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Abstract. We present an optimal, linear time algorithm for the short-
est unique substring problem, thus improving the algorithm by Pei et
al. (ICDE 2013). Our implementation is simple and based on suffix ar-
rays. Computational experiments show that our algorithm is much more
efficient in practice, compared to that of Pei et al.

1 Introduction

The shortest unique substring problem was proposed by Pei et al. [4]. Given a
string S and position p, the problem is to find a shortest unique substring (SUS)
of S that contains position p, that is, a substring that only occurs once in S,
and whose occurrence contains position p. They also consider a version of the
problem where S may be preprocessed, and SUS queries for arbitrary positions
may be answered efficiently.

For the first version of the problem, Pei et al. [4] presented an algorithm that
computes the SUS for any given position p in O(n) time and space, where n
is the length of string S. For the second version, they present an O(hn) time
and O(n) space preprocessing algorithm which allows queries to be answered in
constant time, where h is a value depending on S. However, h is only bounded
by O(n), and in the worst case, this results in O(n2) time pre-processing.

The contributions of this paper is as follows: First, we give optimal time so-
lutions for both problems and show that S can be preprocessed in O(n) time so
that a SUS for any query position can be answered in O(1) time. This consider-
ably improves the theoretical worst case running time compared to Pei et al. [4],
allowing us to output a SUS for all positions in the string in O(n) total time.
Second, we consider the general problem of computing all SUSs that contain a
given position. Although there can be multiple shortest substrings that contain
a given query position, Pei et al. [4] only considered the problem of answering
a single SUS that contains a position. We show that the same linear time pre-
processing above also allows us to return all SUSs that contain a given query
position in O(k) time, where k is the size of the output. Finally, we implement
our algorithm and show through computational experiments that our implemen-
tation is much more practical and scalable compared to an implemention of the
algorithm by Pei et al. [4] made available by the authors.
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2 Preliminaries

2.1 Strings

Let Σ be an ordered finite alphabet. An element of Σ∗ is called a string. The
length of a string w is denoted by |w|. The empty string ε is a string of length
0. Let Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string
w = xyz, x, y and z are called a prefix, substring, and suffix of w, respectively.
A prefix (resp. substring, suffix) x of w is called a proper prefix (resp. substring,
suffix) of w if x �= w. The i-th character of a string w is denoted by w[i], where
1 ≤ i ≤ |w|. For any integers i ≤ j, let [i..j] denote an interval, i.e. the set of
integers {i, . . . , j}, and let |[i..j]| = j − i + 1 denote the length of the interval.
For convenience, let [i..j] denote the empty set when i > j. For a string w
and interval [i..j] where 1 ≤ i ≤ j ≤ |w|, let w[i..j] = w[i] · · ·w[j] denote the
substring of w that begins at position i and ends at position j. For convenience,
let w[i..j] = ε when i > j. For any string w and S, we call a position p an
occurrence of w in S, if S[p..p+ |w| − 1] = w.

Given two distinct positions i, j (i < j), we say that i is to the left and j the
right. Two distinct intervals are nested, if one is a subset of the other. For two
non-nested intervals [i..j] and [i′..j′], we say that [i..j] is to the left and [i′..j′]
is to the right, if i < j. Since, for any interval [i..j] (1 ≤ i ≤ j ≤ |S|) there is a
corresponding substring S[i..j] of S, we abuse the language and will many times
call an interval a substring.

2.2 Unique Substrings

We say that a substring w of S is unique, if there is exactly one occurence of w
in S. When w is unique, the interval [i..i+ |w|−1] such that S[i..i+ |w|−1] = w
is called a unique interval of S. We say that a unique substring w of S contains
position p, if w = S[i..i+ |w|−1] and p ∈ [i..i+ |w|−1]. It is easy to see that any
string that contains a substring that is unique, is also unique, and any interval
that contains a sub-interval that is unique, is also unique.

Definition 1 (Shortest Unique Substring). A substring w is a shortest
unique substring (SUS) of S that contains position p, if w = S[i..j] is unique in
S, i ≤ p ≤ j, and no other substring w′ = S[i′..j′] such that i′ ≤ p ≤ j′ and
j′ − i′ < j − i is unique in S.

Note that there can be more than one SUS that contains position p as shown
in the following example. Let SUSS(p) denote the set of intervals corresponding
to SUSs of S that contains position p. Note that SUSS(p) �= ∅ for any position
1 ≤ p ≤ |S|.
Example 1 (SUS). Let S = aabaabcababbaabdbab. Then, SUSS(2) = {[1..4],
[2..5]}, SUSS(4) = {[1..4], [2..5], [4..7]}, SUSS(9) = {[7..9]}, SUSS(10) = {[10..
12] }. (See Fig. 1)

In this paper, we focus on the following problems.
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SUS(9) SUS(10)

MUS

SUS(4)

  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19
  a  a  b  a  a  b  c  a  b   a   b   b    a   a    b   d   b   a   bS

meaningless MUS

Fig. 1. Example of a string and its SUSs (see Definition 1) and MUSs (see Definition 2).
Although all 6 MUSs are depicted, SUS(p) is depicted only for positions 4, 9 and 10.
MUSS = {[1..4], [2..5], [7..7], [8..11], [11..12], [16..16]}. SUSS(4) = {[1..4], [2..5], [4..7]},
SUSS(9) = {[7..9]}, SUSS(10) = {[10..12]}. The MUS [8..11] is meaningless since no
SUS contains it, while the others are meaningful (see Definition 7).

Problem 1 (SUS query). Given string S of length n, compute for all positions
p (1 ≤ p ≤ n), a shortest unique substring that contains position p.

Problem 2 (All SUS query). Given string S of length n, compute for all positions
p (1 ≤ p ≤ n), all shortest unique substrings that contain position p.

Problem 1 was first considered by Pei et al. [4]. They first gave a simple O(n)
time algorithm for computing an SUS for a single p. However, this would result
in O(n2) time for computing a SUS for each p. Thus, they further showed an
improved algorithm which pre-process S in O(hn) time, and allows queries for
any p in O(1) time, where h is a parameter that depends on S. This results in an
O(hn) time solution for computing the SUS for all positions 1 ≤ p ≤ n. Although
Pei et al. [4] gave empirical evidence that h is not very large in practice, they
were not able to give a good theoretical bound on h, mentioning that h can be
as large as O(n), resulting in O(n2) time worst case pre-processing time.

In this paper, we give optimal time solutions for both problems, and show
that S can be preprocessed in O(n) time so that the queries can be answered in
O(k) time, for any query position p, where k is the size of the output. Noting
that k is O(1) for Problem 1, this results in an O(n), i.e. a truly linear time
solution for computing the SUS for all positions 1 ≤ p ≤ n.

Like the algorithm by Pei et al. [4], our algorithm finds SUSs, based on the
concept of Minimal Unique Substrings defined below.

Definition 2 (Minimal Unique Substring). A substring w of S is a minimal
unique substring (MUS) if w is unique in S, and no proper substring of w is
unique in S.

Let MUSS denote the set of intervals corresponding to MUSs of string S.
Notice that by definition, MUSs of S can overlap with each other, but cannot
be nested. This implies that there can exist at most one MUS starting at a
given position in S. Also, since there must exist at least one MUS, we have
0 < |MUSS | ≤ |S|.
Example 2 (MUS). Let S = aabaabcababbaabdbab, the same string as in Ex-
ample 1. MUSS = {[1..4], [2..5], [7..7], [8..11], [11..12], [16..16]}. (See Fig. 1)
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2.3 Data Structures

We utilize the following data structures and algorithms. While the main data
structure used by Pei et al. [4] was the suffix tree [5], we use the suffix array [3],
which is theoretically almost equivalent to the suffix tree, but more time and
space efficient in practice.

Definition 3 (Suffix Array [3]). The suffix array SA of a string S of length
n is a permutation of integers {1, . . . , n}, such that SA[i] = j represents the ith
lexicographically smallest suffix S[j..n] of S.

Theorem 1 ([1]). Assuming an integer alphabet, the suffix array of a string S
of length n can be constructed in O(n) time.

Definition 4 (Rank array). The rank array SA−1 of a string S of length n,
is a permutation of integers {1, . . . , n}, such that SA−1 [SA[i]] = i.

Given SA, SA−1 can be computed in O(n) time by a simple loop over SA.

Definition 5 (LCP array). The longest common prefix (lcp) array LCP of
a string S of length n, is an array of integers where LCP [1] = 0 and LCP [i]
for 1 < i ≤ n holds the length of the longest common prefix between suffix
S[SA[i− 1]..n] and S[SA[i]..n], where SA is the suffix array of S.

Theorem 2 ([2]). Given string S of length n and its suffix array SA, the lcp
array LCP of S can be computed in O(n) time.

3 Algorithm

3.1 Finding All MUSs

Here, we describe how to find all MUSs of a string S in linear time, using the
suffix and lcp arrays of S.

Lemma 1. All MUSs of a string S of length n can be found in O(n) time and
space.

Proof. Let SA and LCP respectively be the suffix array and lcp array of S. For
any suffix S[j..n] where SA[i] = j (or SA−1 [j] = i), the shortest prefix of S[j..n]
that is unique is given by S[j..j + �j ] where

�j =

{
max{LCP [i],LCP [i+ 1]} 1 ≤ i < n

LCP [i] i = n.

The definition of �j implies that S[j..j + �j − 1] is not unique. Thus, S[j..j + �j ]
is the only candidate for a MUS starting at position j, and is a MUS if and
only if S[j + 1..j + �j ] is not unique. Since the definition of �j+1 implies that
S[j+1..j+�j+1] is not unique, S[j..j+�j ] is a MUS if and only if j+�j ≤ j+�j+1.
Once SA, SA−1 , and LCP are computed in O(n) time, this can be checked in
O(1) time for each j. Therefore, the lemma follows since �j for all 1 ≤ j ≤ n can
be computed in a total of O(n) time. ��
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3.2 SUSs from MUSs

Next, we consider the relation between MUSs and SUSs.

Definition 6. For an interval [i..j] and position p, let cover ([i..j], p) denote the
smallest interval that contains [i..j] and p, i.e. cover ([i..j], p) = [min(i, p)..max(j,
p)]. We say that cover ([i..j], p) is derived from interval [i..j] and position p.

We first show that any SUSS(p) is derived from an element in MUSS . The
following Lemma is essentially the same as Theorem 2 in [4], but the statement
has been reworded for our purposes.

Lemma 2. For any position p and interval [i..j] ∈ SUSS(p), there exists exactly
one sub-interval [i′..j′] ∈ MUSS of [i..j] such that [i..j] = cover ([i′..j′], p).

Proof. Since [i..j] is unique, it must contain at least one minimal unique sub-
interval. Let [i′..j′] be any MUS contained in the SUS [i..j]. Since i ≤ p ≤ j,
cover ([i′..j′], p) is unique, contains position p, and is a sub-interval of [i..j]. Thus,
[i..j] = cover([i′..j′], p) must hold, since otherwise, cover ([i′..j′], p) would be an
interval shorter than [i..j] containing position p, contradicting the assumption
that [i..j] is an SUS.

Next we show that there is exactly one MUS contained in a SUS. Suppose
there are two distinct minimal unique sub-intervals [i1..j1] and [i2..j2] of [i..j].
From the above arguments, [i..j] = cover ([i1..j1], p) = cover ([i2..j2], p) must
hold. Since MUSs cannot be nested, both must be proper sub-intervals of [i..j],
and we assume without loss of generality that i ≤ i1 < i2 and j1 < j2 ≤ j.
However, if i ≤ p < j, then cover([i1..j1], p) �= [i..j] since max{p, j1} < j, and
if i < p ≤ j, then cover([i2..j2], p) �= [i..j] since min{p, i2} > i. Thus, there can
only be one MUS that is contained in a given SUS. ��

For the purpose of describing our algorithm, we define a generalization of
SUSs with respect to a subset of MUSs, namely, MUSs that begin at or before
a certain position. Let MUSk

S = {[i..j] ∈ MUSS | i ≤ k}. We define SUSk
S(p)

to be the subset of intervals which are shortest, of the intervals that can be
derived from intervals in MUSk

S and position p, i.e., [i..j] ∈ SUSk
S(p) if [i..j] =

cover ([i′..j′], p) for some [i′..j′] ∈ MUSk
S , and |[i..j]| ≤ |cover([i′′..j′′], p)| for any

[i′′..j′′] ∈ MUSk. Let lmSUSk
S(p) denote the leftmost interval of SUSk

S(p), and
lmMUSk

S(p) the interval in MUSk that derives lmSUSk
S(p).

Note thatMUSS = MUSn
S , and SUSS(p) = SUSn

S(p). Also note that although

for any k < k′, MUSk
S ⊆ MUSk′

S , it is not necessarily the case that SUSk
S(p) ⊆

SUSk′
S (p).

Next, we define the concept of meaningful and meaningless MUSs, which is
the main difference of our algorithm with [4].

Definition 7 (Meaningful Minimal Unique Substring). We say that an
interval [i..j] ∈ MUSk

S is meaningful with respect to MUSk
S, if, for some position

p, cover ([i..j], p) ∈ SUSk
S(p). Otherwise, we say that a minimal unique substring

is meaningless with respect to MUS k
S.
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Example 3 (Meaningful MUS). Let S = aabaabcababbaabdbab, the same string
as in Example 1. Then, the set of MUSs {[1..4], [2..5], [7..7], [11..12], [16..16]} are
meaningful, since they respectively derive SUSs corresponding to positions 4, 9
and 10. However, MUS [8..11] is meaningless, it does not derive any SUS. (See
Fig. 1)

Observation 1. For any k < k′, if an interval [i..j] ∈ MUSk
S is meaningless

with respect to MUSk
S, then it is meaningless with respect to MUSk′

S .

Let MMUSk
S denote the set of all meaningful MUSs with respect to MUSk

S .
We first show that if we have an array MMUSS = MMUSn

S of meaningful MUSs
with respect to MUSS , in order of their occurrence, and for each position p
we hold an index L[p] such that MMUSS [L[p]] = lmMUSn

S(p), we can answer
SUSS(p) in O(|SUSS(p)|) time.

To prove this, we give a more specific characterization of which MUSs can
derive elements of SUSS(p). Let MUSS(p) denote the set of MUSs that contain
position p, i.e.,

MUSS(p) = {S[i..j] ∈ MUSS | i ≤ p ≤ j}.

MUSS(p) can be empty. For any position p, let predS(p) = [i..j] represent the
rightmost MUS that occurs before position p if one exists, that is, [i..j] ∈ MUSS ,
j < p, and there exists no [i′..j′] ∈ MUSS such that j < j′ < p. Similarly, let
succS(p) = [i..j] represent the leftmost MUS that occurs after position p if one
exists, that is, [i..j] ∈ MUSS , i > p, and there exists no [i′..j′] ∈ MUSS such
that p < i′ < i. We say that the set {predS(p), succS(p)}∪MUSS(p) is the MUSs
in the neighborhood of position p.

The following lemma shows that |cover ([i..j], p)| for MUSs [i..j] in the neigh-
borhood of position p which are meaningful with respect to MUSk

S and are to the
right of lmMUSk

S(p) (including lmMUSk
S(p)), form a monotonically increasing

sequence.

Lemma 3. Consider any position p and integer k, and let [i..j] = lmMUSk
S(p).

Any two distinct intervals [i1..j1], [i2..j2] ∈ {{predS(p), succS(p)}∪MUSS(p)}∩
MMUSk

S such that i ≤ i1 < i2, satisfy |cover ([i1..j1], p)| ≤ |cover ([i2..j2], p)|.
Proof. Suppose to the contrary that |cover ([i1..j1], p)| > |cover ([i2..j2], p)|. Since
cover ([i..j], p) ∈ SUSk

S(p), it holds that |cover ([i..j], p)| ≤ |cover ([i2..j2], p)| <
|cover ([i1..j1], p)|. For all positions i ≤ p′ < p, it holds that |cover ([i..j], p′)| ≤
|cover ([i..j], p)| < |cover([i1..j1], p)|. Since [i..j] = lmMUSk

s (p) and i < i1, it
holds that [i1..j1] �= preds(p) and p′ < p ≤ j1. Since p′ < p ≤ j1, it holds that
|cover ([i1..j1], p)| ≤ |cover ([i1..j1], p′)|. Similarly, for all positions p < p′ < j2,
it holds that |cover ([i2..j2], p′)| = |cover ([i2..j2], p)| < |cover([i1..j1], p)|. Since
|cover ([i1..j1], p)| > |cover ([i2..j2], p)|, it holds that [i1..j1] �= succs(p) and i1 ≤
p < p′. It holds that |cover ([i1..j1], p)| ≤ |cover ([i1..j1], p′)|.

Also, for any position p′ < i, |cover ([i..j], p)| < |cover ([i1..j1], p)|, and for any
position p′ > j2, |cover ([i2..j2], p)| < |cover([i1..j1], p)|. This implies that [i1..j1]
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cannot be meaningful for all positions 1 ≤ p′ ≤ n, and must be meaningless with
respect to MUSk

S , contradicting the assumption that [i1..j1] ∈ MMUSk
S . Thus,

it must be that |cover ([i1..j1], p)| ≤ |cover ([i2..j2], p)|. ��
The next lemma shows that intervals in SUSk

S(p) are the shortest ones derived
from MUSs in the neighborhood of position p which are meaningful with respect
to MUSk

S .

Lemma 4. Consider position p, integer k, interval [i..j] ∈ MUSk
S, and let Y =

{{predS(p), succS(p)}∪MUSS(p)}∩MMUSk
S. If cover ([i..j], p) ∈ SUSk

S(p), then
[i..j] ∈ Y and |cover([i..j], p)| ≤ |cover ([i′..j′], p)| for all intervals [i′..j′] ∈ Y .

Proof. Assume cover ([i..j], p) ∈ SUSk
S(p) holds. Since Y ⊆ MUSk

S and by the
defintion of SUSk

S(p), |cover ([i..j], p)| ≤ |cover ([i′..j′], p)| holds for all [i′..j′] ∈ Y .
It is easy to see that [i..j] cannot be to the left of predS(p), since then,

|cover ([i..j], p)| > |cover(predS(p), p)| and [i..j] could not be in SUSk
S(p). Sim-

ilarly, [i..j] cannot be to the right of succS(p), since then, |cover ([i..j], p)| >
|cover (succS(p), p)| and again, [i..j] could not be in SUSk

S(p).
Finally, by the definition of meaningful, [i..j] ∈ MMUSk

S . ��

Algorithm 1. SUSS(p) from L and MMUSS .

Input: position p, MMUSS , L
Output: SUSS(p)

1 t ← L[p];
2 l ← |cover (MMUSS [t], p)| ; // length of SUS

3 while |cover (MMUSS[t], p)| = l do
4 output cover(MMUSS[t], p);
5 t ← t+ 1;

6 end

Theorem 3. Given an array MMUSS of all meaningful MUSs with respect to
MUSS in order of occurrence, and an array L of size n, where, for each po-
sition 1 ≤ p ≤ n, MMUSS [L[p]] = lmMUSn

S(p), we can compute SUSS(p) in
O(|SUSS(p)|) time.

Proof. The pseudo code of the algorithm is shown in Algorithm 1. By defini-
tion of MMUSS and L, it is clear that the first output is lmSUSn

S(p), i.e., the
leftmost SUS that contains position p. From Lemma 2 and by the definition of
a meaningful interval, it is easy to see that all MUSs that derive elements in
SUSS(p) must be in MMUSS .

It remains to prove that each element in SUSS(p) is derived from MUSs
in a contiguous range in MMUSS . This can be seen from Lemmas 3 and 4,
which claim that all MUSs in SUSS(p) are in the neighborhood of position p
that are meaningful with respect to MUSS , and for all such meaningful MUSs
[i..j] to the right of lmMUSn

S(p) (including lmMUSn
S(p)), cover([i..j], p) forms a

monotonically increasing sequence. ��
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Algorithm 2. Create array MMUSS of meaningful MUSs and an array of
pointers L to lmMUS for each position of string S

Input: LCP and RANK array for string S.
Output: MMUS [1..|MMUS .size()|]: array of meaningful MUSs; L[1..n]: index

in MMUS of leftmost SUS for each position.
1 for p ← 1 to n do
2 � ← MMUS .size();

// lmMUS for position p wrt MUSp−1
S is either the same as p− 1,

or the next one.

3 if p = 1 then
4 L[1] ← 1; // Core MUS of position 1 is leftmost MUS.

5 else if L[p− 1] < � and
|cover (MMUS [L[p − 1] + 1], p)| < |cover (MMUS [L[p− 1]], p)| then

6 L[p] ← L[p− 1] + 1;

7 else
8 L[p] ← L[p− 1];

// update MMUS and L to values wrt MUSp
S

9 if exists MUS: newMUS = [p, e] for some e ≥ p. then // O(1) time using

LCP and RANK array

10 if � > 0 then
// j: rightmost position that doesn’t need update

11 j ← max{i ≤ p | |cover(MMUS [L[i]], i)| ≤ |cover (newMUS , i)|};
12 if j = p then // No updates for L. Remove meaningless MUSs

from MMUS
13 MMUS ← MMUS [1..k] where

k = max{k′ ≤ � | |cover (MMUS [k′], p)| ≤ |cover (newMUS , p)|};
14 else // remove meaningless MUSs after the one pointed by j

and newMUS
15 MMUS ← MMUS [1..k] where k = max{k′ ≤ � |

|cover (MMUS [k′], j)| ≤ |cover (MMUS [L[j]], j)|};
16 for j + 1 ≤ i ≤ p do L[i] ← k + 1; // update L to new MUS

17 MMUS .push back(newMUS);

Next we show that MMUSS and L can be constructed in linear time, by
incrementally updating MMUSk

S and L. Let Lk denote an array of indices where
MMUSk

S [L
k[p]] = lmMUSk

S(p).

Lemma 5. Lp−1[p] is either the MUS [i..j] pointed to by Lp−1[p − 1], or the
next MUS [i′..j′] in MMUS p−1

S , i.e., the one pointed to by Lp−1[p− 1] + 1.

Proof. By definition, [i..j] = lmMUSp−1
S (p − 1). Let [i′′..j′′] be an arbitary in-

terval in MMUS p−1
S to the right of [i..j]. Then, [i′′..j′′] ∈ MUS p−1

S (p − 1) ∩
MUS p−1

S (p), since we have that i < i′′ ≤ p − 1, and if j < j′′ < p, then
|cover ([i..j], p − 1)| = |[i..p − 1]| > |[i′′..p − 1]| = |cover ([i′′..j′′], p − 1)|
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contradicting the definition of [i..j]. Thus, we have that |cover ([i′′..j′′], p− 1)| =
|cover ([i′′..j′′], p)|, and from Lemma 3, these values are monotonically increasing.
Therefore, the first one, which is [i′..j′] = MMUS p−1

S [Lp−1[p− 1] + 1], gives the

smallest value. Note that [ip..jp] = lmMUS p−1
S (p) cannot be to the left of [i..j]; If

p ≤ jp, then since ip < i < p ≤ jp < j and from the definition of [ip..jp], we have
|cover ([ip..jp], p−1)| = |cover([ip..jp], p)| ≤ |cover ([i..j], p)| = |cover([i..j], p−1)|
which contradicts the definition of [i..j] If jp ≤ p− 1, then cover([ip..jp], p− 1)+
1 = cover ([ip..jp], p) ≤ cover([i..j], p) ≤ cover ([i..j], p− 1)+ 1, again contradict-

ing the definition of [i..j]. Thus, lmMUS p−1
S (p) must be either [i..j] or [i′..j′]. ��

Theorem 4. MMUSS and L can be constructed in linear time.

Proof. The pseudo code of the algorithm is shown in Algorithm 2. The algorithm
computes MMUSS and L for increasing positions. For each value of p, we assume
that MMUS p−1

S and Lp−1[1..p− 1] are correctly computed, and we update them
to correct values of MMUS p

S and Lp[1..p].

Lines 3-8 in Algorithm 2 compute Lp−1[p] from Lp−1[p− 1], and MMUS p−1
S .

The correctness can be seen from Lemma 5. The calculation for updating L can
be done in constant time for each position.

Next, we show how to compute MMUS p
S and Lp[1..p] given MMUS p−1

S and
Lp−1[1..p]. The existence of an MUS starting at position p can be checked in
constant time with Lemma 1. If there exists no such MUS, then, sinceMUS p−1

S =

MUS p
S , MMUS p

S = MMUS p−1
S and Lp[p] = Lp−1[p], and no update is required.

If there does exist [p..e] ∈ MUSS for some e ≥ p, we check previous positions
i ≤ p to see if Lp−1[i] needs to be updated to Lp[i]. Such positions i satisfy
|cover (MMUS p−1

S [Lp−1[i]], i)| > |cover ([p..e], i)|, and if for some position j this
does not hold, then it is easy to see that it does not hold for all j′ ≤ j. Let j
be the rightmost position such that the condition does not hold, i.e., Lp−1[1..j]
does not need to be updated.

If j = p, this means that no values in Lp−1[1..p] need to be updated,
and Lp[p] = Lp−1[p]. Concerning updating MMUS p−1

S , we can easily see that
cover ([p..e], n) ∈ SUSp

S(n), and thus [p..e] will be the last element in MMUS p
S .

However, MUSs in MMUS p−1
S may become meaningless with respect to MUS p

S ,
because of the addition of [p..e]. These are the ones to the right of [i′..j′] =
MMUS p−1

S [Lp[p]]. They can be found and removed in line 13, whose correctness
can be seen from Lemma 3.

If j < p, MUSs in MMUS p−1
S [L[j] + 1..�] such that |cover(MMUSS [k

′], j)| >
|cover (MMUSS [j], j)|, i.e., those that do not derive an interval in SUSp

S(j) be-
come meaningless with respect to MUSp

S , so are removed in line 15. The cor-
rectness can also be seen from Lemma 3.

Although there may be more than a constant number of positions and MUSs
that need to be updated with the addition of [p..e], the cost can be amortized.
Such operations correspond to lines 11, 13, 15, and 16 of Algorithm 2.

The time required for lines 11 and 16 is linear in the number of updates
required for L. We show that L[p] for each p is updated only a constant number of
times. Lp−1[p] is first determined at lines 3-8, with respect to MUSp−1

S , pointing
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to predS(p) or the leftmost shortest element in MUSS(p) ∩MUS p−1
S . It can be

seen from Lemma 4 that for all p′ ≥ p, Lp′
[p] can only point to predS(p), the

leftmost shortest element inMUSS(p) (= MUSS(p)∩MUS p′
S ), or succS(p). There

are only two possibly remaining MUSs that will be added toMUSS(p)∩MUS p−1
S

and update L[p]; an MUS inMUSS(p) beginning at position p, or succS(p). Thus,
the total time for this is linear in the number of positions.

The time required for lines 13 and 15, is linear in the number of intervals added
or deleted from MMUS . Since each interval in MMUS is added or removed at
most once, the total time for this update is linear in the total number of MUSs
in S, which is O(n). Thus, the total time of the algorithm is O(n). ��

From Theorems 3 and 4, we obtain the following main theorem.

Theorem 5. A string S of length n can be preprocessed in O(n) time and space
so that shortest unique substring queries can be answered in O(k) time, where k
is the number of shortest substrings returned. Notably, outputting a single SUS
can be done in O(1) time.

4 Computational Experiments

We implemented our algorithm using the C++ language. All computational
experiments were conducted on a MacPro (Early 2008) with two 3.2GHz Quad
Core Xeon processors and 18GB Memory (DDR2 FB-DIMM 800MHz). We use
libdivsufsort (http://code.google.com/p/libdivsufsort/) for construction
of the suffix array.

Table 1. Comparison of Computation Time

english
(|Σ| =239)

dna
(|Σ| =16)

dblp.xml
(|Σ| =97)

protein
(|Σ| =27)

n (MB) time (sec) time (sec) time (sec) time (sec)

TSUS RSUS TSUS RSUS TSUS RSUS TSUS RSUS

10 4.21 122.31 4.79 18.63 3.42 14.34 4.01 28.28

20 9.16 324.58 10.54 40.46 7.44 29.98 9.04 66.74

30 14.13 445.84 16.45 61.80 11.43 46.51 14.57 108.00

40 20.14 500.19 23.06 84.75 16.17 62.76 21.68 151.85

50 25.62 580.00 29.31 107.34 20.35 78.73 28.90 197.99

60 31.20 667.16 36.08 131.38 24.62 95.55 35.61 242.55

70 38.26 N/A 43.90 N/A 30.14 728.71 43.96 N/A

80 44.00 N/A 50.83 N/A 34.67 N/A 51.01 N/A

90 50.37 N/A 57.88 N/A 39.03 N/A 58.13 N/A

100 56.71 N/A 65.17 N/A 43.30 N/A 64.22 N/A

We used data taken from the Pizza & Chile corpus (http://pizzachili.dcc.
uchile.cl/texts.html), namely, english texts, DNA sequences, XML, and pro-
tein sequences. We compared our algorithm with the implementation RSUS of [4]

http://code.google.com/p/libdivsufsort/
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html
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available at https://bitbucket.org/wush_iis/rsus. RSUS is actually a com-
bination of an interface for the R language (http://www.r-project.org) and
core routines written in C++. For comparison in our experiments, we modified
the RSUS C++ routines to be called from a C++ program so that all programs
utilize only the C++ language.

The results of experiments for the 4 data are shown in Table 1. We take a
prefix of length n for each data, and measure the running times of RSUS [4], and
TSUS (the implementation of the algorithm in this paper). The entries marked
N/A for RSUS was when the time exceeded 1 hour, at which time the execution
of the program was stopped. The cause for the sudden increase in running times
for RSUS was due to the fact that RSUS consumed all of the available physical
memory. The results show that our algorithm is much faster (as fast as 20 times)
in preprocessing time compared to RSUS.
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