Functional Programs for Generating Permutations

R. W. Topor

Department of Computer Science, Monash University, Clayton, Victoria 3168, Australia

This paper presents several functional programs for generating permutations represented as linear linked lists. Exact
formulas for the storage used by some of these programs are derived and compared with the theoretical lower bound.
Two different programs are shown to be optimal with respect to this measure. Problems considered include generation
of all N! permutations of /N distinct elements, generation of all permutations of length £ < N, and generation of all -

distinct permutations of a multiset of /V elements.

1. INTRODUCTION

The problem of devising algorithms to generate all N!
permutations of N elements has attracted much attention
in recent years. This attention is due both to the
applications to which such algorithms may be put and to
the intrinsic interest and complexity of algorithms for
such a basic and well-defined problem in combinatorial
mathematics. Recent, comprehensive surveys of such
algorithms have been provided by Sedgewick! and Roy?
in which they show the common structure of many
algorithms, and study the complexity and efficient
implementation of some of them.

The methods surveyed by Sedgewick and Roy all
assume that individual permutations are represented as
arrays of N elements. Often, however, one is interested in
representing each permutation as a linear linked list of
elements. This change in representation has a consider-
able effect on the types of algorithms which may be used
to generate successive permutations. In particular,
algorithms which exchange arbitrary pairs of elements in
a permutation are now much less attractive than
algorithms which somehow work through the permuta-
tion one element at a time.

Many permutation methods are most naturally ex-
pressed using recursive procedures. Sedgewick describes
how several different methods may be viewed as instances
of the same recursive scheme, and shows how these
recursive procedures may be transformed into more
‘efficient’ iterative programs. Recently, however,
Backus® and others have suggested that a functional style
of programming, based entirely on calling and composing
functions, has many advantages over the more common
imperative style.

The aim of this paper is to study several algorithms for
generating lists of permutations under the restrictions
that permutations are represented as linear linked lists
and that algorithms are presented as sets of mutually
recursive function definitions. Thus, these algorithms
can be implemented most easily in languages such as
Lisp* and Backus’s functional programming systems.
Our wish to use a purely functional programming style
implies that all list processing operations must be
constructive and that fields of existing list nodes cannot
be altered. Since such list processing systems allocate
storage (i.e. list nodes) dynamically from a heap or free
list, and since N! permutations must be generated, the
algorithms studied are going to use many list nodes.
Accordingly, we shall define the complexity of these

algorithms to be the total number of list nodes they use.
This measure has the advantages of being independent
of any particular implementation and of being a realistic
lower bound on the actual running time. For many of the
algorithms studied, we shall derive exact formulas for the
number of nodes used as a function of N, the number of
elements being permuted. This enables quantitative
comparisons to be made between the storage require-
ments of the different algorithms and the theoretical
lower bound.

We also show how the algorithms presented may be
modified to solve generalized versions of the basic
problem: generating all permutations of length k < N
from a list of N distinct elements, and generating all
distinct permutations of a list which may contain
repeated elements. All these algorithms return a list of
the desired permutations. We also consider permutation
generators: functions which return the next permutation
in the list each time they are called. The order in which
these various algorithms return or generate permutations
is also considered. Programs which use iteration and
destructive list processing operations could also be
analysed in the same way.

In describing the algorithms we use the following
conventions and notation. Formally, an a-list is either
null (denoted nil) or has a hd (which is an «) and a tl
(which is an a-list). The only lists we shall use are
element-lists and permutation-lists. Elements are atomic,
and are sometimes assumed to be drawn from a totally
ordered set; permutations are represented by element-
lists. If x is a list, we test whether it is null by writing null
x, and we select its components by writing hd x or tl x.
We create a new list, adding the element (or permutation)
a at the front of an existing list x, by writing cons(a, x) or
a:x. Physically, lists are represented by pointers to nodes,
and each application of cons allocates a new list node
from the heap, whose hd is @ and whose tl is a pointer to
x. Different list nodes may each have tI’s which point to
the same list. We denote the unit list containing the
element a by list(a), the length of a list x by |x|, the result
of deleting (the first occurrence of) an element a from a
list x by x — a, and the result of concatenating two lists
x and y by x|y. As illustrations of the programming style
to be used we give the definitions ‘of these functions
below.

list (x) = x:nil

|x| = if null x then 0 else 1 + |tl x|

x —a =ifhd x = a then tl x else (hd x):((tl x) — a)
x|y = if null x then y else (hd x):((tl x)|y)

CCC-0010-4620/82/0025-0257 $03.50

© Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 257

102 ‘92 Yo\l Uo 159nb Aq /610°sjeuno [poxo" ufwoo//:dny wouj papeoumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

R. W. TOPOR

This definition of x — a is valid since, whenever x — a is
applied in the programs below, a is known to be an
element of x.

2. GENERAL ALGORITHMS

In this section we introduce the main algorithms to be
studied in the remainder of the paper. Like Roy,? we find
that all these algorithms can be seen as instances of just
two general algorithms which, following his terminology,
we call algorithms A and B. A different type of algorithm
is presented in section 9.

Assume we are given a list x containing N distinct
elements, and are asked to generate all N! permutations
of the elements in x. If x is null (¥ =0), the only
permutation is list(x), and we omit this case in the
descriptions of the algorithms.

Algorithm A

for each permutation p of (tl x) do
insert (hd x) at each possible position in p

This algorithm is described in Ref. 5 and Ref. 6. It is
recursive in that the permutations of (tl x) are themselves
generated by the same method. The following algorithm
has the same form as algorithm A :

Algorithm Q

for each permutation p of (tl x) do
append (hd x) to p, and
exchange (hd x) with each element a in p

This algorithm uses exactly the same number of list nodes
as algorithm A, but generates permutations in a slightly
different order. As it is so similar, we shall not consider
it any further.

Algorithm B

for each element a in x do
append a to each permutation of x — a.

A version of this algorithm is described in Ref. 7. Since
x — a is evaluated constructively, the list x is unchanged
after each element a has been considered, and algorithm
B is thus an example of a backtrack algorithm. An
advantage of backtrack algorithms is that they are easy
to modify to avoid considering whole sequences of
permutations which do not satisfy some criterion.

Algorithm B appears to differ significantly from
algorithm A in that it contains several recursive calls at
each level. Hence, it is difficult to say immediately how
their complexities compare. We shall see that the
complexities of both algorithms, and especially of
algorithm B, depend critically on how they are
implemented.

Two other backtrack algorithms have the same form
as algorithm B:

258 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

Algorithm R

for each rotation a:y of x do
append a to each permutation of y

The ‘rotations’ of a list are the results of repeatedly
moving its first element to the end. For example, the
rotations of ABCD are ABCD, BCDA, CDAB, and
DABC. Algorithm R is strictly less efficient than
algorithm B, however they are implemented, and hence
is also not considered any further. To see that this is true,
note that deleting the kth element of x from x requires
(k — 1) list nodes, so deleting each element in turn
requires N(N — 1)/2 list nodes. On the other hand, each
rotation of x except for the identity rotation requires N
list nodes, so generating each rotation of x requires
N(N — 1) list nodes.

Algorithm S

for each element a in x do
exchange (hd x) with a, and
append a to each permutation of the tl of the result.

Algorithm S only differs from algorithm B in the position
at which (hd x) is replaced after removing a. The number
of list nodes required to remove a from x is the same in
each algorithm. Only the order in which they generate
permutations differs. Since, as we shall see, algorithm B
can be made to generate permutations in a very
convenient order, we may also ignore algorithm S below.
Note, however, the similarity between algorithms Q and
S, which perform the same operations in a different
order. This suggests it may be possible to derive both
algorithms from the abstract specification of the problem
by following different execution paths as was done by
Clark and Darlington® for mergesort and quicksort.

3. A LOWER BOUND

Before implementing algorithms A and B and comparing
their complexities, we derive a lower bound on the
complexity of any algorithm which computes a list of all
permutations of N distinct elements.

Intuitively, it seems that there are N! permutations of
length N requiring N.N! nodes, together with an
additional N!nodes at the top level of the list containing
these permutations, making (N + 1)! nodes in all.
However, this ignores the possibility that different
permutations may physically use the same nodes. For
example, the permutations (A BC) and (B A C) may
both end in the same node (C). By sharing sublists in this
way, the set of N! permutations may be represented as a
tree whose leaves are the individual permutations and
whose root is nil.

Let Cy, N > 0, be the minimum number of list nodes
required to represent all N! permutations of N elements.
Clearly C, = 0. For each element a, one node is required
to represent z = list(a), and an additional Cy_, nodes are
required to represent all (N — 1)! permutations of the
remaining N — 1 elements. Since each of these (N — !
permutations can be made to end with a node whose tl is

© Heyden & Son Ltd, 1982

$T0Z ‘92 Yose N uo 1sanb Aq /6.10°s jeuno[pioxo- jufwody/:dny woly pspeojumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

FUNCTIONAL PROGRAMS FOR GENERATING PERMUTATIONS

z, they also represent those permutations of N elements
ending in a. Thus we have

C() =0
CN = N(l + CN—I), NZ 1 (1)
If we define
N-1
ev= Y 1/k!, N>0
k=0

where ey — e, the base of natural logarithms as N — oo,
then the solution of Eqn (1) is

Cv=eyN!, N>0 2

Now, let Ly, N >0, be the minimum number of list
nodes required to represent a list of all N! permutations
of N elements. Since such a list requires N! nodes for its
top level, and Cy nodes to represent the permutations, we
have

Ly=(ey+1N!, N20 3)
In later sections we shall present programs which achieve
this lower bound.

4. IMPLEMENTATION AND ANALYSIS OF
ALGORITHM A

A reasonably efficient implementation of algorithm A
can be expressed as follows:

permutel(x) =

if null x then list(x)

else mapinsert(hd x, permutel(tl x))
mapinsert(a, ps) =

if null ps then nil

else insert(a, hd ps, hd ps, mapinsert(a, tl ps))
insert(a, p, g, ps) =

if null g then put(a, p, q):ps

else put(a, p, q): insert(q, p, tl g, ps)
put(a, p, g) =

ifp=gqgthena:q

else (hd p): put(a, tl p, q) ©)]

In this program, permutel(x) returns a list of all
permutations of the elements in the list x. Mapinsert(a, ps)
appends the results of inserting a at each position of each
permutation in ps. Insert(q, p, q, ps) puts a into p
immediately before ¢ (which is a sublist of p) and each
subsequent position of p. The fourth argument, ps, of
insert is an accumulator which avoids an explicit
concatenation operation in mapinsert. Put(a, p, ¢) con-
structively puts a into p immediately before ¢. The list
(pointer) comparison p = g could be replaced by integer
variables indicating positions in a list, or by comparing
the elements of a list, without any change in efficiency.
How many list nodes does permutel use? Clearly, if
lp| —|g| =m, then put(a,p,q) uses m+1 nodes.
Suppose |p| =n when insert is called initially with
p=gq. Then insert(a,p,q,ps) uses Xh_o(m+2)=
(n + 4)(n + 1)/2 nodes. Since a list containing the result
of inserting a at each position of p when |p| = n requires
(n + 4)(n + 1)/2 nodes to be represented, this definition
of insert is optimal. If ps contain m lists of length n, then
mapinsert(a, ps) applies insert m times and thus uses

© Heyden & Son Ltd, 1982

m(n + 4)(n + 1)/2 nodes. Finally, let permutel(x) use 4y
nodes if |x| = N. Then we have

AO = l
Ay=Ay_ +(N+3)INWN-D!2, N>1 (5
whose solution is

N
Av=1+%) (k+3)k!, N20 ©)
k=1
Since Ay > [(N + 3)/2]N!, the number of temporary
nodes used for each permutation grows slowly, but
linearly, with N. It is not surprising that the value of Ay
is so much greater than the lower bound Ly as algorithm
A offers little opportunity for the sharing necessary to
achieve the lower bound.

5. IMPLEMENTATION AND ANALYSIS OF
ALGORITHM B

Our first implementation of algorithm B appends a at the
start of each permutation of x — a:

permute2(x) =

if null x then list(x)

else mapperm(x, x)
mapperm(x, y) =

if null y then nil

else mapcons(hd y, permute2(x — (hd y)),

mapperm (x, tl y))

mapcons(a, ps, gs) =

if null ps then gs

else (a: (hd ps)): mapcons(a, tl ps, ¢s) @)

In this program, iteration through the elements a of x is
done by the function mapperm which appends each
element of y in turn to the permutations of the remaining
elements of x. Mapcons(q, ps, gs) appends a to each
element of ps in turn, using the accumulator gs as in
insert to avoid an explicit concatenation operation.

It is easy to show by an inductive argument that the list
of permutations returned by permute2 is in lexicographic
order. For example, if x = ABC, then permute2(x) =
(ABC ACB BAC BCA CAB CBA).

Clearly, if |ps| = m, then mapcons(a, ps, gs) uses 2m
nodes. Suppose |x| = n when mapperm is called initially
with x = y. Then the n deletion operations use n(n — 1)/2
nodes in all. Finally, let permute2(x) use Xy nodes if
|x| = N. Then we have

Xo = 1
Xy=NXy_;+NWN-1)2+2N!, N>1 ()
whose solution is
Xy=0QN+1+ey/2)N'-N/2, N>0)

This result is quite disappointing. Not only is Xy > Ay,
but also Xy is greater than our first estimate of Ly which
ignored the possibility of sharing sublists. Again, this
should not be surprising as the use of mapcons ensures
there is no sharing in the result returned by permute2.
This inefficiency can be overcome if we implement
algorithm B by appending a at the end of each
permutation of x — a. To do this we rename permute2 as
genperm and give it a new argument, p, which is a partial

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 259

102 ‘92 Yo\l Uo 159nb Aq /610°sjeuno [poxo" ufwoo//:dny wouj papeoumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

R. W. TOPOR

permutation to which a and the rest of x is to be consed.
That is, genperm(x, p, ps) appends all permutations of x
in front of p, and conses each resulting permutation to ps.
Mapperm remains basically unchanged, except for the
introduction of an accumulator, ps. These changes lead
to the following implementation of algorithm B:

permute3(x) =
if null x then list(x)
else genperm(x, nil, nil)
genperm(x, p, ps) =
if null(tl x) then ((hd x):p):ps
else mapperm(x, x, p, ps)
mapperm(x, y, p, ps) =
if null y then ps
else mapperm(x, tl y, p,
genperm(x — (hd y), (hd y):p, ps)) (10)

The list of permutations returned by permute3 is in
reverse lexicographic order. That is, when the list is read
backwards, and the permutations are read from right to
left, the resulting list is in lexicographic order. For
example, if x = ABC, then permute3(x) = (ABC BAC
ACB CAB BCA CBA).

Suppose genperm(x, p, ps) uses By nodes if |x| = N.
Then

Bl = 2

By=NBy_, + NN+ 1)2, N>2 (11)
whose solution is

By =3ey/2+ 1)N!'—N/2, N>1 (12)

This result is more satisfactory. It indicates that the
number of temporary nodes used for each permutation
generated is constant, and that permute3 is less than 50%
worse than the best possible algorithm. For small values
of N, Ay and By, are very similar.

It is possible, however, to do even better. Permute3
returns a list of permutations which share as many
sublists as possible, but does not use the nodes of the lists
x — (hd y) in the final result. If we could ensure that
whenever we constructed a new list it was used in the
result, then the resulting program might be optimal.

Suppose the input list x is (a,a,...ay). We can
represent the arguments x and p of genperm and
mapperm by introducing an integer variable j, 1 < j <N,
such that x = (a,a,...4;)) and p = @+, .. .ay). Simi-
larly, we can represent the argument y of mapperm by
another integer variable i, 1 <i<j, such that y=
(@ . . . @). If we then define a new function, move(x, i, j),
which simultaneously deletes the ith element of x (i.e. hd
y) and inserts it after the jth element of x (i.e. at the start
of p), we get the following, final implementation of
algorithm B:

permuted(x) =
if null x then list(x)
else genperm(x, |x|, nil)
genperm(x’ jy PS) =
if j =1 then x:ps
else mapperm(x, 1, j, ps)
mapperm(x, i, j, ps) =
if i = j then genperm(x, j — 1, ps)
else mapperm(x, i + 1, j,
genperm (mOVC (X, i’])1] - 19 pS))

260 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

move (x, i, j) =
ifi=1thenput (hd x,tlx,j — 1)
else (hd x): move(tl x,i — 1, — 1)
put (a, x,j) =
ifj=0thena:x
else (hd x): put (a, tl x,j — 1) (13)

Because only the representation has been changed,
permute4 also returns a list of permutations in reverse
lexicographic order.

Clearly, move(x, i, j) uses j nodes. Suppose genperm(x,
J> ps) uses Y; nodes. Then

Y, =1
Yi=jY_ i +(—-1)j, j=2 (14)
whose solution is
Yv=(eny+1)N!'=N, N>1 (15)

This appears to be less than the lower bound Ly given in
Eqn (3), but the difference is simply that permute4 uses
its input list x as one of the resulting permutations,
thereby saving N nodes. Thus, we have found a simple,
optimal implementation of algorithm B. It appears to be
difficult to find such a program without using integer
variables because of the need to simultaneously delete a
from x and append it to p. Another, quite different,
optimal program is presented in section 9.

6. PERMUTATIONS OF LENGTH k< N

We now consider the slightly more general problem of
generating all P, permutations of k elements drawn
from a list x of N distinct elements. We solve this problem
by modifying both algorithm A and algorithm B, and
then showing how the modified algorithms can be
implemented. In each case we can assume that if k = 0,
list(nil) is the result, and that if k > N, there are no
permutations and nil is the result. Algorithm A may be
modified to solve this problem by independently gener-
ating all permutations of x which include (hd x) and all
those which exclude (hd x). The efficient implementation
of this idea, requires us to give mapinsert a third
parameter, as we did to insert in Eqn (4). Algorithm A
(or permutel) may then be expressed as follows, omitting
the definitions of insert and put which remain unchanged :

permutel(x, k) =

if k& = 0 then list (nil)

else if | x| < k then nil

else mapinsert(hd x, permutel(tl x, k — 1),

permutel(tl x, k))

mapinsert(a, ps, gs) =

if null ps then gs

else insert(a, hd ps, hd ps, mapinsert(a, tl ps, gs)) (16)
The modified version of algorithm B may be expressed as
follows:

for each element a of x do

append a to each permutation of x —a of length
k—1.

We give below the revised definition of permute2,
omitting the definition of mapcons which is unchanged.
Permute3 can be revised in an analogous way, but it is

© Heyden & Son Ltd, 1982

¥T0Z ‘92 Yose N uo 1s9nb Aq /610'sfeunolplo)xo’ ufwody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

FUNCTIONAL PROGRAMS FOR GENERATING PERMUTATIONS

awkward to modify permute4 to solve this problem as it
has no explicit pointer to the partial permutation p.

permute2(x, k) =
if k = 0 then list(nil)
else if | x| < k then nil
else mapperm(x, x, k)
mapperm(x, y, k) =
if null y then nil
else mapcons(hd y, permute2(x — (hd y), k — 1),
mapperm(x, tl y, k)) 17)

7. PERMUTATIONS WITH REPEATED
ELEMENTS

Another related problem is to generate the list of all
distinct permutations of x when the list x may contain
repeated elements, i.e. when x is a multiset. In this case
the number of distinct permutations of x is less than N!.
For example, if x = AABB, the list of distinct permuta-
tionsof xis(AABB ABAB ABBA BAAB BABA BBAA).
This list can be generated by first generating the list of all
possible permutations and then removing all repeated
permutations, but this would be grossly inefficient. It is
better to modify the basic algorithms to avoid ever
generating the same permutation twice.
Algorithm A can be modified to do this as follows:

for each distinct permutation p of (tl x) do
insert (hd x) at each possible position in p
up to the first occurrence (if any) of (hd x) in p

For example, if (hd x) = A, and p = BCAD, the result of
inserting (hd x) into p would be the list (ABCAD BACAD
BCAAD). The correctness of this algorithm relies on the
factthat (hd x)is eventually inserted into all permutations
of (tl x). To implement this idea, the only change needed
to permutel is in the definition of the function insert:

insert(a, p, g, ps) =
if null g then put(a, p, q):ps
else if a = (hd q) then put(a, p, q):ps
else put(a, p, g):insert(q, p, tl g, ps) (18)

Algorithm B can be modified to solve this problem in the
following way:

for each distinct element a in x do
append a to each distinct permutation of x — a

To implement this idea we must give mapperm an
additional argument which is the set s of elements already
appended to each permutation of the remaining elements.
Permute2 may then be redefined as follows:

permute2(x) =
if null x then list(x)
else mapperm(x, x, nil)
mapperm(x, y,) =
if null y then nil
else if (hd y)es then mapperm(x, tl y, s)
else mapcons(hd y, permute2(x — (hd y)),
mapperm(x, tl y, (hd y):s)) (19)

The definitions of permute3 and permute4 may be
modified in an analogous way. In these definitions, the
expression a€s is true iff @ is an element of the list s, a
standard predicate which is easy to define recursively.

© Heyden & Son Ltd, 1982

Analysing the complexity of these programs to handle
lists with repeated elements is a difficult mathematical
problem. To solve the problem with both generalizations
at once—generate all distinct permutations of k elements
drawn from a multiset of N elements—permute2 must
simply be modified by making the changes in Eqns (17)
and (19) in the one program. The definitions of permute3
and permute4 can be modified similarly. Modifying
permutel, however, by simply making the changes in
Eqns (16) and (18) does not work. Instead, permutel
must be modified as follows to handle both generalizations
at once:

permutel(x, k) = genperm(x, k, nil)
genperm(x, k, s) =
if kK = 0 then list(nil)
else if | x| < k then nil
else if (hd x) e s then genperm(tl x, &, s)
else mapinsert(hd x, genperm(tl x, k — 1,),
genperm(tl x, k, (hd x):s)) (20)

Mapinsert must be modified as in Eqn (16), and insert
must be modified as in Eqn (18). After making either or
both sets of changes to any of these programs, the
resulting program still returns a list of permutations in
the same order that the original program did.

8. PERMUTATION GENERATORS

The algorithms we have considered so far each return a
list of all the (distinct) permutations of the list x. The
purpose of generating this list is presumably to allow us
to process each permutation in turn. There are, however,
two other ways of achieving this goal.

The first way, the more efficient according to Sedge-
wick, is to treat the permutation generation procedure as
the main program, and make it process each permutation
as it is generated. Of the programs we have studied, only
permute3 and permute4 can be transformed into this sort
of a procedure. In the cases of permutel and permute2,
the partially constructed permutations are stored implic-
itly on the procedural stack, and cannot be accessed at
any intermediate stage of the computation. Permute3
and permute4 can, however, be transformed in this way,
as their partially constructed permutations are repre-
sented explicitly. The resulting program is no longer
purely functional as it has the side-effect of processing
each permutation in turn. Accordingly, we introduce the
imperative features of ‘processing’ and sequencing into
our language. The version of permute3 in Eqn (10) for
example, may thus be rewritten as follows:

permute3(x) = genperm(x, nil)
genperm(x, p) =
if null x then process p
else mapperm(x, x, p)
mapperm(x, y, p) =
if not (null y) then
begin
genperm (x — (hd y), (hd y):p);
mapperm (x, tl y, p)
end (1)

Clearly, mapperm could also be rewritten using a loop
and an assignment statement.

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 261

102 ‘92 Yo\l Uo 159nb Aq /610°sjeuno [poxo" ufwoo//:dny wouj papeoumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

R. W. TOPOR

The second way of using each permutation in turn is to
write a function which returns a new permutation each
time it is called. Functions which return the next item of
some sequence each time they are called are sometimes
called generators. In our domain, we might call them
permutation generators. Each of permutel, permute3
and permute4 can be transformed into a permutation
generator which generates the same sequence of permu-
tations using the same sequence of list processing
operations. These generators may be derived by trans-
forming the original recursive functions into recursive
coroutines,’ studying how the stack changes between the
generation of one permutation and the next, and rewriting
the recursive coroutines iteratively. The first of these
transformations is straightforward, but the second ap-
pears to be quite difficult.

For each program, the resulting generator uses an
explicit array containing values of what were local
variables of active function calls to represent the state of
the computation. In the cases of permute3 and permute4
the array is accessed in a stack discipline, but in the case
of permutel, which has a quite different recursion
structure, a correspondingly different pattern of array
accesses is used.

As we are primarily interested in functional programs
here, we omit the derivations and definitions of these
generators. The resulting generators are, in any case,
much less simple than the other programs we have
considered, and less efficient than the generator to be
presented in the next section.

9. A FUNCTIONAL PERMUTATION
GENERATOR

In this section we return to the domain of functional
programming, and give a functional program which,
given any permutation p, returns a new permutation
which is the successor of p in reverse lexicographic order.
For example, the successor of HFEDGCAB in reverse
lexicographic order is DEGHFCAB. (The lexicographic
successor is harder to generate as it would involve
changing the positions of elements at the end of each
permutation.) Thus, for this generator, the only state
information required is the current permutation itself.
The algorithm we shall use is due to Fischer and Krause
as described in Ref. 1, p. 153. The basic idea is to find the
first sublist » of p whose hd, a, is greater than its
predecessor. If there is no such sublist, then the elements
are in reverse order and we return NONE since there is
no successor. Otherwise, we find the first sublist ¢ of p
whose hd in less than a, exchange the hd’s of ¢ and r, and
reverse the elements of p up to but excluding ¢. In the
above example, if p = HFEDGCAB then r = GCAB
and ¢ = FEDGCAB. The following implementation of
this algorithm combines the operations of exchanging
and reversing in the function next3.

nextperm(p) =
if null p then NONE
else next2(p, firstup(p))
firstup(p) =
if null (tl p) then nil
else if (hd p) < hd(tl p) then tl p
else firstup(tl p)

262 THE COMPUTER JOURNAL, VOL. 25, NO. 2, 1982

next2(p, r) =

if null » then NONE

else next3(p, firstless(p, hd r), r)
firstless(p, a) =

if (hd p) < a then p

else firstless(tl p, a)
next3(p, g, r) = genrev(p, ¢, r, (hd g):(tl r))
genrev(p, g, r, s) =

if p=rthens

else if p = g then genrev(tl p, g, r, (hd r):s)

else genrev(tl p, q, r, (hd p):s) (22)

This program is of interest for several reasons: it
generates permutations in a regular order, it is purely
functional, and it also turns out to be optimal with respect
to its use of storage.

We may analyse the complexity of this program by
considering the length of the first (descending) run in a
random permutation. A (descending) ‘run’ in a permu-
tation is simply a maximal descending subsequence of
the permutation. For example, the permutation
HFEDGCAB has three descending runs, of lengths 4, 3,
and 1. Runs are important in the analysis of program (22)
asr is the position following the first descending run in p.

Consider a random permutation of length N. Knuth!®
proves that the probability p, that its first run has length
m is given by

Pmn=1/m!—1/(m+1)!, 1<m<N
py = 1/N! (23)

In our case, p,, is the probability that |p| — |r| = m. If ris
null, nextperm uses no list nodes; otherwise, if |p| — |r| =
m, nextpermuses m + 1 nodes. Thus, the average number
of nodes used by nextperm is given by
N-1
Z (m+ p,=ey—1/(N—=1)! (24)

m=1

and the total number of nodes used in N! successive calls
to nextperm, starting with p = 123 . . . N for example, is

CNN!—N'—‘CN—N (25)

We can use nextperm to define another program which
returns a list of all N! permutations of its input list x as
follows:

permute5(x) =
if x = NONE then nil
else x: permuteS(nextperm(x)) (26)

The total number of nodes used by this program,
including the N nodes of the initial permutation x, is thus

CNN'+N!=LN

Permute$ is thus, like permute4, optimal in its use of
storage. Each achieves the lower bound because (i) every
list node allocated is used in the result, and (ii) all changes
are made at the start of the list, thus maximizing the
amount of sharing which occurs. The analysis of
permute5 may be a less reliable guide to its running time
than the previous analyses were, as it ignores the
contributions of the functions firstup and firstless.
Permute5 has the nice property that, without any change
at all, it also generates all distinct permutations of a list
x with repeated elements. Naturally, it cannot be used to
generate permutations of length k < N.

© Heyden & Son Ltd, 1982

102 ‘92 Yo\l Uo 1s9nb Aq /610°sjeuno [poxo" Jufwoo//:dny wouj papeoumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

FUNCTIONAL PROGRAMS FOR GENERATING PERMUTATIONS

10. SUMMARY

We have presented several algorithms for generating lists
of permutations represented as linear linked lists, and
shown how these algorithms may be implemented in a
purely functional way. The implementations of these
algorithms have been analysed with respect to the
amount of storage used, and shown to compare favourably
with the best achievable values. Two of the resulting
programs have been shown to be optimal with respect to
this measure. We have also shown how the algorithms
may be modified to solve several related problems. The
various algorithms are characterized by their extreme
simplicity and elegance, and could easily be implemented
in any real list processing system.

In practice, the following algorithms can be recom-
mended. To generate all permutations of a list of distinct
elements, permute3 as defined in Eqn (10) is a short,
reasonably efficient solution, and permute4 as defined in
Eqn (13) is an optimal solution which, however, requires
arithmetic operations. Both these algorithms return a list
of permutations in reverse lexicographic order. To
generate all permutations of length k from a list which

may contain repeated elements, permutel as modified in
Eqns (16), (18) and (20) is a short, reasonably efficient
solution. Finally, nextperm, as defined in Eqn (22),
generates successive permutations in reverse lexico-
graphic order, assuming only that the elements being
permuted are drawn from a totally ordered set.

The following are some obvious questions which
remain to be answered. Are there any other, different
algorithms for thiese problems? What are the (space)
complexities of the programs to generate permutations
of lists with repeated elements? How can one reasonably
define and measure the time complexity of these
programs? How do they compare with the best iterative
algorithms? Are there any general transformations to
convert functional programs returning lists of permuta-
tions into (iterative) permutation generators? The solu-
tion of these problems is the object of continuing
research.

Acknowledgment

I am grateful to Dr M. P. Georgeff for showing me how to implement
algorithm B optimally.

REFERENCES

1. R. Sedgewick, Permutation Generation Methods, ACM Com-
puting Surveys 9 (No. 2), 137-164 (1977).

2. M. K. Roy, Evaluation of Permutation Algorithms, Comput. J.
21 (No. 4), 296-301 (1978).

3. J. Backus, Can Programming be Liberated from the von
Neuman Style? A Functional Style and its Algebra of Programs,
Communications of the ACM 21 (No. 8), 613-641 (1978).

4. J. R. Allen, Anatomy of Lisp, McGraw-Hill, New York (1978).

5. W. H. Burge, Recursive Programming Techniques, p. 148.
Addison-Wesley, Reading, Massachusetts (1975).

6. D. E. Knuth, The Art of Computer Programming, Vol. 1, 2nd
Edn, p. 44. Addison-Wesley, Reading, Massachusetts (1973).

© Heyden & Son Ltd, 1982

7. A Nijenhuis and H. S. Wilf, Combinatorial Algorithms, 2nd Edn,
p. 56. Academic Press, New York (1978).

8. K. L. Clark and J. Darlington, Algorithm Classification through
Synthesis, Comput. J. 23 (No. 1), 61-65 (1980).

9. 0.-J. Dahl and C. A. R. Hoare, Hierarchical Program Structure,
in Structured Programming, ed. by Dahl et al. Academic Press,
New York (1972).

10. D.E.Knuth, The Art of Computer Programming,Vol. 3. Addison-
Wesley, Reading, Massachusetts (1973).

Received August 1981
© Heyden & Son Ltd, 1982

THE COMPUTER JOURNAL, VOL. 25, NO. 2,1982 263

102 ‘92 Yo\l Uo 159nb Aq /610°sjeuno [poxo" ufwoo//:dny wouj papeoumoq

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

