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ABSTRACT

MoNoOMLI is a system for securely executing analytical workloads
over sensitive data on an untrusted database server. MONOMI works
by encrypting the entire database and running queries over the en-
crypted data. MONOMI introduces split client/server query execu-
tion, which can execute arbitrarily complex queries over encrypted
data, as well as several techniques that improve performance for
such workloads, including per-row precomputation, space-efficient
encryption, grouped homomorphic addition, and pre-filtering. Since
these optimizations are good for some queries but not others,
MoNoMI introduces a designer for choosing an efficient physical
design at the server for a given workload, and a planner to choose
an efficient execution plan for a given query at runtime. A prototype
of MONOMI running on top of Postgres can execute most of the
queries from the TPC-H benchmark with a median overhead of only
1.24x (ranging from 1.03 X to 2.33x) compared to an un-encrypted
Postgres database where a compromised server would reveal all data.

1. INTRODUCTION

Outsourcing database hosting to a cloud service may offer lower
costs, by sharing hardware and administrative staff, and enable
elastic scaling [10]. A key problem in outsourcing the storage and
processing of data is that parts of the data may be sensitive, such as
business secrets, credit card numbers, or other personal information.
Storing and processing sensitive data on infrastructure provided by
a third party increases the risk of unauthorized disclosure if the
infrastructure is compromised by an adversary (who could be an
insider from the third party provider itself).

One possible solution to this problem is to encrypt data on the
client machine (assumed to be trusted) before uploading it to the
server, and process queries by reading back the encrypted data from
the server to the client, decrypting the data, and executing the query
on the client machine. However, for database queries, and analytical
workloads in particular, this requires transferring much more data
than is needed, since large fractions of a database are read by the
query, but the results are typically small aggregate reports or roll-ups.

In this paper, we present the design, implementation, and eval-
uation of MONOMI, a system for running analytical queries over
encrypted data in large databases. Rather than shipping large chunks
of encrypted data back from the server, MONOMI evaluates queries
on encrypted data at the database server as much as is practical,
without giving the database server access to the decryption keys.

MoNOMI builds on previous work in execution of database
queries on encrypted databases, as described in §2, but MONOMI
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is the first system that can efficiently and securely execute analyti-
cal workloads over encrypted data. In particular, these workloads
present three main challenges that make it difficult to efficiently
process them over encrypted data:

First, queries over large data sets are often bottlenecked by the /O
system, such as reading data from disk or streaming through memory.
As aresult, encryption schemes that significantly increase the size
of the data can slow down query processing. Previous work that
focused on transactional workloads cannot support most analytical
queries: for example, CryptDB [22] can handle only four out of 22
TPC-H queries, and incurs a median slowdown of 3.50x even for
those four queries. Naively transferring intermediate results to the
client for further processing incurs even higher overheads (as much
as 55 x for some TPC-H queries) due to the large amount of data.

Second, analytical queries require complex computations, which
can be inefficient to perform over encrypted data. In theory, any
function can be evaluated over encrypted data by using a recent cryp-
tographic construction called fully homomorphic encryption [12].
However, this construction is prohibitive in practice [13], requiring
slowdowns on the order of 10%x. Instead, a practical system must
leverage efficient encryption schemes, which can perform only cer-
tain computations (e.g., using order-preserving encryption for sort-
ing and comparison [6], or using Paillier to perform addition [11]).
Thus, one challenge lies in partitioning the query into parts that can
be executed using the available encryption schemes on an untrusted
server, and parts that must be executed on the trusted client. Some of
these schemes achieve efficiency by revealing additional information
to the server, such as the order of items for sorting. As we show in
§8.7, few columns require encryption schemes that reveal significant
information in practice, and these columns tend to be less sensitive.

Third, some of the techniques for processing queries over en-
crypted data can speed up certain queries but slow down others, thus
requiring careful design of the physical layout and careful planning
of each query’s execution, for a given database and query mix. For
example, Paillier encryption can be used to sum encrypted data on
the server, but the cost of decrypting Paillier ciphertexts at the client
can be prohibitively high in some situations, such as when com-
puting the sum of a handful of values. As a result, it can be more
efficient to decrypt and sum individual data items at the client rather
than run aggregates over encrypted data at the server. Similarly,
materializing additional columns can improve some queries but slow
down others due to increased table sizes.

MoNoMTI’s design addresses these challenges in three ways. First,
we introduce split client/server execution of complex queries, which
executes as much of the query as is practical over encrypted data
on the server, and executes the remaining components by shipping
encrypted data to a trusted client, which decrypts data and processes
queries normally. Although split execution is similar in spirit to
distributed query planning, the valid partitionings of query execution
are quite different in MONOMI as they depend on the encrypted data
available on the server. Second, we introduce a number of techniques
that improve performance for certain kinds of queries (but not nec-
essarily for all), including per-row precomputation, space-efficient
encryption, grouped homomorphic addition, and pre-filtering. Third,
we introduce a designer for optimizing the physical data layout at



the server, and a planner for deciding how to partition the execution
of a query between the client and the server, given a representative
mix of analytical queries on a database. The designer and planner
are necessary because greedily applying all techniques or greedily
executing all computations on the server can lead to excessive space
overheads and/or inefficient query execution.

A key contribution of MONOMI lies in showing the importance
of an optimizing designer and planner in choosing the best physi-
cal design and client/server query execution strategy for encrypted
query processing. As more cryptographic schemes and techniques
are developed by security researchers, choosing the best ones among
increasingly many options will become more difficult to do by hand,
and the trade-offs involved in these decisions are often non-intuitive.
This is similar to the motivation for physical database designers,
which guide users through the technically complex process of choos-
ing indexes, materialized views, compression schemes, and so on.

We have implemented MONOMI’s design using Postgres as the
backend database server. MONOMI is designed to support any ana-
Iytical SQL query, and our prototype can handle queries from the
standard TPC-H and SSB [19] benchmarks. For concreteness, this
paper uses queries from the TPC-H benchmark both as running ex-
amples and as the workload for evaluation. The prototype can handle
most of TPC-H at scale 10, and achieves a 1.24 x median slowdown
(ranging from 1.03x to 2.33 x) compared to TPC-H running on an
unencrypted database (where a compromised server would reveal
all data), even when the client and server are separated by a modest
10 Mbit/s network link. Detailed experiments with TPC-H show
that MONOMI'’s techniques are important in achieving good perfor-
mance, that MONOMI’s performance is as much as 39x better than
a strawman alternative based on prior work, and that MONOMI’s
designer and planner perform better than a greedy approach.

2. RELATED WORK

MoNoOMI is the first system to achieve good performance for an-
alytical queries, such as the TPC-H benchmark, while enforcing
strong confidentiality guarantees. MONOMI also introduces new
techniques in order to achieve this goal, such as an algorithm for
split client/server query execution, cryptographic optimizations tai-
lored to encrypting large analytical data sets, and a designer and
planner for achieving an efficient split. These techniques build on
prior work, as follows.

Recent work in the cryptography community has shown that it
is possible to perform arbitrary computations over encrypted data,
using fully homomorphic encryption (FHE) [12]. However, the per-
formance overheads of such constructions are prohibitively high in
practice. For instance, recent work on implementing fully homo-
morphic encryption schemes has shown slowdowns on the order of
10° x compared to computation on plaintext data, even for relatively
straightforward computations [13].

MoNoMI builds on CryptDB’s design of using specialized en-
cryption schemes to perform certain kinds of computations over en-
crypted data, such as equality, sorting, and aggregates [22]. CryptDB
can handle queries that involve only computation supported by one
of these encryption schemes, but few analytical queries fall in this
category (e.g., only four out of 22 TPC-H queries), and for those
four, CryptDB incurs significant space (4.21x) and time (3.50x)
overhead. MONOMI overcomes these limitations by partitioning
query execution between a trusted client and the untrusted server,
and by using a designer and a planner to choose efficient physical
designs and query partitionings. MONOMI also introduces several
techniques that improve performance of analytic queries, even for
queries that can be completely executed on the server.

Hacigiimiis et al [14] proposed an early approach for exe-
cuting SQL queries over encrypted data by performing approxi-
mate filtering at the server (using bucketing) and performing final
query processing at the client, and extended it to handle aggregate
queries [15, 16]. At a high level, MONOMI also splits the execution
of queries between the client and the server. Hacigiimiis et al can
perform only approximate filtering of rows at the server; MONOMI
differs in executing many more operations completely at the server
(e.g., equality checks, sorting, grouping, and joins), which cuts
down on the bandwidth required to transfer intermediate results, and
on the client CPU time necessary for client-side query processing.
MoNoMI also introduces several optimizations that speed up en-
crypted query processing, and MONOMI uses encryption schemes
with provable security properties. Finally, MONOMI introduces a
designer that optimizes the server-side physical design and a planner
that optimizes query execution plans; for example, the optimal plan
for executing some queries may involve sending intermediate results
between the client and the server several times to execute different
parts of a query. Overall, MONOMI executes 19 out of 22 TPC-H
queries at scale 10 with a median slowdown of just 1.24 x compared
to a plaintext database, while Hacigiimiig et al handle just two out of
22 TPC-H queries at scale 0.1 and do not compare their performance
to a plaintext database [15, 16].

Some systems have explored the use of data fragmentation be-
tween multiple servers that are assumed not to collude [8], or require
the client to store a part of the data [9]. MONOMI does not require
any assumptions about non-collusion between servers, and does not
require the clients to store any data.

An alternative approach to securely outsourcing query processing
to a third party is to use trusted hardware [3, 4]. However, such
approaches require relatively intrusive changes on behalf of the
service provider, which can be either expensive (if using high-end
secure processors), or can provide little security against a determined
adversary (if using off-the-shelf TPM chips).

MoNOMTI’s designer and planner are similar to previous work
on using integer programming to choose the best physical design
for a given query workload [2, 21]. The primary difference is that
MoONOMI is optimizing for the set of encrypted columns that enable
efficient operations to execute on the server rather than on the client,
instead of optimizing for a set of materialized views or indexes that
can be used to efficiently answer a query. The main contribution of
this paper lies not in specific techniques for planning, but instead in
applying existing planning techniques to the problem of choosing
physical designs and query plans for encrypted query processing.

3. OVERVIEW

Analytical workloads are difficult to execute on an untrusted server
with access to only encrypted data because they perform complex
processing over large data sets. As mentioned in the previous section,
fully homomorphic encryption can execute arbitrary queries but
incurs 10%x slowdowns. CryptDB is much more efficient but can
execute only four out of 22 TPC-H queries over encrypted data, and
incurs significant space and time overhead for the four queries it can
execute. Finally, downloading the data to the client for processing
requires significant client-side bandwidth and CPU time, and is thus
also undesirable.

MoNoOMI introduces a new approach based on split client/server
execution. Split execution allows MONOMI to execute a part of the
query on the untrusted server over encrypted data. For other parts
of the query, which either cannot be computed on the server at all,
or that can be more efficiently computed at the client, MONOMI
downloads the intermediate results to the client and performs the
final computation there.



Encryption scheme SQL operations Leakage

Randomized AES + CBC None None

Deterministic AES + a = const, IN, Duplicates
CMC [17] or FEX [5]  GROUP BY, equi-join
OPE [6] a > const, MAX, Order + partial
ORDER BY plaintext [7]
Paillier [20] a + b, SUM(a) None

SEARCH [22, 24] a LIKE pattern None

Table 1: Encryption schemes used by MONOMI, example SQL oper-
ations they allow over encrypted data on the server, and information
revealed by each scheme’s ciphertexts in the absence of any queries.

For example, suppose an application issues the following query:

SELECT SUM(price) AS total
FROM orders

GROUP BY order_id

HAVING total > 100

To execute portions of this query on an untrusted server, MONOMI
follows CryptDB’s approach of using specialized encryption
schemes, as shown in Table 1. MONOMI executes most of the exam-
ple query on the server, as follows. MONOMI encrypts order_id
with deterministic encryption, which allows the server to find rows
that have the same order_id, and thus perform the GROUP BY.
MoNoOMI encrypts price with Paillier, which allows the server to
compute the encrypted sum of encrypted values, without having
access to the decryption key. However, MONOMI cannot check if
total > 100 at the server, because total is encrypted with Pail-
lier, and Paillier does not support order comparison. Thus, MONOMI
executes the following query at the server:

SELECT PAILLIER_SUM(price_paillier) AS total
FROM orders
GROUP BY order_id_det

where PAILLIER_SUM(Q) is a MoNoOMI-supplied UDF that com-
putes the encrypted sum of several Paillier ciphertexts, and
price_paillier and order_id_det are the Paillier and determin-
istically encrypted columns of the original price and order_id
columns, respectively. Once MONOMI’s client library receives the
results, it decrypts them, and executes the HAVING total > 100
clause. Any matching results are sent to the application. §4 describes
how MoNOMI performs this transformation for arbitrary queries.

Optimization. One key factor in MONOMI'’s performance lies in
the cost of executing computation over encrypted data on the server.
MoNoMI introduces several optimizations to speed up encrypted
data processing for analytical workloads, as we describe in §5.

Another key factor is that the split executions that MONOMI
can perform depend on the encryption schemes available at the
server, and some splits perform better than others. For example, if a
Paillier encryption of price was not available in the above example,
MoNoOMI would have to download the entire price column to the
client. On the other hand, if no query asked for SUM(price), storing
a Paillier encryption of price wastes storage space. To choose a set
of encryption schemes that maximizes query performance, MONOMI
uses an optimizing designer. This designer is similar to physical
designers used by other databases, and takes as input from the user
the kinds of features that are likely to appear in future queries, such
as SUM(price) in our example. §8.5 evaluates the kinds of query
characteristics that the designer needs know in order to achieve good
performance. Given a particular physical design, MONOMI uses a
planner to choose the best split client/server execution plan, when a
new query is issued by the application, as explained in §6.
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Figure 1: Overall architecture of our MONOMI prototype.

Security. Since MONOMTI’s design builds on CryptDB, it inher-
its similar security properties [22]. Although the untrusted server
stores only encrypted data, it can still learn information about the
underlying plaintext data in three ways, as summarized in Table 1.
First, some encryption schemes reveal information necessary to
process queries (e.g., deterministic encryption reveals duplicates
in order to perform equality checks). Second, some encryption
schemes may leak more information than necessary. For example,
the order-preserving scheme we use leaks partial information about
the plaintext. Newer encryption schemes may be able to reduce this
leakage; for instance, a recent order-preserving scheme [23] leaks
no unnecessary information beyond the order of elements. Third,
the server learns which rows match each predicate computed on the
server, such as the rows matching column LIKE ’%keyword%’.

By combining the above sources of information, an adversarial
server may be able to obtain additional information about the rows or
the queries using statistical inference techniques. For example, if a
column encrypted with a deterministic scheme contains few distinct
values, and the server has apriori knowledge of the distribution of
these values, the server can infer plaintext values. A server could
also combine information about which rows match a single keyword
search query with apriori knowledge about keyword distribution to
guess the plaintext keywords [18].

One strict guarantee that MONOMI provides is that it never stores
plaintext data on the server, and employs only encryption schemes
necessary for the application’s workload. MONOMI allows the ad-
ministrator to further restrict the encryption schemes used for espe-
cially sensitive columns: for example, requiring order-preserving
encryption (MONOMI’s weakest scheme) not be used for columns
storing credit card or social security numbers.

Using MONOMI. Our MONOMI prototype consists of three ma-
jor components, as shown in Figure 1. First, during system setup,
MONOMTI’s designer runs on a trusted client machine and determines
an efficient physical design for an untrusted server. To determine
important characteristics of the workload for achieving good per-
formance, our designer takes as input a representative subset of the
queries and statistics on the data supplied by the user, such as the
TPC-H workload. As we show in §8, MONOMTI'’s designer achieves
good performance with only a small subset of queries, as long as
they contain the key features of the workload. Users are not required
to use the designer, and may instead manually input an encryption
strategy, or modify the strategy produced by the designer.

Second, during normal operation, applications issue unmodified
SQL queries using the MONOMI ODBC library, which is the only
component that has access to the decryption keys. The ODBC library
uses the planner to determine the best split client/server execution
plan for the application’s query.



Third, given an execution plan, the library issues one or more
queries to the encrypted database, which does not have access to the
decryption keys and can execute operations only over encrypted data.
The database runs unmodified DBMS software, such as Postgres,
with several user-defined functions (UDFs) provided by MONOMI
that implement operations on encrypted data. MONOMI conserva-
tively encrypts all data stored in the database, although in practice
non-sensitive data could be stored as plaintext for efficiency. Once
the client library receives intermediate results from the database,
decrypts them, and executes any remaining operations that could
not be efficiently performed at the server, the results are sent to the
application, as if executed on a standard SQL database.

4. SPLIT CLIENT/SERVER EXECUTION

In order to execute queries that cannot be computed on the server
alone, MONOMI partitions the execution of each query across the
untrusted server, which has access only to encrypted data, and a
trusted client machine, which has access to the decryption keys
necessary to decrypt the encrypted data.

Consider TPC-H query 11, as shown in Figure 2. This query
requires checking whether a SUM() for each group is greater than a
sub-select expression that computes its own SUM() and multiplies
it by a constant. MONOMI’s encryption schemes cannot support
such queries directly over encrypted data, as described in the previ-
ous section, because addition and comparison involve incompatible
encryption schemes, and because no efficient encryption scheme
allows multiplication of two encrypted values.

SELECT ps_partkey,

SUM(ps_supplycost * ps_availqty) AS value
FROM partsupp JOIN supplier JOIN nation
WHERE n_name = :1

GROUP BY ps_partkey

HAVING  SUM(ps_supplycost * ps_availqty) > (
SELECT SUM(ps_supplycost * ps_availqgty) * 0.0001
FROM  partsupp JOIN supplier JOIN nation
WHERE n_name = :1 )

ORDER BY value DESC;

Figure 2: TPC-H query 11, with join clauses omitted for brevity.

To answer such queries, MONOMI partitions the execution of the
query between the client and the server, by constructing a SQL oper-
ator tree for the query, consisting of regular SQL operators and de-
cryption operators that execute on the client, as well as RemoteSQL
operators that execute a SQL statement over encrypted data on the
untrusted server. For example, Figure 3 shows a potential split query
plan for executing TPC-H query 11.

The general algorithm for computing a split query plan is pre-
sented in Algorithm 1. This algorithm can handle arbitrary SQL
queries, but we explain its operation using TPC-H query 11 as an
example, as follows.

Lines 6-13 try to find a way to execute the WHERE n_name=:1
clause on the server. The REWRITESERVER (expr, E, enctype) func-
tion returns an expression for computing the value of expr at the
server, encrypted with enctype, given a set of encrypted columns
E. For enctype=PLAIN, REWRITESERVER produces an expression
which generates the plaintext value of expr. In our example, this
translates n_name=:1 to n_name_DET=encrypt(: 1), which pro-
duces the same (plaintext) boolean value without revealing n_name.

Lines 14—18 try to move the GROUP BY clause to the server, by us-
ing REWRITESERVER to find a deterministic encryption of the group
keys (in our example, ps_partkey) by passing in a DET enctype.

22
23
24
25
26

27
28
29
30
31

32
33
34
35
36
37

38
39
40

41

42

43

44

45

input :(Q, an abstract syntax tree (AST) for the query.
E, a description of the available encrypted columns.
output: P, a plan node for query, such as the one in Figure 3.

for s in subqueries in Q.relations do
p < GENERATEQUERYPLAN(Q,E)
| Replace s with p in Q.relations

RemoteQ < Q
LocalFilters < ||
for c in Q. join_clauses || [Q.where_clause] do
¢’ <~ REWRITESERVER (c, E, PLAIN)
if ¢’ # Nil then // ¢ computable on server
| Replace ¢ with ¢’ in RemoteQ

else

Remove ¢ from RemoteQ

Add c to LocalFilters

Add EXPRS (¢) to RemoteQ.projections

// Query to run over encrypted data

RemoteQ.group_by.keys <+ ||
for k in Q.group_by.keys do
k' «— REWRITESERVER (k, E, DET)
if &’ # Nil then
L Add k' to RemoteQ.group_by.keys

LocalGroupBy < Nil

LocalHaving < Nil

if RemoteQ.group_by.keys.size = Q.group_by.keys.size then

// GROUP BY pushed onto server

f' + REWRITESERVER (Q.group_by.having, E, PLAIN)

RemoteQ.group_by.having < f'

if f/ = Nil and Q.group_by.having # Nil then
LocalHaving <— Q.group_by.having

L Add ExPRS (LocalHaving) to RemoteQ.projections

// Compute GROUP BY on client
RemoteQ.group_by < Nil
LocalGroupBy < Q.group_by
for k in LocalGroupBy.keys || [LocalGroupBy.having] do
L Add EXPRS (k) to RemoteQ.projections

else

for p in Q.projections do
p’ <+~ REWRITESERVER (p, E, ANY)
if p’ = Nil then
‘ Replace p with EXPRS (p) in RemoteQ.projections
else
L Replace p with p’ in RemoteQ.projections

P < LOCALDECRYPT(REMOTESQL (RemoteQ))
for f in LocalFilters do
| P < LOCALFILTER(P, f)

if LocalHaving # Nil then
// Client-side computation of just HAVING
‘ P < LOCALGROUPFILTER (P, LocalHaving)
else if LocalGroupBy # Nil then
// Client-side GROUP BY and maybe HAVING
L P <~ LOoCALGROUPBY (P, LocalGroupBy)

return P

Algorithm 1: Pseudo-code for GENERATEQUERYPLAN. For
brevity, the pseudo-code assumes that the query is a SELECT state-
ment and does not have ORDER BY and LIMIT components. The
pseudo-code also does not keep track of the positions of projections
necessary to reconstruct expressions on the client.



LocalSort
key: [$1]

!

LocalProjection
exprs: [$0, sum($1)]

!

LocalGroupFilter
filter: sum($1) > subquery0()

—

LocalDecrypt LocalProjection

pos: [$0, $1] exprs: [sum($0) * 0.0001]
f f
RemoteSQL LocalDecrypt
SELECT pos: [$0]
ps_partkey DET, T
GROUP(precomp_DET)
FROM ... WHERE RemoteSQL

SELECT
GROUP(precomp_DET)

FROM ... WHERE
n_name_DET = Oxabcdef

n_name_DET = Oxabcdef
GROUP BY ps_partkey DET

Figure 3: Example split query plan for TPC-H query 11. “Local” op-
erators run on the trusted client, and “Remote” operators run on the
untrusted server. GROUP () denotes the concatenation of all values from
each GROUP BY group, Oxabcdef denotes the deterministic encryption
of the argument : 1, and precomp_DET denotes the deterministic encryp-
tion of the precomputed expression ps_supplycost * ps_availqty.
$n refers to the n-th column of the child operator.

For our example, REWRITESERVER returns ps_partkey_DET,
which is placed into RemoteQ, the query that will run on the server.

Lines 22-26 try to push the HAVING clause to the server, assum-
ing that the GROUP BY can be performed on the server. Since in
our example the HAVING clause cannot be computed at the server,
REWRITESERVER returns Nil. To execute the HAVING clause on the
client, line 26 uses the EXPRS(expr) helper function to determine
what sub-expressions can be computed on the server in order to then
compute the entire expr on the client, and adds those expressions to
the list of projections fetched by RemoteQ.

Since the HAVING clause involves a sub-select, EXPRS recursively
calls back to GENERATEQUERYPLAN, which determines how to run
the sub-select on the server. This eventually returns the RemoteSQL,
LocalDecrypt, and LocalProjection operators shown in the
lower right branch of Figure 3.

Lines 32-37 determine how to best fetch the projections from
the server, passing the ANY enctype to REWRITESERVER since
any encryption scheme would suffice. In our example, this
translates ps_partkey to ps_partkey_DET, and SUM(..) into
GROUP (precomp_DET). Here, we assume the server has a precom-
puted deterministic encryption of ps_supplycost*ps_availqty,
denoted by precomp_DET, but does not have its homomorphic en-
cryption (as specified in the E argument). Thus, the GROUP () oper-
ator concatenates all values from the group, and the SUM() will be
computed at the client. The planner, described in §6, may choose
this set of encryption schemes E if computing the SUM() at the client
is faster than decrypting a homomorphic ciphertext.

Finally, the algorithm constructs the local part of the query
plan. Line 38 constructs the RemoteSQL operator coupled with
aLocalDecrypt operator, as shown in the two branches in Figure 3.
Lines 39-40 apply any remaining WHERE or JOIN clauses. Lines 41—
44 add operators for client-side GROUP BY or HAVING operations.

5. OPTIMIZATION TECHNIQUES

To speed up query execution over encrypted data, MONOMI intro-
duces several new techniques, described in the rest of this section.
We use example queries from the TPC-H benchmark to illustrate
their benefits, although these techniques can be applied to arbitrary
queries. MONOMI’s designer and planner automatically use these
techniques as appropriate to achieve good performance, without re-
quiring the application developer to perform manual query rewriting.

5.1 Per-row precomputation

Although split client/server execution allows MONOMI to compute
the answer for any query, executing an operator on the client can
require downloading a large amount of intermediate data. For ex-
ample, consider TPC-H query 11 again, as shown in Figure 2. This
query requires computing SUM(ps_supplycost*ps_availqty),
but Paillier encryption cannot perform multiplication of two values.
As another example, TPC-H queries 8 and 9 require grouping aggre-
gates by EXTRACT (YEAR FROM o_orderdate), which cannot be
computed from encryptions of o_orderdate without making the
encryption schemes less secure and less space-efficient.

To optimize the execution of such queries, MONOMI employs per-
row precomputation, in which the designer materializes an additional
column in a table, containing the encrypted value of an expression
that depends only on other columns in the same row. These materi-
alized expressions can then be used at query runtime. For instance,
in query 11, MONOMI can materialize an additional column storing
the homomorphic encryption of ps_supplycost*ps_availqty,
which allows the server to compute the entire SUM(). This allows
the client to download one encrypted aggregate value, instead of
downloading all ps_supplycost and ps_availqty values.

To determine which expressions should be materialized on the
server, MONOMI’s designer considers operators that cannot be per-
formed over encryptions of individual columns alone. It considers
only operators that involve columns from the same table, and does
not consider aggregates, since they span multiple rows. For such
operators, it finds the simplest expression (i.e., lowest in the oper-
ator tree) that, if precomputed in a separate column, would allow
the operation to execute on the server. We describe how MONOMI
chooses which candidate expressions to actually materialize in §6.

5.2 Space-efficient encryption

Database queries that involve table scans—which are common in
analytic workloads—are often bottlenecked by I/O, such as the rate
at which data can read from disk. As a result, the performance of
such queries under MONOMI is sensitive to the size of the encrypted
on-disk data. To optimize the performance of such queries, MONOMI
uses encryption schemes that minimize ciphertext expansion, which
is the length increase of ciphertext values compared to the length of
the original plaintext values, while still preserving security.

For example, consider the encrypted column storing the pre-
computed EXTRACT (YEAR FROM o_orderdate) expression from
TPC-H queries 8 and 9, as mentioned above. To allow grouping by
the extracted year, the value must be encrypted deterministically, but
using the standard AES or Blowfish algorithm would produce a 128-
or 64-bit ciphertext even for 8-, 16-, or 32-bit integers.

To minimize ciphertext expansion for deterministic encryption of
such small data types, MONOMI uses the FFX block cipher mode of
operation [5], which encrypts n-bit plaintexts to n-bit ciphertexts, as
long as n is less than the block cipher width (e.g., 128 bits for AES).
For values that are longer than the block cipher width, the ciphertext
stealing (CTS) mode of block cipher operation, combined with
CMC mode [17], provides a suitable alternative. These techniques



reduce the size of the 1ineitem table from the TPC-H benchmark
by ~ 30% when using only deterministic encryption.

Most homomorphic encryption schemes, including Paillier as
used by MONOMI, operate over large plaintext and ciphertext val-
ues, such as 1,024 and 2,048 bits respectively for Paillier. Such
large plaintext and ciphertext sizes are necessary to achieve an ad-
equate level of security. To make efficient use of these 1,024-bit
plaintext payloads, MONOMI uses techniques proposed by Ge and
Zdonik [11] to pack multiple integer values into a single 1,024-
bit Paillier plaintext. MONOMI both packs values from multiple
columns in a single row, and packs values from multiple rows, into
a single Paillier plaintext. This packing scheme allows us to reduce
the per-row space overhead of Paillier ciphertexts for a single 64-bit
column by ~ 90%. We also use techniques described by Ge and
Zdonik to compute aggregates over these packed ciphertexts, along
with an additional optimization that we describe next.

5.3 Grouped homomorphic addition

To compute SUM() or AVG() aggregates over encrypted values,
MoNoOMI uses the Paillier homomorphic encryption scheme. In
Paillier, computing an encrypted version of the sum of two values,
E(a+b), requires multiplying the encryptions of the two values
modulo a 2,048-bit public key: E(a+b) = E(a) x E(b). These
modular multiplications can become computationally expensive, es-
pecially for queries that require aggregating a large number of rows,
such as TPC-H query 1:

SELECT SUM(1_quantity), SUM(l_extendedprice),
FROM lineitem WHERE .. GROUP BY ...

Such queries require one modular multiplication per row per SUM()
operator in the naive case. The complete TPC-H query 1 computes
seven distinct aggregates for each matching row from the lineitem
table, and the 1ineitem table contains a large number of rows.

To avoid performing separate modular multiplications per row
for each column being aggregated, MONOMI implements a grouped
homomorphic addition optimization, whereby columns which are
aggregated together are packed into Paillier plaintexts in a particular
fashion that allows aggregates for all columns to be computed simul-
taneously with a single modular multiplication. MONOMI’s designer
considers only layouts which pack all columns being aggregated for
a particular query into a single group.

Consider a query that asks for the SUM() aggregates of k columns
from one table, denoted by a; through ag; for some row a. Let
the Paillier plaintext for row a be the concatenation of the values
from each of these columns (a1 ||az|| ... ||ax), and store the Paillier-
encrypted version of this concatenation on the server for that row.
With this physical layout at the server, the SUM() for all of the k
columns can be derived by multiplying together the Paillier cipher-
text from each row in the result set, which can be computed with
one modular multiplication per row. This works because, arithmeti-
cally, (arl|...[|ax) + (b1]].. [[bx) = (a1 +b1)]|... || (ak + ), and
thus E(aj|...[lax) x E(b1]|... |[bx) = E((a1 +a2)]|... [|(ax + b))
Given the product of all row ciphertexts, the client can extract the
aggregate of column i from position i in the decrypted plaintext.

One potential problem is that the sum of values from one column,
ai+bi+ ..., can overflow the width of that column’s type and spill
over into the next column. To avoid this problem we add zero
padding between columns in the concatenation, where the number
of zeroes is log base 2 of the maximum number of rows in the table
(which we assume is ~ 227 in our experiments).

To reduce ciphertext expansion, MONOMI combines grouped ho-
momorphic addition with the packing scheme from §5.2. Values

from multiple rows are packed together into a single 1,024-bit plain-
text, and each row’s value is the concatenation of all aggregatable
columns from that row, as described above. For simplicity, we do
not split a single row across multiple 1,024-bit plaintexts. While this
slightly increases ciphertext expansion (by not using some of the
bits in the 1,024-bit plaintext), it keeps the number of modular mul-
tiplications necessary for aggregation low, because a given column
always appears at the same offsets in every plaintext.

5.4 Conservative pre-filtering

Analytic workloads often filter large amounts of data on the server to
return a small amount of data to the client. To achieve efficiency for
such queries over encrypted data, MONOMI must avoid sending all
of the data to the client, and instead apply filtering to encrypted data
on the server. However, some filter predicates cannot be efficiently
computed over encrypted data. For example, consider the following
sub-select expression from TPC-H query 18:

SELECT 1_orderkey FROM lineitem
GROUP BY 1_orderkey
HAVING SUM(l_quantity) > :1

Downloading all 1ineitem groups to the client is time-consuming,
but the Paillier scheme necessary to compute the SUM() expression
is incompatible with the order-preserving encryption necessary to
check if SUM(1_quantity) > :1 on the server.

To achieve reasonable performance for filtering predicates that
cannot be computed on the server, MONOMI generates a conservative
estimate of the predicate, to pre-filter intermediate results on the
server, and applies the exact predicate on the client. For TPC-H
query 18, MONOMI executes the following query on the server:

SELECT 1_orderkey_det,
PATILLIER_SUM(1_quantity_paillier)

FROM lineitem

GROUP BY 1_orderkey_det

HAVING MAX(l_quantity_ope) > encrypt_ope(m)
OR COUNT(*) > (:1 / m)

where m is an arbitrary positive integer. The HAVING clause executed
on the server computes the superset of rows that would have matched
the original HAVING clause: if a group could have matched the
original clause, then either it had at least one value larger than m,
or it had at least (:1/m) rows in the group, each of which was
m or less. Once the server performs this filtering and sends the
intermediate results to the client, the client applies the exact filter to
the decrypted results, and returns only the matching groups to the
application. MONOMI estimates of the maximum value of a column
(e.g., 1_quantity) during setup and uses that as m.

6. DESIGNER AND PLANNER

The optimizations described in §5 do not always apply to every
query. In particular, as we show in §8, a greedy application of the
techniques or a greedy execution of all parts of the query on the
server does not necessarily yield the best performance and can waste
space. In this section, we describe the physical database designer we
developed that selects the best set of expressions to precompute, the
best set of encryption schemes to create for each column (regular
and precomputed), and which columns to include in homomorphic
ciphertexts, as described in §5.1-§5.3. The MONOMI designer
uses standard techniques for optimization, but applies them in the
context of encrypted query processing. To evaluate the performance
implications of different physical designs, the designer uses a query
planner to choose the best query execution strategy given a physical



design. This planner is also used at runtime to choose a query plan
for a new query from the application.

6.1 Input and output

The goal of MONOMTI’s designer is to decide how to encrypt the data
(physical design). MONOMTI'’s planner, on the other hand, determines
how to best execute queries given a particular physical design. We
envision the use case of the designer to be similar to automated index
selection and materialized view selection tools.

MoNoOMTI’s designer is invoked during the setup phase, when
the user is preparing to load his database into MONOMI. The user
provides the designer with a query workload Q1,Q»,...,Q,. The
query workload does not need to exhaustively enumerate every
possible query the user will run, but it should be representative of
the operations that the user is expecting to perform over the data.
The user also provides a sample of the data that will be loaded into
the database, which is used for estimating statistics about the data,
and need not be the exact data that will be eventually loaded on the
server. The user can also specify a space constraint factor S, which
controls how much space MONOMI’s designer can consume.

Given these inputs, the designer returns to the user a physical
design for the server, which is a set of (encrypted) columns to mate-
rialize for each table, including pre-computed and Paillier columns.

6.2 Algorithm without constraints

MoNoMTI’s designer works by initially considering each query in
isolation, performing the following steps for each query Q;:

1. The designer considers all of the operations in Q;, including all
of the expressions in the WHERE and HAVING clauses, any ORDER
BY and GROUP BY clauses, etc. For each operation, the designer
determines what expression and encryption scheme would allow
that operation to execute on the server. The expression might be
a column, or it may be an expression that could be precomputed
per row. The encryption scheme depends on the operation being
performed (such as deterministic encryption, Paillier encryption,
or order-preserving encryption). The set of these (value,scheme)
pairs for Q; is called EncSet;, and we define & to be the set of all
possible such pairs; that is, EncSet; C &.

For example, a WHERE x = :1 clause generates a (x, DET) pair,
referring to the x column, and an ORDER BY x+y clause gener-
ates a (x+y, OPE) pair, referring to a precomputed x+y value.

2. The designer invokes the planner to determine how to best ex-
ecute Q; given the encryption schemes in EncSet;. The planner
does so by computing PowSet;, the power set that contains all
subsets of EncSet;. It then constructs an execution plan for Q;
for each element of the power set (denoted PowSet;[j]), where
the execution plan describes what parts of the query would be
executed on the server, and what parts would be executed on
the client, using Algorithm 1. An example execution plan is
illustrated in Figure 3.

3. For each of the execution plans above, the planner uses a cost
model to estimate how much time it would take to execute that
plan. The planner chooses the fastest execution plan for Q;, and
we denote the corresponding subset of encryption types used by
that plan as BestSet;; that is, BestSet; € PowSet,;.

Once the designer uses the planner to compute BestSet; for each
query, the designer takes the union of the encryption schemes re-
quired by each query and uses that as the chosen physical design.

6.3 EncSet pruning heuristics

The algorithm described above performs exhaustive enumeration
of all possible subsets of encryption schemes (i.e., all of PowSet;).

Although this will find the optimal plan, the number of distinct
subsets that have to be considered can grow quite large. For ex-
ample, consider a query that has a WHERE coll > :1 OR col2 >
:2 clause. The naive algorithm above would separately consider
storing an OPE encryption of coll but not col2, of col2 and not
coll, and finally of both. However, if any part of the clause cannot
be evaluated on the server, the client must still fetch the entire table
from the server and apply the WHERE clause locally.

To avoid considering such unnecessary subsets, MONOMI applies
a simple pruning heuristic. In particular, MONOMI considers only
subsets of encryption schemes where either all of the encryptions
necessary for a given unit are present, or all of them are absent. A
query unit corresponds to a WHERE or HAVING clause, a GROUP BY
clause, etc. We make a special case for WHERE clauses however,
where we treat each top level conjunction as a separate unit.

6.4 Cost model

We model the cost to execute a given query plan as the sum of three
main components: execution time on the server, transfer time of data
over the network link, and post-processing time on the client.

MONOMI estimates the execution time on the server by asking
the Postgres query optimizer for cost estimates to run the one or
more server queries. The network transfer time is computed based
on a user-provided estimate of the network bandwidth.

To estimate the post-processing time on the client, we focus on
decryption cost. We query the Postgres database to obtain estimates
of the cardinality and row-length of the result set, and then estimate
decryption time based on the encryption type used. Since decryption
costs are comparable across different modern systems, we estimate
the per-byte decryption cost of each scheme (random, homomorphic,
order preserving, and deterministic encryption) by running a profiler
that decrypts a small amount of data when MONOMI is first launched.

6.5 With constraints

The designer algorithm in §6.2 chooses the lowest-cost plan without
considering any constraints. For example, it does not take into ac-
count the server space overhead of the chosen plan, which can be
high because the encryption scheme chosen by the designer requires
a lot of space, or because the designer chose to precompute several
additional columns. This subsection present an Integer Linear Pro-
gram (ILP) formulation that chooses the lowest-cost plan subject to
constraints, such as a user-supplied server space budget S. Client
CPU and bandwidth use is not considered here, since it is already
included in the cost of query execution.

As before, the designer computes EncSet; for each Q;, and
PowSet; (all possible subsets of EncSet;). The ILP formulation
minimizes the total cost ¢ over all of the queries, as a function of the
chosen plan for each query, represented by the bit matrix x; ;:

n ||PowSet;||
cost(i, j) x; j
=1 j=1

where n is the number of queries, x; ; is 1 if PowSet;[j] is chosen
for Q; (and 0 otherwise), and cost(i, j) is MONOMI’s estimate for
the cost of executing Q; using the j-th candidate scheme of PowSet;.
Here, the designer assumes that all queries are weighted equally,
although it would be straightforward to support variable weights.
The designer minimizes this overall cost function under two con-
straints. First, to enforce that each query has one plan chosen, we
require that exactly one element of PowSet; is chosen for each Q;:

||PowSet;||
Vi7 Z Xij = 1
=



Note that > 1 would have worked here also, since the minimum
cost solution will necessarily involve picking only a single candidate
query plan (query costs are all positive numbers).

Second, bounding the amount of space used on the server requires
another constraint. A naive formulation would be as follows:

n |[PowSet;||
Y )Y Y encsize(k)-xij < S x plainsize
i=1  j=1  kePowSet;[j]

where encsize(k) is the size in bytes of the encrypted column k
(k € &), plainsize is the absolute size of the plaintext database, and
S > 1is supplied as a space overhead factor by the user. Specifying
S =11is equal to saying only deterministic encryption is allowed.

The above space constraint is too simplistic, because it double-
counts the space of encryption schemes required for multiple queries.
To avoid this problem, we extend the formulation with a new binary
decision variable that tracks whether each of the possible encryption
schemes is used: e, € {0, 1} where k € &. We now replace the above
space constraint with two constraints. The first of these constraints
limits the total space used by all of the encryption schemes:

Z ey - encsize(k) < S x plainsize
ke&

The second constraint now must ensure that the encryption
schemes needed for each query are reflected in ey:

Z ek§0

kePowSet;| ]|

Vi, Vj, ||PowSeti[j]]| - xi j —

If Q; does not use plan j, then x; ; = 0 and the above constraint is
always true. If Q; does use plan j, then the above constraint is satis-
fied only if all of the encryption schemes required by that query (i.e.,
PowSet;[j]) are enabled in e;. Note that the ILP is always feasible as
long as S > 1, because using only deterministic encryption for every
column is always a valid (albeit not very interesting) solution.

Solving this ILP identifies a set of encrypted columns that ensures
each query has a viable plan and that the minimum cost set of plans
that meets the space budget is selected. The end result is a physical
design, as well as a best execution plan for each query. For TPC-H,
our formulation used 713 variables and 612 constraints.

Our ILP formulation is an approximation for row-stores, and is
more accurate for column-stores. The ILP leaves out cross-query in-
teractions which affect row-stores: if one plan requires an additional
encrypted column, other plans that perform sequential scans over
that table but do not use the new column are slowed down. Column-
stores avoid this problem. It is possible to account for this non-linear
interaction in row-stores using a mixed-integer-quadratic-program
(MIQP)!; we do not use this formulation because there are no robust
open-source MIQP solvers and the added benefit is minimal.

7. IMPLEMENTATION

MoNoMI is implemented according to the design shown in Figure 1,
and uses the Postgres database as the backend. The designer and
planner are implemented in ~ 8,000 lines of Scala. The client library
and the server-side UDFs are implemented in ~ 4,000 lines of C++.
We use OpenSSL for cryptography and NTL for infinite-precision
numerical arithmetic. The client library assumes that all intermediate
results sent from the server to the client will fit in memory, which is
true for all of the TPC-H queries we considered.

In the encrypted Postgres database, each table in the original
schema maps to a single table in the encrypted schema. This en-
crypted table contains one or more copies of every column in the

n fact, our ILP formulation is a direct result from setting the
quadratic term in the MIQP formulation to zero.

original table, based on the number of encryption schemes chosen
for that table during setup. We chose this representation rather than
placing each encrypted column into a separate table because we
found that the cost of additional joins to reconstruct tuples at query
time outweighed the benefits of narrower tables (others report similar
results for emulating column-stores in row-oriented databases [1]).

The packed Paillier ciphertexts for each group are kept in separate
files on the local file system. We do this because efficiently mapping
a value in row i to rows i,i+ 1,...,i+n in the same table is an un-
natural fit for the relational model. In order for each row in a table
to access its corresponding Paillier ciphertext (if one exists), we add
an additional row_id column for each table requiring it. We then
supply this row_id to the homomorphic aggregate UDF, which can
then compute an offset into the ciphertext file and read the Paillier
ciphertext from there. We currently do not support transactionally
inserting into both a table and its corresponding ciphertext file(s).

All columns in MONOMI are encrypted with at most deterministic
encryption. Randomized encryption would be simple to support,
requiring an extra 64-bit initialization vector (IV) in each row.

MonNoMI is designed to support arbitrary SQL queries, but our
implementation has a few limitations that prevent it from handling
some constructs, including three out of the 22 TPC-H queries. We do
not support views, which prevents us from running TPC-H query 15.
We also do not support text pattern matching with two or more pat-
terns, such as ¢ LIKE ’%foo%bar%’, although we support single
patterns, such as ¢ LIKE ’%foo%’. This prevents us from running
TPC-H queries 13 and 16. However, there is nothing fundamental in
our design that prohibits implementing these features.

8. EVALUATION

To evaluate MONOMI, we answer the following questions, in the
respective subsections:

e Can MoNOMI efficiently execute an analytical workload over
encrypted data on an untrusted server? (§8.2)

e How much do MONOMTI’s optimization techniques, designer, and
planner matter in achieving good performance? (§8.3)

e What are the overheads for MONOMI in terms of space and
client-side CPU time? (§8.4)

e What workload features are important for MONOMI’s designer,
and how sensitive is it to having only a subset of the queries
during setup? (§8.5)

e Is MonoMI’s ILP formulation necessary for achieving good
performance under a space constraint? (§8.6)

e What security level does MONOMI provide? (§8.7)

8.1 Experimental setup

To answer these questions, we use MONOMI to run the TPC-H 2.14
benchmark over a TPC-H scale 10 data set. We evaluated 19 of the
22 queries in the benchmark: as described in §7, MONOMI cannot
execute queries 13, 15, and 16. Each reported query runtime is the
median of three runs of that query. The setup phase (i.e., running
MonNoMmr’s ILP designer) took 52 seconds for this TPC-H workload.

The experimental setup consisted of two machines: a client run-
ning the MONOMI client library, and a server running unmodified
Postgres 8.4. The client machine has four 4-core 2.2 GHz Intel Xeon
E5520 processors, and the server machine has four 4-core 2.4 GHz
Intel Xeon E5530 processors. Both machines have 24 GB of RAM.
The server has six 7,200 RPM disks setup in a RAID 5 configuration.
The client and server run Linux 2.6.38 and 2.6.35 respectively.

To ensure that queries access disk (as is typically the case for large
analytical workloads), we limit the amount of memory available to
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Figure 4: Execution time of TPC-H queries under various systems, normalized to the execution time of plaintext Postgres (shown in parentheses).
Query 21 times out on all systems at scale 10 due to correlated subqueries, but incurs a 1.04x overhead with MONOMI relative to plaintext at scale 1.

the Postgres server to 8 GB of RAM on the server, and flush both
the OS buffer cache and the Postgres buffer pool before running
each query. Results using 4 GB and 24 GB of RAM are similar. To
simulate a wide-area network connection between the client and a
server running in a remote data center, we use the tc command in
Linux to throttle the network bandwidth between the two machines
to 10 Mbit/s. We use ssh -C -c blowfish to compress network
traffic between the client and server machines for all experiments.

We use multiple cores to speed up decryption (on the client)
and homomorphic multiplication (on the server), using at most 8
threads. We further speed up decryption on the client by caching
the decryptions of repeating ciphertexts, using a cache size of 512
elements with a random eviction policy.

In all physical designs, we use the primary key definitions spec-
ified by the TPC-H benchmark. For encrypted designs, we index
over the deterministic version of the column. We create only one
secondary index over the o_custkey column, which we applied to
all physical designs. We cluster each table on its primary key.

Queries 17, 20, and 21 cause trouble for the Postgres optimizer:
they involve correlated subqueries, which the optimizer is unable
to handle efficiently. We modified the query text for queries 17 and
20 to work around this issue by de-correlating the subqueries via
explicit joins. We used the modified texts both as inputs to MONOMI,
and to execute the plaintext query for our experiments. Query 21
had no obvious re-write, so we left it in its original form.

To provide a fair comparison between MONOMI and plaintext
query processing, we make a few modifications to the plaintext
schema. First, we replace all DECIMAL data types with regular in-
tegers, because integer arithmetic is much faster. Additionally, we
found that SUM() was a CPU bottleneck for some of the plaintext
queries, because it was emulating infinite size arithmetic in soft-
ware. Thus, we replace SUM() with a custom aggregate UDF which
performs regular integer addition without regard for overflow.

Finally, we modify the plaintext execution for TPC-H query 18
to speed up plaintext performance. Query 18 contains an outer
SELECT statement with a predicate of the form o_orderkey IN (
subselect ) . We run query 18 as two separate queries, fully
materializing the inner subselect on the client. This is more efficient
because it allows the Postgres optimizer to use a bitmap index scan
on the orders table when answering the outer SELECT statement.

8.2 Overall efficiency

To understand how much overhead MONOMI imposes for securely
executing queries over encrypted data, we compare the runtime of
TPC-H queries using a plaintext Postgres database to using MONOMI
with space constraint factor S = 2. The MONOMI bars in Figure 4
show the slowdown imposed by MONOMI. The median overhead is
only 1.24x, and ranges from 1.03 x for query 7 to 2.33x for query
11. We believe these modest overheads show that analytical queries
over encrypted data are practical in many cases.

To the best of our knowledge, MONOMI is the first system that
can efficiently execute TPC-H queries over encrypted data, making
it difficult to construct a head-to-head comparison with state-of-
the-art approaches for encrypted query processing. For example,
the only TPC-H queries that CryptDB can execute are 2, 4, 12,
and 22. Nonetheless, to provide some form of comparison, we
constructed a modified version of CryptDB that is able to execute
the same TPC-H queries as MONOMI. This modified version of
CryptDB, which we call CryptDB+Client, executes as much of
the query on the server as possible, using only techniques found
in the original CryptDB design, and executes the rest of the query
on the client using Algorithm 1 (which is something that CryptDB
did not support). The bar CryptDB+Client in Figure 4 shows that
MoNoMI outperforms this approach by 3.16x in the median case.

8.3 Technique performance

The previous subsection shows that MONOMI achieves good perfor-
mance for TPC-H queries. To understand what techniques contribute
to MONOMT’s effectiveness, we measure the time taken to execute
TPC-H queries by allowing the designer to use one additional tech-
nique from §5 per experiment, and finally adding the optimizing
planner. Figure 5 shows the mean and geometric mean execution
times for the TPC-H queries with different optimizations applied
cumulatively, and Figure 6 provides the execution time for example
queries that benefit the most from each of the optimizations.

In these experiments, we start with the CryptDB+Client system
from §8.2, and introduce one technique at a time. We use a greedy
physical design and plan formulation for this experiment—that is,
for each new technique we introduce, we always apply it if possible.

The first optimization, +Col packing, refers to packing multiple
integer values from the same row into a single Paillier ciphertext.



400

=~ CryptDB+Client |
E [] +Col packing
8 300 [ +Precomputation -
2 [ +Columnar agg
: - +Other i
g 200 +Planner
3=
a
o
2
2 100
D)
X
m
0

Mean Geometric mean
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Figure 6: Running times of queries before and after a specific optimiza-
tion is applied. For each optimization, we show the query that benefits
the most from that optimization.

The runtime of query 17 is reduced by this optimization because
it involves scanning the large 1ineitem table, and scans are much
faster when there are fewer large Paillier ciphertexts stored per row.

The +Precomputation optimization refers to materializing en-
crypted values of certain expressions on the server. Query 1 ben-
efits the most from this optimization because it involves aggre-
gates over expressions that themselves cannot be computed at the
server, such as SUM(1_extendedprice * (1 - 1l_discount)).
Precomputing the Paillier encryption of 1_extendedprice * (1

- 1_discount) allows the server to compute the entire aggregate.

The +Columnar agg optimization refers to packing integer val-
ues from multiple rows into a single Paillier ciphertext. As described
in §7, we split the storage of Paillier ciphertexts into a separate file,
rather than storing them in the row itself. Query 5 benefits from this
optimization because it computes an aggregate on the lineitem
table, and packing multiple rows into a single ciphertext significantly
reduces the amount of data read from disk.

The +Other optimization refers to pre-filtering and other opti-
mizations. Query 18 benefits the most, because pre-filtering helps
the server filter out some results, which both reduces the size of the
intermediate results sent to the client, and the amount of work the
server has to do to generate these intermediate results.

The last optimization, +Planner, uses MONOMI’s planner to
choose the best execution plan for each query. This is in contrast to a
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greedy execution strategy, which greedily executes all computation
on the server whenever possible. This significantly improves the
throughput of query 18, because it involves computing an aggregate
for many distinct groups, where each group has few rows. The cost
of decrypting the homomorphic ciphertext is higher than the cost of
sending over the individual rows and aggregating them on the client.

In fact, the planner improves the performance of many TPC-
H queries, and does not hurt any of them, as shown in Figure 4.
The Execution-Greedy bar in Figure 4 corresponds to the +Other
optimization level, and the performance of MONOMI is often better,
and never worse than, the performance of Execution-Greedy.

8.4 Space and CPU overheads

Table 2 shows the amount of disk space used on the server by a
plaintext database, MONOMI, and the two alternatives described
previously: CryptDB+Client and Execution-Greedy. As can be
seen from this data, MONOMI incurs only a 1.72x space overhead.
CryptDB+Client incurs a much higher space overhead because it
does not use space-efficient encryption schemes. Execution-Greedy
has a slightly higher space overhead than MONOMI because it ma-
terializes some additional columns on the server that MONOMI’s
designer does not choose.

System Size (GB) Relative to plaintext
Plaintext 17.10 -
CryptDB+Client 71.98 4.21x
Execution-Greedy 32.55 1.90%
MoNOMI 29.38 1.72x

Table 2: Server space requirements for the TPC-H workload, under
several systems, and the overhead compared to plaintext.

To evaluate the CPU overhead imposed by MONOMI, we consider
two scenarios. In the first scenario, the user runs the query on a local
database (using plaintext Postgres, since the machine is trusted). In
the second scenario, the user runs the query on a remote untrusted
machine using MONOMI, and uses the local machine to run the
MoNoMI client library. Figure 7 shows the ratio of the CPU time
spent by the client library in scenario two divided by the total time
spent by the plaintext database in scenario one.
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Figure 7: Ratio of the client CPU time required to execute a query using
MoNOMI compared to the client time that would be required to execute
the query using a local Postgres server.

Ideally, this ratio would always be less than one, indicating that
it always takes less CPU time to outsource query processing using
MoNoMLI. For most queries, this is true, except for queries 9, 10, 11,
and 18. In those queries, the MONOMI client library spends a lot of
time in decryption. We believe this is acceptable because it is easy
to parallelize decryption across many cores on the client (whereas



it is hard to parallelize Postgres), and because MONOMI does not
require the client machines to store any data.

8.5 Sensitivity to designer input

The physical design used for MONOMI in Figure 4 was generated
by handing the entire TPC-H workload to MONOMI’s designer.
In practice, however, the physical design is generated by feeding
the designer a representative set of queries. This section provides
insights on what properties the representative subset should have.

One option is to randomly choose k queries, which puts the least
amount of burden on the administrator. Unfortunately, this yields
poor performance for small values of k: for example, the median
TPC-H cost estimate out of all designs from all possible k = 4 input
queries, according to MONOMI’s planner, is ~ 10°x higher than
the optimal design with all input queries, and executing TPC-H
with this design times out. The reason is that if query 19 (which
involves the large 1ineitem table joined with the part table) is not
included, then the query runs entirely on the client, and the overhead
of downloading the entire table to the client kills performance. Thus,
it is important for the administrator to choose the right set of input
queries to the designer in order to achieve good performance.

A natural question to ask is how many queries does the administra-
tor have to provide to the designer at a minimum, in order to achieve
good performance, even if the administrator manually chooses the
best queries? To answer this question, we measured the best perfor-
mance that MONOMI can obtain on TPC-H using k =0,1,...,19
input queries to the designer. In particular, for each k, we enumer-
ated all n-choose-k subsets of the n = 19 total TPC-H queries we
could support, and picked the k queries that yielded the lowest cost
estimate on the entire TPC-H workload. We then implemented the
best physical design for each k, and benchmarked the performance.
Figure 8 shows the results. As the figure shows, using as few as four
queries for the physical database design allows MONOMI to match
the performance of having the entire query workload (Figure 4).
Thus, as long as the administrator chooses the right representative
queries, few queries are necessary to achieve good performance.
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Figure 8: Total TPC-H workload execution time on a physical design
chosen using the best 0 < k <4 and k = 19 queries as input to MONOMI’s
designer, along with the cost estimate from MONOMI'’s designer.

To understand how the administrator should pick these represen-
tative queries, we analyzed the k = 4 case to explore what char-
acteristics these queries have that make them crucial to achieving
good performance. In the k = 4 case, using TPC-H queries 1, 4,
9, and 19 as input to the designer resulted in the best overall per-
formance. Query 1 involves aggregation over expressions which
other TPC-H queries share, including several expressions which
require pre-computation. Queries 4, 9, and 19 have (sub-)queries
that contain very selective WHERE clauses over the 1ineitem table
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(the largest relation in TPC-H), which require specialized encryption
schemes (such as OPE or keyword search) for computing the WHERE
clause on the server. Thus, it is important for the administrator
to choose queries that perform representative types of significant
filtering and aggregation on the server.

These experiments assumed deterministic encryption as the de-
fault encryption scheme for certain types of columns. These types of
columns include primary/foreign keys and enumerations/categories
(such as 1_shipmode from the lineitem table). The former is
obviously important for joins; the latter is important for GROUP BY
operations on categories, which are common in TPC-H.

8.6 Space constraints

The experiments so far have not stressed the space budget. To evalu-
ate how well MoONOMTI'’s ILP formulation trades off performance for
space, we compare the performance of TPC-H queries under a large
space budget (S = 2) with their performance under a smaller space
budget (S = 1.4) using two approaches: the first is MONOMI’s ILP
designer, and the second is a Space-Greedy approach that deletes
the largest column until the space budget is satisfied.

We expect to see few differences between S =2 and S = 1.4
because, as we saw in §8.4, MONOMI incurs a space overhead of
only 1.72 %, and indeed, most queries have the same running time.
Figure 9 shows the results for the four queries affected by the space
budget change. Both the Space-Greedy algorithm and MONOMI’s
ILP designer decide to drop the largest homomorphic column from
the lineitem table, which significantly reduces the performance
of query 1. The Space-Greedy algorithm decides to drop the OPE
encryption of the 1_discount column from the lineitem table,
which significantly slows down query 6 because it can no longer ap-
ply a fairly selective predicate involving 1_discount on the server.
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Figure 9: Execution times of queries that were affected by reducing the
space budget from S =2 to § = 1.4.

MoNoMTI’s ILP designer instead drops two more homomorphic
columns from the 1ineitem table, replacing one of them with a pre-
computed deterministic column. It also removes the OPE encryption
of the o_totalprice column from the orders table. Collectively,
this slows down queries 6, 14, and 18 by a much smaller amount.

8.7 Security

To understand the level of security that MONOMI provides, it is
important to consider the encryption schemes chosen by MONOMI,
since they leak different amounts of information, as shown in Table 1.
The worst is OPE, which reveals order, followed by DET. Table 3
shows the encryption schemes that MONOMI chooses for the TPC-H
workload. MONOMI never reveals plaintext to the server. The weak-
est encryption scheme used, OPE, is used relatively infrequently.



Total# RND, HOM,
Table columns or SEARCH DET ~ OPE
customer 8+1 0 T+1 1
lineitem 16+4 342 8+2 5
nation 4 1 2 1
orders 9+1 3 4+1 2
part 9 4 4 1
partsupp 6 2 3 1
region 3 1 2 0
supplier 7 4 2 1

Table 3: Number of distinct columns in the TPC-H tables encrypted
by MONOMI under each of the encryption schemes shown. For each
column, we consider only the weakest encryption scheme used. Numbers
after a plus sign indicate encryptions of precomputed expressions.

Most uses of OPE come from the 1ineitem table, where MONOMI
reveals order for five distinct columns. A common use of OPE is for
date fields, which may be less sensitive. The next weakest scheme,
DET, is used in quite a few columns, but reveals only duplicates,
which may be less of a concern. Finally, many columns can remain
encrypted with the most secure schemes, where a malicious server
would learn nothing from the ciphertext other than its size.

9. DISCUSSION

A natural question for analytical workloads is how well MONOMI’s
techniques would apply to a column-store database. We expect that
MoONOMI’s techniques would generalize well; a column-store would
be less sensitive to the increased table width imposed by adding
additional encrypted columns, and so it should have lower over-
heads relative to an unencrypted system than a row-store. Currently,
MoNoMTI’s designer does not consider table width when considering
different designs, so it would be well suited for a column-store.

A second question has to do with how MoNOMI would evolve
physical designs over time, as the workload changes. It is straightfor-
ward to re-run the designer and compute a new database design, but
in the current implementation installing the new design requires that
the client download and decrypt each table that needs to be updated
(viaa SELECT * query), and then re-insert each encrypted row using
the new encrypted design. Exploring more efficient physical design
evolution for encrypted databases is an area for future work.

Finally, MONOMTI’s designer does not take into account any secu-
rity constraints. While it is difficult to quantitatively reason about
trade-offs between performance and security, it would be straight-
forward to allow the administrator to specify minimum security
thresholds for each column during the setup phase.

10. CONCLUSION

This paper presented MONOMI, a system for securely executing
analytical queries over confidential data using an untrusted server.
MoNOMI protects data confidentiality by executing most query op-
erations over encrypted data. MONOMI uses split client/server query
execution to perform queries that cannot be efficiently computed
over encrypted data alone. MONOMI introduces per-row precompu-
tation, space-efficient encryption, grouped homomorphic addition,
and pre-filtering to improve performance of analytical queries over
encrypted data. Finally, MONOMI shows that using a designer and
planner improves performance over greedy algorithms, by choos-
ing efficient physical designs and query execution plans. On the
TPC-H benchmark at scale 10, MONOMI achieves a median runtime
overhead of just 1.24 x with a 1.72x server space overhead.
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