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Abstract— The size of data sets being collected and analyzed in 
the industry for business intelligence is growing rapidly, making 
traditional warehousing solutions prohibitively expensive. 
Hadoop [1] is a popular open-source map-reduce implementation 
which is being used in companies like Yahoo, Facebook etc. to 
store and process extremely large data sets on commodity 
hardware. However, the map-reduce programming model is very 
low level and requires developers to write custom programs 
which are hard to maintain and reuse. In this paper, we present 
Hive, an open-source data warehousing solution built on top of 
Hadoop. Hive supports queries expressed in a SQL-like 
declarative language - HiveQL, which are compiled into map-
reduce jobs that are executed using Hadoop. In addition, HiveQL 
enables users to plug in custom map-reduce scripts into queries. 
The language includes a type system with support for tables 
containing primitive types, collections like arrays and maps, and 
nested compositions of the same. The underlying IO libraries can 
be extended to query data in custom formats. Hive also includes 
a system catalog - Metastore – that contains schemas and 
statistics, which are useful in data exploration, query 
optimization and query compilation. In Facebook, the Hive 
warehouse contains tens of thousands of tables and stores over 
700TB of data and is being used extensively for both reporting 
and ad-hoc analyses by more than 200 users per month. 

I. INTRODUCTION 
Scalable analysis on large data sets has been core to the 

functions of a number of teams at Facebook - both 
engineering and non-engineering. Apart from ad hoc analysis 
and business intelligence applications used by analysts across 
the company, a number of Facebook products are also based 
on analytics. These products range from simple reporting 
applications like Insights for the Facebook Ad Network, to 
more advanced kind such as Facebook's Lexicon product [2]. 
As a result a flexible infrastructure that caters to the needs of 
these diverse applications and users and that also scales up in 
a cost effective manner with the ever increasing amounts of 
data being generated on Facebook, is critical. Hive and 
Hadoop are the technologies that we have used to address 
these requirements at Facebook. 

The entire data processing infrastructure in Facebook prior 
to 2008 was built around a data warehouse built using a 
commercial RDBMS. The data that we were generating was 
growing very fast - as an example we grew from a 15TB data 
set in 2007 to a 700TB data set today. The infrastructure at 
that time was so inadequate that some daily data processing 
jobs were taking more than a day to process and the situation 
was just getting worse with every passing day. We had an 
urgent need for infrastructure that could scale along with our 

data. As a result we started exploring Hadoop as a technology 
to address our scaling needs. The fact that Hadoop was 
already an open source project that was being used at petabyte 
scale and provided scalability using commodity hardware was 
a very compelling proposition for us. The same jobs that had 
taken more than a day to complete could now be completed 
within a few hours using Hadoop. 

However, using Hadoop was not easy for end users, 
especially for those users who were not familiar with map-
reduce. End users had to write map-reduce programs for 
simple tasks like getting raw counts or averages. Hadoop 
lacked the expressiveness of popular query languages like 
SQL and as a result users ended up spending hours (if not 
days) to write programs for even simple analysis. It was very 
clear to us that in order to really empower the company to 
analyze this data more productively, we had to improve the 
query capabilities of Hadoop. Bringing this data closer to 
users is what inspired us to build Hive in January 2007. Our 
vision was to bring the familiar concepts of tables, columns, 
partitions and a subset of SQL to the unstructured world of 
Hadoop, while still maintaining the extensibility and 
flexibility that Hadoop enjoyed. Hive was open sourced in 
August 2008 and since then has been used and explored by a 
number of Hadoop users for their data processing needs. 

Right from the start, Hive was very popular with all users 
within Facebook. Today, we regularly run thousands of jobs 
on the Hadoop/Hive cluster with hundreds of users for a wide 
variety of applications starting from simple summarization 
jobs to business intelligence, machine learning applications 
and to also support Facebook product features. 

In the following sections, we provide more details about 
Hive architecture and capabilities. Section II describes the 
data model, the type systems and the HiveQL. Section III 
details how data in Hive tables is stored in the underlying 
distributed file system – HDFS(Hadoop file system). Section 
IV describes the system architecture and various components 
of Hive . In Section V we highlight the usage statistics of Hive 
at Facebook and provide related work in Section VI. We 
conclude with future work in Section VII. 

II. DATA MODEL, TYPE SYSTEM AND QUERY LANGUAGE 
Hive structures data into the well-understood database 

concepts like tables, columns, rows, and partitions. It supports 
all the major primitive types – integers, floats, doubles and 
strings – as well as complex types such as maps, lists and 
structs. The latter can be nested arbitrarily to construct more 
complex types. In addition, Hive allows users to extend the 



system with their own types and functions. The query 
language is very similar to SQL and therefore can be easily 
understood by anyone familiar with SQL. There are some 
nuances in the data model, type system and HiveQL that are 
different from traditional databases and that have been 
motivated by the experiences gained at Facebook. We will 
highlight these and other details in this section. 

A. Data Model and Type System 
Similar to traditional databases, Hive stores data in tables, 

where each table consists of a number of rows, and each row 
consists of a specified number of columns. Each column has 
an associated type. The type is either a primitive type or a 
complex type. Currently, the following primitive types are 
supported:  

• Integers – bigint(8 bytes), int(4 bytes), smallint(2 bytes), 
tinyint(1 byte). All integer types are signed. 

• Floating point numbers – float(single precision), 
double(double precision) 

• String 
 
Hive also natively supports the following complex types: 

• Associative arrays – map<key-type, value-type> 
• Lists – list<element-type> 
• Structs – struct<file-name: field-type, ... > 

 
These complex types are templated and can be composed to 
generate types of arbitrary complexity. For example, 
list<map<string, struct<p1:int, p2:int>> represents a list of 
associative arrays that map strings to structs that in turn 
contain two integer fields named p1 and p2. These can all be 
put together in a create table statement to create tables with 
the desired schema. For example, the following statement 
creates a table t1 with a complex schema. 
 
CREATE TABLE t1(st string, fl float, li list<map<string, 
struct<p1:int, p2:int>>); 
 
Query expressions can access fields within the structs using a 
'.' operator. Values in the associative arrays and lists can be 
accessed using '[]' operator. In the previous example, t1.li[0] 
gives the first element of the list and t1.li[0]['key'] gives the 
struct associated with 'key' in that associative array. Finally 
the p2 field of this struct can be accessed by t1.li[0]['key'].p2. 
With these constructs Hive is able to support structures of 
arbitrary complexity. 

The tables created in the manner describe above are 
serialized and deserialized using default serializers and 
deserializers already present in Hive. However, there are 
instances where the data for a table is prepared by some other 
programs or may even be legacy data. Hive provides the 
flexibility to incorporate that data into a table without having 
to transform the data, which can save substantial amount of 
time for large data sets. As we will describe in the later 
sections, this can be achieved by providing a jar that 
implements the SerDe java interface to Hive. In such 
situations the type information can also be provided by that jar 
by providing a corresponding implementation of the 

ObjectInspector java interface and exposing that 
implementation through the getObjectInspector method 
present in the SerDe interface. More details on these interfaces 
can be found on the Hive wiki [3], but the basic takeaway here 
is that any arbitrary data format and types encoded therein can 
be plugged into Hive by providing a jar that contains the 
implementations for the SerDe and ObjectInspector interfaces. 
All the native SerDes and complex types supported in Hive 
are also implementations of these interfaces. As a result once 
the proper associations have been made between the table and 
the jar, the query layer treats these on par with the native types 
and formats. As an example, the following statement adds a 
jar containing the SerDe and ObjectInspector interfaces to the 
distributed cache([4]) so that it is available to Hadoop and 
then proceeds to create the table with the custom serde. 

 
add jar /jars/myformat.jar; 
CREATE TABLE t2 
ROW FORMAT SERDE 'com.myformat.MySerDe'; 

 
Note that, if possible, the table schema could also be provided 
by composing the complex and primitive types. 

 

B. Query Language 
The Hive query language(HiveQL) comprises of a subset of 

SQL and some extensions that we have found useful in our 
environment. Traditional SQL features like from clause sub-
queries, various types of joins – inner, left outer, right outer 
and outer joins, cartesian products, group bys and 
aggregations, union all, create table as select and many useful 
functions on primitive and complex types make the language 
very SQL like. In fact for many of the constructs mentioned 
before it is exactly like SQL. This enables anyone familiar 
with SQL to start a hive cli(command line interface) and begin 
querying the system right away. Useful metadata browsing 
capabilities like show tables and describe are also present and 
so are explain plan capabilities to inspect query plans (though 
the plans look very different from what you would see in a 
traditional RDBMS). There are some limitations e.g. only 
equality predicates are supported in a join predicate and the 
joins have to be specified using the ANSI join syntax such as 
 
SELECT t1.a1 as c1, t2.b1 as c2 
FROM t1 JOIN t2 ON (t1.a2 = t2.b2); 
 
instead of the more traditional 
 
SELECT t1.a1 as c1, t2.b1 as c2 
FROM t1, t2 
WHERE t1.a2 = t2.b2; 
 
Another limitation is in how inserts are done. Hive currently 
does not support inserting into an existing table or data 
partition and all inserts overwrite the existing data. 
Accordingly, we make this explicit in our syntax as follows: 
 
INSERT OVERWRITE TABLE t1  



SELECT * FROM t2; 
 
In reality these restrictions have not been a problem. We have 
rarely seen a case where the query cannot be expressed as an 
equi-join and since most of the data is loaded into our 
warehouse daily or hourly, we simply load the data into a new 
partition of the table for that day or hour. However, we do 
realize that with more frequent loads the number of partitions 
can become very large and that may require us to implement 
INSERT INTO semantics. The lack of INSERT INTO, 
UPDATE and DELETE in Hive on the other hand do allow us 
to use very simple mechanisms to deal with reader and writer 
concurrency without implementing complex locking 
protocols. 

Apart from these restrictions, HiveQL has extensions to 
support analysis expressed as map-reduce programs by users 
and in the programming language of their choice. This enables 
advanced users to express complex logic in terms of map-
reduce programs that are plugged into HiveQL queries 
seamlessly. Some times this may be the only reasonable 
approach e.g. in the case where there are libraries in python or 
php or any other language that the user wants to use for data 
transformation. The canonical word count example on a table 
of documents can, for example, be expressed using map-
reduce in the following manner: 
 
FROM ( 
  MAP doctext USING 'python wc_mapper.py' AS (word, cnt) 
  FROM docs 
  CLUSTER BY word 
) a 
REDUCE word, cnt USING 'python wc_reduce.py'; 
 
As shown in this example the MAP clause indicates how the 
input columns (doctext in this case) can be transformed using 
a user program (in this case ‘python wc_mapper.py') into 
output columns (word and cnt). The CLUSTER BY clause in 
the sub-query specifies the output columns that are hashed on 
to distributed the data to the reducers and finally the REDUCE 
clause specifies the user program to invoke (python 
wc_reduce.py  in this case) on the output columns of the sub-
query. Sometimes, the distribution criteria between the 
mappers and the reducers needs to provide data to the reducers 
such that it is sorted on a set of columns that are different 
from the ones that are used to do the distribution. An example 
could be the case where all the actions in a session need to be 
ordered by time. Hive provides the DISTRIBUTE BY and 
SORT BY clauses to accomplish this as shown in the 
following example: 
 
FROM ( 
  FROM session_table 
  SELECT sessionid, tstamp, data 
  DISTRIBUTE BY sessionid SORT BY tstamp 
) a 
REDUCE sessionid, tstamp, data USING 'session_reducer.sh'; 
 

Note, in the example above there is no map clause which 
indicates that the input columns are not transformed. 
Similarly, it is possible to have a MAP clause without a 
REDUCE clause in case the reduce phase does not do any 
transformation of data. Also in the examples shown above, the 
FROM clause appears before the SELECT clause which is 
another deviation from standard SQL syntax. Hive allows 
users to interchange the order of the FROM and 
SELECT/MAP/REDUCE clauses within a given sub-query. 
This becomes particularly useful and intuitive when dealing 
with multi inserts. HiveQL supports inserting different 
transformation results into different tables, partitions, hdfs or 
local directories as part of the same query. This ability helps 
in reducing the number of scans done on the input data as 
shown in the following example: 
 
FROM t1 
  INSERT OVERWRITE TABLE t2  
  SELECT t3.c2, count(1)  
  FROM t3  
  WHERE t3.c1 <= 20 
  GROUP BY t3.c2 
 
  INSERT OVERWRITE DIRECTORY '/output_dir' 
  SELECT t3.c2, avg(t3.c1)  
  FROM t3  
  WHERE t3.c1 > 20 AND t3.c1 <= 30 
  GROUP BY t3.c2 
 
  INSERT OVERWRITE LOCAL DIRECTORY '/home/dir' 
  SELECT t3.c2, sum(t3.c1)  
  FROM t3  
  WHERE t3.c1 > 30 
  GROUP BY t3.c2; 
 
In this example different portions of table t1 are aggregated 
and used to generate a table t2,  an hdfs directory(/output_dir) 
and a local directory(/home/dir on the user’s machine). 

III. DATA STORAGE, SERDE AND FILE FORMATS 

A. Data Storage 
While the tables are logical data units in Hive, table 

metadata associates the data in a table to hdfs directories. The 
primary data units and their mappings in the hdfs name space 
are as follows: 

• Tables – A table is stored in a directory in hdfs. 
• Partitions – A partition of the table is stored in a sub-

directory within a table's directory.  
• Buckets – A bucket is stored in a file within the 

partition's or table's directory depending on whether the 
table is a partitioned table or not. 

As an example a table test_table gets mapped to 
<warehouse_root_directory>/test_table in hdfs. The 
warehouse_root_directory is specified by the 
hive.metastore.warehouse.dir  configuration parameter in 
hive-site.xml. By default this parameter's value is set to 
/user/hive/warehouse.  



   A table may be partitioned or non-partitioned. A partitioned 
table can be created by specifying the PARTITIONED BY 
clause in the CREATE TABLE statement as shown below. 
 
CREATE TABLE test_part(c1 string, c2 int) 
PARTITIONED BY (ds string, hr int); 
 
In the example shown above the table partitions will be stored 
in /user/hive/warehouse/test_part directory in hdfs. A partition 
exists for every distinct value of ds and hr specified by the 
user. Note that the partitioning columns are not part of the 
table data and the partition column values are encoded in the 
directory path of that partition (they are also stored in the table 
metadata). A new partition can be created through an INSERT 
statement or through an ALTER statement that adds a 
partition to the table. Both the following statements 
 
INSERT OVERWRITE TABLE  
  test_part PARTITION(ds='2009-01-01', hr=12) 
SELECT * FROM t; 
 
ALTER TABLE test_part  
  ADD PARTITION(ds='2009-02-02', hr=11); 
 
add a new partition to the table test_part. The INSERT 
statement also populates the partition with data from table t, 
where as the alter table creates an empty partition. Both these 
statements end up creating the corresponding directories - 
/user/hive/warehouse/test_part/ds=2009-01-01/hr=12 and 
/user/hive/warehouse/test_part/ds=2009-02-02/hr=11 – in the 
table’s hdfs directory. This approach does create some 
complications in case the partition value contains characters 
such as / or : that are used by hdfs to denote directory 
structure, but proper escaping of those characters does take 
care of a producing an hdfs compatible directory name. 
    The Hive compiler is able to use this information to prune 
the directories that need to be scanned for data in order to 
evaluate a query. In case of the test_part table, the query 
 
SELECT * FROM test_part WHERE ds='2009-01-01'; 
 
will only scan all the files within the 
/user/hive/warehouse/test_part/ds=2009-01-01 directory and 
the query 
 
SELECT * FROM test_part  
WHERE ds='2009-02-02' AND hr=11; 
 
will only scan all the files within the 
/user/hive/warehouse/test_part/ds=2009-01-01/hr=12 
directory. Pruning the data has a significant impact on the 
time it takes to process the query. In many respects this 
partitioning scheme is similar to what has been referred to as 
list partitioning by many database vendors ([6]), but there are 
differences in that the values of the partition keys are stored 
with the metadata instead of the data. 

    The final storage unit concept that Hive uses is the concept 
of Buckets. A bucket is a file within the leaf level directory of 
a table or a partition. At the time the table is created, the user 
can specify the number of buckets needed and the column on 
which to bucket the data. In the current implementation this 
information is used to prune the data in case the user runs the 
query on a sample of data e.g. a table that is bucketed into 32 
buckets can quickly generate a 1/32 sample by choosing to 
look at the first bucket of data. Similarly, the statement 
 
SELECT * FROM t TABLESAMPLE(2 OUT OF 32); 
 
would scan the data present in the second bucket. Note that 
the onus of ensuring that the bucket files are properly created 
and named are a responsibility of the application and HiveQL  
DDL statements do not currently try to bucket the data in a 
way that it becomes compatible to the table properties. 
Consequently, the bucketing information should be used with 
caution. 
     Though the data corresponding to a table always resides in 
the <warehouse_root_directory>/test_table location in hdfs, 
Hive also enables users to query data stored in other locations 
in hdfs. This can be achieved through the EXTERNAL 
TABLE clause as shown in the following example. 
 
CREATE EXTERNAL TABLE test_extern(c1 string, c2 int) 
  LOCATION '/user/mytables/mydata'; 
 
With this statement, the user is able to specify that test_extern 
is an external table with each row comprising of two columns 
– c1 and c2. In addition the data files are stored in the location 
/user/mytables/mydata in hdfs. Note that as no custom SerDe 
has been defined it is assumed that the data is in Hive’s 
internal format. An external table differs from a normal table 
in only that a drop table command on an external table only 
drops the table metadata and does not delete any data. A drop 
on a normal table on the other hand drops the data associated 
with the table as well. 

B. Serialization/Deserialization (SerDe) 
    As mentioned previously Hive can take an implementation 
of the SerDe java interface provided by the user and associate 
it to a table or partition. As a result custom data formats can 
easily be interpreted and queried from. The default SerDe 
implementation in Hive is called the LazySerDe – it 
deserializes rows into internal objects lazily so that the cost of 
deserialization of a column is incurred only if the column of 
the row is needed in some query expression. The LazySerDe 
assumes that the data is stored in the file such that the rows 
are delimited by a newline (ascii code 13) and the columns 
within a row are delimited by ctrl-A (ascii code 1). This SerDe 
can also be used to read data that uses any other delimiter 
character between columns.  
 
 
 
As an example, the statement 
 



CREATE TABLE test_delimited(c1 string, c2 int) 
  ROW FORMAT DELIMITED 
     FIELDS TERMINATED BY '\002' 
     LINES TERMINATED BY '\012'; 
 
specifies that the data for table test_delimited uses ctrl-B 
(ascii code 2) as a column delimiter and uses ctrl-L(ascii code 
12) as  a row delimiter. In addition, delimiters can be specified 
to delimit the serialized keys and values of maps and different 
delimiters can also be specified to delimit the various 
elements of a list (collection). This is illustrated by the 
following statement. 
 
CREATE TABLE test_delimited2(c1 string,  
                                                        c2 list<map<string, int>>) 
  ROW FORMAT DELIMITED 
    FIELDS TERMINATED BY '\002' 
    COLLECTION ITEMS TERMINATED BY '\003' 
    MAP KEYS TERMINATED BY '\004'; 
 
     Apart from LazySerDe, some other interesting SerDes are 
present in the hive_contrib.jar that is provided with the 
distribution. A particularly useful one is RegexSerDe which 
enables the user to specify a regular expression to parse 
various columns out from a row. The following statement can 
be used for example, to interpret apache logs. 
 
add jar 'hive_contrib.jar'; 
CREATE TABLE apachelog( 
    host string, 
    identity string, 
    user string, 
    time string, 
    request string, 
    status string, 
    size string, 
    referer string, 
    agent string) 
  ROW FORMAT SERDE  
      'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' 
  WITH SERDEPROPERTIES( 
   'input.regex' = '([^ ]*) ([^ ]*) ([^ ]*) (-|\\[[^\\]]*\\]) ([^ 
\"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^ 
\"]*|\"[^\"]*\"))?', 
  'output.format.string' = '%1$s %2$s %3$s %4$s %5$s %6$s 
%7$s %8$s %9$s'); 
 
The input.regex property is the regular expression applied on 
each record and the output.format.string indicates how the 
column fields can be constructed from the group matches in 
the regular expression. This example also illustrates how 
arbitrary key value pairs can be passed to a serde using the 
WITH SERDEPROPERTIES clause, a capability that can be 
very useful in order to pass arbitrary parameters to a custom 
SerDe. 

C. File Formats 

Hadoop files can be stored in different formats. A file 
format in Hadoop specifies how records are stored in a file. 
Text files for example are stored in the TextInputFormat and 
binary files can be stored as SequenceFileInputFormat. Users 
can also implement their own file formats. Hive does not 
impose an restrictions on the type of file input formats, that 
the data is stored in. The format can be specified when the 
table is created. Apart from the two formats mentioned above, 
Hive also provides an RCFileInputFormat which stores the 
data in a column oriented manner. Such an organization can 
give important performance improvements specially for 
queries that do not access all the columns of the table. Users 
can add their own file formats and associate them to a table as 
shown in the following statement. 

 
CREATE TABLE dest1(key INT, value STRING)  
  STORED AS  
      INPUTFORMAT  
             'org.apache.hadoop.mapred.SequenceFileInputFormat' 

  OUTPUTFORMAT  
      'org.apache.hadoop.mapred.SequenceFileOutputFormat' 
 

The STORED AS clause specifies the classes to be used to 
determine the input and output formats of the files in the 
table’s or partition’s directory. This can be any class that 
implements the FileInputFormat and FileOutputFormat java 
interfaces. The classes can be provded to Hadoop in a jar in 
ways similar to those shown in the examples on adding 
custom SerDes. 

IV. SYSTEM ARCHITECTURE AND COMPONENTS 

 
Fig. 1: Hive System Architecture 



The following components are the main building blocks in 
Hive: 

• Metastore – The component that stores the system 
catalog and metadata about tables, columns, partitions 
etc. 

• Driver – The component that manages the lifecycle of a 
HiveQL statement as it moves through Hive. The driver 
also maintains a session handle and any session 
statistics. 

• Query Compiler – The component that compiles HiveQL 
into a directed acyclic graph of map/reduce tasks. 

• Execution Engine – The component that executes the 
tasks produced by the compiler in proper dependency 
order. The execution engine interacts with the underlying 
Hadoop instance. 

• HiveServer – The component that provides a thrift 
interface and a JDBC/ODBC server and provides a way 
of integrating Hive with other applications. 

• Clients components like the Command Line Interface 
(CLI), the web UI and JDBC/ODBC driver. 

• Extensibility Interfaces which include the SerDe and 
ObjectInspector interfaces already described previously 
as well as the UDF(User Defined Function) and 
UDAF(User Defined Aggregate Function) interfaces that 
enable users to define their own custom functions. 

 
     A HiveQL statement is submitted via the CLI, the web UI 
or an external client using the thrift, odbc or jdbc interfaces. 
The driver first passes the query to the compiler where it goes 
through the typical parse, type check and semantic analysis 
phases, using the metadata stored in the Metastore. The 
compiler generates a logical plan that is then optimized 
through a simple rule based optimizer. Finally an optimized 
plan in the form of a DAG of map-reduce tasks and hdfs tasks 
is generated. The execution engine then executes these tasks 
in the order of their dependencies, using Hadoop.  
    In this section we provide more details on the Metastore, 
the Query Compiler and the Execution Engine. 

A. Metastore 
The Metastore acts as the system catalog for Hive. It stores 

all the information about the tables, their partitions, the 
schemas, the columns and their types, the table locations etc. 
This information can be queried or modified using a thrift 
([7]) interface and as a result it can be called from clients in 
different programming languages. As this information needs 
to be served fast to the compiler, we have chosen to store this 
information on a traditional RDBMS. The Metastore thus 
becomes an application that runs on an RDBMS and uses an 
open source ORM layer called DataNucleus ([8]), to convert 
object representations into a relational schema and vice versa. 
We chose this approach as opposed to storing this information 
in hdfs as we need the Metastore to be very low latency. The 
DataNucleus layer allows us to plugin many different 
RDBMS technologies. In our deployment at Facebook, we use 
mysql to store this information. 

Metastore is very critical for Hive. Without the system 
catalog it is not possible to impose a structure on hadoop files. 

As a result it is important that the information stored in the 
Metastore is backed up regularly. Ideally a replicated server 
should also be deployed in order to provide the availability 
that many production environments need. It is also important 
to ensure that this server is able to scale with the number of 
queries submitted by the users. Hive addresses that by 
ensuring that no Metastore calls are made from the mappers or 
the reducers of a job. Any metadata that is needed by the 
mapper or the reducer is passed through xml plan files that are 
generated by the compiler and that contain any information 
that is needed at the run time. 

The ORM logic in the Metastore can be deployed in client 
libraries such that it runs on the client side and issues direct 
calls to an RDBMS. This deployment is easy to get started 
with and ideal if the only clients that interact with Hive are the 
CLI or the web UI. However, as soon as Hive metadata needs 
to get manipulated and queried by programs in languages like 
python, php etc., i.e. by clients not written in Java, a separate 
Metastore server has to be deployed. 

B. Query Compiler 
The metadata stored in the Metastore is used by the query 

compiler to generate the execution plan. Similar to compilers 
in traditional databases, the Hive compiler processes HiveQL 
statements in the following steps: 

• Parse – Hive uses Antlr to generate the abstract syntax 
tree (AST) for the query. 

• Type checking and Semantic Analysis – During this 
phase, the compiler fetches the information of all the 
input and output tables from the Metastore and uses that 
information to build a logical plan. It checks type 
compatibilities in expressions and flags any compile 
time semantic errors at this stage. The transformation of 
an AST to an operator DAG goes through an 
intermediate representation that is called the query block 
(QB) tree. The compiler converts nested queries into 
parent child relationships in a QB tree. At the same time, 
the QB tree representation also helps in organizing the 
relevant parts of the AST tree in a form that is more 
amenable to be transformed into an operator DAG than 
the vanilla AST. 

• Optimization – The optimization logic consists of a 
chain of transformations such that the operator DAG 
resulting from one transformation is passed as input to 
the next transformation. Anyone wishing to change the 
compiler or wishing to add new optimization logic can 
easily do that by implementing the transformation as an 
extension of the Transform interface and adding it to the 
chain of transformations in the optimizer.  
The transformation logic typically comprises of a walk 
on the operator DAG such that certain processing actions 
are taken on the operator DAG when relevant conditions 
or rules are satisfied. The five primary interfaces that are 
involved in a transformation are Node, GraphWalker, 
Dispatcher, Rule and Processor. The nodes in the 
operator DAG implement the Node interface. This 
enables the operator DAG to be manipulated using the 
other interfaces mentioned above. A typical 



transformation involves walking the DAG and for every 
Node visited, checking if a Rule is satisfied and then 
invoking the corresponding Processor for that Rule in 
case the later is satisfied. The Dispatcher maintains the 
mappings from Rules to Processors and does the Rule 
matching. It is passed to the GraphWalker so that the 
appropriate Processor can be dispatched while a Node is 
being visited in the walk. The flowchart in Fig. 2 shows 
how a typical transformation is structured. 
 

 
Fig. 2: Flowchart for typical transformation during optimization 

The following transformations are done currently in 
Hive as part of the optimization stage: 

i. Column pruning – This optimization step 
ensures that only the columns that are 
needed in the query processing are actually 
projected out of the row. 

ii. Predicate pushdown – Predicates are pushed 
down to the scan if possible so that rows can 
be filter early in the processing. 

iii. Partition pruning – Predicates on partitioned 
columns are used to prune out files of 
partitions that do not satisfy the predicate. 

iv. Map side joins – In the cases where some of 
the tables in a join are very small, the small 
tables are replicated in all the mappers and 
joined with other tables. This behavior is 
triggered by a hint in the query of the form: 
 
SELECT /*+ MAPJOIN(t2) */ t1.c1, t2.c1 
FROM t1 JOIN t2 ON(t1.c2 = t2.c2); 
 
A number of parameters control the amount 
of memory that is used on the mapper to 
hold the contents of the replicated table. 
These are hive.mapjoin.size.key and 
hive.mapjoin.cache.numrows that control 
the number of rows of the table that are kept 
in memory at any time and also provide the 
system the size of the join key. 

v. Join reordering – The larger tables are 
streamed and not materialized in memory in 
the reducer while the smaller tables are kept 
in memory. This ensures that the join 
operation does not exceed memory limits on 
the reducer side. 
 

In addition to the MAPJOIN hint, the user can also 
provide hints or set parameters to do the following: 

 
i. Repartitioning of data to handle skews in 

GROUP BY processing – Many real world 
datasets have a power law distribution on 
columns used in the GROUP BY clause of 
common queries. In such situations the 
usual plan of distributing the data on the 
group by columns and then aggregating in 
the reducer does not work well as most of 
the data gets sent to a very few reducers. A 
better plan in such situations is to use two 
map/reduce stages to compute the 
aggregation. In the first stage the data is 
randomly distributed (or distributed on the 
DISTINCT column in case of distinct 
aggregations) to the reducers and the partial 
aggregations are computed. These partial 
aggregates are then distributed on the 
GROUP BY columns to the reducers in the 
second map/reduce stage. Since the number 
of the partial aggregation tuples is much 
smaller than the base data set, this approach 
typically leads to better performance. In 
Hive this behavior can be triggered by 
setting a parameter in the following manner: 



 
set hive.groupby.skewindata=true; 
SELECT t1.c1, sum(t1.c2) 
FROM t1 
GROUP BY t1; 
 

ii. Hash based partial aggregations in the 
mappers – Hash based partial aggregations 
can potentially reduce the data that is sent 
by the mappers to the reducers. This in turn 
reduces the amount of time spent in sorting 
and merging this data. As a result a lot of 
performance gains can be achieved using 
this strategy. Hive enables users to control 
the amount of memory that can be used on 
the mapper to hold the rows in a hash table 
for this optimization. The parameter 
hive.map.aggr.hash.percentmemory 
specifies the fraction of mapper memory 
that can be used to hold the hash table, e.g. 
0.5 would ensure that as soon as the hash 
table size exceeds half of the maximum 
memory for a mapper, the partial aggregates 
stored therein are sent to the reducers. The 
parameter hive.map.aggr.hash.min.reduction 
is also used to control the amount of 
memory used in the mappers. 

 
• Generation of the physical plan – The logical plan 

generated at the end of the optimization phase is then 
split into multiple map/reduce and hdfs tasks. As an 
example a group by on skewed data can generate two 
map/reduce tasks followed by a final hdfs task which 
moves the results to the correct location in hdfs. At the 
end of this stage the physical plan looks like a DAG of 
tasks with each task encapsulating a part of the plan. 

We show a sample multi-table insert query and its 
corresponding physical plan after all optimizations below. 

 
FROM (SELECT a.status, b.school, b.gender  
              FROM status_updates a JOIN profiles b  
                          ON (a.userid = b.userid  
                                  AND a.ds='2009-03-20' )) subq1 
 
INSERT OVERWRITE TABLE gender_summary 
                                          PARTITION(ds='2009-03-20') 
SELECT subq1.gender, COUNT(1)  
GROUP BY subq1.gender 
 
INSERT OVERWRITE TABLE school_summary  
                                          PARTITION(ds='2009-03-20') 
SELECT subq1.school, COUNT(1)  
GROUP BY subq1.school 

 
This query has a single join followed by two different 
aggregations. By writing the query as a multi-table-insert, we 

make sure that the join is performed only once. The plan for 
the query is shown in Fig 3 below. 

The nodes in the plan are physical operators and the edges 
represent the flow of data between operators. The last line in 
each node represents the output schema of that operator. For 
lack of space, we do not describe the parameters specified 
within each operator node. The plan has three map-reduce 
jobs. 
 

 
Fig. 3: Query plan for multi-table insert query with 3 map/reduce jobs 

 

Within the same map-reduce job, the portion of the operator 
tree below the repartition operator (ReduceSinkOperator) is 
executed by the mapper and the portion above by the reducer. 
The repartitioning itself is performed by the execution engine. 

Notice that the first map-reduce job writes to two 
temporary files to HDFS, tmp1 and tmp2, which are 
consumed by the second and third map-reduce jobs 



respectively. Thus, the second and third map-reduce jobs wait 
for the first map-reduce job to finish. 
 

C. Execution Engine 
Finally the tasks are executed in the order of their 

dependencies. Each dependent task is only executed if all of 
its prerequisites have been executed. A map/reduce task first 
serializes its part of the plan into a plan.xml file. This file is 
then added to the job cache for the task and instances of 
ExecMapper and ExecReducers are spawned using Hadoop. 
Each of these classes deserializes the plan.xml and executes 
the relevant part of the operator DAG. The final results are 
stored in a temporary location. At the end of the entire query, 
the final data is moved to the desired location in case of 
DMLs. In the case of queries the data is served as such from 
the temporary location. 

V. HIVE USAGE IN FACEBOOK 
Hive and Hadoop are used extensively in Facebook for 

different kinds of data processing. Currently our warehouse 
has 700TB of data(which comes to 2.1PB of raw space on 
Hadoop after accounting for the 3 way replication). We add 
5TB(15TB after replication) of compressed data daily. Typical 
compression ratio is 1:7 and sometime more than that. On any 
particular day more than 7500 jobs are submitted to the cluster 
and more than 75TB of compressed data is processed every 
day. With the continuous growth in the Facebook network we 
see continuous growth in data. At the same time as the 
company scales, the cluster also has to scale with the growing 
users.  

More than half the workload is on adhoc queries where as 
the rest is for reporting dashboards. Hive has enabled this kind 
of workload on the Hadoop cluster in Facebook because of the 
simplicity with which adhoc analysis can be done. However, 
sharing the same resources by the adhoc users and reporting 
users presents significant operational challenges because of 
the unpredictability of adhoc jobs. Many times these jobs are 
not properly tuned and therefore consume valuable cluster 
resources. This can in turn lead to degraded performance of 
the reporting queries, many of which are time critical. 
Resource scheduling has been somewhat weak in Hadoop and 
the only viable solution at present seems to be maintaining 
separate clusters for adhoc queries and reporting queries.  

There is also a wide variety in the Hive jobs that are run 
daily. They range from simple summarization jobs generating 
different kinds of rollups and cubes to more advanced 
machine learning algorithms. The system is used by novice 
users as well as advanced users with new users being able to 
use the system immediately or after an hour long beginners 
training.  

A result of heavy usage has also lead to a lot of tables 
generated in the warehouse and this has in turn tremendously 
increased the need for data discovery tools, especially for new 
users. In general the system has enabled us to provide data 
processing services to engineers and analysts at a fraction of 
the cost of a more traditional warehousing infrastructure. 

Added to that the ability of Hadoop to scale to thousands of 
commodity nodes gives us the confidence that we will be able 
to scale this infrastructure going forward as well. 

VI. RELATED WORK 
There has been a lot of recent work on petabyte scale data 
processing systems, both open-source and commercial. 
Scope[14] is an SQL-like language on top of Microsoft’s 
proprietary Cosmos map/reduce and distributed file system. 
Pig[13] allows users to write declarative scripts to process 
data. Hive is different from these systems since it provides a 
system catalog that persists metadata about tables within the 
system. This allows hive to function as a traditional 
warehouse which can interface with standard reporting tools 
like MicroStrategy[16]. HadoopDB[15] reuses most of Hive’s 
system, except, it uses traditional database instances in each of 
the nodes to store data instead of using a distributed file 
system. 

VII. CONCLUSIONS AND FUTURE WORK 
    Hive is a work in progress. It is an open-source project, and 
is being actively worked on by Facebook as well as several 
external contributors.  
 
HiveQL currently accepts only a subset of SQL as valid 
queries. We are working towards making HiveQL subsume 
SQL syntax. Hive currently has a naive rule-based optimizer 
with a small number of simple rules. We plan to build a cost-
based optimizer and adaptive optimization techniques to come 
up with more efficient plans. We are exploring columnar 
storage and more intelligent data placement to improve scan 
performance. We are running performance benchmarks based 
on [9] to measure our progress as well as compare against 
other systems. In our preliminary experiments, we have been 
able to improve the performance of Hadoop itself by ~20% 
compared to [9]. The improvements involved using faster 
Hadoop data structures to process the data, for example, using 
Text instead of String. The same queries expressed easily in 
HiveQL had ~20% overhead compared to our optimized 
Hadoop implementation, i.e., Hive's performance is on par 
with the Hadoop code from [9]. We have also run the industry 
standard decision support benchmark – TPC-H [11]. Based on 
these experiments, we have identified several areas for 
performance improvement and have begun working on them. 
More details are available in [10] and [12]. We are enhancing 
the JDBC and ODBC drivers for Hive for integration with 
commercial BI tools that only work with traditional relational 
warehouses. We are exploring methods for multi-query 
optimization techniques and performing generic n-way joins 
in a single map-reduce job. 
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