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Abstract
5

We compare optimal liquidation policies in continuous time in the presence of trading impact using6

numerical solutions of Hamilton Jacobi Bellman (HJB) partial differential equations (PDE). In par-7

ticular, we compare the time-consistent mean-quadratic-variation strategy with the time-inconsistent8

(pre-commitment) mean-variance strategy. We show that the two different risk measures lead to very dif-9

ferent strategies and liquidation profiles. In terms of the optimal trading velocities, the mean-quadratic-10

variation strategy is much less sensitive to changes in asset price and varies more smoothly. In terms11

of the liquidation profiles, the mean-variance strategy strategy is much more variable, although the12

mean liquidation profiles for the two strategies are surprisingly similar. On a numerical note, we show13

that using an interpolation scheme along a parametric curve in conjunction with the semi-Lagrangian14

method results in significantly better accuracy than standard axis-aligned linear interpolation. We also15

demonstrate how a scaled computational grid can improve solution accuracy.16

Keywords: optimal trading, mean variance, pre-commitment, mean quadratic variation, time-consistent,17

arrival price, implementation shortfall, HJB PDE, interpolation, scaled-grid
18

1 Introduction19

Algorithmic trade execution has become a standard technique for institutional market players in recent years,20

particularly in the equity market where electronic trading is most prevalent. A trade execution algorithm21

typically seeks to execute a trade decision optimally upon receiving inputs from a human trader.22

A common form of optimality criterion seeks to strike a balance between minimizing pricing impact and23

minimizing timing risk. For example, in the case of selling a large number of shares, a fast liquidation will24

cause the share price to drop, whereas a slow liquidation will expose the seller to timing risk due to the25

stochastic nature of the share price.26

Several approaches have been suggested in the literature to quantify the minimization of pricing impact27

and timing risk. The first, and perhaps the most intuitive, approach maximizes the expected revenues while28

minimizing a risk criterion, for example, variance [16, 15], quadratic variation [3], or value-at-risk (VaR) [19].29

Another approach maximizes the expected value of a utility function of revenues, for example, a power-law30
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function or an exponential function [20, 30, 27]. The third approach minimizes the expected execution cost31

[9]. All these three approaches model the asset price process in the presence of pricing impact. Yet another32

approach, which is somewhat tangential to the above methodologies, minimizes the expected execution cost33

by modelling the dynamic distribution of bid and ask orders in a limit order book [28, 1].34

In this paper we focus on maximizing revenue while minimizing a risk measure. Maximizing revenue is35

also know as minimizing implementation shortfall relative to the arrival (pre-trade) price, which is a popular36

approach in industry. More specifically, we compare the pre-commitment mean-variance strategy [16, 8, 26]37

with the mean-quadratic-variation strategy [17, 13]. We assume that trading takes place continuously at a38

finite rate, as in [5, 4]. We note that the risk-criteria in the seminal paper [3] was previously thought to be39

variance but is actually quadratic variation, as shown in [17]. In [25], the pre-commitment mean-variance40

strategy was computed in a discrete time setting. It is shown in [25] that the pre-commitment strategy41

outperforms the strategy in [3], when the criteria are mean and variance as seen at the initial time.42

However, as discussed in [17, 13], there may be circumstances when the mean-quadratic-variation opti-43

mality is preferred. This may occur in situations where control of the risk is desired during the entire trading44

cycle, in contrast to only measuring ex post mean and variance.45

Therefore, it is interesting to investigate how suboptimal the mean-quadratic-variation strategy is in terms46

of mean-variance efficiency, and, conversely, the question of how suboptimal the mean-variance strategy is47

in terms of mean-quadratic-variation efficiency.48

The main contributions of this article are:49

• We have improved our numerical method in [16] so that results for very challenging parametric cases can50

be computed using reasonable time and memory. In particular, we improve the method of interpolation51

at the foot of the characteristic in the semi-Lagrangian discretization of HJB PDEs. We also construct a52

scaled computational grid so that fewer grid nodes are needed to obtain accurate results. The improved53

method also guarantees convergence to the viscosity solution. We remind the reader that the method54

in [16] can determine the entire mean variance efficient frontier from a single solution of a nonlinear55

partial differential equation.56

• The mean-variance formulation of the optimal liquidation problem is known to be ill-posed [16]. More57

specifically, many similar strategies can give rise to nearly the same efficient frontier. In this paper58

we analyze in detail this ill-posedness from both a mathematical and a computational perspective. In59

particular, we highlight the numerical challenges created by such ill-posedness and demonstrate that60

the choice of interpolation method can be critical.61

• We then carry out a careful set of numerical tests, which show that for the same variance, the mean-62

quadratic-variation strategy can have a significantly suboptimal expected value compared to the mean-63

variance strategy. For the same quadratic-variation, the mean-variance strategy can have significantly64

suboptimal expected value compared to the mean-quadratic-variation strategy. By carrying out a series65

of grid refinement studies, we show that the differences between these strategies are significantly larger66

than the numerical discretization errors.67

If one wants to strike the middle ground of balancing both variance and quadratic-variation, the mean-68

variance strategy seems to be preferable.69

• We show that the mean-variance strategy is much more sensitive to changes in the asset price than70

the mean-quadratic-variation strategy. Consequently, the trading profile of the mean-variance strategy71

is much more variable. The mean trading profiles of the two strategies, however, turn out to be72

surprisingly similar.73
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2 Optimal Execution74

Let

P = B +AS = Portfolio,

S = Price of the underlying risky asset,

B = Balance of risk free bank account,

A = Number of shares of underlying asset.

The optimal execution problem over t ∈ [0, T ] has the initial condition

S(0) = sinit, B(0) = 0, A(0) = αinit. (2.1)

If αinit > 0, the trader is liquidating a long position (selling). If αinit < 0, the trader is liquidating a short
position (buying). In this article, for definiteness, we consider the selling case. At t = T ,

S = S(T ), B = B(T ), A = A(T ) = 0, (2.2)

where B(T ) is the cash generated by selling shares and investing in the risk free bank account B, with a final75

liquidation at t = T− to ensure that A(T ) = 0. The objective of optimal execution is to maximize B(T ),76

while at the same time minimizing a certain risk measure. The two risk measures we consider in this paper,77

namely variance and quadratic-variation, will be discussed in the next two sections.78

In this paper, we consider Markovian trading strategies v(·) that specify a trading rate v as a function79

of the current state, i.e. v(·) : (S(t), B(t), A(t), t) 7→ v = v(S(t), B(t), A(t), t) . Note that in using the80

shorthand notations v(·) for the mapping, and v for the value v = v(S(t), B(t), A(t), t), the dependence of v81

on the current state is implicit.82

By definition,
dA(t) = v dt. (2.3)

We assume that due to temporary price impact, selling shares at the rate v at the market price S(t) gives
an execution price Sexec(v, t) ≤ S(t). It follows that

dB(t) =
(
rB(t)− vSexec(v, t)

)
dt (2.4)

where r is the risk free rate.83

We suppose that the market price of the risky asset S follows a Geometric Brownian Motion (GBM),
where the drift term is modified due to the permanent price impact of trading [5]:

dS(t) =
(
η + g(v)

)
S(t) dt+ σS(t) dW(t),

η is the drift rate,

g(v) is the permanent price impact function,

σ is the volatility,

W(t) is a Wiener process under the real world measure. (2.5)

2.1 Trading impact function84

We assume the temporary price impact scales linearly with the asset price, i.e.

Sexec(v, t) = f(v)S(t), (2.6)

where

f(v) = (1 + κs sgn(v)) exp[κt sgn(v)|v|β ],

κs = the bid-ask spread parameter,

κt = the temporary price impact factor,

β = the price impact exponent. (2.7)
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Note that we assume κs < 1, so that Sexec(v, t) ≥ 0, regardless of the magnitude of v. For various studies85

which suggest the form (2.7), see [5, 24, 29].86

The permanent price impact function g(v) is assumed to be of the form

g(v) = κpv,

κp = the permanent price impact factor.

As explained in [17], this form of permanent price impact function eliminates the possibilities of round-trip87

arbitrage [5, 21].88

2.2 Definition of liquidation value89

Given the state (S(T−), B(T−), A(T−)) at the instant t = T− before the end of the trading horizon, we have
one final liquidation (if necessary) so that the number of shares owned at t = T is A(T ) = 0. The liquidation
value B(T ) after this final trade is defined to be

B(T ) = B(T−) + lim
v→−∞

A(T−)Sexec(v, T
−)

= B(T−) (2.8)

Definition (2.8) in effect penalizes the strategy if A(T−) 6= 0, so that the optimal algorithm forces the90

liquidation profile towards A(T−) = 0. In our case, the penalty is such that the shares A(T−) are simply91

discarded.192

3 Mean-Variance Strategy93

We review here the pre-commitment mean-variance strategy, as discussed in [16].94

3.1 Objective functional and optimal strategy95

To simplify notations, we define x = (s, b, α) = (S(t), B(t), A(t)) for a space state. Now we specify the
pre-commitment mean variance formulation as follows. For all possible states (x, t) and a fixed risk aversion
parameter λ, define the family of objective functionals

Fλ =

{
Jx,tλ

(
v(·)
)

: v(·) 7→ Ex,tv(·)
[
B(T )

]
− λV arx,tv(·)

[
B(T )

]}
, (3.1)

where Ex,tv(·)[·] is the expectation, and V arx,tv(·)[·] is the variance, conditional on the state (x, t) and the control96

v(·) : (x, t) 7→ v = v(x, t).97

Note that in the notation of (3.1), the members (functionals) in the family Fλ have different initial states98

(x, t) but the same λ. For a given initial state (x, t), we will henceforth use the notation v∗x,t,λ(·) to denote99

the optimal policy that maximizes the corresponding functional, i.e. Jx,tλ

(
v(·)
)

.100

Let (x0, t = 0) = (sinit, 0, αinit, 0) be the initial state. The optimal policy v∗x0,0,λ
(·) is termed the101

pre-commitment mean variance optimal strategy [8, 12].102

1In actual implementation, we would replace limv→−∞ by a finite vmin � 0 in the PDE initial condition. Also, in the
case of liquidating a short position (buying), which is not considered in this paper, equation (2.8) would be defined as B(T ) =
B(T−) + limv→∞ A(T−)Sexec(v, T−), and we would replace limv→∞ by a finite vmax � 0 in implementation.
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3.2 Time-inconsistency of optimal strategies103

The optimal strategies in the pre-commitment mean variance formulation are time-inconsistent in the fol-104

lowing sense. Let (x1, t1) be some state at time t1 and v∗x1,t1,λ
(·) be the corresponding optimal policy. Let105

(x2, t2) be some other state at time t2 > t1 and v∗x2,t2,λ
(·) be the corresponding optimal policy.106

We have time-inconsistency in the sense that

v∗x1,t1,λ(x′, t′) 6= v∗x2,t2,λ(x′, t′) ; t′ ≥ t2 . (3.2)

The time-inconsistency (3.2) is considered as unnatural by some authors [8] and creates computational107

difficulties. More specifically, a dynamic programming principle cannot be directly applied to solve this108

problem.109

Note that in [2], the author makes the case that the pre-commitment formulation optimizes trading110

efficiency as measured in practice.111

3.3 Alternative Formulation112

To solve for v∗x0,0,λ
(·), we follow the method in [33, 11, 7, 18, 31]. For each fixed initial state (x, t) and risk

aversion parameter λ, the optimal control v∗x,t,λ(·) that maximizes (the functionals in the family) (3.1) are
also the optimal controls that minimize

F̃λ =

{
J̃x,tλ

(
v(·)
)

: v(·) 7→ Ex,tv(·)

[(
B(T )− γ(x, t;λ)

2

)2]}
, (3.3)

for some
γ = γ(x, t;λ) ≥ 0. (3.4)

Note that under the alternative formulation (3.3), the optimal strategies v∗x,t,λ(·) are also time-inconsistent,113

due to the dependence of γ on the initial state (x, t), i.e. (3.4); see [12] for more discussion on this.114

Consequently, for the particular initial state (x0, 0) and an arbitrary constant γ0 ≥ 0, the optimal control
v∗x0,0,γ0(·) that minimizes the member Ĵx0,0

γ0 in the family

F̂γ =

{
Ĵx,tγ

(
v(·)
)

: v(·) 7→ Ex,tv(·)

[(
B(T )− γ

2

)2]}
, (3.5)

is also the pre-commitment optimal control v∗x0,0,λ0
(·) for a certain value of λ0 such that γ0 = γ(x0, 0, λ0).115

The benefit of reformulating (3.1) as (3.5) is that the dynamic programming principle can be applied to116

(3.5) to solve for v∗x0,0,γ0(·), since γ is a constant in (3.5).117

Varying γ0 over [0,∞) gives the strategies that trace out a variance-minimizing frontier in the expected118

value, standard deviation plane.119

4 Mean-Quadratic-Variation Strategy120

Quadratic variation has been used as an approximation of variance in the algorithmic trading literature121

[3, 4, 17]. This approximation, however, can be poor when the trading impact is relatively large, as will122

be illustrated in the current paper. Instead of using quadratic variation to approximate variance, it is123

conceptually simpler to regard quadratic variation as an alternative risk measure.124

4.1 Quadratic variation as a risk measure125

Formally, the quadratic variation risk measure is defined as

E

[∫ T

t

(
A(t′)dS(t′)

)2]
. (4.1)
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Informally, the risk measure definition (4.1) can be interpreted as the quadratic variation of the portfolio
value process as follows: by expanding the square of dP (t′) = dB(t′)+d(A(t′)S(t′)) and ignoring higher-order
terms, we have ∫ T

t

(
A(t′)dS(t′)

)2
=

∫ T

t

(
dP (t′)

)2
, (4.2)

when the trading velocity process v(t) is bounded.126

4.1.1 Static strategies127

Under certain mild assumptions (including arithmetic Brownian motion), for static (asset-price-independent)128

strategies, quadratic variation is the same as variance [17]. In general, of course, quadratic variation is not the129

same as variance. In this paper, we compare (i) mean-variance optimal strategies; and (ii) mean-quadratic-130

variation optimal strategies, which are both dynamic (asset-price-dependent) for the geometric Brownian131

motion case considered in this paper.132

We remind the reader that [25] compares dynamic mean variance optimal strategies and static mean vari-133

ance optimal strategies (assuming arithmetic Brownian motion). However, for short trading horizons, when134

Geometric Brownian motion can be well approximated by arithmetic Brownian motion, mean-quadratic-135

variation strategies turn out to be almost static. In this case, the conclusions of the study in [25] are similar136

to the results of our study here. However, in order to make definitive statements about the dominance of one137

strategy over another, careful attention must be paid to the accuracy of the computed results. In this study,138

we use the provably convergent Hamilton-Jacobi-Bellman formulation and solution techniques described in139

[16]. Our grid refinement studies allow us to bound the discretization errors.140

In addition, in contrast to [25], we also show that mean-variance strategies can be significantly worse than141

mean-quadratic-variation strategies, when quadratic variation is the risk measure. Mean-quadratic-variation142

strategies are naturally time-consistent, and control risk during the course of trading, and hence it can be143

argued that quadratic-variation is a sensible measure of risk [17].144

4.2 Objective functional and value function145

Now we specify the mean quadratic variation formulation as follows. For a fixed initial point (s, α, t) =
(S(t), A(t), t) where t < T with B(t) = 0, trading strategy v(·), and risk aversion parameter λ̃, we define the
objective functional

J(s, α, t, v(·); λ̃) = Es,α,tv(·)

[
B(T )

]
− λ̃Es,α,tv(·)

[∫ T

t

(
A(t′)dS(t′)

)2]
(4.3)

where

B(T ) =

∫ T−

t

er(T−t
′)
(
− vSexec(v, t′)

)
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−) (4.4)

and Es,α,tv(·) [·] is the conditional expectation at the initial point (s, α, t) using the control v(·).146

The value function V̂MQV is defined as

V̂MQV (s, α, t; λ̃) = sup
v(·)

J(s, α, t, v(·); λ̃). (4.5)

For a given initial state (s, α, t), we will henceforth use the notation v∗
s,α,t,λ̃

(·) to denote the optimal policy147

that maximizes the corresponding functional, i.e. J(s, α, t, v(·); λ̃).148
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4.3 Time Consistency of the optimal strategies149

Let (s1, α1, t1) be some state at time t1 and v∗
s1,α1,t1,λ̃

(·) be the corresponding optimal strategy. Let (s2, α2, t2)150

be some other state at time t2 > t1 and v∗
s2,α2,t2,λ̃

(·) be the corresponding optimal strategy.2151

Since the optimal controls satisfy the Bellman’s principle of optimality as shown in [17], it follows that
the optimal controls of (4.5) are time consistent in the sense that for the same state (s′, α′, t′) at a later time
t′ > t2,

v∗
s1,α1,t1,λ̃

(s′, α′, t′) = v∗
s2,α2,t2,λ̃

(s′, α′, t′) ; t′ ≥ t2 . (4.6)

Hence, dynamic programming can be directly applied to this problem.152

In certain special cases, it is known that strategy v∗
s,α,t,λ̃

(·) is equivalent to a time consistent mean variance153

strategy [12, 32]. Hence v∗
s,α,t,λ̃

(·) can be viewed as a natural time consistent strategy. In addition, as shown154

in [17], if arithmetic Brownian motion is assumed, the optimal strategy v∗
s,α,t,λ̃

(·) is actually identical to the155

optimal strategy in [3].156

Let VMQV (s, α, τ ; λ̃) = V̂MQV (s, α, t = T − τ ; λ̃). The derivation in [17] shows that VMQV satisfies the
HJB equation

VMQV
τ = ηsVMQV

s +
σ2s2

2
VMQV
ss − λ̃e2rτα2s2σ2 + sup

v

[
erτ (−vf(v))s+ g(v)sVMQV

s + vVMQV
α

]
. (4.7)

We note that both the value function VMQV and strategy v(·) for the mean-quadratic-variation problem157

(4.5) is independent of the current bank account balance B(t). In particular v = v(s, α, τ).158

The reader is referred to [17] for details about the numerical method used to solve equation (4.7).159

4.4 Arithmetic Brownian Motion160

Under the arithmetic Brownian motion approximation and the additional assumptions of zero drift, zero
interest rate, unbounded control and linear price impact function detailed in [17], the optimal trading strategy
has the analytic solution

v(α, τ) = −αK coth(Kτ), (4.8)

where K =
√
λ̃σ2sinit/κt. Note that the optimal strategy is independent of the spot price s.161

As noted in [17], the strategy (4.8) results in an efficient frontier that is extremely close to the true162

mean-quadratic-variation efficient frontier computed assuming geometric Brownian motion. We also note163

that (4.8) is the same strategy as used in [3].164

The work in [3] is extended in [6] to consider nonlinear trading impacts similar to the form (2.7), and165

semi-explicit solutions are obtained.166

5 Comparison between the two strategies167

5.1 Risk measure168

The pre-commitment mean variance strategy is optimal in the following sense [25, 2]. Suppose we carry out169

many thousands of trades. We then examine the post-trade data, and determine the realized mean return170

and the standard deviation. Assuming that the modeled dynamics very closely match the dynamics in the171

real world, the optimal pre-commitment strategy would result in the largest realized mean return, for a given172

standard deviation, compared to any other possible strategy.173

From the interpretation (4.2), minimizing quadratic variation clearly corresponds to minimizing volatility174

in the portfolio value process. The definition (4.1) shows that quadratic variation takes into account the175

2Note that while the initial point is changed from (s1, α1, t1) to (s2, α2, t2), the risk aversion level λ̃ is kept constant.
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trading trajectory A(t′) over the whole trading horizon. This is in contrast with using variance (V ar[B(T )])176

as a risk measure, which is independent of the trading trajectory A(t′) given the end result B(T ). We note177

that the idea of using quadratic variation as a risk measure was first suggested in [13].178

5.2 Uniqueness and smoothness179

In mean-variance optimization, many similar strategies can give rise to almost the same efficient frontier180

(near ill-posedness). This can be advantageous as it permits more flexibility in executing the trade. On181

the other hand, this creates difficulties in obtaining a smoothly varying optimal strategy, as demonstrated182

and explained in [16] and the current paper. In our experience, these issues do not arise in mean-quadratic-183

variation optimization.184

6 HJB Formulation: Mean Variance185

6.1 Change of Variable186

At first glance it seems necessary to solve the problem (3.5) for each value of γ separately. Fortunately, this
can be avoided by a change of variable. Define the new variable B by

B(0) =
−γe−rT

2
≤ 0, dB(t) = rB(t)dt− vSexec(v, t)dt (6.1)

it is easy to see that

B(t) = B(t)− γe−r(T−t)

2
, B(T ) = B(T )− γ

2
. (6.2)

Since equation (6.1) has the same form as equation (2.4), solving for v∗x,0,γ(·) in (3.5) is equivalent to solving
for the optimal control in

inf
v(·)

Es,b,α,t=0
v(·) [B(T )2]. (6.3)

This change of variable is very convenient in the PDE context because the solutions corresponding to different187

values of γ can be determined by examining the PDE solutions for different values of B at t = 0. Therefore,188

we only need to solve the problem (6.3) once to obtain the entire variance minimizing frontier [16].189

6.2 Definitions190

Let τ = T − t be the backward time. Define the value function V by

V = V (s, b, α, τ) = inf
v(·)

Es,b,α,T−τv(·) [B(T )2]. (6.4)

We also define the differential operator L by

LV =
σ2s2

2
Vss + ηsVs, (6.5)

and Lagrangian derivative D
Dτ (v) by

DV

Dτ
(v) = Vτ − Vsg(v)s− Vb(rb − vf(v)s)− Vαv, (6.6)

which is the rate of change of V along the characteristic s = s(τ), b = b(τ), α = α(τ) defined by the trading
velocity v through

ds

dτ
= −g(v)s,

db
dτ

= −(rb − vf(v)s),
dα

dτ
= −v. (6.7)
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6.3 PDE formulation191

Following standard arguments, the optimal control is given by the solution to the nonlinear HJB equation

LV −max
v≤0

DV

Dτ
(v) = 0. (6.8)

in the domain Ω = {s ≥ 0, b ∈ R, α ≥ 0, τ > 0}. In view of definition (2.8), the initial condition at τ = 0 is

V (s, b, α, τ = 0) = B(T )2 = (b + as lim
v→−∞

f(v))2. (6.9)

Note that we forbid buying or holding a short position (when liquidating stock) in (6.8), i.e.

v(s, b, α, τ) ≤ 0, v(s, b, α = 0, τ) = 0. (6.10)

At s = 0, equation (6.8) reduces to

max
v≤0

{
Vτ − rbVb − vVα

}
= 0. (6.11)

Therefore, no boundary condition at s = 0 is needed.192

At α = 0, (6.10) causes equation (6.8) to reduce to

σ2s2

2
Vss + ηsVs − Vτ + rbVb = 0. (6.12)

Therefore, no boundary condition at α = 0 is needed.193

Solving the HJB PDE (6.4) gives the optimal control v∗(·). To obtain an efficient frontier, we proceed as
follows. Define the value function U by

U = U(s, b, α, τ) = Es,b,α,T−τv∗(·) [B(T )], (6.13)

which satisfies the PDE

LU − DU

Dτ
(v∗) = 0, U(s, b, α, τ = 0) = B(T ) = b + as lim

v→−∞
f(v). (6.14)

Since v∗(·) has been determined, the PDE (6.14) is linear and inexpensive to solve.194

Having solved for the value functions V and U , the variance-minimizing frontier can be obtained as195

described in section B.1. The mean-variance frontier is then obtained by a simple sorting procedure to196

eliminate suboptimal points [31].197

7 Limiting case198

For illustration purposes, consider a limiting case with extreme parameter values σ = κt = 0, and typical199

parameter values r = κp = κs = η = 0. Since the asset price is constant, problem (6.3) degenerates to the200

deterministic control problem of minimizing B(T )2. Moreover, since there is no pricing impact, B(T ) = αs+b201

with certainty. Consequently, the value function V is202

V (s, b, α, τ) = inf
v(·)

Es,b,α,T−τv(·) [B(T )2] = B(T )2 = (αs+ b)2, (7.1)

which can also be verified by direct substitution into the HJB equation (6.8), (6.9) as follows. First, note
that the initial condition (6.9) is satisfied because f(v) ≡ 1. To verify (6.8), note that the parameter values
yield the simplifications

LV = 0,
DV

Dτ
(v) = Vτ + vsVb − vVα. (7.2)
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Figure 1: Value function at t = 0 and b = −100 for parametric Case 1 detailed in Table 1 and Table
2. Here we show two curves of approximately constant wealth {αs + b = 0} and {αs + b = −50}, which
correspond to the curves {α = 100/s} and {α = 50/s}, respectively, since b is fixed at −100. Note that
the value function V is approximately V ≈ (αs + b)2 and changes rapidly normal to the lines of constant
wealth.

Substituting (7.1) into (7.2) gives

Vτ = 0, Vb = 2(αs+ b), Vα = 2s(αs+ b) =⇒ DV

Dτ
(v) ≡ 0 for all v. (7.3)

Since any admissible trading velocity v is optimal in this case, the problem of determining the optimal control203

v is completely ill-posed.204

Although the above special case is degenerate, it explains what happens for realistic parametric cases.205

Indeed, in practical parametric cases, the values of σ
√
T and κt are quite small and r has little effect.206

Although the actual trading velocity is highly dependent on σ
√
T and κt, we expect that the actual value207

function will be only weakly dependent on these parameters.208

7.1 Motivation for a parametric curve interpolation method209

In using a semi-Lagrangian method [14, 10] to solve for the optimal velocity v, accurate interpolation at the210

foot of the characteristics is essential to achieving high accuracy [14, 10]. Since a monotone discretization211

scheme (which allows proof of convergence to the viscosity solution) is at most first-order accurate, we will212

deal exclusively with linear interpolation in this paper.213

Let us consider again the special case in the previous section, where the value function V has the analytic
solution

V (s, b, α, τ) = (αs+ b)2. (7.4)

It is obvious that linear interpolation along each of the three coordinate axes is not exact, since the partial214

derivatives Vss, Vbb and Vαα are all non-zero.215
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T η r sinit αinit κp κs β Action vmin
1/250 0.0 0.0 100 1.0 0.0 0.0 1.0 Sell -1000/T

Table 1: Common parameters

Case σ κt Percentage of Daily Volume
1 1.0 2× 10−6 16.7%
2 0.2 2.4× 10−6 20.0%
3 0.2 6× 10−7 5.0%
4 0.2 1.2× 10−7 1.0%
5 0.2 2.4× 10−8 0.2%

Table 2: Parametric cases

Consider linear interpolation along the parametric curve of constant wealth ({αs+ b = constant}):

ds

dζ
= 0,

db
dζ

= vs,
dα

dζ
= −v, (7.5)

for any fixed trading velocity v. Since V is constant along this line, linear interpolation along this parametric216

curve is exact.217

As far as the general form for the value value function is concerned, equation (7.4) suggests that the value218

function for realistic parameter values should be slowly varying along curves of constant wealth ({αs+ b =219

constant}). In Figure 1 we show the value function computed at t = 0 (for fixed b) for a typical set of220

parameters. The dark curves in Figure 1 are curves of (approximately) constant wealth. Note that the curve221

which passes through (α = 1, s = 100) divides the value function into a region which is almost flat; and222

a region of rapidly increasing values. Interpolation normal to this curve will result in large errors, while223

interpolation along this curve will have relatively small errors.224

To further improve accuracy, the scheme (7.5) is extended (for general parameters) in section B.4.2 in225

the appendix.226

8 Numerical results227

Our discussion on numerical results is organized as follows. First, we explain how we arrive at our parametric228

cases. Then, we demonstrate convergence by numerical experiments. Finally, we compare the efficient229

frontiers using the mean variance strategy and the mean quadratic variation strategy.230

8.1 Parametric cases231

The parametric cases we consider are listed in Table 1 and Table 2. Case 1 corresponds to a high volatility232

stock with low liquidity. Cases 2-5 correspond to a low volatility stock with various levels of liquidity. These233

parameters can be related to typical daily volume traded. As described in Appendix A, we estimate that234

κt = 1.2× 10−7 corresponds to liquidating 1% of the daily volume traded of a typical large-cap liquid stock.235

In view of our trading model and in particular the temporary trading impact function (2.7) with the choice236

of β = 1, we can simulate liquidating Y% of the daily volume traded by keeping αinit unchanged at unity237

and using κt = (1.2× 10−7)Y .238
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8.2 Convergence Analysis239

To demonstrate convergence numerically, we compute the mean-variance frontier from the optimal mean240

variance strategy using two methods. We explain both methods using the mean variance formulation as an241

example. The methods for the mean quadratic variation formulation is analogous.242

Before discussing the two methods, we note that both methods require the following same initial step:243

solve for the optimal control v∗(·) in the HJB PDE (6.8).244

8.2.1 The PDE method245

In the PDE method, the mean variance efficient frontier is obtained from the value functions (6.8) and (6.14).246

More specifically, the PDE method consists of the following steps.247

1. Note that the value function V is computed when solving for v∗(·).248

2. Compute the value function U by solving the linear PDE (6.14).249

3. Construct the variance-minimizing frontier from U and V as described in Appendix B.1.250

4. Eliminate suboptimal points to obtain the mean variance efficient frontier251

8.2.2 The Hybrid (PDE-Monte Carlo) method252

In the Hybrid method, Monte Carlo simulations are carried out using the optimal control v∗(·) to estimate253

quantities of interest. More specifically, the Hybrid method consists of the following steps.254

1. The optimal control v∗(·) (from solving the HJB PDE (6.8)) is an input.255

2. Quantities of interest are estimated by Monte Carlo simulations, as detailed in Appendix C.256

An advantage of the Hybrid method is that we can estimate quantities of interest that cannot be obtained257

in the PDE method. For example, it is important to understand how liquidation proceeds (in forward time)258

on average, which cannot be known from the PDE solutions directly. The Hybrid method also allows us259

to estimate both risk measures (variance and quadratic variation) of either the mean variance or the mean260

quadratic variation strategies, which may not be obtained directly from the value functions.261

8.2.3 Computational grid262

Tables 3 and 4 show the number of nodes and time steps used in the convergence study for the mean-variance263

strategy and the mean-quadratic-variation strategy, respectively. Note that only one node is needed in the b264

direction, since this variable can be eliminated using a similarity reduction (see section B.2 and [16]).3 The265

v node discretization is required in order to carry out a linear search to determine the optimal control [16].266

Our parametric curve interpolation scheme (see section B.4.2 in the appendix for details) suggests that267

the number of s nodes should be significantly more than the number of α nodes, a consideration that is also268

confirmed by our numerical experiments.269

Note also that the same time steps are used in both PDE calculation and Monte Carlo simulations, for270

each refinement level. For example, the frontiers labeled with “800 time steps” in Figure 2 use the time steps271

as specified as Refinement Level 2 in Table 3. Similarly for the frontiers labeled with “1600 time steps” and272

for the frontiers in other figures in the report.273

3For the mean-variance strategy, our numerical experiments suggest that the v grid needs to be fine near t = 0 (but not
when t is larger) to obtain accurate estimate of the optimal v by linear search. In order to have a very fine v grid near t = 0
but a coarse v grid elsewhere, we perform 4 additional refinements to the v grid in the last few backward time steps in PDE
solve. There is no such concern for the mean- quadratic-variation strategy because the optimal velocity is not determined by
linear search (we use a one dimensional optimization method) and hence is not restricted to values in a discrete v grid.
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Refinement Level Timesteps s nodes b node α nodes v nodes
0 200 369 1 11 8
1 400 737 1 21 15
2 800 1473 1 41 29
3 1600 2945 1 81 57

Table 3: Grid and time step data for convergence studies for the mean variance strategy. The same time
steps are used in both PDE calculation and Monte Carlo simulations. Note that there is only one b node
because of the use of similarity reduction (see section B.2 and [16]).

Refinement Level Timesteps s nodes α nodes v nodes
0 800 67 41 30
1 1600 133 81 59

Table 4: Grid and time step data for convergence studies for the mean quadratic variation strategy from
[17]. The same time steps are used in both PDE calculation and Monte Carlo simulations. The Monte
Carlo computations interpolate the optimal control from the PDE grid values.

8.2.4 Sample size in Monte Carlo simulations274

To achieve small sampling error in Monte Carlo simulations, 400,000 simulations are performed for parametric275

case 1 and 100,000 simulations are performed for each of the other cases. As an example, the standard error276

in Figure 2(a) can be estimated as follows. To be more specific, consider a point on the frontier with the277

maximum standard deviation, which equals 3. Since this estimate of standard deviation of B(T ) is calculated278

using 400,000 samples, its standard error is approximately 3/
√

400, 000 ≈ 0.0047, which is negligible in Figure279

2(a). Similar calculations will show that the standard errors are negligible in other figures as well.280

8.2.5 Comparison between the PDE method and the Hybrid method281

For the mean variance optimal strategies, Figure 2 shows that the mean variance efficient frontiers computed282

by both the PDE method and the Hybrid method converge to the same frontier as the computational grid283

is refined.284

Similarly, for the mean quadratic variation optimal strategies, Figure 3 shows that the mean quadratic285

variation efficient frontiers computed by both the PDE method and the Hybrid method converge to the same286

frontier as the computational grid is refined.287

Our numerical results demonstrate that the Hybrid frontiers in general converge faster to the limit solution288

than the PDE frontiers. This may seem counter-intuitive as the Monte Carlo simulations use the optimal289

trading strategies determined by the PDE method. Nevertheless, it is plausible that Monte Carlo simulations290

produce a better estimate of the expected value (or standard-deviation/quadratic-variation), which is what291

our numerical results suggests. Given their better accuracy, we will use the Hybrid frontiers to compare the292

mean-variance strategy with the mean-quadratic-variation strategy. Again, note that the optimal controls293

are always computed by solving the HJB PDEs.294

8.3 Comparisons of two risk measures295

8.3.1 Making comparisons in the same units296

In our figures, we plot the expected value against the risk measures in the same units. This means standard
deviation is plotted instead of variance. Similarly, the square root of quadratic variation is plotted instead
of quadratic variation (4.1). In our plots, the terminology QV Risk stands for the square root of quadratic
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Figure 2: Mean variance strategy: convergence of frontiers in the PDE method and the Hybrid method.
The frontiers labeled with PDE are obtained from the PDE value functions. The frontiers labeled with Hybrid
are obtained from Monte Carlo simulations which use the optimal controls determined by solving the HJB
equation (6.8).
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Figure 3: Mean quadratic variation strategy: convergence of frontiers in the PDE method and the Hybrid
method. The frontiers labeled with PDE are obtained from the PDE value functions. The frontiers labeled
with Hybrid are obtained from Monte Carlo simulations which use the optimal controls determined by solving
the HJB equation (4.7).
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variation, i.e.

QV Risk =

√√√√E

[∫ T

0

(
A(t′)dS(t′)

)2]
. (8.1)

8.3.2 Summary of comparisons297

Figures 4 to 8 compare the mean variance trade off and the mean quadratic variation trade off for both the298

mean variance and the mean quadratic variation strategy. For example, the left plot in Figure 4 compares299

the results obtained using the mean variance strategy and the mean quadratic variation strategy in terms300

of using standard deviation as the risk measure. Similarly, the right plot in Figure 4 compares the two301

strategies in terms of using QV Risk as the risk measure.302

Several conclusions can be drawn from the comparisons.303

• As one would expect, in terms of using standard deviation as the risk measure, the mean variance304

optimal strategy dominates the mean quadratic variation optimal strategy.305

• Conversely, in terms of using QV Risk as the risk measure, the mean quadratic variation optimal306

strategy dominates the mean variance optimal strategy.307

• However, it appears that the mean variance optimal strategy performs reasonably well using either risk308

measure. The difference between the two strategies is most pronounced at lower risk levels.309

8.3.3 Remarks310

Market practitioners may consider expected implementation shortfall (the relative difference between ex-311

pected value and initial stock price) of 10 basis points to be significant. To achieve small implementation312

shortfall, liquidation must be done slowly to reduce trading impact, at the expense of increasing timing risk.313

Striking a good balance is important here, as it might not be wise to aim at an expected shortfall of 10 bps314

if the risk (as measured by either standard deviation or QV Risk) is several times larger. Our plots show315

that risk can be several times of a 10 bps expected shortfall in the parametric cases (a) σ = 1.0, 16.7% daily316

volume; (b) σ = 0.2, 20% daily volume; and (c) σ = 0.2, 5% daily volume.317

The analysis above suggests that one way to choose a risk aversion level on an efficient frontier is to318

choose a ratio between the implementation shortfall and risk. Alternatively, a common practice among319

market practitioners is to pick the “corner of the frontier”. Our plots show that picking the corner can result320

in expected implementation shortfall much larger than 10 bps.321

8.4 Comparison of strategies for similar expected values322

In this section we compare the mean-variance strategy with the mean-quadratic- variation strategy when323

they give similar expected values. In particular, we focus on the parametric case σ = 1, κt = 2× 10−6 since324

the differences are more apparent when volatility and pricing impacts are larger.325

Figures 9 to 12 correspond to comparisons across four horizontal lines in Figure 4, with four different326

expected values chosen to represent the more interesting part of the frontiers. For example, in Figure 9327

both strategies give an expected value of around 99.29. For the mean-variance strategy, this corresponds to328

γ = 199.82; for the mean-quadratic-variation strategy, this corresponds to λ = 1.329

8.4.1 Common observations for each level of expected value330

In each of Figures 9 to 12, the subplots labeled (a) and (b) compare the optimal trading velocities at t = 0,331

where we normalized the trading velocities so that a normalized velocity of −1.0 corresponds to the constant332
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Figure 4: Comparison between mean variance strategy and mean quadratic variation strategy for the case
σ=1.0, κt = 2× 10−6.
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Figure 5: Comparison between mean variance strategy and mean quadratic variation strategy for the case
σ=0.2, κt = 2.4× 10−6.
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Figure 6: Comparison between mean variance strategy and mean quadratic variation strategy for the case
σ=0.2, κt = 6× 10−7.
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Figure 7: Comparison between mean variance strategy and mean quadratic variation strategy for the case
σ=0.2, κt = 1.2× 10−7.
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Figure 8: Comparison between mean variance strategy and mean quadratic variation strategy for the case
σ=0.2, κt = 2.4× 10−8.

liquidation rate −αinit/T . It is clear that while both strategies sell faster as price becomes more favorable4,333

the sensitivity in the mean-variance strategy is much more non-linear. More specifically, around the initial334

asset price sinit = 100, the optimal control for the mean-variance strategy is a curve with rapidly changing335

slope whereas that for the mean-quadratic-variation strategy is more or less a straight line. It is also worth336

noting that the optimal selling rates at sinit = 100 for the mean-variance strategy are close to but slightly337

larger than those for the mean-variation strategy in Figures 9 to 12.338

Note that the trading velocity in Figure 9 (b) is nonsmooth for large values of asset price. This appears339

to be due to the near illposedness of the mean-variance formulation, as discussed in [16]. This can also be340

understood from Figure 1, which has a flat region where Vs = Vb = Vα = 0, so that the local objective341

function (6.6) is independent of the control v.342

In each of Figures 9 to 12, the subplots labeled (c) and (d) compare the mean and standard deviation,343

respectively, of the liquidation profiles α(t) of the mean-variance and the mean-quadratic-variation strategies344

over the trading horizon. It is interesting to note that while the mean profiles are very similar, the standard345

deviation profile of the mean-variance strategy is much larger than that of the mean-quadratic-variation346

strategy. This reflects the fact that the mean-variance strategy is much more sensitive to change in asset347

price during the liquidation, which is also suggested by the strategy subplots. We also note that the mean348

profiles are convex, so that the mean liquidation rate is always decreasing over time.349

8.4.2 Differences among different levels of expected value350

As we move from Figure 9 to 12, the expected value is increasing, and so is the standard deviation and QV351

Risk. By comparing subplots (a) and (b), we see that the optimal selling rates become slower as expected352

value increases. Recall that the mean profiles are convex, so that the mean liquidation rate is always353

decreasing over time. By comparing subplots (c), we observe that the convexities of the mean liquidation354

profiles diminish as expected value increases, and the mean liquidation profiles approach a straight line. By355

4For the buying case, mean-variance optimal strategies would buy faster as price becomes more favorable (drops). For
both selling and buying, mean-variance optimal strategies trade faster as price becomes more favorable; this property is called
aggressive in the money [22]. Mean variance-optimal strategies are aggressive in the money because this introduces an anti-
correlation between trading revenue and trading impacts [25]. Mean-quadratic-variation optimal strategies are different: for the
buying case, mean-quadratic-variation optimal strategies would buy faster as price increases (unfavorable), to reduce quadratic
variation of the remaining position; we have verified this numerically.
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comparing subplots (d), we observe that the mean-variance strategy becomes less variable as expected value356

increases.357

9 Conclusion358

In this paper, we have compared the optimal trading strategies obtained using two objective functions: mean359

variance and mean quadratic variation. Recall that the original strategy proposed in [3] is actually a mean360

quadratic variation strategy [17]. The mean quadratic variation is naturally time-consistent [12, 32]. On361

the other hand, the pre-commitment mean variance strategy [16, 8, 26] is not time consistent. However,362

the pre-commitment mean variance strategy is undoubtedly optimal if performance is measured in terms of363

observed post-trade mean variance data.364

The mean variance strategy is a highly nonlinear function of the asset price. By contrast, the mean365

quadratic variation strategy is approximately linear (constant) in the asset price. Consequently, the mean366

variance strategy has a much more variable liquidation profile than the mean quadratic variation strategy.367

Nevertheless, both strategies turn out to have very similar mean liquidation profiles.368

In terms of using both standard deviation and QV Risk as risk measures, the mean variance strategy ap-369

pears to be, overall, a good strategy. The difference between the two strategies, however, are only significant370

at low levels of timing risk, or equivalently, high levels of implementation shortfall.371

Consequently, if a highly variable strategy is acceptable, the mean-variance strategy is perhaps the better372

choice. Otherwise, the mean quadratic variation strategy should be chosen if less variability in the strategy373

is desired.374

We have improved the numerical method in [16] by using a parametric curve interpolation scheme and375

a scaled computational grid. The parametric curve interpolation accurately approximates the foot of the376

semi-Lagrangian characteristics, which is essential for obtaining accurate numerical solutions for the optimal377

control. The scaled computation grid concentrates computational resources on regions of interest in the state378

space so that sufficiently accurate results can be produced using few grid nodes.379

A Example Computation for the Temporary Price Impact Factor380

Here we describe a realistic scenario in which the temporary price impact factor κt = 1.2× 10−7 (Case 4 in381

Table 2) corresponds to 1% of the daily volume of a stock.382

Suppose that the initial stock price sinit = 100 dollars, buy rate = 1,000 shares/min, corresponding383

temporary price impact = 3 dollars/min, daily trading time = 420 minutes, and daily volume = 42,000,000384

shares. For such a scenario, our trading corresponds to 1% of the daily volume, and the daily market turnover385

for the stock is 4.2 billion dollars, corresponding to that typical of a large-cap stock.386

Assuming a constant trading rate over one day (T = 1/250), then the total price impact is 3× 420. The
ratio of total price impact to total initial value of stock is then given by

R =
total price impact

total initial value
=

3× 420

420× 1000× 100
= 3× 10−5 (A.1)

From the trading model (2.4) and (2.7), the captured price is sinitf(v) = sinit exp(−κtv) ≈ sinit(1−κtv).387

Therefore, the ratio R is approximately κt|v|.388

Since αinit = 1 and T = 1/250, the constant trading rate is v = −250. Substituting v = −250 into κt|v|389

= 3× 10−5 gives κt = 1.2× 10−7.390

B Details of numerical method for solving PDEs (6.8) and (6.14)391

The numerical method used in this paper for solving equations (6.8) and (6.14) is essentially the method392

used in [16] with two improvements: the use of a parametric curve linear interpolation scheme at the foot of393

the semi-Lagrangian characteristics and a scaled computational grid. In order to highlight the differences,394
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Figure 9: Comparison between mean variance strategy and mean quadratic variation strategy for the case
σ=1.0, κt = 2 × 10−6. The mean- variance strategy plotted has mean 99.29, standard deviation 0.68, QV
Risk 0.93, and corresponds to γ=199.82. The mean-quadratic-variation strategy plotted has mean 99.29,
standard deviation 0.82, QV Risk 0.84, and corresponds to λ=1. 1600 time steps are used to compute the
results.
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Figure 10: Comparison between mean variance strategy and mean quadratic variation strategy for the case
σ=1.0, κt = 2 × 10−6.The mean- variance strategy plotted has mean 99.50, standard deviation 0.90, QV
Risk 1.05, and corresponds to γ=201.30. The mean-quadratic-variation strategy plotted has mean 99.50,
standard deviation 0.98, QV Risk 1.00, and corresponds to λ=0.5. 1600 time steps are used to compute the
results.
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Figure 11: Comparison between mean variance strategy and mean quadratic variation strategy for the case
σ=1.0, κt = 2 × 10−6.The mean- variance strategy plotted has mean 99.65, standard deviation 1.13, QV
Risk 1.21, and corresponds to γ=203.50. The mean-quadratic-variation strategy plotted has mean 99.65,
standard deviation 1.17, QV Risk 1.19, and corresponds to λ=0.25. 1600 time steps are used to compute
the results.
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Figure 12: Comparison between mean variance strategy and mean quadratic variation strategy for the case
σ=1.0, κt = 2 × 10−6.The mean- variance strategy plotted has mean 99.78, standard deviation 1.46, QV
Risk 1.49, and corresponds to γ=209.42. The mean-quadratic-variation strategy plotted has mean 99.78,
standard deviation 1.48, QV Risk 1.49, and corresponds to λ=0.1. 1600 time steps are used to compute the
results.
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we provide the discretization details only for these two improvements. Readers are referred to [16] for details395

on other aspects of the numerical method.396

B.1 Construction of efficient frontier397

Having solved (6.8) and (6.14), the variance minimizing frontier can be obtained as follows. Let s = sinit
and α = αinit be the initial values of s and α in forward time. For each value of γ, the corresponding point
on the variance minimizing frontier can be shown to be given by the formulae

Es,b,α,t=0
v∗(·) [B(T )] = U0(b) +

γ

2
, (B.1)

V ars,b,α,t=0
v∗(·) [B(T )] = V0(b)− (U0(b))2, (B.2)

where b = B(0) = −γe−rT /2 is computed using equation (6.1), and U0(b) and V0(b) are shorthand notations
for

V0(b) ≡ V (s, b, α, τ = T ) = Es,b,α,t=0
v∗(·) [B(T )2], (B.3)

U0(b) ≡ U(s, b, α, τ = T ) = Es,b,α,t=0
v∗(·) [B(T )], (B.4)

which are obtained from solving the PDEs (6.8) and (6.14). The formulae (B.1) and (B.2) are obtained by

solving for Es,b,α,t=0
v∗(·) [B(T )] and Es,b,α,t=0

v∗(·) [B(T )2] from the linear system

Es,b,α,t=0
v∗(·) [B(T )2]− γEs,b,α,t=0

v∗(·) [B(T )] +
γ2

4
= Es,b,α,t=0

v∗(·) [B(T )2] (B.5)

Es,b,α,t=0
v∗(·) [B(T )]− γ

2
= Es,b,α,t=0

v∗(·) [B(T )] (B.6)

The whole variance minimizing frontier is then obtained by varying γ.398

B.2 Similarity Reduction399

The assumption of Geometric Brownian Motion (2.5), the form of the price impact functions (2.7), (2.8),
and the initial conditions (6.8), (6.14) imply the homogeneity properties

V (ξs, ξb, α, τ) = ξ2V (s, b, α, τ),

U(ξs, ξb, α, τ) = ξU(s, b, α, τ),

v∗(ξs, ξb, α, τ) = v∗(s, b, α, τ). (B.7)

Therefore we can use similarity reduction to reduce the original three dimensional problem to a two dimen-400

sional problem, in which we only need to solve for one fixed value of b.401

B.3 Semi-Lagrangian discretization402

In this section we demonstrate how equation (6.8) can be discretized by a semi-Lagrangian method. Equation403

(6.14) can be discretized in a similar fashion. For more details concerning semi-Lagrangian methods for HJB404

equations, the reader is referred to the references in [14].405

Define a set of nodes {si}, {bj}, {αk} and {τn}, where 0 ≤ i ≤ imax, bj ≡ b∗ < 0, 0 ≤ k ≤ kmax, and406

0 ≤ n ≤ nmax. We order the nodes in ascending order and make s0 = 0, α0 = 0, αkmax
= αinit, τ0 = 0, and407

τnmax = T . Note that there is only one node in the b grid because of the use of similarity reduction. We408

denote the discrete approximation to V at the point (si, bj , αk, τn) by V ni,j,k to distinguish it from the exact409

value V (si, bj , αk, τn). We also specify that the set of admissible control Z is of the form [vmin, 0], where410

vmin < 0 is the fastest liquidation rate allowed.411
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Since the Lagrangian derivative DV
Dτ (vn+1

i,j,k) at the node (si, bj , αk, τn+1) is the derivative of V along the412

trajectory defined by (6.7). Solving equations (6.7) backwards in time from τn+1 to τn, for a fixed vn+1
i,j,k,413

gives the the foot of the characteristics (sî, bĵ , αk̂, τ
n), which in general is not on the PDE mesh. We use the414

notation V n
î,ĵ,k̂

to denote an approximation of V (sî, bĵ , αk̂, τ
n) obtained by interpolation.415

B.3.1 Local optimization416

Denote the discrete form of L by Lh. By using an implicit discretization of LV and the semi-Lagrangian
discretization on equation (6.8), we obtain

V n+1
i,j,k = min

vn+1
i,j,k∈Z

n+1
k

V n
î,ĵ,k̂

+ (τn+1 − τn)(LhV )n+1
i,j,k, (B.8)

with the initial condition
V 0
i,j,k = b2

j , (B.9)

where we restrict the admissible velocities to Zn+1
k so that αk̂ ≥ 0.417

Once the optimal control (v∗)n+1
i,j,k is determined, equation (6.14) can be solved by

Un+1
i,j,k = Un

î,ĵ,k̂
|v=(v∗)n+1

i,j,k
+ (τn+1 − τn)(LhV )n+1

i,j,k, (B.10)

with the initial condition
U0
i,j,k = bj . (B.11)

Since no analytical expression is available for the local objective function, we find the optimal vn+1
i,j,k418

by discretizing the control space Zn+1
k and look for the optimal value using a linear search. This has the419

advantage of not making any assumptions about the local objective function, at the expense of a higher420

computational cost. Numerical experiments demonstrate that accurate results can be obtained by a rather421

coarse discretization of the control space.422

B.4 Computational challenges and solutions423

B.4.1 Difficulties in determining optimal velocity numerically424

Recall that in the special case considered in section 7, the Lagrangian derivative is identically zero for any425

admissible trading velocities. In terms of equation (B.8), this means that V n
î,ĵ,k̂

(vn+1
i,j,k) as a function of vn+1

i,j,k426

is completely flat. In the parametric cases we consider, both σ
√
T and κt are quite small, therefore these427

realistic cases are indeed similar to the completely ill-posed special case. Consequently V n
î,ĵ,k̂

(vn+1
i,j,k) as a428

function of vn+1
i,j,k can be very flat, which means determining the true minimizer demands extremely high429

accuracy. It is also obvious that even small interpolation error can significantly alter the estimated trading430

velocities.431

Similar computational issues also arise when ordinary finite-differencing is used instead of the semi-432

Lagrangian method: since the optimal velocity v will be a function that depends on the ratio of the partial433

derivatives in DV
Dτ . Any error in approximating the partial derivatives can also significantly alter the estimated434

trading velocities.435

B.4.2 Parametric curve linear interpolation436

The previous section has explained the importance of accurate interpolation at the foot of the semi-437

Lagrangian characteristics. In [16], a standard axis-aligned linear interpolation is used, which turns out438

to be too inaccurate. This is not surprising given the quadratic nature of the value function V and the439

analysis in section 7.440
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Figure 13: Comparing the two methods of interpolation at the foot of characteristics, shown as “point
to interpolate” in the diagram. The dashed lines correspond to the computational grid and the dots are
interpolation nodes.

In section 7 we have shown the benefit of performing a parametric curve linear interpolation for the
special case considered. Here we extend the idea to general cases. In essence, the parametric line (7.5) is
generalized to the line L defined by

L = (sî, bĵ , αk̂) + ζ(
ds

dζ
,
db
dζ
,
dα

dζ
),

ds

dζ
= −g(vn+1

i,j,k)sî,
db
dζ

= −(rbĵ − v
n+1
i,j,kf(vn+1

i,j,k)sî),
dα

dζ
= −vn+1

i,j,k, (B.12)

where vn+1
i,j,k is a candidate control value.441

Since equations (B.12) express how changes in α lead to changes in s and b through both trading impact442

and pricing impact (through the terms g(vn+1
i,j,k) and f(vn+1

i,j,k)), interpolating along L can be seen as an443

extension to interpolation along (7.5), which takes into account trading but not pricing impact.444

Figure 13 compares the standard axis-aligned linear interpolation and the parametric curve linear inter-445

polation along the line L. For simplicity in illustration, linear interpolation along the s coordinate axis is446

not shown, and there is a actual b grid, i.e. no similarity reduction.447

Note that the parametric curve linear interpolation as shown in Figure 13 does not require interpolation448

along the α coordinate axis but still requires linear interpolation along the other axes. When linear interpo-449

lation along the s direction or the b direction is performed, a fine grid is still needed to reduce interpolation450

error. In other words, when we treat α specially as in Figure 13, we avoid the need of a fine α grid, but a451

fine s grid (and a fine b grid when no similarity reduction is used) is still necessary.452

We also note that the parametric curve linear interpolation is similar to the edge-directed interpolation453

method [23] in the image processing literature. Our method is similar in the sense that the direction of the454

line L is not fixed but adapts to the candidate control velocity vn+1
i,j,k. Our method is different from that in455

[23] in that the parametric curve linear interpolation method does not necessarily use the neighboring grid456

nodes (See Figure 13(b)).457
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B.4.3 Remark on convergence proof458

Having changed the interpolation scheme in the semi-Lagrangian method, it is important that the conver-459

gence proof in [16] is still valid. Linear interpolation is obviously consistent. To demonstrate stability, we460

need the following easy observation:461

V n
î,ĵ,k̂

as approximated in the new scheme takes the form

V n
î,ĵ,k̂

=
∑
p

wpV
n
p , (B.13)

where wp ≥ 0,
∑
p wp = 1, and V np are grid node values. Therefore, we have |V n

î,ĵ,k̂
| ≤ ||V n||. This property

allows the proof of stability in [16] to go through without change. In addition, since Un
î,ĵ,k̂

as approximated

in the scheme also takes the form
Un
î,ĵ,k̂

=
∑
p

wpU
n
p , (B.14)

where the wp’s are the same as those in equation (B.13). Therefore, the proof in [16] which shows (Uni,j,k)2 ≤462

V ni,j,k is also valid for our scheme.463

B.4.4 Computational grid consideration464

Consider again the analytical solution for the special case derived in section 7:

V (s, b, α, τ) = (αs+ b)2. (B.15)

As can be seen in Figure 1, (B.15) is a good approximation for realistic parametric cases. Both Figure 1465

and (B.15) show that V does not change a significantly along a constant line of wealth {(αs+ b) = const}.466

This observation suggests constructing a computational grid with taking into account constant lines of wealth.467

• For α > 0, scale the s grid by {si} → {si}/α.468

• For α = 0, no scaling is performed, i.e. the original s grid {si} is used.469

Figure 14(a) and 14(b) illustrate the scaled computational grid, and the value function under the scaled470

grid, respectively. Compare the lines of constant wealth in Figure 1 and Figure 14(b).471

Note that the shape of the value function is simpler in Figure 14(b) than in Figure 1. Note also that the472

mesh is always dense in the region V ≈ 0 in the scaled grid in Figure 14(b), which is not the case in Figure473

1. In our experience, accurate values of V in the region V ≈ 0 are important for computing the efficient474

frontiers. Thus, the scaled grid is also computationally more effective.475

C Details of Monte Carlo simulations476

Numerically solving the mean-variance HJB equation (6.8) gives us the optimal strategy on the discrete477

computational mesh, i.e. vMV (si, b∗, αk, tn)5. By using vMV (si, b∗, αk, tn) as input for Monte Carlo simu-478

lations, we can obtain information about the trading strategy which is not necessarily available in the PDE479

solutions. For example, we can estimate the probability distribution of B(T ), the quadratic variation, and480

the mean and the standard deviation of the liquidation profile (plot of A(t) against t).481

Similarly, numerically solving the mean-quadratic-variation HJB equation (4.7), for each fixed value of482

λ, gives us the discrete optimal strategy vMQV (sĩ, αk̃, t
n;λ)6, which can be used as input for Monte Carlo483

simulations.484

5Note the use of forward time notation.
6We use the notations ĩ and k̃ to emphasize that the s grid and α grid for solving the mean-quadratic-variation HJB equation

(4.7) is not necessarily the same as that for solving the mean-variance HJB equation (6.8). The time grid {tn}, however, is
chosen to be the same.
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Figure 14: Illustration of scaled computational grid.

In particular, Monte Carlo simulations enable us to compute the quadratic variation of the mean-variance485

strategy, and conversely, the variance of the mean-quadratic-variation strategy. These allow us to compare486

the two strategies in terms of either variance or quadratic variation, given the same level of expected return.487

The Monte Carlo simulations also provide a verification of the PDE solutions, in the sense that given the488

optimal control, we can obtain independent estimates of mean, variance and quadratic variation.489

In the following we detail how the Monte Carlo method is conducted for the mean-variance strategy.490

Simulations of the mean-quadratic-variation strategy are performed in the same way, except that the mean491

quadratic variation strategy vMQV (sĩ, αk̃, t
n;λ) is explicitly indexed by λ, and standard axis-aligned linear492

interpolation suffices.493

C.1 Change of variable494

Suppose that the optimal strategy vMV (si, b∗, αk, tn) is obtained from the PDE solve. For a fixed value of495

γ, each Monte Carlo simulation starts with the initial values S(0), B(0), A(0) at time t = 0 and is updated496

at the discrete times {tn}, i.e. the time grid nodes in the PDE solve. Below we give a full specification of497

the simulation procedure by detailing the simulation from time point told to the immediate next time point498

tnew.499

At told, the state is (Sold, Bold, Aold). To look up the optimal trading velocity, we first need to change500

the variable from B to B. For the fixed value of γ, we have Bold = Bold − γe−r(T−told)/2 from equation501

(6.2). Now the optimal trading velocity v(Sold,Bold, Aold, told) needs to be interpolated from the discrete502

vMV (si, b∗, αk, tn).503

C.1.1 Interpolation504

Our numerical study shows that it is more accurate to linearly interpolate vMV (si, b∗, αk, tn) along a505

constant line of wealth {αs + b = constant} than along the coordinate axes. Therefore, we interpolate506

vMV (si, b∗, αk, tn) as in Figure 13(b) with L given by the constant line of wealth {αs+ b = constant}. This507

is the same as the interpolation for the limiting parametric case in section 7.1. Note that the form of the508
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line L as defined by equation (B.12) is not applicable in the current context because there is no candidate509

control vn+1
i,j,k.510

C.1.2 Updating state variables511

Let 4t = tnew − told, we update the state variable as follows:

Aopt = Aold + v(Sold,Bold, Aold, told)4t, (C.1)

Anew = max(Aopt, 0), (C.2)

vopt = (Anew −Aold)/4t, (C.3)

Snew = Sold exp{(η + g(vopt)−
1

2
σ2)4t+ σ

√
4tN (0, 1)}, (C.4)

Bnew = Bold exp{r4t} − voptf(vopt)Sold4t, (C.5)

QVnew = QVold + (Aold(Snew − Sold))2, (C.6)

where N (0, 1) is a standard normal variate and QVnew is an approximation of
∫ tnew

0
(A(t′) dS(t′))

2
.512
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