:
R#i] k1 ... ki = ks
Z[N (@)] k... ki = AN @)S[e] k1... k)

Serious Term:
Fltol k1 ...k = Uer Tto])
If every k; is a variable,
y[[ﬂ(to tl) T1 ...rmb}] k)1 k‘l = (y[toﬂ y[[h]] (%[[7”1]]](11 kiz) (%[[rm]]kl kl))
:7[[4@0 81) T1 ...rmb]] k‘1 ...kl = efﬂllslﬂ (A(LL') (7[[toﬂ xT (%HTl]]kj kl) (%’[[rm]]kl kl)))
y[[ﬂ(SO tl) T1 ...rmb}] k)1 k‘l = y[[SOH (A(I) (l‘ y[[tﬂ] (%[[7”1]]](11 kl) (%[[’r’m]]lﬁ kl)))
y[[<1(8() 81) T1 ...rml>]] k1 ...kl = 5’[[50]} (A(f)y[[sl]] (A(LL') (f xT (.%[[7'1]]]61 kl) (%[[T‘m]]lﬁ kl))))
If there exists dam amongk; . .. ki,
y[[ﬂ(eoel) T1...7’m>]]k11...l€l=(()\(k1...kl)y[[<1(€0€1) 7"1...7"m[>]]k‘1...k1) klkl)
If every k; is a variable,
5”[[46 71 ...’I‘ml>]] ki...k = Y[[e]] (,@[[T‘lﬂkl R 75 N (%’[rmﬂkl kD
If there exists dam amongk; . . . ki,
Llee r1...rmb k1. ki = (k. kD S [e] (Zri]ki... ki) ... (Zrwm]kr.. kD)) ki...k)

Figure 9. Transformation of\yir to Restricted CPS

Theorem 7 (Preservation) B FLlaa (@ e) 42) #1 #1v (A (y))] halt
IfT F e:7ande — e thenT F ¢’ : 7" where 7' C 7. = [N (@) e) 42) #1 #1s] (A @) L[] halt)

= (@ k1 k) L[e] b ko) 42

Both proofs proceed by structural induction enln the progress O () L[] halt)

theorem, note that a well-typed expression does not always reduce /
h - A () Z[€e] halt)
to a value. It might evaluate to a multi-return form that cannot take
any steps. The proofs require the following lemmas. On the other hand, our transformation yields the more compact:

(R (A Ky ko) S[e]kiks) 42 k k)

Lemma 8 (Weakening) O L[Thalt))

flz—7]Fe:7Tandxz ¢ FV(e) thenT F e : 7.

Lemma 9 (Substitution) 8. Evaluation of Cage
If Tlz— 7] F e: 71, ¢ isclosedand hastype - ¢’ : 7', and

4 = We implementedCage in Scheme48. Our compiler takes a multi-
F'E(r) then T F [¢//ale : 7 suchthat 7 C 7. R J B

return Scheme program to RCPS, on which it r@zge. It does
not go all the way down to machine code. We measured the preci-
7.3 Transformation of Ay to RCPS sion b)_/ counting the muItipIe-continL_latior_l call sit_es for which the
analysis can find the youngest continuation statically. The results
In this section, we describe a CPS transformation frbik to are encouraging, since the analysis is very precise, with little addi-
RCPS (Fig! 9). Fisher and Shivers have shown that multi-return tional cost in running time and implementation effort oke€FA.
functions are cheap to implement and do not require novel compila- Our analysis handles a purely functional subset of Scheme with
tion techniques. By translatingur to RCPS, it becomes amenable numbers, booleans, lists, explicit recursion, and multi-return func-

to Cage Analysis which can further improve performance. tions. We changed the front end of Scheme48 to accept a multi-
The transform relies on information provided by the type system return construct. After the front end takes care of parsing and
to add the correct number of continuation parametetgdoms. We macro-expansiorgvery call in the AST is represented as a multi-

use standard techniques [3] to make the transform compositionalreturn call,e.g., (4 1 2) becomesi(+ 12) #1>. This makes the
and first-order. Last, some effort is spent on making sure that the conversion to RCPS more uniform. The compiler then Gage,
transform does not duplicate code. followed by a final linear pass that computes the results per call site

The transform uses three mutually recursive functions, for triv- (since ages ige are grouped bylam labels). For instance, assume
ial terms, serious terms and return points. Variables and values arethat, for the lambda expressidn; (f k1 k2) (f ’(1 2 3) k2
trivial terms and the rest are serious. The metavariablasd s k1)7), Cage finds thatk1 is younger thark2 in every total or-
range over trivial and serious terms respectively. Underlined lamb- der contained irUfem ce(l, f)_ Then, the final pass will deduce
das) generate fresh identifiers to avoid variable capture. We apply thatxk1 is always younger thake at~y. Our current implementation
the transform to amr programe by calling.” [e] halt. spots the opportunity for optimization and stops. However, this in-

The translation of variables and numbers is straightforward. formation could be passed to a code-generation phase, which would
When translating alam, we look at its type to find out how many avoid emitting code to check the ages of continuations at

continuations it takes in CPS. o Fisher and Shivers suggested that LR-parsers can be compiled to
A dtireturn point becomes a reference toiﬁ’ecqntlnuatlon of MR, With considerable speed gains|[12]. Each state of the parser’s
its context. A(X () e) return point becomesdam in CPS. Here, automaton is represented as a function; a shift is a function call.

there is possible code duplication that we want to avoid. Assume Reductions do not return to a state function’s immediate caller;
thatone of; . .. ki is aclam. Then, ife refers to the corresponding put to points higher in the stack. This is handled with multiple
return point more than once, thigam will be duplicated. For this return points to point to the necessary frames; a simple analysis

reason, the rest of the rules caflwith cvar arguments only. determines how these return points represent the target reduction
~ If . is applied to a trivial term then we return the term to the states. Such parsers contain an abundance of multi-continuation
first continuation. calls, which makes them attractive benchmarksGage.

Application is split in four cases depending on the operator and We ranCage (with ¥ = 0) on a parser for a medium-sized,
the operand. Note how the continuations .. k; are passed to all pascal-like language. Out of the 973 callsdams, 152 pass two

return points, which is why we require that they all beurs to continuations and 32 pass three. If there islan argument, it

prevent duplication. If there is @am amongk: ... k; we create a s trivially the youngest continuation. This happens in 20 calls.

new ulam and transform the application using the newrs!’ The remaining 164 pass onlyvars. Cage found the youngest
For<e r1...rm>, We have to translatein a context withm continuation in 142, and in 22 calls it narrowed the youngest down

continuations. Here again we splitin two cases to avoid duplication. to two choices instead of three. There wagall site for which the
It is simple to see why our transformation generates RCPS analysis failed to gain at least partial informati@age amounts to
code. The only place where alam is generated is the rule 19.8% of the total running time of the abstract interpretation (the

T (A (=) e)], and we pass only the newly-createdhrs toe. rest is spent on flow analysis), and 32.2% of the code size.

The duplication of code is best seen in an example. Assume The effectiveness of the analysis is also illustrated by tail-
that we omit the rules that take care @tims in k1 ... k;. Then, recursive programs that can throw exceptions. The RCPS program
all continuation arguments are treated the way variables are now of Fig./10 sums all numbers in a listand returns tec, or throws
treated. In the following transform, the return polt(y) e’) will an exception by calling if it finds a non-number irL. It could
be duplicated in the RCPS output: have been written originally in any language with exceptions, or

in a multi-return language. Placed in some code that computes the
sum of a list of lists of numbers, this essentially becomes the inner

7This rule may appear to break compositionality at first glabeeause the |00P, SO optimizing it is crucialCage statically figures out that the
right hand side does not calt’ on a proper subexpression of the left hand ~ Continuations in the recursive call have the same age.

side. However, it can be expanded to four rules as in theaaibble case, In the following program(age fails to figure out the youngest
which is compositional. We use one rule only for readability. continuation passed t9; whenk is 0. That is because iR the first

(define (suml 1 acc cc h) 10. Conclusions

In this paper, we show how a simple syntactic constraint on a CPS

ber? fst . . - - .
(number? fst) intermediate representation enables efficient use of the stack in the

()\((;:je.fStgistQ presence qf mu_ItipIe continuations._ We prove that when we pass
00 many continuations to a user function th_elr environments are still
(cdr 1 on the stack. The generalization of the tail-call mechanism dictates

O\(rest) that we pop to the most recent of these frames before control enters

a user function.
We proceed to develdPage, an analysis that finds the youngest
frame at compile time in most cases. The main idea beGemgk
is that inside a functiofi(\ (uy ... um ki ... kn) call)] we only
- 5 - - - need to remember age information abéut . . k,,, we canforget
Figure 10. Tail recursion with exceptions which closures these variables are bound to. This decoupling be-
tween variables and bindings is possible because of Restricted CPS.
A prototype implementation ofage in Scheme48 shows that
it is a precise analysis with little extra overhead in compilation
continuation is the youngest, andithe second. Similar examples ~ time overk-CFA. Therefore, control constructs that require passing
can be written for any: many continuations, like exceptions and multi-return functions, can
be compiled to fast native code.

(+ acc fst
(A(sum) (suml rest sum cc h))))))
(M) (h "not a number")))))

((A(f k) (%if some-test
A0 (£ O&@ &k) KB
QO &k Q@ & pNHN
(k1 k2) .. OH
halt)

Acknowledgements We would like to thank Mike Sperber for his
help with Scheme48, David Fisher for insightful discussions on the
control-polymorphic nature okyr and the anonymous referees,
whose helpful comments greatly improved this paper.

Overall, we are satisfied with the precision@dge. It remains References
to be seen how useful it is in practice. More experience with multi- [1] A. Appel. Compiling with Continuations. Cambridge Univ. Press,
return code and multi-continuation CPS is needed to seeuif- 1992.
only call sites show up as often as in the programs presented here. [2] W. Clinger, A. Hartheimer, and E. Ost. Implementation Stgies for
First-Class Continuationddigher-Order and Symbolic Computation,
12(1):7-45, 1999.
[3] O. Danvy and L. R. Nielsen. A first-order one-pass CPSdfiema-

9. Related work tion. Theoretical Comp. Science, 308(1-3):239-257, November 2003.

CPS was first formalized by Plotkin [8] and was used as an IR [4] A. Kennedy. Compiling with continuations, continued. linterna-

in Rabbit [14] and @BIT [5], which were early and influential tional Conference on Functional Programming, pages 177-190, 2007.

compilers for Scheme. Shivers used CPS to solve the control-flow (51 b kranz. ORBIT: An Optimizing Compiler for Scheme. PhD thesis,

problem in higher-order functional languages [11]. Yale University Department of Computer Science, New Havem-Co
The starting point for the present work has be&e@FA [6, 7]. necticut, February 1988.

ACFA is a static analysis that can reason about stack change in (g m. Might. Environment Analysis of Higher-Order Languages. PhD

functional languages with first-class control. To dadCFA has thesis, Georgia Institute of Technology, June 2007.

bee_n P””.‘a”'y usgd to Show.enV'.ror.]ment equivalence and related [7] M. Might and O. Shivers. Analyzing the environment stuuret of

optimizations, but it enables, in principle, many stack-related trans- higher-order languages using frame stringBheoretical Computer

formations. We use several elementsXdEFA in this paper. First, Science, 375(1-3):137-168, May 2007.

we base our Restricted CPS on Partitioned CPS. More importantly, [8] G. Plotkin. Call-by-Name, Call-by-Value and theCalculus. Theo-

we use frame strings and the concrete semanti¢s@ffA to prove retical Con'muter Seience, 1:125-159, 1975. '

that continuation arguments afams are still on the stack. [9] A. Sabry and M. Felleisen Reasoning About Proarams. in
Kennedy [4] proposed a variant of CPS which, like#T, pro- C'ontinugltion-Passing Style iriSP and Functgi’onaj Program?ning

vides a variety of choices for procedures. He argues that CPS is 05288 298, 1992, ’

preferable over ANF and monadic languages because function in-) . .

lining does not require renormalization steps or the use of commut- [10] g/'r; jy;;" eﬁ?]d,\':‘u cPhnnuiceLl. ;:’éo J%F:gg aggﬁi;;;ﬁ;pgg\?vugﬂﬁ;g%w

ing conversions. Also, he advocates CPS as a suitable IR even i’n Theory and Application. Prentice Hall International, 1981. ’

the abse_nc_e of first-class co_ntrol |n_th_e source Ianguage._Kennedy 5[11] 0. Shivers.Control-Flow Analysis of Higher-Order Languages. PhD

CPS satisfies some syntactic restrictions similar to Restricted CPS. thesis, Carnegie-Mellon University, May 1991

The main differences are that his CPS does not deal with first-class ' . o L

control and that user lambdas can take up to two continuation ar- [12] O- Shivers and D. Fisher. Multi-return function caldournal of

guments, the current continuation and a handler continuation. If a Fund'_ona] Programm'_ng’ 16(4)'_547_‘_582’ July/September 209_6'

ulam can throw many exceptions, the handler must be polymor- [13] O. Shivers and M. M|_ght. Contlnuatlons_and transducenposition.

phic; in RCPS we can pass as many continuations as needed. In Prog. Language Design and Implementation, pages 295-307, 2006.
There has been significant work done on efficient run-time im- [14] G. Steele. Rabbit: A compiler for Scheme. Technical Repas,

plementations of first-class continuations, that is, continuations that ~ Massachusetts Institute of Technology, 1978.

outlive their dynamic extent and so require the stack to be saved in[15] D. Van Horn and H. Mairson. Deciding-CFA is complete for

the heap [2]. Our work here, however, focusses on demonstrating ~ EXPTIME. InInternational Conference on Functional Programming,

the circumstances under which we may safely assume that continu- ~ Pages 275-282, 2008.

ations need not be copied, and on reasoning about the relationships

between different continuations that are known to live on the stack.

A.
Lemma 10. For each state with log § and time t, §(t) = We know two things about th&Eval state.

For every closuréclam., 3, t.) € range(ve), we know

Proof. By looking at the transition rules, it is immediately obvious Ord (iux (clam.), Be, ve, 5, te) 1)

that the lemma holds f&F (pr) and is maintained by transition.CJ
Also, we know

Lemma 11. Let Ord(ulam, 3, ve, §,t) and, for some pa, &' = . *
@) (1) +pA))[t'(— ¢]. Then, Oer(ulam, B,ve,d't) Ord(iux([(f € g1 qm)]), B, ve, 0, 1) @)

If one ofq: ... qm is alambda, it will result in a new continuation
Proof. Intuitively, the lemma holds because the stack actions that closure so we get
happened after timedo not matter. /10
Let the setS be FP(ulam) U CVar. pa=0d(t) = ¢ and & =4[t — g (3)

! . .
To proveOrd(ulam, §, ve, &',), we have two obligations. First, we show that continuations ir of the UApply obey Ord.
e Letk ¢ S andve(k, B(k)) = (clams, Bk, tx). We must show The variable environment doesn't change in the transition, so we

that[6'(ty) + &' (t)"" | € F must show
S [0(th) +pa + (6(t) +pa) '] € E_ Ord(iux(clame), Be, ve, 8, tc) 4
& [6(te) +pa+pa~t +6() € F which follows from (1) and lemmia 11.
S |6(ty) +0(t)) eF We have three obligations about thel pply state.
< Ord(ulam, 3, ve,d,t) e First, for anyc;, we must show
o Second, |etk1,k'2 S S, Ue(lﬁ,ﬁ(lﬁ)) = (Clamhﬁl,tl), d(i l . . 5’ t: 5
ve(ks, B(k2)) = (clama, B2, t2) andty < ta. Ord(iux(clam:), B, ve, &', t:) ©)
We must show thatd’ (¢1) + &' (t2) | € F There are two options fay;. If ¢; € CLam then [(8) holds iff
& [8(t) +pa +pat + S(ta) ' e F Ord(iux(qi), B, ve, &', t) 4@ Ord(iux(qi), B, ve,d,t) <
& |0(t) + (k) € F If g; € C'Var thenc; € range(ve) so 5) follows from|(4).
< Ord(ulam, 3, ve,d,t) O e Second, for any;, we must show§'(¢;)] € F,i.e,
Lemma 12. If Ord(ulam, 3, ve,d,t) and ve C ve’ then 10(t:) +pal € F (6)
!
Ord(ulam, 8, ve', 6, 1) = If g; € CLam, by (3) it suffices to showe| € F', which holds.
We now p(oceed to prove thgc_)r_éin 3. We restate the theoremlf ¢; € CVar and there is a lambda among. . . ¢.., then
here, along with the auxiliary definition 2. (—D@ 16(t:)] € F < Ord(iux(q:), B, ve, 6,t) < (2)
Definition (Continuation ordering) If g; € CVar and allg: . .. gn, are variables, let be the index of
Ord([O\ (u* ki ... k) call)], B, ve, 8, t) istrueiff: the youngest continuation. Theh, (&) |5(t:) + 5(t.) ™" | < (2)
.y e Third, we must show that for eaah, ¢, € {t1,...,tm} such
o Let k € {ki,...,kn} and ve(k, B() = (clam,B',t"). thatt, < t,, itis true that
Then, we havethat 6@ +6(t) " e F , L.
o Let ki, ko € {k1,... kn}, [6°(ta) +0°(te) | €F)
ve(ky, B(k1)) = (clama, B, ta), If g € CLam, thent, =t so (7)< |§'(ta)| € F < (6
ve(k2, B(k2)) = (clama, B2, t2) and t1 < to. if gz; c CVar ’then b (7)< [6'(ta)) 6
—1 pad 1
Then, we havethat |5(t1) + d(t2)” | € F < [6(ta) + pa + (8(ts) +pA) J §
Theorem. Let ¢ beastate of theform (... . , ve, 8, ¢). < [0(ta) +pa +pa”t +0(t)" eF
For every continuation closure (clam, 3,t') € range(ve), <= 6(ta)+6(ts) "' € F
we have Ord(iux(clam), 3, ve, d,t). <= (2)
Moreover, depending on the kind of state, we have: [UAE)
e If ¢ € Fval, (call, 3, ve,d,t) then Ord(iux(call), B, ve, 8, t) The transition is
e If ¢ € UApply, ((ulam, B,t"),dc1 ... cn, ve,d,t) and (I (¥ ky .. kn) call)],d et . .. cn,ve, 8, t) — (call, B, ve; 5, t)
ci = (clams, Bi, t:) then Ord(zuA(clamz) Bi, ve, d,t;) and B = Blu* — [k — t']
|6(t;)] € F and for each ta,t, € {tl,;. ., tn} such that ve' = ve[(u*,t') — d][(ks 1) — ¢]
ta < t, wehavethat |§(ta) + 6(t) '] € F pA = (L]
e If ¢ € CApply, ((clam, B,t'),d, ve, ,t) then NI +pad)[t’ e
Ord(iux(clam), B, ve, ,t) We are being slightly sloppy with the user arguments because they

L . are not relevant in the proof.
Proof. It is simple to show thaf (pr) satisfies the theorem. We fgqr every closuréclame, B, t.) € range(ve), we know

take cases to show that the theorem is maintained by transition.

Ord(tux(clame), Be, ve, d,tc) (8)
[UEA]
The transition is For each;, of the form(clam;, 3;, t;), we know
([Cfe"qr...qm)],B,ve,8,t) — (proc,d ci...cm,ve,d't") Ord(tux(clam;), B, ve, d,t;) 9)
t' = suce(s)
proc=...,d=... [0(ti)] € F (10)
ci = Algi, B, ve, 1), of the form(clam, 5, t:) Last, for eachta, ty, € {t1,...,t,} Wheret, < t,, we know

pa = 0(youngest({c1...cm}))” -
=A@ G(t) +paN [t — ¢ |6(ta) +6(t) "' € F (11)

First, we will show that continuations in the variable environ-
mentve’ of the successor state obéyd.

Ord(iux(clam.), Be, ve', 8 tc)
If a continuation inve’ was already irve, then

(8) g Ord(tux(clamc), Bc, ve', 8, t.) g (12)

If a continuation inve’ is one ofc; . .. cn, then

9) g Ord(1ux(clam;), Bi, ve', 6, t;) (12)

Second, we must show
Ord([Ou(u™ ky ... kn) calD], B, ve', 6",) (13)

The first condltlon forTS) requires that for each clostyreve have

(12)

[0"(t:) +0"(¥') 'eF
<o) eF

<:L6(ti)+<t || e F

< (10)

The second condition for (13) requires that for any two closures in
c with birth timest; andt, such that; < t», it holds that

16'(t1) +8'(t2) | € F (14)

We know that all closures ia were born before thé& Apply state,
so their birth times are earlier thanThus

(14) < [6(t1) + pa + (8(t2) +pa)” '|eF
= [6(t) +pa+pat+6(t) e F

< (11)

[CEA]

The transition is

([[(q e*)]]7/87 'Ue?(s’ t) - (proc7 d7 Ue75I7t/)

t' = succ(s)
proc = (q ﬂ, ve,t), of the form(clam, 3,,ty)
pa = 0(ty

& = (A(t)(é(Y+ pad) [t — g
For every closuréclamc, B, t.) € range(ve), we know

Ord(iux(clam.), B, ve, 0, tc) (15)
Also, we know

Ord(iux([(qe™]), B, ve, d,t) (16)
We must show

Ord(iux(clame), Be, ve, 8, tc) 17
which follows from [(15) and lemma 11.
Second, we must show

Ord(iux(clam), By, ve, 8’ ") (18)
If ¢ € CLam then

clam=q, By =0, ty =t, pa =¢, § =0[t' —¢e] (19)

(18) £2 Ord(iux(q), B, ve, &',)
For each continuation variablec F'P(iux(q)) where
ve(k, B(k)) = (clamk,ﬂk,tk) we must show
10/ (te) +6'(t) ' e F
B 5t e F
2 5(ty)] € F
« (16)
For each continuation variables,, k2 € FP(iux(q)) where
ve(k1, B(k1)) = (clama, B1,t1), ve(kz, B(k2)) = (clama, B2, t2),
we must show _ _
16'(1) + 8 (t2) " € FE2 [6(11) + 8(22) 7| € F <= (16)
If ¢ € C'Var then

proc € range(ve), 8 (t,) = ¢ (20)

For (18), we must show that for each continuation varidble
FP(iux(clam)) Whereve(k By(k)) = (clamy, B, tx), it holds
thatL(Sl(tk) +8'(t") e F
< §t)] €F
< |8(t) + 8" ()7 + 0ty
o 16'(tx) +8'(8,) " € F
< Ord(iux(clam), By, ve, 8, ty)
(17)
Also, for each continuation variablds, k2 € FP(iux(clam))
Where Ue(k1767(k1)) = (clam1,61,t1) Ue(k27/67(k2))
(clamsg, B2, t2), we must showd’ (t1) + &' (ta) ' | € F
< Ord(iux(clam), By, ve, 8, ty)

2 a7

[CAE]
The transition is
(([[(A’Y (’LL*) call)]], ﬂ? tV)a
t' = succ(s)
B = Blui = V]
ve' = ve[(us, t') — d;]
pA =/l
=AW W) +paN[t — g
For every closuréclamc, G, t.) € range(ve), we know

Ord(tux(clame), Be, ve,d,tc)

)| €F

d, ve,8,t) — (call, 5, ve', 8", t")

(21)
Also, we know
Ord (iux ([(™) call)]), B, ve, 8, t) (22)

We must show therd requirement for the variable environment
of the Eval state.

Ord(iux(clame), Be, ve', 8, tc) (23)
There are no new continuation closuresél. Thus,
(23) Ord(iux(clame), Be, ve, 8, te)
g Ord(iux(clame), Be, ve, d, tc)
Also, for the Eval state we must show
Ord(iux(call), 3, ve', 8", 1) (24)

Note thatiu (call) = iux ([(Ay (w™) call)]).

For each continuation variablec FP(iux(call)) where
ve(k,3'(k)) = (clamk,ﬂk,tk) we must show

L0 (t) +0"(t')~ '|eF

= L(;l(tk)J eF _

<= [0(tk) +(] €F

= L(S(tk) leF
<= [o(tx) + ()"
= W)

The last step is possible because the continuation-variable bindings
in 3 andg are the same.

For each continuation variablés, k2 € FP(iux(call)) where
ve(ky, B (k1)) = (clama, Br, t1), ve(kz, B'(k2)) = (clamz, B2, t2),
we must show

=

e F

|6 (t1) + 0" (t2) "' | € F

< [6(t) + (4| + (6(t2) + () I) Jg
< [0(t) + (1 +17) +0(t2)” eF
< [6(t1) 4+ 0(t2) | e F

<= (22)

The last step is possible because the continuation-variable bindings
in 3 andg are the same. O

	Introduction
	Restricted CPS
	Stack management in RCPS
	Frame strings
	Concrete semantics and stack properties
	Continuation-Age analysis
	Concrete semantics
	Abstract semantics
	Soundness
	Cage vs CFA for age analysis

	From MR to RCPS
	Syntax and semantics
	Types for control-monomorphism
	Transformation of MR to RCPS

	Evaluation of Cage
	Related work
	Conclusions
	

