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Abstract

We present an automated approach to relatively completely veri-
fying safety (i.e., reachability) property of higher-order functional
programs. Our contribution is two-fold. First, we extend the refine-
ment type system framework employed in the recent work on (in-
complete) automated higher-order verification by drawing on the
classical work on relatively complete “Hoare logic like” program
logic for higher-order procedural languages. Then, by adopting the
recently proposed techniques for solving constraints over quanti-
fied first-order logic formulas, we develop an automated type infer-
ence method for the type system, thereby realizing an automated
relatively complete verification of higher-order programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Relative Completeness, Higher-Order Programs, Soft-
ware Model Checking, Type Inference

1. Introduction

Recently, motivated by the success of software model checkers [12]
for the automated verification of first-order programs, researchers
have proposed “model checkers” for the automated verification of
higher-order programs [13, 18, 23, 26, 27]. Interestingly, they have
all been formulated as a form of refinement type inference.1

The refinement type systems employed in the automated higher-
order program verification have some important differences from
the ones from the original, non-automated approaches like DML
[30], making them more amenable to automation (such as the lack
of implicit Π types). But, they follow the non-automated ones
in that the types embed first-order logic (FOL) formulas, called
refinement predicates, over program values (as in dependent types)
that are used to express and enforce detailed properties of the
program.

For example, consider the OCaml program shown in Fig-
ure 1. Here, * denotes a non-deterministic choice. Given an in-

1 In fact, the equivalence of model checking and refinement type inference
has been shown for the finite domain base-type data case [16, 17].
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let rec app x f = if * then app (x+1) f
else f x in

let check x y = if x <= y then ()
else assert false in

let main i = app i (check i)

Figure 1. A simple higher-order program.

teger argument i to main, the program recursively calls app non-
deterministically to apply the closure check i to i + j where j is
the number of times the then branch is taken in app. The program is
safe in that assert false is unreachable for any argument i. The
program is difficult to verify via first-order program verification
methods because of the higher-order recursive function app.

Recent advances in higher-order program verification have en-
abled automated verification of such programs via refinement type
inference. For the program above, the following refinement types
may be automatically inferred to verify its safety.2

app : x :int → f :({u:int | u ≥ x} → unit) → unit
check : x :int → y :{u:int | u ≥ x} → unit
main : i:int → unit

The type of app expresses the fact that the function takes an
integer argument x, and a function-type argument f which takes an
integer at least as large as x. The type of check says that it takes
integers x and y such that x ≤ y. And, the type of main says that
it takes any integer argument.

The refinement type systems underlying the verifiers are sound,
that is, they only type safe programs. However, they are incomplete
in that there are safe programs that they cannot type. Indeed, the
only known positive result is for the class of the finite domain
base-type data programs, which can be verified completely by a
refinement type system augmented with intersection types [16, 17].
The situation is in stark contrast to that of automated first-order
program verification [12] where the underlying program logic, such
as the Hoare logic, is relatively complete.

For example, none of the refinement type systems proposed for
automated higher-order program verification can type and verify
the program shown in Figure 2, even though the program is only
a small modification of the one from Figure 1: it simply switches
the order of app’s arguments. Nor, are they able to type and verify
the program shown in Figure 3, which uses the function succ to
successively build closures to pass integers larger than i to check
i. The program is untypable even if we were allowed to change the
order of the function arguments.

We note that this is an incompleteness at the level of the pro-
gram logic (i.e., refinement type system) and not the verification
algorithm (i.e., type inference algorithm). That is, there exist no
types within the refinement type system that can type the program,

2The type syntax is borrowed from Augustsson [1].



let rec app f x = if * then app f (x+1)
else f x in

let check x y = if x <= y then ()
else assert false in

let main i = app (check i) i

Figure 2. A variant of Figure 1.

let rec app3 f g = if * then app3 (succ f) g
else g f in

let app x f = f x in
let succ f x = f (x + 1) in
let check x y = if x <= y then ()

else assert false in
let main i = app3 (check i) (app i)

Figure 3. Another variant of Figure 1.

let alone inferable ones. While higher-order program verification is
in general undecidable, like the first-order program verification is,
it would be desirable to have a relatively complete reasoning frame-
work that would serve as the basis of verification algorithms, as the
Hoare logic does for first-order programs.

To this end, this paper presents an automated approach to a
relatively complete verification of higher-order programs. First,
we present an extension to the refinement type system such that
the resulting refinement type system is relatively complete. The
extension is inspired by the classical work on relatively complete
program logic for higher-order procedural languages by German
et al. [6, 7] (also, [8]) who showed that relative completeness is
achievable while avoiding the explicit use of functions as data so as
to maintain a “Hoare logic like” control-data separation.

However, their proof of relative completeness does use encod-
ing of functions as base-type data, and we rely on the same tech-
nique for our relative completeness proof. Moreover, to hide the use
of functions as data from the program logic, they introduce quan-
tifiers that the client verifier must appropriately instantiate. (To the
best of our knowledge, no actual verifier was built based on their
program logic.) Therefore, as our second contribution, we show a
type inference method that extends the first-order logic constraint
solving of the previous automated refinement type inference sys-
tems to quantified reasoning by leveraging recent advances on a
related problem [4, 9, 24].

In summary, the paper’s contributions are as follows.

• A refinement type system that is relatively complete for safety
verification of higher-order functional programs.

• A type inference algorithm for the refinement type system.

In the next section, we give an informal overview of the main ideas.

On incompleteness of the inference: The type inference algo-
rithm that we propose is, of course, incomplete in that it is not able
to decide the typability of all programs. This is expected because
safety verification is undecidable in general. Instead, our contri-
bution is a type system that is complete relative to a hypothetical
theorem prover complete for first-order arithmetic, and a novel in-
ference algorithm that is able to automatically verify a non-trivial
subset of the programs that were not possible to verify with the
previous automated approaches.

2. Informal Overview

We informally describe the incompleteness issue by showing how
the existing approaches [13, 18, 23, 26, 27] fail to type the programs
shown in Figures 2 and 3.

First, let us try to type Figure 2. Here, the goal is to show that
main can be given the type i :int → unit, that is, main is safe to

be called with any integer i. (For a base typeB, we often abbreviate
the refinement type {u:B | ⊤} as B. E.g., int = {u:int | ⊤}.)
Therefore, we try to type the body of main under the assumption
that the type of i is {u:int | ⊤}. The most precise type for the
partial application check i is y : {u:int | u ≥ i} → unit (i.e.,
functions that can take any integer at least as large as i), and the
most precise type for i is {u:int | u = i} (i.e., integers equal
to i). (Intuitively, {u:B | θ} expresses values of the base type B
satisfying the refinement predicate θ, and x : τ → σ expresses
functions that return a value of the type σ[e/x] when given the
argument e of the type τ .)

We show that the type systems fail to give the higher-order
function app a sufficiently precise type to verify the program’s
safety. The type of app must be of the form

f :({u:int | θ} → unit) → x :{u:int | φ} → unit

where the refinement predicates θ and φ are FOL formulas in
the theory of base-type data.3 In addition, as discussed below,
to prevent degenerate types, the refinement type systems enforce
an important well-formedness condition that restricts the variables
that can appear free in a refinement predicate. (Here, θ and φ are
restricted so that fv(θ) ⊆ {u} and fv(φ) ⊆ {f, u}, where fv(θ)
denotes the free variables of θ.)

From the application f x in the body of app, the type system
asserts that φ ⇒ θ, that is, f must be safe to be given the argu-
ment x. In the body of main, app is applied to check i and i,
and the type system asserts that the type of check i is a sub-
type of {u:int | θ} → unit and the type of i is a subtype
of {u:int | φ}. This leads to the constraints u = i ⇒ φ and
θ ⇒ u ≥ i, accurately expressing the fact that i is passed as the
second argument to app and that the first argument to app (i.e.,
check i) expects a value at least as large as i.

A solution to the set of constraints is θ ≡ u ≥ i and φ ≡ u = i,
but this is degenerate because main’s variable i would appear in
app’s type. (Recall that θ, φ are refinement predicates of app’s
type.) Intuitively, it means that the function app could “see” values
from a specific context of its use (i.e., main). Indeed, as remarked
above, the refinement type systems disallow such degenerate types
via the well-formedness condition, and only allow θ, φ such that
fv(θ) ⊆ {u} and fv(φ) ⊆ {f, u}. That is, the refinement predi-
cates are allowed to only mention the variables in their respective
scopes. Consequently, the program is (conservatively) rejected as
untypable. It is worth noting that the program of Figure 1 does not
have this issue as app’s arguments are conveniently ordered so that
app’s function-type argument could depend on the base-type argu-
ment to allow the following sufficiently precise type:

x :int → f :({u:int | u ≥ x} → unit) → unit

Unfortunately, as exemplified by Figure 3, the incompleteness
issue is not just a matter of choosing the right order of function
arguments. Here, the program is untypable even if we were allowed
to change the order of the arguments, and the untypability comes
from not being able to give a precise enough type to app3. Ideally,
we would like to express via app3’s type the fact that g is safe when
applied to f (and also when applied to succj f for any j > 0). But,
this requires a type that is parametric in f and g’s behavior, and
that cannot be given because the only parameters of app3 are f and
g, and they are both function-type arguments. Note that refinement
predicates of the form “g is safe to be called with f” are prohibited
as they are required to be FOL formulas over the base-type data.

3We could also give non-⊤ refinement predicates to unit, but it does not
affect the example.



2.1 Our Approach

Our approach to solving the incompleteness issue is inspired by
the research on relatively complete program logic for higher-order
procedural languages [6–8]. The main idea is to add extra dummy
base-type parameters that are instantiated appropriately so that
the refinement type of a higher-order function can depend on the
parameters.

For example, for the program of Figure 2, we add an extra base-
type parameter a to app and obtain the following program.

let rec app a f x = if * then app[a] f (x+1)
else f x in

let check x y = if x <= y then ()
else assert false in

let main i = app[i] (check i) i

Here, for clarity, the parameter passings for the extra parameters
are written as quantifier instantiations, but they may be understood
as ordinary function applications (e.g., app[a] is app a). With the
addition of the extra parameter, it becomes possible for the existing
refinement type systems designed for automated verification to
type and verify the program. For example, the following types are
sufficient for typing the program.

app : a:int → f :(τ → unit) → x :τ → unit
check : x :int → y :{u:int | u ≥ x} → unit
main : i:int → unit

where τ = {u:int | u ≥ a}. Note that the extra parameter a is
used to parametrize f ’s behavior in the type of app.

There is a simple rule to adding extra parameters that can be
shown to be sufficient for relative completeness: add one just before
each function-type argument. Following the rule, for example, the
program of Figure 3 is translated as follows.

let rec app3 a f b g =
if * then (app3[a] (succ[a] f))[a] g
else g[a] f in

let succ b f x = f (x + 1) in
let check x y = if x <= y then ()

else assert false in
let app x a f = f x in
let main i = (app3[i] (check i))[i] (app i)

And, it can be shown that the resulting program is typable, for
example, by the following types.

app3 : a:int → f :τ1 → b:int → g :τ2 → unit
app :
x :int → a:int → f :({u:int | u ≥ x} → unit) → unit

succ : b:int → f :(σ → unit) → x :σ → unit
check : x :int → y :{u:int | u ≥ x} → unit
main : i:int → unit

where σ = {u:int | u ≥ b}, τ1 = {u:int | u ≥ a} → unit,
and τ2 = c:int → τ1 → unit.

However, the rule does not answer how the extra parameters
should be instantiated. (In the above, we seem to have magically
conjured the appropriate instantiations i and a!) Indeed, an anal-
ogous rule was first discovered by German, Clarke, and Halpern
[6, 7] in their work on a relatively complete program logic for
higher-order procedural languages, and their proof of relative com-
pleteness relies on the fact that, with an expressive theory of the
base-type data domain (such as Peano arithmetic), one can encode
each function closure as a base-type data expression so that the ex-
tra parameters can be instantiated by the base-type data representa-
tion of the corresponding function-type argument. However, explic-
itly instantiating the extra parameters by such encoded expressions
and forcing the client verifier to reason about them is impractical.

d ::= d ∪ {F −→x = e} | ∅
e ::= x | F | c | let x = e1 in e2 | e x

| if ∗ then e1 else e2

Figure 4. The syntax of the simple functional language.

Therefore, they proposed to leave the instantiations unspecified in
the program logic so that the task of finding sufficient instantiations
is left to (the FOL theorem prover of) the client verifier.

Following the idea, for example, the program of Figure 2 is
translated as follows by introducing fresh variables v1 and v2.

let rec app a f x = if * then app[v1] f (x+1)
else f x in

let check x y = if x <= y then ()
else assert false in

let main i = app[v2] (check i) i

Then, the refinement type inference problem is reduced to the prob-
lem of finding appropriate instantiations for v1 and v2 along with
the types for the program. For this, we extend the FOL constraint
solving used in the previous work on refinement type inference
with quantified reasoning over template expressions [4, 9, 24]. Con-
cretely, in Section 4, we show how the counterexample-guided re-
finement type inference [18, 26] can be extended in this way to
infer appropriate instantiations as well as types.

2.2 Paper Organization

The rest of the paper is organized as follows. Section 3 presents
the refinement type system along with the target functional lan-
guage, and proves its relative completeness under the extra param-
eter addition strategy. Section 4 presents the type inference algo-
rithm. Section 5 presents the preliminary experience with the type
inference algorithm, implemented as an extension to the higher-
order software model checker (i.e., refinement type inference sys-
tem) MoCHi [18]. Section 6 discusses related work, and Section 7
concludes. Appendix contains the materials omitted from the main
body of the paper.

3. Language and Type System

We formalize the target programming language. Figure 4 shows the
syntax. The language is essentially the simply-typed lambda calcu-
lus with recursion and primitives for integer arithmetic operations.
For simplicity the only base-type data in this language is integers,
but other base types and their operations can be encoded in the
standard way: for example, true = 1 and false = 0.

A program, d, is a finite set of function definitions, F −→x = e,
defining a function named F with the formal parameters−→x and the
body e. The notation −→a denotes a possibly empty sequence. The
functions are mutually recursive in that the body of a function may
refer to other functions, including itself. Each function is closed
except for the free function names (i.e., functions are lambda lifted
[15]). We also assume that d contains a function named main that
only takes base-type (i.e., integer) arguments.

Expressions, e, comprise non-deterministic branches, let ex-
pressions, constants c, function names F , variables x, and (constant
or user-defined function) applications e x. Constants include inte-
ger constants such as −1, 0, 1, 2, and integer operations such as +
and≤ (recall that we model booleans via integers). We assume that
there are unary constant operators named assert and assume.

We restrict expressions to be in continuation passing style (CPS)
so that they are non-returning, except when they occur let-bound
(i.e., occurs as e1 in let x = e1 in e2). By contrast, let-bound ex-
pressions are restricted to be non-CPS (i.e., value returning) expres-
sions, which are total applications of constant operators including



let x = e1 in e2 →d e2[e3/x] where e1 ⇓ e3
let x = assert 1 in e→d e[1/x]
let x = assert i in e→d fail where i 6= 1
let x = assume 1 in e→d e[1/x]
let x = assume i in e→d safe where i 6= 1
if ∗ then e1 else e2 →d e1
if ∗ then e1 else e2 →d e2
F −→e →d e

′[−→e /−→x ] where F −→x = e′ ∈ d

Figure 5. The reduction rules.

the assume and assertion expressions assume x and assert x, and
partial applications (of user-defined functions). We restrict constant
operator applications to be total. CPS/A-normal-form-style is used
for simplicity. Direct-style syntax can be supported by CPS conver-
sion.

The rest of the syntax is straightforward. As usual, applications
associate to the left so that e0 e1 e2 = (e0 e1) e2. We write
e0

−→e for the series of applications e0 e1 e2 . . . en where −→e =
e1, e2, . . . , en. We write e1; e2 for let x = e1 in e2 such that
x /∈ fv(e2), where fv(e) denotes the free variables of e. Without
loss of generality, we assume that bound variables are distinct.
Note that, while the language only has non-deterministic branches,
a conditional branch if x then e1 else e2 can be encoded as

if ∗ then assume x; e1 else let y =¬x in assume y; e2

which is equivalent for assertion safety.
We define the operational semantics of the language as a small-

step reduction relation from states to states. A state is a run-time
expression e that extends the source expressions with non-variable
arguments at function applications, a special failure state fail, and
a special safe state safe. (We overload the symbol e to range over
run-time expressions when it is clear from the context.)

The reduction relation →d is defined by the rules shown in
Figure 5. Here, e ⇓ e′ denotes the evaluation of the value returning
expression e to the value e′, and is defined as F −→e ⇓ F −→e and
c−→e ⇓ [[c]](−→e ) where [[c]] is the relation denoting the semantics of
a non-assume/assert constant c, so that, for example [[+]](i, j) =
i + j for integers i and j. (An integer constant is represented by
a 0-ary constant.) We let partial applications (i.e., F −→e ) represent
function closures. Formally, a value is either an integer constant or
a function closure.

The semantics of a program d is defined as a series of reductions

starting from an initial state emain[
−→
i /−→x ]where main−→x =emain ∈ d

and
−→
i are integer arguments for main (i.e., |

−→
i | = |−→x |). Note

that, because of CPS, reductions only occur at the top level. We
write e →∗

d e′ for zero or more reductions from e to e′. We say
that a program is (assertion) safe if its evaluation does not cause an

assertion failure, that is, if emain[
−→
i /−→x ] 6→∗

d fail for any arguments
−→
i of main.

We assume that a program is typed under the standard simple
type system whose type grammar is shown below.

s ::= ⋆ | int | s→ s′

Here, the type ⋆ represents the type of a CPS expression. For each
expression e in the program, we write sty(e) to denote its simple
type.

The typability in the simple type system assures that the pro-
gram does not “get stuck”, for example, by trying to use an inte-
ger as a function, but it does not guarantee its safety. Therefore, a
program either runs forever safely (due to CPS, a program cannot
return), stops safely in the state safe by reaching a false assume,
or aborts with an assertion failure. The typing rules for the simple
type system are standard and are deferred to Appendix A.

τ, σ ::= ⋆ | {u | θ} | x :σ → τ

Figure 6. The syntax of refinement types.

sty(x) = int

Γ ⊢ x : {u | u = x}
Vb

sty(κ) ∈→

Γ ⊢ κ : Γ(κ)
Vf

Γ ⊢ c : ty(c)
Cst

Γ ⊢ e1 : σ Γ, x :σ ⊢ e2 : ⋆

Γ ⊢ let x = e1 in e2 : ⋆
Let

Γ ⊢ e : y :σ → τ Γ ⊢ x : σ

Γ ⊢ e x : τ [x/y]
App

Γ ⊢ e1 : ⋆ Γ ⊢ e2 : ⋆

Γ ⊢ if ∗ then e1 else e2 : ⋆
If

Γ ⊢ e : σ Γ ⊢ σ ≤ τ fv(τ ) ⊆ dom(Γ)

Γ ⊢ e : τ
Sub

Figure 7. The typing rules.

3.1 Refinement Type System

We present a refinement type system for the language. First, we
present a sound but incomplete refinement type system without the
extra parameter addition, and then introduce the extra parameter ad-
dition as an extension in Section 3.2. The (incomplete) refinement
type system is not significantly different from the ones proposed
previously for automated verification [13, 18, 23, 26, 27] (e.g., it
can be obtained by removing intersection types from [18, 26]4).

Figure 6 shows the syntax of refinement types. Here, {u | θ}
is a refinement base (i.e., integer) type that refines an integer by
the refinement predicate θ which is a FOL arithmetic formula over
the base (i.e., integer) type variables.5 We sometimes abbreviate
{u | θ} as int when θ is a tautology (e.g., {u | ⊤} = int).
Intuitively, {u | θ} denotes the type of integers u satisfying the
formula θ.

The type x :σ → τ is a dependent function type, consisting of
the argument type σ and the return type τ . Intuitively, x : σ → τ
denotes the type of a function (or a constant operation) that returns
a value of the type τ [y/x] when applied to an argument y of the
type σ. As usual, → associates to the right.

The type {x | θ} binds x in θ. Likewise, x :σ → τ binds x in τ
(but not in σ). That is,

fv({x | θ}) = fv(θ) \ {x}
fv(x :σ → τ ) = fv(σ) ∪ (fv(τ ) \ {x})

We sometimes abbreviate x : σ → τ as σ → τ when x does not
occur free in τ . (It actually suffices to limit x to occur free in τ
only if x is a base type argument because refinement predicates are
restricted to be over the base-type variables.) Types are equivalent
up to renaming of bound variables.

The simple-type shape of σ, tshape(σ), is defined as follows:

tshape({u | θ}) = int tshape(⋆) = ⋆
tshape(x :σ → τ) = tshape(σ) → tshape(τ )

4While intersection types are not needed for relative completeness, they
compromise neither soundness nor completeness, and sometimes aid the
verification in practice. The implementation shown in Section 5 supports
intersection types.
5The full theory of Peano arithmetic is needed for relative completeness,
but any subset (e.g., the quantifier-free theory of linear arithmetic) is suffi-
cient for soundness.



Γ ⊢ σ2 ≤ σ1 Γ, x : σ2 ⊢ τ1 ≤ τ2

Γ ⊢ x :σ1 → τ1 ≤ x :σ2 → τ2
Sf

Γ ⊢ ⋆ ≤ ⋆
Sc

u /∈ fv([[Γ]]) ([[Γ]] ∧ θ1) ⇒ θ2

Γ ⊢ {u | θ1} ≤ {u | θ2}
Sb

Figure 8. The subtyping rules.

Figure 7 shows the typing rules. The judgements for the expres-
sions are of the form Γ ⊢ e : τ where Γ is a type environment
mapping variables and function names to types.

We discuss each typing rule. Vb types base-type variables.
Note that the rule ignores the environment. Expressibility is not
reduced, however, because the assumption about x in the environ-
ment gets discharged at subtyping. Vf types function-type vari-
ables and function names by looking up the environment. Here, →
denotes the set of simple function types. (We use the meta variable
κ to range over both variables and function names.)Cst types con-
stants. Here, ty(c) denotes the pre-assigned type of the constant c
such that

ty(assume) = x :int → {u | x = 1 ∧ u = 1}
ty(assert) = x :{u | u = 1} → {u | u = 1}

and ty(c) is the precise type for a non-assume/assert constant c
(e.g., ty(+) = x : int → y :int → {u | u = x+ y}).6 Let is
self-explanatory.App types applications. Here, τ [x/y] is the usual
capture-avoiding substitution. If types branch expressions.

Sub is the subsumption rule. The subtyping relation is defined
in Figure 8. In Sb, [[Γ]] is the FOL formula denoting the assump-
tions about the base-type variables in Γ, and is defined as follows.

[[Γ]] =
∧

x:{u|θ}∈Γ
θ[x/u]

Like the rule of consequence of the Hoare logic [10], Sb asks the
client verifier (i.e., the type inference system) to decide the validity
of arbitrary FOL arithmetic formulas. As expected, our complete-
ness result is relative to the hypothetical completeness of deciding
this. In verification practice, one may settle for incomplete theo-
rem proving or a decidable theory subset to make type checking
decidable.7

Sub enforces well-formedness of the introduced type by assert-
ing that its free variables appear bound in the environment. As
shown below, the top-level types (i.e., the types of the recursive
functions) are required not to contain free variables.

DEFINITION 3.1 (Well-formed type). We say that a type is closed
if it has no free variables. Let ∆ be a top-level type environment
mapping function names to types. We say that σ is a well-formed
type for F if σ is closed and tshape(σ) = sty(F ). We say that∆ is
a well-formed top-level type environment if ∆(F ) is well-formed
for each F .

Let us write−−→x :σ → τ to abbreviate the function type x1 :σ1 →
· · · → xn :σn → τ where −−→x :σ = x1 : σ1, . . . , xn : σn. We define
the notion of a well-typed program.

DEFINITION 3.2 (Well-typed program). We write ∆ ⊢ d if the
following conditions hold.

(1) ∆ is a well-formed top-level type environment.

6 See Appendix B for the definition of a precise constant type. Also, non-
precise but sound constant types, that over-approximate the actual seman-
tics, are sufficient for soundness.
7Also, type checking being decidable is different from type inference (i.e.,
typability) being decidable. The previous research has proposed various
incomplete inference approaches [13, 18, 23, 26, 27].

(2) For each function F −→x = e ∈ d, we have ∆,−−→x :σ ⊢ e : ⋆ where
∆(F ) = −−→x :σ → ⋆.

(3) ∆(main) is of the form
−−−→
x :int → ⋆. (I.e., the refinement

predicates for the arguments of main are all ⊤.)

A program d is said to be well-typed (equivalently, typable) if there
exists∆ such that ∆ ⊢ d.

The condition (2) says that ∆ contains fixed-point types for the
recursive functions comprising d, and (3) says that main is safe to
be called with any arguments (recall that main is a function over
integer arguments).

The type system is sound in that it ensures that a well-typed
program does not cause an assertion failure.

THEOREM 3.3 (Soundness). If ∆ ⊢ d then d is safe.

The theorem follows from the soundness of the refinement type
system extended with extra parameter additions (Theorem 3.6).

EXAMPLE 3.4. Let the program d1 consist of the following func-
tions.

app x f = if ∗ then app (x+ 1) f else f x
check x y = if ∗ then assume (x ≤ y); check x y

else assume ¬(x ≤ y); assert 0; check x y
main i = app i (check i)

The program is the one from Figure 1 translated into the target
language. (We elide A-normalization for readability.) Let∆ be the
following type environment.

∆(app) = x :int → f :({u | u ≥ x} → ⋆) → ⋆
∆(check) = x :int → y :{u | u ≥ x} → ⋆
∆(main) = i:int → ⋆

It is routine to check that ∆ ⊢ d1. Therefore, d1 is typable and is
safe.

Next, consider d2 shown below.

app f x = if ∗ then app f (x+ 1) else f x
check x y = if ∗ then assume (x ≤ y); check x y

else assume ¬(x ≤ y); assert 0; check x y
main i = app (check i) i

The program is a translation of the program from Figure 2. The
program is safe but untypable (as remarked in Section 2, also under
the previous refinement type systems [13, 18, 23, 26, 27]). Note
that we cannot simply assign app the type ∆(app) from the above
but with the order of x and f reversed so that

f :({u | u ≥ x} → ⋆) → x :int → ⋆

The type is not closed and therefore is not a well-formed top-level
type (cf. Definition 3.1). The well-formedness condition forces the
refinement predicates to only refer to the values passed earlier.
Well-formedness is not a superficial restriction: In the presence of
higher-order functions and function closures (i.e., partial applica-
tions), we cannot generally determine “up front” in the program
logic what will be passed later to a closure.

The issue is apparent in the following program d3, which is a
translation of Figure 3.

app3 f g = if ∗ then app3 (succf) g else g f
app x f = f x
succ f x = f (x+ 1)
check x y = if ∗ then assume (x ≤ y); check x y

else assume ¬(x ≤ y); assert 0; check x y
main i = app3 (check i) (app i)

As remarked in Section 2, the program is safe but untypable, even
if we were allowed to change the order of the function arguments.
Here, it is not possible to determine what will be passed to the



Γ ⊢∀ e : ∀x :σ.τ Γ ⊢∀ o : σ o ∈ pureExps

Γ ⊢∀ e : τ [o/x]
Inst

Γ ⊢∀ σ2 ≤ σ1 Γ, x :σ2 ⊢∀ τ1 ≤ τ2

Γ ⊢∀ ∀x :σ1.τ1 ≤ ∀x :σ2.τ2
S∀

Figure 9. Additional typing rules.

closures succj f without some non-trivial program reasoning (i.e.,
i captured in g added the number of times app3’s then branch is
taken before the else branch is reached). In effect, the idea of the
extra parameter addition for relative completeness is to delegate
such tasks to the client verifier.

3.2 Extra Parameters for Relative Completeness

As shown in Example 3.4 (also Section 2), the refinement type sys-
tem is incomplete by itself. While a complete checking of safety is
clearly undecidable as the language allows arbitrary integer opera-
tions, we would like to make the refinement type system be com-
plete relative to an oracle that could decide the FOL implications
discharged at the subtyping rule Sb.

Rather than formulating the extra parameter addition as a pro-
gram translation as done in Section 2, here, we present it as a type
system extension in the form of universally quantified types. This
is expositionally convenient, because extra parameters can be rep-
resented as universally bound variables so that they can be easily
distinguished from ordinary parameters.

We extend the grammar of refinement types with universally
quantified types as follows.

τ, σ ::= ... | ∀x :σ.τ

In ∀x :σ.τ , x is a binding occurrence and may occur free in τ (i.e.,
fv(∀x :σ.τ ) = fv(σ) ∪ (fv(τ ) \ {x})). Intuitively, it expresses the
function type x :σ → τ such that x is an extra parameter. We define
tshape(∀x :σ.τ ) = tshape(τ ).

We extend the type system with the quantifier instantiation and
the subtyping rules shown in Figure 9. Here, pureExps is the set of
side-effect-free integer-type expressions defined by the grammar

o ::= x | c−→o

where x is an integer-type variable and c−→o is a total application of
a non-assume/assert constant.8 Therefore, Inst allows instantiation
with any in-scope side-effect-free integer-type expression having
the requested type. S∀ is analogous to the subtyping rule for func-
tion types (i.e., Sf). To distinguish, we write ⊢∀ for the type judge-
ments of the extended type system. All the rules from Figure 7 and
Figure 8 are assumed to be included in ⊢∀ (with ⊢ replaced by ⊢∀).

The well-formedness definition is also retained from the pre-
extension (cf. Definition 3.1). Therefore, for example, both

x :int → ({u | u = 0} → ⋆) → ⋆
x :int → ∀y :int.({u | u = y} → ⋆) → ⋆

are well-formed refinement types for F such that sty(F ) = int →
(int → ⋆) → ⋆.

Let γ be a disjoint union of variable bindings x :σ or universal
quantifier bindings ∀x :σ. The type abbreviation −→γ → τ is defined
as follows.

−→γ → τ =











τ if −→γ = ε

∀x :σ.τ1 if −→γ = ∀x :σ,−→γ1 and −→γ1 → τ = τ1
x :σ → τ1 if −→γ = x :σ,−→γ1 and −→γ1 → τ = τ1

8We extend the typing rules to (non-A-normal-form) side-effect-free
integer-type expressions in the obvious way. See Appendix C.

(Note that this subsumes the −−→x :σ → τ abbreviation introduced
earlier.) Let 〈−→γ 〉 be the sequence −→γ with each universal quantifier
binding ∀x : σ replaced with the variable binding x : σ. That is,
〈ε〉 = ε, and 〈x :σ,−→γ 〉 = 〈∀x :σ,−→γ 〉 = x :σ, 〈−→γ 〉.

We extend the notion of well-typed program to accommodate
universal quantifier bindings.

DEFINITION 3.5 (Well-typed program – Extended). Wewrite∆ ⊢∀

d if the following conditions hold.

(1) ∆ is a well-formed top-level type environment.

(2) For each function F −→x = e ∈ d, we have ∆, 〈−→γ 〉 ⊢∀ e : ⋆
where ∆(F ) = −→γ → ⋆.

(3) ∆(main) is of the form
−−−→
x :int → ⋆.

A program d is said to be well-typed if ∃∆.∆ ⊢∀ d.

Note that the only differences from Definition 3.2 are −→γ → ⋆ and
〈−→γ 〉 in (2) which allow universal quantifiers in the type of the func-
tions. Also, note that the well-formedness condition now allows the
refinement predicates to refer to the universally quantified variables
in their scope.

We state the soundness of the extended refinement type system.

THEOREM 3.6 (Soundness – Extended). If ∆ ⊢∀ d then d is safe.

The proof is standard [23, 27, 29] and is deferred to Appendix D.
As remarked in Section 2, for relative completeness, it suffices

to limit the position of extra parameters (i.e., universal quantifiers)
to one before each function-type parameter. To this end, we define
ushape(σ) to be a simple type such that, for a function of the
simple type ushape(σ), σ has just the sufficient extra parameters.
Formally, ushape(σ) is defined by the rules below.

ushape({u | θ}) = int ushape(⋆) = ⋆

tshape(σ) = int

ushape(x :σ → τ) = ushape(σ) → ushape(τ )

tshape(σ′) = int tshape(σ) ∈→

ushape(∀y :σ′.x :σ → τ) = ushape(σ) → ushape(τ )

Note that ushape(σ) is defined only for σ that has one extra
parameter just before a function-type parameter. Also, for σ such
that ushape(σ) is defined, we have ushape(σ) = tshape(σ).We are
now ready to state the relative completeness theorem, which says
that if a program is safe then it can be typed with extra parameter
additions (even when their positions are restricted to the pattern
above).

THEOREM 3.7 (Relative Completeness). If d is safe, then there
exists ∆ such that ∆ ⊢∀ d and ushape(∆(F )) = sty(F ) for each
F −→x = e ∈ d.

We defer the proof to Appendix E. The proof adopts the ideas from
the work on relatively complete program logics for higher-order
procedural languages [6–8] that instantiate the extra parameters by
the base-type encoding of the function closures. It is worth noting
that, as a corollary of Theorem 3.7, it follows that the refinement
type system is relatively complete for first-order programs (i.e.,
programs without function-type parameters) even without the extra
parameter extension.

EXAMPLE 3.8. We show how ⊢∀ types d2 and d3 from Exam-
ple 3.4. First, we have ∆2 ⊢∀ d2 where

∆2(app) =
∀a:int.f :({u | u ≥ a} → ⋆) → x :{u | u ≥ a} → ⋆

∆2(check) = x :int → y :{u | u ≥ x} → ⋆
∆2(main) = i:int → ⋆



Note that the types correspond to the ones used to type Figure 2
in Section 2.1. Also, note that ushape(∆2(app)) = sty(app),
ushape(∆2(check)) = sty(check), and ushape(∆2(main)) =
sty(main). It is easy to see that check can be given the type
∆2(check). We show that app can be given the type∆2(app). We
type the body of app under the type environment ∆2, a : int, f :
{u | u ≥ a} → ⋆, x : {u | u ≥ a}. Therefore, the application
f x type-checks to give the type ⋆. To type the other branch,
app f (x+ 1), we instantiate ∆2(app) with a at app to give the
type

f :({u | u ≥ a} → ⋆) → x :{u | u ≥ a} → ⋆

The type is then used to give the application app f the type x :
{u | u ≥ a} → ⋆, which in turn gives the branch the type ⋆.
Finally, main can be given the type ∆2(main) by instantiating
∆2(app) with i.

Likewise, let ∆3 be the following type environment.

∆3(app3) = ∀a:int.f :τ1 → ∀b:int.g :τ2 → ⋆
∆3(app) = x :int → ∀a:int.f :({u | u ≥ x} → ⋆) → ⋆
∆3(succ) = ∀b:int.f :(σ → ⋆) → x :σ → ⋆
∆3(check) = x :int → y :{u | u ≥ x} → ⋆
∆3(main) = i:int → ⋆

such that τ1 = {u | u ≥ a} → ⋆, τ2 = ∀c : int.τ1 → ⋆, and
σ = {u | u ≥ b}. Note that ushape(F ) = sty(∆3(F )) for each F
= app3, app, succ, check, and main. We show that∆3 ⊢∀ d3 by
following the same instantiation scheme used to type Figure 3 in
Section 2.1. We type the then branch of app3 by instantiating app3
and succ with a, and instantiating the resulting app3 (succ f)
with a (or with an arbitrary side-effect-free integer-type expression,
because b does not appear free in its scope in∆3(app3)). The else
branch can be typed by instantiating g with an arbitrary side-effect-
free integer-type expression (because c does not appear free in its
scope in∆3(app3)). Then, to type main, we instantiate app3 with
i, and instantiate app3 (check i) with an arbitrary side-effect-free
integer-type expression.

The examples show that instantiating via simple expressions are
often sufficient for verifying safety, and not all quantifiers may even
be needed. (Contrast this with the instantiation via Gödel number-
ing used in the proof of Theorem 3.7.9) We take advantage of the
observation in the type inference method described in Section 4.

4. Type Inference

The type inference framework is based on, and extends the recent
work on the counterexample-guided approach to refinement type
inference [18, 26] (but, the idea may be adopted to extend the back-
end of other refinement type inference systems like [13, 27]). To al-
low smooth adoption and use the existing type inference algorithms
mostly as a blackbox, we implement the extra parameter addition
as a program translation as in Section 2, instead of modifying the
underlying type system to model it by universally quantified types
as in Section 3.2.

Figure 10 shows the overview of the type inference process. In
Step 1, we translate the given program by adding extra parameters
as done in Section 2. Here, we maintain and use a parameter
substitution for instantiating the extra parameters. We initialize the
instantiation expressions to arbitrary constants (e.g., 0), and then
perform a counterexample-guided refinement type inference over
the translated program.

Following the counterexample-guided abstraction refinement
(CEGAR) scheme popularized in model checking [3, 12], in the
counterexample-guided refinement type inference, we maintain a

9This can be seen as a difference between just checking safety and express-
ing the precise semantics as weakest preconditions.

Input Program Safe

Step 1: Parameter
Addition

(Section 4.1)
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Step 2: Fixed-point
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[18, 26]
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[18]
Infeasible
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Figure 10. The type inference overview.

set of candidate refinement types (or the refinement predicates
that comprise them). Then, we try to find a type assignment for
the program within the candidates via the standard fixed-point
type inference process (Step 2 in Figure 10). The fixed-point type
inference uses an automated FOL theorem prover, such as a SMT
solver, to decide the FOL implications discharged at the subtyping
rule Sb. We refer interested readers to the previous work [18, 26]
for details.

A counterexample is generated when the candidates are found
insufficient, and we analyze the reason for the failure to either val-
idate the counterexample (Step 3), or update the candidate types
or the parameter substitution to eliminate the spurious counterex-
ample (Step 4). In the refinement step, the previous work [18, 26]
only generated new candidate types (i.e., the arrow from Step 4 to
Step 2). But, because of the incompleteness of the underlying type
system, some spurious counterexamples are impossible to refute
by just adding new candidate types. The key component of our new
type inference method is generating new parameter substitutions in
such a situation (i.e., the arrow from Step 4 to Step 1).

Then, the CEGAR process is repeated with the updated candi-
date types or the updated parameter substitutions. The former case
is identical to the previous work, and in the latter case, we repeat
from Step 1 to re-translate the program with the updated parameter
instantiations.

4.1 Adding Extra Parameters

We add an extra parameter just before each function-type param-
eter. Also, we assign a unique label to each sub-expression of the
program where a parameter instantiation occurs. (Note that such
places are syntactically determined.) Let L be the set of the labels
and bvs(ℓ) denote the base-type variables that can occur free in the
scope of the sub-expression with the label ℓ ∈ L.

The type inference process maintains the parameter substitution
P that maps each ℓ to a side-effect-free integer-type expression
o such that fv(o) ⊆ bvs(ℓ). We use P (ℓ) as the instantiation
expression at ℓ. We restrict the range of P , and therefore, the
instantiation expressions, to linear arithmetic expressions. That is,
P (ℓ) is restricted to be of the form

c0 + c1x1 + · · ·+ cnxn

where bvs(ℓ) = {x1, . . . , xn} and c0, . . . , cn are integer constants.
This is an important design choice motivated both by the desire to
minimize the complexity of the type inference, and also by the ob-



servation that sufficient instantiations tend to be simple expressions
in practice (cf. Example 3.8).

The parameter substitution P may be initialized arbitrarily, for
example, P (ℓ) = 0 for all ℓ. We translate the input program
by adding the extra parameters to the function definitions and
replacing each instantiation site ewith the application eP (ℓ)where
ℓ is the label of e.
EXAMPLE 4.1. Recall the program d2 in Example 3.4. We add
an extra parameter a just before the function-type parameter f
of app. Let ℓ1 and ℓ2 be the labels of the occurrences of app in
the body of app and main respectively. We have L = {ℓ1, ℓ2},
bvs(ℓ1) = {a, x}, and bvs(ℓ2) = {i}. Suppose that the parameter
substitution is P = {ℓ1 7→ a, ℓ2 7→ i}. Then, d2 is translated to the
program dP shown below.

app a f x = if ∗ then app a f (x+ 1) else f x
check x y = if ∗ then assume (x ≤ y); check x y

else assume ¬(x ≤ y); assert 0; check x y
main i = app i (check i) i

4.2 Counterexample-Guided Refinement

In MoCHi [18], a counterexample is a straightline higher-order
program (SHP) that is untypable with the current candidate types.
SHP is defined to be a recursion-free slice of the target program ob-
tained by copying functions and removing branches so that it con-
tains no branches and every function occurrence is “linear” (i.e.,
each function is called only once).10 Intuitively, a counterexample
corresponds to the (abstract) program path taken to reach the asser-
tion failure.

We check if the counterexample SHP is feasible. This part is
identical to the previous work [18] and is done by symbolically
evaluating the SHP. If it is feasible, then the program is determined
unsafe and we are done. Otherwise, we attempt to infer refinement
types for the SHP. If the SHP is found typable, then the inferred
refinement types (or the refinement predicates embedded therein)
are added to the candidates and the CEGAR iteration returns to the
fixed-point type inference phase (i.e., Step 2 of Figure 10).

We infer types for counterexamples by using the techniques
from the previous work [18, 26, 27] that reduce the inference
problem to solving constraints over FOL formulas and predicate
variables such that the predicate variables serve as placeholders of
the refinement predicates to be inferred. We refer to the previous
work for details.

EXAMPLE 4.2. Given dP from Example 4.1, MoCHi may gener-
ate the SHP dS shown below.

app1 a f x = app2 a f (x+ 1)
app2 a f x = f x
check x y = assume ¬(x ≤ y); assert 0
main i = app1 i (check i) i

Note that dS is recursion-free and linear. The SHP is typable and
MoCHi may infer refinement types ∆ such that

∆(app1) = ∆(app2) =
a:int → f :({u | u ≥ a} → ⋆) → x :{u | u ≥ a} → ⋆

∆(check) = x :int → y :{u | u ≥ x} → ⋆
∆(main) = i:int → ⋆

Note that ∆ ⊢ dS .

As remarked above, because of the incompleteness of the un-
derlying type system (i.e., ⊢), sometimes, a counterexample that is
detected to be infeasible is also found untypable. (The feasibility

10 [26] defines a counterexample to be simply a currently-untypable
recursion-free program slice (i.e., possibly containing branches and non-
linearity), but uses linear intersection types to obtain a similar effect.

check is actually relatively complete.) In such a situation, we in-
fer a new parameter substitution PR for the SHP so that the SHP
with each of its instantiation site ℓ instantiated with PR(ℓ) is ty-
pable. Then, we update the parameter substitution with PR, that is,
we set P := PR ∪ P |L\LSHP

where LSHP is the labels of the SHP.
And, the CEGAR process returns to the parameter addition phase
to re-translate the program (i.e., Step 1 of Figure 10).

The parameter substitution inference proceeds as follows. First,
we assign labels to the SHP such that every copy of a sub-
expression gets the same label as the one in the original. (Note that
because of function copying, the same expression in the original
program can have multiple copies in the SHP.) Next, we introduce
a parameter substitution template, PT , that maps each ℓ ∈ LSHP to
a linear arithmetic expression template p0 + p1x1 + · · · + pnxn,
where bvs(ℓ) = {x1, . . . , xn} and p0, . . . , pn are fresh integer
variables. This, in turn, induces a SHP template that has PT (ℓ) as
the instantiation expression at each ℓ ∈ LSHP.

Now, the problem of inferring PR is reduced to that of infer-
ring an appropriate integer substitution for the integer variables
−→p in the template. We reduce the problem to constraint solving
by generating a FOL constraint over −→p of the form ∀−→x .θ (for
some non-linear FOL formula θ over the variables−→p and−→x ). That
is, the SHP is typable with the instantiation expression PT (ℓ)ρ
at each ℓ iff (∀−→x .θ)ρ holds where ρ is a substitution that maps
−→p to integer constants. Although the problem of solving quan-
tified integer non-linear FOL constraints is undecidable in gen-
eral, the recently proposed constraint solving techniques based on
Farkas’ lemma [4, 9, 24] have shown effective for our application
in many cases. We describe the constraint generation process in
Section 4.2.1 and the constraint solving process in Section 4.2.2.

4.2.1 Constraint Generation

The constraint generation algorithm is essentially the same as the
ones from the previous work [18, 26, 27] used for candidate type
inference. We give a brief review of the algorithm. For each func-
tion in the program, we prepare type templates containing predicate
variables that serve as placeholders of the refinement predicates to
be inferred. Then, we generate constraints over the predicate vari-
ables in the standard way. That is, we apply the typing rules to the
SHP but restricting the application of the subsumption rule Sub to
just the argument position of function applications (cf. Section 3.1).
This generates constraints over the type templates, which, in turn,
reduce to Horn-clause-like constraints over the predicate variables.
(See Appendix F for the formal definition of the constraint genera-
tion rules.) Because SHP is recursion-free and linear, the generated
Horn clauses are non-recursive, and we can obtain an equivalent
FOL formula.

EXAMPLE 4.3. Consider the SHP d′S shown below, which is
equivalent to dS from Example 4.2 except that the extra param-
eter of app1 is instantiated by 0 instead of i.

app1 a f x = app2 a f (x+ 1)
app2 a f x = f x
check x y = assume ¬(x ≤ y); assert 0
main i = app1 0 (check i) i

It is easy to see that the counterexample d′S is infeasible (i.e., is
safe), and MoCHi is also able to detect the infeasibility. However,
d′S is untypable with the underlying type system ⊢ because of the
inappropriate instantiation expression.

To infer a new instantiation expression, we prepare the param-
eter substitution template PT for the instantiation sites of d′S , and



from it, obtain the SHP template dT shown below.

app1 a f x = app2 (p0 + p1a+ p2x) f (x+ 1)
app2 a f x = f x
check x y = assume ¬(x ≤ y); assert 0
main i = app1 (p3 + p4i) (check i) i

where p0, . . . , p4 are free integer variables. Next, we generate the
constraints by preparing the type template ∆ such that

∆(app1) =
a:{u | P1(u)} → ({u | P2(a, u)} → ⋆) → {u | P3(a, u)} → ⋆
∆(app2) =
a:{u | P4(u)} → ({u | P5(a, u)} → ⋆) → {u | P6(a, u)} → ⋆
∆(check) = x :{u | P7(u)} → y :{u | P8(x, u)} → ⋆
∆(main) = i:int → ⋆

This generates the following non-recursive set of Horn-clause-like
constraints on the predicate variables P1, . . . , P8.

∀a, x.P1(a) ∧ P3(a, x) ⇒ P4(p0 + p1a+ p2x)
∀a, x, u.P1(a) ∧ P3(a, x) ∧ P5(p0 + p1a+ p2x, u) ⇒ P2(a, u)
∀a, x.P1(a) ∧ P3(a, x) ⇒ P6(p0 + p1a+ p2x, x+ 1)
∀a, x, u.P4(a) ∧ P6(a, x) ⇒ P5(a, x)
∀x, y.P7(x) ∧ P8(x, y) ⇒ x ≤ y
∀i.⊤ ⇒ P1(p3 + p4i) ∀i.⊤ ⇒ P7(i)
∀i, u.P2(p3 + p4i, u) ⇒ P8(i, u) ∀i.⊤ ⇒ P3(p3 + p4i, i)

Systematically simplifying the constraints by computing the least
solutions for the predicate variables in a bottom-up manner, we
obtain an equisatisfiable FOL formula on the variables p0, . . . , p4
shown below.

∀x, y, z.
p4x = p4z ∧ p1p4x+ p2z = (p1p4 + p2)(y − 1) ⇒ x ≤ y

4.2.2 Constraint Solving

The constraint generation process above returns a constraint of the
form ∀−→x .θ, where θ is a quantifier-free non-linear FOL formula
over the variables −→p and −→x . (More precisely, θ is linear over
−→x with coefficients over −→p .)11 The goal of the constraint solving
phase is to find an assignment ρ for −→p satisfying ∀−→x .θ.

We solve the constraints by adopting Gulwani et al.’s ap-
proach [9]. We give a brief overview of the idea. First, we use
Farkas’ lemma to remove the universal quantifications in the con-
straint ∀−→x .θ, and obtain a constraint of the form ∃−→r .φ, where φ
is a quantifier-free non-linear FOL formula on the variables −→p and
−→r . Then, we translate the constraint to a SAT formula by mod-
eling integer variables as bit-vectors and integer operations such
as addition, multiplication, and comparison as boolean operations.
Finally, we use a state-of-the-art SAT solver to find a substitution ρ
for −→p and −→r that satisfies φ.

We describe the approach in a more detail. Given a univer-
sally quantified constraint ∀−→x .θ, we convert θ to an equiva-
lent formula of the form

∧

i θi, where each θi is of the form
¬(

∧

j=1,...,mi
ei,j ≥ 0) such that each ei,j ≥ 0 is a linear in-

equality on−→x with polynomials on−→p as coefficients. We translate
each θi by applying Farkas’ lemma.

THEOREM 4.4 (Farkas’ lemma). Consider the following system of
inequalities over real-valued variables x1, . . . , xn.







c1,0 + c1,1x1 + . . . + c1,nxn ≥ 0
...

...
...

cm,0 + cm,1x1 + . . . + cm,nxn ≥ 0







11We assume that constant types only embed quantifier-free linear arith-
metic refinement predicates.

The system is unsatisfiable iff there exist non-negative reals r0, r1,
. . . , rm such that

• r0 + r1c1,0 + · · ·+ rmcm0
= −1, and

• r1c1,j + · · ·+ rmcmj
= 0 for each j = 1, . . . , n.

Farkas’ lemma is incomplete for integers because the “only
if” direction does not always hold. (Trivially, the “if” direction
holds even for integers.) The incompleteness, however, has not
affected the experiments in Section 5. (See Section 4.3 for the list
of limitations with our approach.)

EXAMPLE 4.5. Recall the constraints generated from the SHP
template dT in Example 4.3. We translate the constraints to the
equivalent form below.

∀x, y, z.

¬











p4x −p4z ≥ 0 ∧
−p4x +p4z ≥ 0 ∧

p1p4 + p2 +p1p4x −(p1p4 + p2)y +p2z ≥ 0 ∧
−p1p4 − p2 −p1p4x +(p1p4 + p2)y −p2z ≥ 0 ∧

−1 +x −y ≥ 0











Applying Farkas’ lemma, the constraint is further translated to the
following form.

∃r0, r1, r2, r3, r4 ≥ 0.
r0 + (p1p4 + p2)(r3 − r4)− r5 = −1 ∧
p4(r1 − r2) + p1p4(r3 − r4) + r5 = 0 ∧
−(p1p4 + p2)(r3 − r4)− r5 = 0 ∧
−p4(r1 − r2) + p2(r3 − r4) = 0

We reduce the constraints to SAT by modeling integers as bit-
vectors, and apply SAT solving to find a satisfying assignment. A
possible solution is

p0 = 0, p1 = 1, p2 = 0, p3 = 0, p4 = 1
r0 = 1, r1 = 0, r2 = 0, r3 = 0, r4 = 1, r5 = 1

And from the solution, we obtain the substitution

ρ = {p0 7→ 0, p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 1}

Note that applying the inferred parameter substitution ρ to dT
results in the program equivalent to dS from Example 4.2. Finally,
we update the parameter substitution P via PTρ to translate the
input program, which results in the program dP from Example 4.1,
and is typable by the underlying type system. While the example
only require a variable as the instantiation expression, this is not
the case in general (even when the instantiations are restricted to
linear arithmetic expressions). Section 5 shows examples needing
non-variable instantiation expressions.

We use the iterative approach of Gulwani et al. [9] to model in-
tegers as bit-vectors: we start with a low number of bits, and grad-
ually increase the number of bits until a solution is found. Because
of the incompleteness limitation, it is possible that a solution is not
found even though the process is given an infeasible SHP. (cf. Sec-
tion 4.3.) Section 5 shows heuristics for coping with the issue.

New candidate types with new parameter substitutions It is often
desirable to infer new candidate types along with the new parameter
substitutions. For instance, in Example 4.5, rather than returning to
Step 1 of Figure 10 after the updated parameter substitution PT ρ is
inferred, it is better to infer candidate types for the translated coun-
terexample SHP dT ρ so that the counterexample is immediately
eliminated from the future CEGAR iterations.

Inferring parameter substitution for prior counterexamples For
simplicity, we have shown how to infer a parameter substitution
for one counterexample SHP. In practice, it is better to record the
counterexamples that have been encountered (or, the constraints



generated from them), so that the inferred parameter substitution
is able to also refute the past counterexamples. This can be done
by a minor modification to the algorithm because constraints from
multiple counterexamples simply add up as conjunctions. We take
this approach in the implementation described in Section 5.

4.3 Limitations

Our type inference algorithm is incomplete as it is not able to
decide the typability of all programs. This is expected because the
underlying problem (i.e., safety verification) is undecidable. Here,
we list the source of incompleteness.

(1) Like the predicate abstraction in first-order software model
checking [12], we restrict the refinement predicates to an efficiently
decidable first-order theory, such as the quantifier-free theory of
linear arithmetic. Consequently, there are programs, even ones that
are first-order, that we cannot verify. Also, predicate discovery
uses various heuristics such as interpolation, and is in general
incomplete even for the theory subset (but, there are approaches
to make this part complete [14]).

(2) As remarked in Section 4.1, we restrict instantiation expres-
sions to linear arithmetic expressions. While this has been sufficient
for many cases, as we show in Section 5, there are programs that we
cannot verify because of the restriction.12 (But, as we show there,
simple heuristics can often be used to handle such cases.)

(3) The parameter substitution inference is invoked only when
the counterexample is untypable with the current substitutions, be-
cause otherwise it may simply infer the same substitutions. For
some programs, the parameter substitution inference becomes for-
ever blocked because the program generates infinitely many coun-
terexamples each of which can be refuted by just updating the can-
didate types.13 (See Section 5 for an example.)

(4) As remarked in Section 4.2.2, Farkas’ lemma is incomplete
for integers.

5. Implementation and Experiments

We have implemented a prototype of the type inference algorithm
as an extension to the higher-order model checker MoCHi [18]. It
takes (direct-style and CPS) OCaml programs. We use CVC3 [2]
for the SAT-based non-linear constraint solving described in Sec-
tion 4.2.2. A web interface of the implementation and the bench-
mark programs from the experiments are available online [28].

We ran experiments on small but representative higher-order
programs. Table 1 summarizes the results. The column S is the
size measured in the number of words in the program. O is the
largest order of the functions in the program. (Base-type values are
order-0, and order-n functions only take arguments of order less
than n.) The column |−→p | is the total number of the variables −→p
that occur in the range of the parameter substitution template PT

(cf. Section 4.2). #E is the number of extra parameters added before
each function-type parameter. (#E> 1 is used in the heuristics
described below.) #I is the number of CEGAR iterations. The
column T is the running time in seconds, and P/T is the fraction
of the running time spent on the parameter substitution inference.
NV marks the programs that required non-variable instantiation
expressions. The experiments were conducted on a machine with
Intel Xeon E5620 2.4GHz CPU and 4GB RAM.

Note that the programs are higher-order (i.e., O> 1). The pro-
grams are safe, but none of them can be verified by the previous

12The limitation is also linked with (1) above, because allowing more
complex instantiations has no benefit when the underlying theorem prover
cannot decide formulas embedding them.
13This is an instance of a more general issue with the parameter substitution
inference not inferring sufficiently general substitutions.

program S O |−→p | #E #I T P/T NV
d2 40 2 3 1 2 0.43s 40%
d3 56 3 10 1 3 1.76s 68%
fhnhn 26 2 2 1 1 0.15s 12%
repeat-add 51 2 5 1 3 1.05s 7%
app-leq 29 2 2 1 1 0.26s 41% X

app-lin-ord2 37 2 2 1 1 0.22s 38% X

app-lin-ord3 45 3 6 1 1 0.96s 84% X

app-succ 50 2 5 1 2 0.36s 37%
app-succ0 50 2 5 – – —– —%
a-test-upd 80 2 9 2 7 2.06s 32%
a-checksum 76 2 6 2 8 3.38s 29%
a-max 78 2 8 1 4 7.32s 26%
l-forall-leq 69 2 8 1 2 2.68s 51%
l-len-append 126 2 22 1 2 0.73s 35% X

l-isort 170 2 39 – – —– —%

Table 1. Experiment results.

refinement type systems proposed for automated higher-order pro-
gram verification [13, 18, 23, 26, 27]. We describe each program.

• d2 and d3 are from Example 3.4.

• fhnhn compares the return value of two function arguments:

let f x y = assert (x () = y ()) in
let h x () = x in let main n = f (h n) (h n)

• repeat-add makes the closure add n for some n ≥ 0, applies
it to 0 for k-times for some k > 0, and asserts that the result is
not less than n:

let add x1 x2 = x1 + x2 in
let rec repeat f k x = if k <= 0 then x

else f (repeat f (k - 1) x) in
let main n k =
if n >= 0 && k > 0 then

assert (repeat (add n) k 0 >= n)

• app-leq (resp. app-lin-ord2) is the program below with e
≡ (a<=b) (resp. e ≡ (4*a+2*b)).

let app f x = f x in
let check x y = assert (x = y) in
let main a b = app (check e) e

• app-lin-ord3 is app-lin-ord2 “lifted” one order higher.

• app-succ calls check i i for some non-deterministically-
chosen i ≥ n:

let succ f x = f (x + 1) in
let rec app f x =
if * then app (succ f) (x - 1) else f x in

let check x y = assert (x = y) in
let main n = app (check n) n

• app-succ0 is app-succ with n in the body of main fixed to 0.

• In a-xxx, we model and check array manipulating programs.
We model an array as the pair consisting of its size and the
function that maps indices to the array elements:

let make array n =
(n, fun i -> assert (0 <= i && i < n); 0)

let upd (n, ar) i x =
assert (0 <= i && i < n);
(n, fun j -> if j = i then x else ar j)



The array benchmarks extend the ones from the previous work
[18] that demonstrate the application of higher-order program
verification to the verification of data structure properties.

a-test-upd tests array updates. It creates an array of size n
and updates the i-th element to x for some i ∈ {0, . . . , n− 1}.
The program then reads the element and checks that the result
is equal to x as expected:

let test (n, ar) i x = assert (ar i = x) in
let main n i x =
if 0 <= i && i < n then

test (upd (make array n) i x) i x

Note that the program also checks for array bounds violation.

a-checksum creates an array of size 2, updates the first and
the second elements to a and b respectively, and asserts that the
sum of the two array elements equals a+ b:

let checksum (n, ar) x =
assert ((ar 0) + (ar 1) = x) in

let main a b =
checksum
(upd (upd (make array 2) 0 a) 1 b) (a + b)

a-max creates an array of size n whose elements are from the
set {0, . . . , x} where x > 0, computes the maximum element m
of the array, and asserts that m ≤ x.

• The programs l-xxx model and check list operations. We
model a list by a pair of its length and a function from a non-
negative integer i to the i-th element. We model the core list
operations as follows:

let nil = (0, fun i -> assert false)
let cons a (len, l) =
(len + 1, fun i -> if i=0 then a else l (i-1))

let hd (len, l) = l 0
let tl (len, l) = (len - 1, fun i -> l (i + 1))
let is_nil (len, l) = len=0

l-forall-leq creates a list of the length n whose i-th ele-
ment is n− i, and asserts that x ≤ n holds for all element x of
the list.

l-len-append appends two lists of the length len1 and
len2, computes the length of the resulting list, and asserts that
it is not greater than len1+ len2.

l-isort creates a list, sorts the list via an insertion sort, and
then checks that the result is actually sorted.

The implementation was able to successfully verify the pro-
grams by automatically inferring appropriate extra parameter sub-
stitutions, except for app-succ0 and l-isort. Before we discuss
the reason for failure on these two, we describe the heuristic that
was needed for verifying a-test-upd and a-checksum.

Recall that we limit instantiation expressions to linear arith-
metic expressions. With this restriction, it can be shown that
a-test-upd and a-checksum (and also l-isort) are actually
untypable when we are allowed to add only one extra parame-
ter before a function-type parameter.14 However, a-test-upd and
a-checksum can be typed if we are allowed to add two extra pa-
rameters before a function-type parameter, even with the linear-
instantiation-expression restriction. (Note that #E is 2 for these
programs in Table 1.)

For instance, in a-checksum, to show the safety of the call to
checksum, we need to infer the property that the second argument

14Note that the relative completeness theorem (Theorem 3.7) assumes that
arbitrary side-effect-free integer-type expressions can be used for instantia-
tion.

equals the sum of the first and the second elements of the function-
encoded array passed as the first argument. Because the two ele-
ments of the array are independent (i.e., the arguments a and b of
main), it is not possible to express such a fact via a refinement type
with just one (linearly instantiatable) extra parameter. Nonetheless,
the property can be expressed even under the linear-instantiation-
expression restriction by using two extra parameters. For example,
the following type is sufficient:

∀a:int.∀b:int.
(int× (x :int → {u | θ})) → {u | u = a+ b} → ⋆

where θ ≡ (x = 0 ⇒ u = a) ∧ (x = 1 ⇒ u = b), and × is
the pair type constructor. We use a simple heuristic to progressively
increase the number of extra parameters that are added before each
function-type parameter: we increment the number by one when
the parameter substitution inference fails to find a solution to the
constraints, with some pre-defined threshold on the number of
bits used in the bit-vector modeling (cf. Section 4.2.2). With the
heuristic, the implementation was able to verify a-test-upd and
a-checksum. Note that the increased extra parameter heuristic is
sound because the soundness theorem (Theorem 3.6) holds for any
pattern of extra parameter additions.

The program l-isort remains untypable even with the heuris-
tic. In fact, it can be shown that no finite number of extra parameter
additions can type the program when the instantiation expressions
are restricted to be linear.

The implementation fails to verify app-succ0 for a different
reason. To verify the program, we need to infer the following type
for app with the extra parameter i.

∀i:int.f :({u | u = i} → ⋆) → x :{u | u = i} → ⋆

However, each counterexample SHP generated from app-succ0 is
actually typable by assigning (the copies of) app the types of the
following form whose refinement predicates do not mention the
extra parameter:

∀i:int.f :({u | u = c} → ⋆) → x :{u | u = c} → ⋆

where c is some integer constant. Therefore, the type inference
system generates infinitely many counterexample SHPs that are
refuted by the types of the above form each time, and the parameter
substitution inference is never invoked to infer the necessary type
that uses the extra parameter. We leave the issue for future work.

6. Related Work

6.1 Refinement Type Systems

The relatively complete refinement type system of this paper can be
seen as DML [30] but with quantifiers (i.e., introduction ofΠ types)
restricted to one before each function-type parameter. Hence, our
result shows that DML is actually relatively complete (even when
the quantification pattern is restricted). In relation to DML, this
paper’s contribution is in actually proving relative completeness,
and in proposing an automated type inference method.

The previous refinement type systems proposed for automated
higher-order program verification [13, 18, 23, 26, 27] lack relative
completeness, except for the case when the base-type data domain
is finite [16, 17]. We have shown how the type inference systems
underlying the verifiers may be extended to attain relative com-
pleteness.

6.2 Hoare Logic for Higher-order Languages

There is a long line of research on relatively complete Hoare logic
like proof systems for higher-order functional (or procedural) lan-
guages. One way to achieve relative completeness is to have a
higher-order logic as the interpretation logic (i.e., the logic for the



data part) so that the formulas can directly refer to higher-order
functions as data (see, e.g., [5, 11, 21, 22]). However, such an ap-
proach is difficult to automate as the client verifier must rely on a
higher-order logic theorem prover. The dilemma is similar to that
arising from explicitly encoding functions as base-type data in the
program logic.

The approach of using base-type encoding of functions to
achieve relative completeness was first proposed by German et
al. [6, 7]. (A similar approach is taken in [8].) Crucial to their
approach is the idea of avoiding the explicit encoding in the pro-
gram logic via quantification, allowing the client verifier to choose
appropriate quantifier instantiations. To our knowledge, no actual
verifier was built based on their program logic.

The encoding approach is also used in a recent work on rela-
tively complete dependent (refinement) type system [19] where a
DML-like type system is extended with linear intersection types,
and is shown sound and relatively complete (for terminating pro-
grams). Their type system is designed for a type-based complexity
analysis, and the paper does not discuss automated verification.

6.3 Quantified First-order Logic Constraint Solving

Our type inference method utilizes an algorithm for deciding
the validity a FOL formula of the form ∃−→x .∀−→y .θ where θ is a
quantifier-free arithmetic formula over the variables −→x and−→y , and
if valid, finding appropriate instantiations for−→x so that the formula
can be reduced to ∀−→y .θ[−→e /−→x ].

The problem is studied in the context of constraint-based (or,
template-based) program verification [4, 9, 24] where the existen-
tially quantified variables are used to represent the unknowns in the
invariant template. The technique has found wide applicability, in-
cluding hybrid system verification [20] and program synthesis [25].
Our work adds higher-order program verification to the list.

7. Conclusion

We have presented an automated approach to a relatively com-
plete verification of higher-order functional programs. Our work
extends the recent research on refinement type inference for auto-
mated program verification. We have extended the underlying re-
finement type system by adopting the classical result on relatively
complete Hoare logic like proof systems for higher-order procedu-
ral languages, which shows that certain extra base-type parameter
additions are sufficient for relative completeness. Then, we have ex-
tended the type inference system by utilizing the techniques from
the recent work on quantified FOL constraint solving over template
expressions to infer appropriate instantiations for the extra base-
type parameters.
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A. Simple Type System

The syntax of simple types is defined by the following grammar:
(Also shown in Section 3.)

s ::= ⋆ | int | s→ s′



Γ ⊢s κ : Γ(κ) Γ ⊢s c : cty(c)

Γ ⊢s e1 : s Γ, x :s ⊢s e2 : ⋆

Γ ⊢s let x = e1 in e2 : ⋆

Γ ⊢s e : s→ s′ Γ ⊢s y : s

Γ ⊢s e y : s′

Γ ⊢s x : int Γ ⊢s e1 : ⋆ Γ ⊢s e2 : ⋆

Γ ⊢s if x then e1 else e2 : ⋆

Figure 11. The simple type system typing rules.

Figure 11 shows the typing rules of the simple type system. Here,
cty(c) is the simple type of the constant c. We overload the symbols
Γ and∆ to range over mappings to simple types.

DEFINITION A.1 (Simply-typed program). Let ∆ be a top-level
simple type environment. We write ∆ ⊢s d if for each function
F −→x = e ∈ d, we have ∆,−→x :s ⊢s e : ⋆ where ∆(F ) = −→x :s → ⋆.

We say that a program d is simply typed if there exists ∆ such
that ∆ ⊢s d.

The simple type of a sub-expression e of d, sty(e), is defined
to be the type assigned to the (unique) occurrence of e in the
derivation ∆ ⊢s d.

The following theorem is the standard type safety result that
says that a simply-typed program does not get stuck, which can be
proven via the standard method [29]. (Recall that due to CPS, a
program cannot return normally.)

THEOREM A.2 (Simple Type Safety). Let d be simply-typed and

main−→x = emain ∈ d. Then, for any arguments
−→
i of main and any

e such that emain[
−→
i /−→x ] →∗

d e, either e = fail, e = safe, or there
exists e′ such that e→d e

′.

B. Sound and Precise Constant Types

For a constant operation c over integers, we say that the type

τ =
−−−→
x :int → {u | φ} is sound if the following properties all

hold:

• τ is closed.

• tshape(τ ) = cty(c). (cf. Appendix A.)

• For any
−→
i in the input domain of c, φ[

−→
i /−→x ][[[c]](

−→
i )/u] = ⊤.

We say that τ is precise if in addition to the above, φ[
−→
i /−→x ][j/u] =

⊥ for j 6= [[c]](
−→
i ). For example, for a 0-ary operators (i.e., con-

stant integer) c, the precise types are of the form {u | u = c}.
While a non-assert constant operator in our language accepts all

inputs in its domain, behaviors such as the divide-by-zero error can
be modeled by inserting appropriate assert statements.

C. Typing pureExps

We add the rule below to type (non-A-normal-form) side-effect-
free integer-type expressions.

Γ ⊢∀ c : y :σ → τ Γ ⊢∀ o : σ

Γ ⊢∀ c o : τ [o/y]

Alternatively, we may A-normalize the expressions and use the
typing rules from Section 3.1.

D. Proof of Theorem 3.6

Theorem 3.6: If∆ ⊢∀ d then d is safe.

The proof is by the usual syntactic approach [29] and is similar to
those of the previous work on refinement type systems [23, 27].

ℓ(e1) ⇓ v b fresh

st ℓ in let x = e1 in e2 →d st ℓ, (b = v) in e2[b/x]

(a = 1) ∈ ℓ b fresh

st ℓ in let x = assert a in e→d st ℓ, (b = 1) in e[b/x]

(a = i) ∈ ℓ i 6= 1

st ℓ in let x = assert a in e→d fail

(a = 1) ∈ ℓ b fresh

st ℓ in let x = assume a in e→d st ℓ, (b = 1) in e[b/x]

(a = i) ∈ ℓ i 6= 1

st ℓ in let x = assume a in e→d safe

st ℓ in if ∗ then e1 else e2 →d st ℓ in e1

st ℓ in if ∗ then e1 else e2 →d st ℓ in e2

F −→x = e′ ∈ d

st ℓ in F −→a →d st ℓ in e′[−→a /−→x ]

(b = F −→a2) ∈ ℓ F −→x = e′ ∈ d

st ℓ in b−→a1 →d st ℓ in e′[−→a2,
−→a1/

−→x ]

Figure 12. The stack augmented reduction rules.

We augment the dynamic semantics with stacks so that the
run-time expressions are in A-normal forms. Figure 12 shows the
augmented reduction rules. Here, ℓ is a sequence of stack bindings
a = v such that v is a stack value defined by the following grammar

v ::= i | F −→a

where i is an integer constant. (Here, we overload v to range over
stack values.) We often use letters a, b for stack variables, and
let x, y, z, etc. range over arbitrary (i.e., stack, program, first-order
logic) variables. Here ℓ(e) is defined to be e[v1, . . . , vn/a1, . . . , an]
where a1, . . . , an are the free stack variables of e and ℓ(ai) = vi
if e is an non-assume/assert integer operation (i.e., is of the form
c−→a where c is a non-assume/assert constant), and otherwise, e is a
partial application κ−→a and ℓ(κ−→a ) is defined to be F −→a1

−→a if κ is
a stack variable and ℓ(κ) = F −→a1, or F

−→a if κ is a function name
F . (I.e., we only dereference the function-type variable at the head
position so that the result of ⇓ is a stack value.) As with parameter
and let-bound variables, we assume that bound stack variables are
distinct.

We redefine the semantics of a program d to be a series of

reductions starting from an initial state st
−−−→
a = i in emain[

−→a /−→x ]

where main−→x = emain ∈ d and
−→
i are integer arguments for main.

(Here,
−−−→
a = i are the series of stack bindings a1 = i1, . . . , an = in

where i1, . . . , in =
−→
i .) As before, a program is said to be safe if

it cannot be evaluated to fail.
The following is immediate.

LEMMA D.1. A program is safe with the original semantics iff it is
safe with the stack semantics.

Therefore, it suffices to prove Theorem 3.6 for the stack semantics.



We extend the typing rules to type the stack augmented inter-
mediate expressions. (We equate st ε in e with e.)

Γ ⊢∀ v : σ Γ, a : σ ⊢∀ st ℓ in e : ⋆

Γ ⊢∀ st (a = v), ℓ in e : ⋆
St

We also add the following so that safe is always typable.

Γ ⊢∀ safe : ⋆
Safe

The following is immediate from the property of sound constant
types (Appendix B).

LEMMA D.2. Suppose o ∈ pureExps and Γ ⊢ o : {u | θ}. Then,
[[Γ]] ⇒ ∃u.θ.

The following lemma states that to we can derive Γ ⊢∀ e : ⋆
by binding a fresh variable bound to the type of a side-effect-free
integer-type expression in scope.

LEMMA D.3. Suppose Γ ⊢∀ o : τ and Γ, x : τ ⊢∀ e : ⋆ such that
o ∈ pureExps and x /∈ fv(e). Then, Γ ⊢∀ e : ⋆. (Note that we
assume x /∈ dom(Γ).)

Proof: By inspection of the ⊢∀ typing rules, the binding of the
non-occurring variable x can affect the type derivation of e in only
two ways: (1) by using x as a sub-expression of the instantiating
expression at Inst, or (2) by having x :τ in the left hand side of ⇒
within the FOL formula denoting the assumptions about the base-
type variables in the environment at the subtyping judgement Sb.

In the case (1), any such use of x can be substituted by o to
attain the same effect. In the case (2), suppose τ = {u | θ}. Then,
in Sb, θ may only occur as φ1 ∧ θ[x/u] ⇒ φ2 such that x does
not occur free in φ1, φ2, or θ. Therefore, the formula is logically is
equivalent to φ1 ∧ ∃u.θ ⇒ φ2. By inspection of the typing rules,
φ1 must be such that φ1 ⇒ [[Γ]]. Also because Γ ⊢∀ o : {u | θ}
and o ∈ pureExps , it follows that [[Γ]] ⇒ ∃u.θ by Lemma D.2.
And, we can derive the instance of Sb without the binding. 2

We state a couple of substitution lemmas.

LEMMA D.4 (Substitution I). Suppose Γ ⊢∀ y : σ and Γ, x :σ ⊢∀

e : ⋆. Then, Γ ⊢∀ e[y/x] : ⋆.

Proof: By induction on the derivation. 2

LEMMA D.5 (Substitution II). • Suppose Γ ⊢∀ y : σ1, and
Γ, x :σ1 ⊢∀ σ2 ≤ σ3. Then, Γ ⊢∀ σ2[y/x] ≤ σ3.

• Suppose Γ ⊢∀ o : σ1, o ∈ pureExps , and Γ, x :σ1 ⊢∀ σ2 ≤
σ3. Then, Γ ⊢∀ σ2[o/x] ≤ σ3.

Proof: By induction on the derivation. 2

Given type environments Γ1 and Γ2, let Γ1,Γ2 denote the type
environment formed by appending the two in sequence in that
order. It suffices show the following preservation lemma to prove
the theorem.

LEMMA D.6 (Preservation). Suppose ∆ ⊢∀ e : ⋆ and e →d e
′.

Then, ∆ ⊢∀ e : ⋆.

Proof: We prove by case analysis on the reduction relation.
Suppose e is of the form st ℓ in let x = e1 in e2 and e1 is

neither an assume nor assertion expression. Then, ∆ ⊢∀ e : ⋆
and e →d e′ imply that we must have ∆,Γ ⊢∀ v : σ and
∆,Γ, x : σ ⊢∀ e2 : ⋆ where ℓ(e1) ⇓ v and Γ is the bindings
from the stack ℓ formed by St. Therefore, by Lemma D.4 and St,
we have ∆ ⊢∀ st ℓ, (b = v) in e2[b/x] : ⋆.

Suppose e is of the form st ℓ in let x = assert a in e1.
Then, ∆ ⊢∀ e : ⋆ and e →d e′ imply that we must have
∆,Γ ⊢∀ a : {u | u = 1} and ∆,Γ, x : {u | u = 1} ⊢∀ e1 : ⋆
where Γ is the bindings from the stack ℓ formed by St. There-
fore, it must be the case that (a = 1) ∈ ℓ, and we have

e →d st ℓ, (b = 1) in e1[b/x]. Hence, by Lemma D.4 and St,
we have ∆ ⊢∀ st ℓ, (b = 1) in e1[b/x] : ⋆.

Suppose e is of the form st ℓ in let x = assume a in e1. Then,
∆ ⊢∀ e : ⋆ and e →d e′ imply that we must have ∆,Γ, x :
{u | a = 1 ∧ u = 1} ⊢∀ e1 : ⋆ where Γ is the bindings from
the stack ℓ formed by St. Therefore, if (a = 1) ∈ ℓ, then e →d

st ℓ, (b = 1) in e1[b/x]. Therefore, by Lemma D.4 and St, we
have ∆ ⊢∀ st ℓ, (b = 1) in e1[b/x] : ⋆. Otherwise, (a = i) ∈ ℓ
such that i 6= 1. Then, e→d safe and we have ∆ ⊢∀ safe : ⋆.

Suppose e is of the form st ℓ in if ∗ then e1 else e2 and
st ℓ in if ∗ then e1 else e2 →d st ℓ in e1. Then, ∆ ⊢∀ e : ⋆
imply that we must have ∆,Γ ⊢∀ e1 : ⋆ where Γ is the bindings
from the stack ℓ formed by St. Therefore, by St, we have ∆ ⊢∀

st ℓ in e1. The case st ℓ in if ∗ then e1 else e2 →d st ℓ in e2
is analogous.

Suppose e is of the form st ℓ in F −→a . Let −→a = a1, . . . , an.
Then, ∆ ⊢∀ e : ⋆ and e →d e

′ imply that we must have −→γ → ⋆
and sequences of pure integer-type expressions −→o0 , . . . ,

−→on such
that

−→γ = ∀−−−→y0 :τ0, x1 :σ1,∀
−−−→y1 :τ1, x2 :σ2, . . . , xn :σn,∀

−−−→yn :τn
∆,Γ ⊢∀ F : −→γ → ⋆

and for 0 ≤ i ≤ n and 1 ≤ j ≤ ni,

∆,Γ ⊢∀ ai : σiρi
∆,Γ ⊢∀ oij : τijρij
ρ−1 = ε ρi = ρini

[oini
/yini

]
ρij = ρi−1[oi0/yi0] . . . [oij−1/yij−1]

where Γ is the bindings from the stack ℓ formed by St, and |−→oi | =

ni for 0 ≤ i ≤ n. Let F −→xi =ebod ∈ d. Then, we must have
−→
γ′ → ⋆

such that

−→γ = ∀
−−−→
y0 :τ

′
0, x1 :σ

′
1,∀

−−−→
y1 :τ

′
1, x2 :σ

′
2, . . . , xn :σ

′
n,∀

−−−→
yn :τ

′
n

∆, 〈
−→
γ′〉 ⊢∀ ebod : ⋆

From the rule of subtyping, we have ∆,Γ, 〈γ′|ij〉 ⊢∀ τij ≤ τ ′ij for
each i, j where γ′|ij is the prefix of γ′ up the binding just before
yij : τij , and ∆,Γ, 〈γ′|i〉 ⊢∀ σi ≤ σ′

i for each i where γ
′|i is the

prefix of γ′ up the binding just before xi : σi. Therefore, by Sub
and Lemma D.5, we have ∆,Γ ⊢∀ oij : τ ′ij and ∆,Γ ⊢∀ ai : σ′

i

for each i, j. Then, by Lemma D.4, Lemma D.3, and St, we have
∆ ⊢∀ st ℓ in ebod[

−→a /−→x ] : ⋆.
The case e is of the form st ℓ in b−→a1 is analogous. 2

Finally, Theorem 3.6 follows from Lemma D.6 because, given
∆ such that ∆ ⊢∀ d, we have ∆ ⊢∀ einit : ⋆ for any initial state

einit = st
−−−→
a = i in emain[

−→a /−→x ], and∆ 6⊢∀ fail : ⋆.

E. Proof of Theorem 3.7

Theorem 3.7: If d is safe, then there exists∆ such that∆ ⊢∀ d and
ushape(∆(F )) = sty(F ) for each F −→x = e ∈ d.

Following [6–8], we encode functions as integers via Gödel
numbering. We define concrete value (simply value, henceforth),
v, to be a simply-typed expression defined by the following gram-
mar.15

v ::= F | i | v1 v2

Here, i is an integer constant. We define applicable term (simply
term, henceforth), t, to be a simply-typed expression defined by the
following grammar.

t ::= x | F | t1 t2 | c
−→
t

15Note that this is different from the notion of “value” used in the dynamic
semantics (cf. Section 3 and Appendix D).



wpre(e, ψ) ≡ θ

wpre(let x = t in e, ψ) ≡ θ[⌈t⌉/x]

wpre(e, ψ) ≡ θ

wpre(let x = assert y in e,ψ) ≡ y = 1 ∧ θ[1/x]

wpre(e, ψ) ≡ θ

wpre(let x = assume y in e, ψ) ≡ y = 1 ⇒ θ[1/x]

wpre(e1, ψ) ≡ θ1 wpre(e2, ψ) ≡ θ2

wpre(if ∗ then e1 else e2, ψ) ≡ θ1 ∧ θ2

wpre(t
−→
t , ψ) ≡ (∀−→α .ψ)[⌈t

−→
t ⌉/xhd ]

Figure 13. Weakest preconditions.

where c
−→
t is a total application of a non-assume/assert constant.

Note that any value is a term. Given a term t with free variables −→x ,
we define the evaluation relation t[−→v /−→x ] ⇓val v in the obvious
way: v is t[−→v /−→x ] with all constant operator applications in the
subexpression reduced to integer constants.

For a value v, we write ⌈v⌉ to denote the Gödel number that
encodes v. We let ⌈i⌉ = i for an integer constant i. (Collisions be-
tween function-type and integer-type values can always be avoided
in our setting because the program is assumed to be simply typed.)
For each variable x, we introduce a distinct base-type (i.e., integer-
type) variable x. We write −→x for the sequence x1, . . . , xn where
−→x = x1, . . . , xn. We write fv(t) for the set of variables {−→x }
where fv(t) = {−→x }.

For a term t, we define ⌈t⌉ to be the integer-type term of over
fv(t) that encodes t. More formally, ⌈t⌉ is the integer term that
satisfies

∀v,−→v .(t[−→v /−→x ] ⇓val v) ⇔ (⌈t⌉[⌈−→v ⌉/−→x ] = ⌈v⌉)

where −→x = fv(t), and ⌈−→v ⌉ is the sequence ⌈v1⌉, . . . , ⌈vn⌉ where
−→v = v1, . . . , vn.

16

Letmaxargs be the maximum number of function arguments of
d, that is, maxargs = max{|−→x | | F −→x = ∈ d}. Without loss of
generality, we assume that each function of d has the same function

argument names, that is, there exists
−→
β such that |

−→
β | = maxargs

and for each F −→x = ∈ d, −→x is a prefix of
−→
β . (Note that the

variables of the same name in different functions need not have the
same simple type.) In the rest of the proof, we fix the variables

−→
β

to be the sequence of function arguments of the program d. Let
−→α =

−→
β . We also introduce a special base-type variable xhd that is

distinct from −→α .
Let ψ be a formula such that fv(ψ) ⊆ {xhd ,

−→α }. We intend
to use ψ(xhd ,

−→α ) to express the condition for which it is safe to
call the function encoded by xhd via the arguments encoded by −→α .
We say that an expression is a CPS expression if it is given the
simple type ⋆ (e.g., a function body). Figure 13 shows the rules for
deriving wpre(e, ψ) for a CPS expression e. Intuitively, wpre(e, ψ)
is the condition safe to evaluate e assuming that ψ is the condition
safe to call the functions. Note that fv(wpre(e, ψ)) ⊆ {−→α }.

Let −→x |m denote the first m elements of the sequence −→x , and
−→x |nm denote the sequence of elements from the mth element to
the nth element of −→x . We define the weakest precondition of
the program by taking the fixed point of the following predicate

16Note that the notation is consistent over values as ⌈v⌉ = ⌈v⌉.

transformer.

step(ψ) ≡
∀F,−→v . ⌈F −→v ⌉ = xhd ⇒ wpre(eF , ψ)[⌈

−→v ⌉/−→α ||−→v |][
−→x /−→y ]

where F = eF ∈ d, −→x = −→α |maxargs−|−→v |, and
−→y = −→α |maxargs

|−→v |+1
.

Note that fv(step(ψ)) ⊆ {xhd ,
−→α }.

We write e→n
d e

′ if e can be reduced to e′ by making at most n
function calls. We show the correctness of the weakest precondition
predicate transformer.

LEMMA E.1. Suppose ψ = stepn(⊤).

(1) Let e be a CPS sub-expression of d, fv(e) = {−→x }, and −→v be
values such that e[−→v /−→x ] is simply typed. Then,

e[−→v /−→x ] 6→n
d fail

iff θ[⌈−→v ⌉/−→x ] is valid where θ = wpre(e, ψ).
(2) Let F −→v1

−→v2 be a simply-typed total application. Then,

F −→v1
−→v2 6→n

d fail

iff ψ[⌈F −→v1⌉/xhd ][⌈
−→v2⌉/

−→α ||−→v2|] is valid.

Proof: We prove by induction on n and e. First, we show (1) by
induction on e, assuming that (2) holds.

Suppose e is let y = t in e1. Then, e[
−→v /−→x ] 6→n

d fail iff

e1[v/y][
−→v /−→x ] 6→n

d fail

where t[−→v /−→x ] ⇓val v. By induction hypothesis, the latter holds iff
θ′[⌈v⌉/y][⌈−→v ⌉/−→x ] is valid where θ′ = wpre(e1, ψ). Therefore,

e[−→v /−→x ] 6→n
d fail iff θ′[⌈v⌉/y][⌈−→v ⌉/−→x ] is valid.

Suppose e is let y = assert z in e1. Then, e[
−→v /−→x ] 6→n

d fail
iff z[−→v /−→x ] = 1 and

e1[1/y][
−→v /−→x ] 6→n

d fail

By induction hypothesis, the latter holds iff θ′[1/y][⌈−→v ⌉/−→x ]

where θ′ = wpre(e1, ψ). Therefore, e[
−→v /−→x ] 6→n

d fail iff

(z = 1 ∧ θ′[1/y])[⌈−→v ⌉/−→x ]

(Recall that we let ⌈i⌉ = i for an integer constant i.) The case e is
let y = assume z in e1 is similar.

Suppose e is if ∗ then e1 else e2. Then, e[
−→v /−→x ] 6→n

d fail
iff e1[

−→v /−→x ] 6→n
d fail and e2[

−→v /−→x ] 6→n
d fail. By induction

hypothesis, the latter holds iff θ1[⌈
−→v ⌉/−→x ] and θ2[⌈

−→v ⌉/−→x ] where
θ1 = wpre(e1, ψ) and θ2 = wpre(e2, ψ). Therefore, e[

−→v /−→x ] 6→n
d

fail iff (θ1 ∧ θ2)[⌈
−→v ⌉/−→x ] is valid.

Suppose e is a total application t
−→
t . Let e[−→v /−→x ] = F −→v1 .

Then, by (2), F −→v1 6→n
d fail iff ψ[⌈F −→v1⌉/xhd ] (i.e., θ[⌈

−→v ⌉/−→x ]) is
valid.

Next, we show (2) by induction on n. The case n = 0 is trivial.
Suppose that (1) and (2) hold for n− 1. Let F −→z = eF ∈ d. Then,
by (1), F −→v1

−→v2 6→n
d fail iff θ[⌈−→v1 ,

−→v2⌉/
−→z ] is valid where θ =

wpre(eF , ψ
′) and ψ′ = stepn−1(⊤). Therefore, by the definition

of step, F −→v1
−→v2 6→n

d fail iff ψ[⌈F −→v1⌉/xhd ][⌈
−→v2⌉/

−→α ||−→v2|] is valid.
2

The least fixed point of step is the following formula. (Least in
the order of logical implication.)

Ψwp ≡ ∀n.stepn(⊤)

Note that Ψwp can be expressed as a FOL formula by using Gödel
numbering to encode the sequence of step applications. (This re-
quires encoding the FOL formulas in the sequence.)

The following is immediate from the definition of Ψwp .

LEMMA E.2. Let t1 t2 be a simply-typed application, and −→α =
x1 :: −→x . Then,

Ψwp [⌈t1 t2⌉/xhd ][
−→x /−→α |maxargs−1] ⇔ Ψwp [⌈t1⌉/xhd ][⌈t2⌉/x1]



u fresh

wpty(z, x, Y, int → ⋆) ≡ x :{u | (∀Y.Ψwp)[z/xhd ][u/x]} → ⋆

s 6= ⋆

wpty(z, x :: −→x , Y, int → s) ≡ x :int → wpty(z,−→x , Y, s)

s ∈→ u, x′ fresh

wpty(z, x, Y, s→ ⋆) ≡ ∀x′ :{u | (∀Y.Ψwp)[z/xhd ][u/x]}.x :wpty(x
′, args(s), args−(s), s) → ⋆

s ∈→ s′ 6= ⋆ x′ fresh

wpty(z, x :: −→x , Y, s→ s′) ≡ ∀x′ :int.x :wpty(x′, args(s),args−(s), s) → wpty(z,−→x , Y, s′)[x′/x]]

Figure 14. Weakest precondition types.

From Lemma E.1, it follows that Ψwp expresses the weakest
precondition of the program. That is,

COROLLARY E.3. Let F −→v1
−→v2 be a simply-typed total application.

Then, F −→v1
−→v2 6→d fail iffΨwp[⌈F

−→v1⌉/xhd ][⌈
−→v2⌉/

−→α ||−→v2|] is valid.

In particular, the weakest precondition of main of a safe pro-
gram must be a tautology, that is, it is safe to execute for all of its
inputs.

COROLLARY E.4. Ψwp [⌈main⌉/xhd ] = ⊤ iff d is safe.

In the rest of the proof, we assume that d is safe. We use Ψwp

to build refinement types for d’s functions. Specifically, for each
function-type term, we define its weakest precondition refinement
type by the rules shown in Figure 14.

Here, args(−→s → ⋆) is the prefix of −→α such that |args(−→s →
⋆)| = |−→s |. We define args−(s) to be the set of variables {−→α } \
{args(s)}. Then, given a function-type term t, we define

wpty(t) ≡ wpty(⌈t⌉, args(sty(t)), args−(sty(t)), sty(t))

The following is immediate from the rules of constructing wpty .

LEMMA E.5. Let τ = wpty(t). Then, we have fv(τ ) ⊆ fv(t) and
ushape(τ ) = sty(t).

Proof: By induction on sty(t). 2

COROLLARY E.6. Let τ = wpty(F ). Then, τ is a well-formed
type of F such that ushape(τ ) = sty(F ).

Therefore, to prove Theorem 3.7, it suffices to show∆ ⊢∀ d for
∆ such that ∆(F ) = wpty(F ) for each F .

EXAMPLE E.7. For example, the program d2 from Example 3.4

has the following weakest precondition. (Here, we set
−→
β = x, y.)

Ψwp [⌈main⌉/xhd ] = ⊤
∀i.Ψwp [⌈main i⌉/xhd ] = ⊤
Ψwp [⌈check⌉/xhd ] = x ≤ y
∀i.Ψwp [⌈check i⌉/xhd ] = i ≤ x
∀i, j.Ψwp [⌈check i j⌉/xhd ] = i ≤ j
Ψwp [⌈app⌉/xhd ] = ∀i.x = ⌈check i⌉ ⇒ i ≤ y
∀i.Ψwp [⌈app (check i)⌉/xhd ] = i ≤ x
∀i, j.Ψwp [⌈app (check i) j⌉/xhd ] = i ≤ j

And, the corresponding weakest precondition types are shown be-
low.

wpty(main) = x :int → ⋆
wpty(check) = x :int → y :{u | x ≤ u} → ⋆
wpty(app)
= ∀x′ :int.fx :σ → y :{u | ∀i.x′ = ⌈check i⌉ ⇒ i ≤ u} → ⋆

where σ = x :{u | ∀i.x′ = ⌈check i⌉ ⇒ i ≤ u} → ⋆.

We prove a few auxiliary lemmas.

LEMMA E.8. Let t1 t2 be a simply-typed partial application. Let
τ1 = wpty(t1).

(1) If sty(t2) = int, then τ1 = x :int → σ such that σ[⌈t2⌉/x] =
wpty(t1 t2).

(2) Otherwise, sty(t2) ∈→, and wpty(t1) = ∀x : int.y :τ → σ
such that τ [⌈t2⌉/x] = wpty(t2) and σ[⌈t2⌉/x] = wpty(t1 t2).

Proof: We show (1). By the construction of wpty and the fact
that t1 t2 is a partial application, it follows that τ1 is of the form
x1 : int → σ (i.e., because the wpty construction sets the re-
finement predicate of a non-last base-type argument to ⊤). Let
τ = wpty(t1 t2).

Suppose the last argument of τ and σ[⌈t2⌉/x1] is a base type.
From the construction, it is easy to see that τ and σ[⌈t2⌉/x] are
alpha-equivalent, except for the refinement predicate in the last
base-type argument. Let σ have n arguments so that σ = −−−→xi :σi →
⋆ with i = 2, . . . , n + 1, and x1 :: −→xi is a prefix of −→α . Let
−→x = x1, . . . , xn+1. Let

−→x |n also be the arguments of τ (i.e.,
via alpha-renaming). Let θτ and θσ[⌈t2⌉/x1] be the refinement
predicates in the last argument of τ and σ[⌈t2⌉/x1], respectively
(i.e., θσ is the refinement predicate in the last argument of σ). Then,
we have

θτ = (∀Yτ .Ψwp)[⌈t1 t2⌉/xhd ][u/xn]
θσ[⌈t2⌉/x1] = (∀Yσ.Ψwp)[⌈t1⌉/xhd ][u/xn+1][⌈t2⌉/x1]

where Yτ = args−(sty(t1 t2)), and Yσ = args−(sty(t1)). There-
fore, by Lemma E.2, it follows that

θτ [
−→x |n2 /

−→x |n−1] ⇔ θσ[⌈t2⌉/x]

Therefore, σ[⌈t2⌉/x] = wpty(t1 t2) (via alpha-renaming).
Otherwise, the last argument of τ and σ[⌈t2⌉/x1] is a function

type (of the same simple type), and an analogous argument holds
for the refinement predicate in the type of the universally bound
variable just before the argument.

We show (2). By the construction of wpty and the fact that
t1 t2 is a partial application, it follows that τ1 is of the form
∀x : int.y :τ → σ (i.e., because the wpty construction sets the
refinement predicate of a universally bound variable just before a
non-last function-type argument to ⊤). From the construction, it
follows that τ [⌈t2⌉/x] = wpty(t2). And, σ[⌈t2⌉/x] = wpty(t1t2)
follows from the argument similar to (1).
2

LEMMA E.9. Suppose Γ ⊢∀ e : τ and [[Γ]] ⇒ x = t. Then,
Γ ⊢∀ e : τ [t/x].



Proof: By Sub and the fact that if θ ⇒ ψ and θ ⇒ x = t then
θ ⇒ ψ[t/x]. 2

Note that for any term t, ⌈t⌉ ∈ pureExps . We are now ready to
state the main lemma.

LEMMA E.10. Let e be a CPS-sub-expression. Let ρ be the sub-
stitution such that ρ(x) = x if x is a base-type variable in e and
ρ(x) = x if x is a function-type variable in e. Let Γ be a type
environment for e such that [[Γ]] ⇒ wpre(e,Ψwp)ρ, and for each
function-type variable or function name κ ∈ dom(Γ), there exists
a term t such that fv(t) ⊆ dom(Γ), and Γ(κ) = wpty(t). Then,

(A) For each integer-type sub-term t of e, Γ ⊢∀ t : {u | ⌈t⌉ρ = u}.
(B) For each function-type sub-term t of e, Γ ⊢∀ t : wpty(t).
(C) Γ ⊢∀ e : ⋆.

Proof: (A) follows from the definition of precise constant types
(cf. Appendix B).

We show (B) by induction on t. The base case (i.e., t = x or
t = F ) is immediate from the assumption. So, let t = t1 t2. By
induction hypothesis, we have Γ ⊢∀ t1 : wpty(t1). If t2 is an
integer-type term, then the result follows from (A), Lemma E.8
(1), and Lemma E.9. Otherwise, t2 is a function-type term, and
the result follows from Lemma E.8 (2), applying Inst with the
instantiating expression ⌈t2⌉ to instantiate t1’s type to wpty(t2) →
wpty(t1 t2).

We show (C) by induction on e. Suppose e is let x = t in e1. If
e1 is a base type, then by (A), we have

[[Γ, x :τ ]] ⇒ wpre(e1,Ψwp)ρ

where Γ ⊢∀ t : τ . Therefore, Γ, x : τ ⊢∀ e : ⋆ by induction
hypothesis, and by Let, we have Γ ⊢∀ e : ⋆. Otherwise, e1 is
a function type (i.e., a partial application), and we have [[Γ, x :
σ, x : τ ]] ⇒ wpre(e1,Ψwp)ρ where σ = wpty(e1) and τ =
{u | ⌈t⌉ρ = u}. Then, by induction hypothesis, we have Γ, x :σ, x :
τ ⊢∀ e1 : ⋆. Therefore, by (B), Lemma D.3, and Let, we have
Γ ⊢∀ e : ⋆.

Suppose e is let x = assert y in e1. We have

[[Γ, x :{u | u = 1}]] ⇒ wpre(e1,Ψwp)ρ

Therefore, by induction hypothesis, Γ, x : {u | u = 1} ⊢ e1 : ⋆.
Also, [[Γ]] ⇒ wpre(e,Ψwp)ρ ⇒ y = 1. Therefore, by Let and
the type of assert (i.e., x :{u | u = 1} → {u | u = 1}), we have
Γ ⊢∀ e : ⋆. The case e is let x = assume y in e1 is similar.

Suppose e is if ∗ then e1 else e2. We have

[[Γ]] ⇒ wpre(e1,Ψwp)ρ
[[Γ]] ⇒ wpre(e2,Ψwp)ρ

Therefore, by induction hypothesis, we have Γ ⊢∀ e1 : ⋆ and
Γ ⊢∀ e2 : ⋆. Then, by If, Γ ⊢∀ e : ⋆.

Suppose e is a total application t
−→
t . Let

−→
t = t1, . . . , tn,

and t′ = t
−→
t |n−1. By (B), we have Γ ⊢∀ t′ : wpty(t′). Sup-

pose sty(tn) = int. Then, by (A), we have that Γ ⊢∀ tn :
{u | ⌈tn⌉ρ = u}. By the construction of wpty(t′), we have

θ = (∀Y.Ψwp)[⌈t
′⌉/xhd ][u/x]

where wpty(t′) = x :{u | θ} → ⋆, Y = args−(sty(t′)) = {−→α } \
{x}, and x is the first element of of −→α (i.e., by alpha-renaming).
Therefore, by Lemma E.2, wpre(e,Ψwp)ρ ⇔ (⌈tn⌉ρ = u ⇒ θ),
and so [[Γ]] ∧ ⌈tn⌉ρ = u ⇒ θ. Hence, it follows that Γ ⊢∀ e : ⋆.
The case sty(tn) ∈→ is similar.
2

Also, the following is clear from the construction of wpty(F ).

LEMMA E.11. Let F −→x = eF ∈ d and wpty(F ) = −→γ → ⋆. Then,

• [[〈−→γ 〉]] ⇒ wpre(eF ,Ψwp)ρ, and

• For each function type variable x ∈ dom(〈−→γ 〉), 〈−→γ 〉(x) =
wpty(x) with fv(wpty(x)) = {x} ⊆ dom(〈−→γ 〉). (Namely, we
select x to be the one bound universally just before x.)

Let ∆ be such that ∆(F ) = wpty(F ) for each F . By
Lemma E.10 (C) and Lemma E.11, we have ∆, 〈−→γ 〉 ⊢∀ eF : ⋆
where ∆(F ) = −→γ → ⋆, for each F −→x = eF ∈ d. Because ∆

is well-formed (cf. Corollary E.6) and ∆(main) =
−→
int → ⋆

(cf. Corollary E.4), we have ∆ ⊢∀ d.

F. Constraint Generation Process

sty(x) = int

cgen (Γ ⊢ x) = ({u | u = x},⊤)

sty(κ) ∈→

cgen (Γ ⊢ κ) = (Γ(κ),⊤)

cgen (Γ ⊢ c) = (ty(c),⊤)

(σ, θ1) = cgen (Γ ⊢ e1) (⋆, θ2) = cgen (Γ, x :σ ⊢ e2)

cgen (Γ ⊢ let x = e1 in e2) = (⋆, θ1 ∧ θ2)

(y :σ → τ, θ1) = cgen (Γ ⊢ e) (σ′, θ2) = cgen (Γ ⊢ x)

cgen (Γ ⊢ e x) = (τ [x/y], θ1 ∧ θ2 ∧ cgen (Γ ⊢ σ′ ≤ σ))

(⋆, θ1) = cgen (Γ ⊢ e1) (⋆, θ2) = cgen (Γ ⊢ e2)

cgen (Γ ⊢ if ∗ then e1 else e2) = (⋆, θ1 ∧ θ2)

cgen (Γ ⊢ ⋆ ≤ ⋆) = ⊤

θ1 = cgen (Γ ⊢ σ2 ≤ σ1) θ2 = cgen (Γ, x : σ2 ⊢ τ1 ≤ τ2)

cgen (Γ ⊢ x :σ1 → τ1 ≤ x :σ2 → τ2) = θ1 ∧ θ2

u /∈ fv([[Γ]])

cgen (Γ ⊢ {u | θ1} ≤ {u | θ2}) = ∀u.([[Γ]] ∧ θ1) ⇒ θ2

Figure 15. The constraint generation rules.

Figure 15 shows the constraint generation rules. Here, cgen (Γ ⊢ e)
returns a pair of a refinement type τ and a constraint θ such
that Γ ⊢ e : τ is derivable if and only if θ is valid. Similarly,
cgen (Γ ⊢ τ1 ≤ τ2) returns a constraint θ such that Γ ⊢ τ1 ≤ τ2 is
derivable if and only if θ is valid.


