
Hive – A Petabyte Scale Data Warehouse Using
Hadoop

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao Liu
and Raghotham Murthy

Facebook Data Infrastructure Team

Abstract— The size of data sets being collected and analyzed in
the industry for business intelligence is growing rapidly, making
traditional warehousing solutions prohibitively expensive.
Hadoop [1] is a popular open-source map-reduce implementation
which is being used in companies like Yahoo, Facebook etc. to
store and process extremely large data sets on commodity
hardware. However, the map-reduce programming model is very
low level and requires developers to write custom programs
which are hard to maintain and reuse. In this paper, we present
Hive, an open-source data warehousing solution built on top of
Hadoop. Hive supports queries expressed in a SQL-like
declarative language - HiveQL, which are compiled into map-
reduce jobs that are executed using Hadoop. In addition, HiveQL
enables users to plug in custom map-reduce scripts into queries.
The language includes a type system with support for tables
containing primitive types, collections like arrays and maps, and
nested compositions of the same. The underlying IO libraries can
be extended to query data in custom formats. Hive also includes
a system catalog - Metastore – that contains schemas and
statistics, which are useful in data exploration, query
optimization and query compilation. In Facebook, the Hive
warehouse contains tens of thousands of tables and stores over
700TB of data and is being used extensively for both reporting
and ad-hoc analyses by more than 200 users per month.

I. INTRODUCTION
Scalable analysis on large data sets has been core to the

functions of a number of teams at Facebook - both
engineering and non-engineering. Apart from ad hoc analysis
and business intelligence applications used by analysts across
the company, a number of Facebook products are also based
on analytics. These products range from simple reporting
applications like Insights for the Facebook Ad Network, to
more advanced kind such as Facebook's Lexicon product [2].
As a result a flexible infrastructure that caters to the needs of
these diverse applications and users and that also scales up in
a cost effective manner with the ever increasing amounts of
data being generated on Facebook, is critical. Hive and
Hadoop are the technologies that we have used to address
these requirements at Facebook.

The entire data processing infrastructure in Facebook prior
to 2008 was built around a data warehouse built using a
commercial RDBMS. The data that we were generating was
growing very fast - as an example we grew from a 15TB data
set in 2007 to a 700TB data set today. The infrastructure at
that time was so inadequate that some daily data processing
jobs were taking more than a day to process and the situation
was just getting worse with every passing day. We had an
urgent need for infrastructure that could scale along with our

data. As a result we started exploring Hadoop as a technology
to address our scaling needs. The fact that Hadoop was
already an open source project that was being used at petabyte
scale and provided scalability using commodity hardware was
a very compelling proposition for us. The same jobs that had
taken more than a day to complete could now be completed
within a few hours using Hadoop.

However, using Hadoop was not easy for end users,
especially for those users who were not familiar with map-
reduce. End users had to write map-reduce programs for
simple tasks like getting raw counts or averages. Hadoop
lacked the expressiveness of popular query languages like
SQL and as a result users ended up spending hours (if not
days) to write programs for even simple analysis. It was very
clear to us that in order to really empower the company to
analyze this data more productively, we had to improve the
query capabilities of Hadoop. Bringing this data closer to
users is what inspired us to build Hive in January 2007. Our
vision was to bring the familiar concepts of tables, columns,
partitions and a subset of SQL to the unstructured world of
Hadoop, while still maintaining the extensibility and
flexibility that Hadoop enjoyed. Hive was open sourced in
August 2008 and since then has been used and explored by a
number of Hadoop users for their data processing needs.

Right from the start, Hive was very popular with all users
within Facebook. Today, we regularly run thousands of jobs
on the Hadoop/Hive cluster with hundreds of users for a wide
variety of applications starting from simple summarization
jobs to business intelligence, machine learning applications
and to also support Facebook product features.

In the following sections, we provide more details about
Hive architecture and capabilities. Section II describes the
data model, the type systems and the HiveQL. Section III
details how data in Hive tables is stored in the underlying
distributed file system – HDFS(Hadoop file system). Section
IV describes the system architecture and various components
of Hive . In Section V we highlight the usage statistics of Hive
at Facebook and provide related work in Section VI. We
conclude with future work in Section VII.

II. DATA MODEL, TYPE SYSTEM AND QUERY LANGUAGE
Hive structures data into the well-understood database

concepts like tables, columns, rows, and partitions. It supports
all the major primitive types – integers, floats, doubles and
strings – as well as complex types such as maps, lists and
structs. The latter can be nested arbitrarily to construct more
complex types. In addition, Hive allows users to extend the

system with their own types and functions. The query
language is very similar to SQL and therefore can be easily
understood by anyone familiar with SQL. There are some
nuances in the data model, type system and HiveQL that are
different from traditional databases and that have been
motivated by the experiences gained at Facebook. We will
highlight these and other details in this section.

A. Data Model and Type System
Similar to traditional databases, Hive stores data in tables,

where each table consists of a number of rows, and each row
consists of a specified number of columns. Each column has
an associated type. The type is either a primitive type or a
complex type. Currently, the following primitive types are
supported:

• Integers – bigint(8 bytes), int(4 bytes), smallint(2 bytes),
tinyint(1 byte). All integer types are signed.

• Floating point numbers – float(single precision),
double(double precision)

• String

Hive also natively supports the following complex types:

• Associative arrays – map<key-type, value-type>
• Lists – list<element-type>
• Structs – struct<file-name: field-type, ... >

These complex types are templated and can be composed to
generate types of arbitrary complexity. For example,
list<map<string, struct<p1:int, p2:int>> represents a list of
associative arrays that map strings to structs that in turn
contain two integer fields named p1 and p2. These can all be
put together in a create table statement to create tables with
the desired schema. For example, the following statement
creates a table t1 with a complex schema.

CREATE TABLE t1(st string, fl float, li list<map<string,
struct<p1:int, p2:int>>);

Query expressions can access fields within the structs using a
'.' operator. Values in the associative arrays and lists can be
accessed using '[]' operator. In the previous example, t1.li[0]
gives the first element of the list and t1.li[0]['key'] gives the
struct associated with 'key' in that associative array. Finally
the p2 field of this struct can be accessed by t1.li[0]['key'].p2.
With these constructs Hive is able to support structures of
arbitrary complexity.

The tables created in the manner describe above are
serialized and deserialized using default serializers and
deserializers already present in Hive. However, there are
instances where the data for a table is prepared by some other
programs or may even be legacy data. Hive provides the
flexibility to incorporate that data into a table without having
to transform the data, which can save substantial amount of
time for large data sets. As we will describe in the later
sections, this can be achieved by providing a jar that
implements the SerDe java interface to Hive. In such
situations the type information can also be provided by that jar
by providing a corresponding implementation of the

ObjectInspector java interface and exposing that
implementation through the getObjectInspector method
present in the SerDe interface. More details on these interfaces
can be found on the Hive wiki [3], but the basic takeaway here
is that any arbitrary data format and types encoded therein can
be plugged into Hive by providing a jar that contains the
implementations for the SerDe and ObjectInspector interfaces.
All the native SerDes and complex types supported in Hive
are also implementations of these interfaces. As a result once
the proper associations have been made between the table and
the jar, the query layer treats these on par with the native types
and formats. As an example, the following statement adds a
jar containing the SerDe and ObjectInspector interfaces to the
distributed cache([4]) so that it is available to Hadoop and
then proceeds to create the table with the custom serde.

add jar /jars/myformat.jar;
CREATE TABLE t2
ROW FORMAT SERDE 'com.myformat.MySerDe';

Note that, if possible, the table schema could also be provided
by composing the complex and primitive types.

B. Query Language
The Hive query language(HiveQL) comprises of a subset of

SQL and some extensions that we have found useful in our
environment. Traditional SQL features like from clause sub-
queries, various types of joins – inner, left outer, right outer
and outer joins, cartesian products, group bys and
aggregations, union all, create table as select and many useful
functions on primitive and complex types make the language
very SQL like. In fact for many of the constructs mentioned
before it is exactly like SQL. This enables anyone familiar
with SQL to start a hive cli(command line interface) and begin
querying the system right away. Useful metadata browsing
capabilities like show tables and describe are also present and
so are explain plan capabilities to inspect query plans (though
the plans look very different from what you would see in a
traditional RDBMS). There are some limitations e.g. only
equality predicates are supported in a join predicate and the
joins have to be specified using the ANSI join syntax such as

SELECT t1.a1 as c1, t2.b1 as c2
FROM t1 JOIN t2 ON (t1.a2 = t2.b2);

instead of the more traditional

SELECT t1.a1 as c1, t2.b1 as c2
FROM t1, t2
WHERE t1.a2 = t2.b2;

Another limitation is in how inserts are done. Hive currently
does not support inserting into an existing table or data
partition and all inserts overwrite the existing data.
Accordingly, we make this explicit in our syntax as follows:

INSERT OVERWRITE TABLE t1

SELECT * FROM t2;

In reality these restrictions have not been a problem. We have
rarely seen a case where the query cannot be expressed as an
equi-join and since most of the data is loaded into our
warehouse daily or hourly, we simply load the data into a new
partition of the table for that day or hour. However, we do
realize that with more frequent loads the number of partitions
can become very large and that may require us to implement
INSERT INTO semantics. The lack of INSERT INTO,
UPDATE and DELETE in Hive on the other hand do allow us
to use very simple mechanisms to deal with reader and writer
concurrency without implementing complex locking
protocols.

Apart from these restrictions, HiveQL has extensions to
support analysis expressed as map-reduce programs by users
and in the programming language of their choice. This enables
advanced users to express complex logic in terms of map-
reduce programs that are plugged into HiveQL queries
seamlessly. Some times this may be the only reasonable
approach e.g. in the case where there are libraries in python or
php or any other language that the user wants to use for data
transformation. The canonical word count example on a table
of documents can, for example, be expressed using map-
reduce in the following manner:

FROM (
 MAP doctext USING 'python wc_mapper.py' AS (word, cnt)
 FROM docs
 CLUSTER BY word
) a
REDUCE word, cnt USING 'python wc_reduce.py';

As shown in this example the MAP clause indicates how the
input columns (doctext in this case) can be transformed using
a user program (in this case ‘python wc_mapper.py') into
output columns (word and cnt). The CLUSTER BY clause in
the sub-query specifies the output columns that are hashed on
to distributed the data to the reducers and finally the REDUCE
clause specifies the user program to invoke (python
wc_reduce.py in this case) on the output columns of the sub-
query. Sometimes, the distribution criteria between the
mappers and the reducers needs to provide data to the reducers
such that it is sorted on a set of columns that are different
from the ones that are used to do the distribution. An example
could be the case where all the actions in a session need to be
ordered by time. Hive provides the DISTRIBUTE BY and
SORT BY clauses to accomplish this as shown in the
following example:

FROM (
 FROM session_table
 SELECT sessionid, tstamp, data
 DISTRIBUTE BY sessionid SORT BY tstamp
) a
REDUCE sessionid, tstamp, data USING 'session_reducer.sh';

Note, in the example above there is no map clause which
indicates that the input columns are not transformed.
Similarly, it is possible to have a MAP clause without a
REDUCE clause in case the reduce phase does not do any
transformation of data. Also in the examples shown above, the
FROM clause appears before the SELECT clause which is
another deviation from standard SQL syntax. Hive allows
users to interchange the order of the FROM and
SELECT/MAP/REDUCE clauses within a given sub-query.
This becomes particularly useful and intuitive when dealing
with multi inserts. HiveQL supports inserting different
transformation results into different tables, partitions, hdfs or
local directories as part of the same query. This ability helps
in reducing the number of scans done on the input data as
shown in the following example:

FROM t1
 INSERT OVERWRITE TABLE t2
 SELECT t3.c2, count(1)
 FROM t3
 WHERE t3.c1 <= 20
 GROUP BY t3.c2

 INSERT OVERWRITE DIRECTORY '/output_dir'
 SELECT t3.c2, avg(t3.c1)
 FROM t3
 WHERE t3.c1 > 20 AND t3.c1 <= 30
 GROUP BY t3.c2

 INSERT OVERWRITE LOCAL DIRECTORY '/home/dir'
 SELECT t3.c2, sum(t3.c1)
 FROM t3
 WHERE t3.c1 > 30
 GROUP BY t3.c2;

In this example different portions of table t1 are aggregated
and used to generate a table t2, an hdfs directory(/output_dir)
and a local directory(/home/dir on the user’s machine).

III. DATA STORAGE, SERDE AND FILE FORMATS

A. Data Storage
While the tables are logical data units in Hive, table

metadata associates the data in a table to hdfs directories. The
primary data units and their mappings in the hdfs name space
are as follows:

• Tables – A table is stored in a directory in hdfs.
• Partitions – A partition of the table is stored in a sub-

directory within a table's directory.
• Buckets – A bucket is stored in a file within the

partition's or table's directory depending on whether the
table is a partitioned table or not.

As an example a table test_table gets mapped to
<warehouse_root_directory>/test_table in hdfs. The
warehouse_root_directory is specified by the
hive.metastore.warehouse.dir configuration parameter in
hive-site.xml. By default this parameter's value is set to
/user/hive/warehouse.

 A table may be partitioned or non-partitioned. A partitioned
table can be created by specifying the PARTITIONED BY
clause in the CREATE TABLE statement as shown below.

CREATE TABLE test_part(c1 string, c2 int)
PARTITIONED BY (ds string, hr int);

In the example shown above the table partitions will be stored
in /user/hive/warehouse/test_part directory in hdfs. A partition
exists for every distinct value of ds and hr specified by the
user. Note that the partitioning columns are not part of the
table data and the partition column values are encoded in the
directory path of that partition (they are also stored in the table
metadata). A new partition can be created through an INSERT
statement or through an ALTER statement that adds a
partition to the table. Both the following statements

INSERT OVERWRITE TABLE
 test_part PARTITION(ds='2009-01-01', hr=12)
SELECT * FROM t;

ALTER TABLE test_part
 ADD PARTITION(ds='2009-02-02', hr=11);

add a new partition to the table test_part. The INSERT
statement also populates the partition with data from table t,
where as the alter table creates an empty partition. Both these
statements end up creating the corresponding directories -
/user/hive/warehouse/test_part/ds=2009-01-01/hr=12 and
/user/hive/warehouse/test_part/ds=2009-02-02/hr=11 – in the
table’s hdfs directory. This approach does create some
complications in case the partition value contains characters
such as / or : that are used by hdfs to denote directory
structure, but proper escaping of those characters does take
care of a producing an hdfs compatible directory name.
 The Hive compiler is able to use this information to prune
the directories that need to be scanned for data in order to
evaluate a query. In case of the test_part table, the query

SELECT * FROM test_part WHERE ds='2009-01-01';

will only scan all the files within the
/user/hive/warehouse/test_part/ds=2009-01-01 directory and
the query

SELECT * FROM test_part
WHERE ds='2009-02-02' AND hr=11;

will only scan all the files within the
/user/hive/warehouse/test_part/ds=2009-01-01/hr=12
directory. Pruning the data has a significant impact on the
time it takes to process the query. In many respects this
partitioning scheme is similar to what has been referred to as
list partitioning by many database vendors ([6]), but there are
differences in that the values of the partition keys are stored
with the metadata instead of the data.

 The final storage unit concept that Hive uses is the concept
of Buckets. A bucket is a file within the leaf level directory of
a table or a partition. At the time the table is created, the user
can specify the number of buckets needed and the column on
which to bucket the data. In the current implementation this
information is used to prune the data in case the user runs the
query on a sample of data e.g. a table that is bucketed into 32
buckets can quickly generate a 1/32 sample by choosing to
look at the first bucket of data. Similarly, the statement

SELECT * FROM t TABLESAMPLE(2 OUT OF 32);

would scan the data present in the second bucket. Note that
the onus of ensuring that the bucket files are properly created
and named are a responsibility of the application and HiveQL
DDL statements do not currently try to bucket the data in a
way that it becomes compatible to the table properties.
Consequently, the bucketing information should be used with
caution.
 Though the data corresponding to a table always resides in
the <warehouse_root_directory>/test_table location in hdfs,
Hive also enables users to query data stored in other locations
in hdfs. This can be achieved through the EXTERNAL
TABLE clause as shown in the following example.

CREATE EXTERNAL TABLE test_extern(c1 string, c2 int)
 LOCATION '/user/mytables/mydata';

With this statement, the user is able to specify that test_extern
is an external table with each row comprising of two columns
– c1 and c2. In addition the data files are stored in the location
/user/mytables/mydata in hdfs. Note that as no custom SerDe
has been defined it is assumed that the data is in Hive’s
internal format. An external table differs from a normal table
in only that a drop table command on an external table only
drops the table metadata and does not delete any data. A drop
on a normal table on the other hand drops the data associated
with the table as well.

B. Serialization/Deserialization (SerDe)
 As mentioned previously Hive can take an implementation
of the SerDe java interface provided by the user and associate
it to a table or partition. As a result custom data formats can
easily be interpreted and queried from. The default SerDe
implementation in Hive is called the LazySerDe – it
deserializes rows into internal objects lazily so that the cost of
deserialization of a column is incurred only if the column of
the row is needed in some query expression. The LazySerDe
assumes that the data is stored in the file such that the rows
are delimited by a newline (ascii code 13) and the columns
within a row are delimited by ctrl-A (ascii code 1). This SerDe
can also be used to read data that uses any other delimiter
character between columns.

As an example, the statement

CREATE TABLE test_delimited(c1 string, c2 int)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\002'
 LINES TERMINATED BY '\012';

specifies that the data for table test_delimited uses ctrl-B
(ascii code 2) as a column delimiter and uses ctrl-L(ascii code
12) as a row delimiter. In addition, delimiters can be specified
to delimit the serialized keys and values of maps and different
delimiters can also be specified to delimit the various
elements of a list (collection). This is illustrated by the
following statement.

CREATE TABLE test_delimited2(c1 string,
 c2 list<map<string, int>>)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\002'
 COLLECTION ITEMS TERMINATED BY '\003'
 MAP KEYS TERMINATED BY '\004';

 Apart from LazySerDe, some other interesting SerDes are
present in the hive_contrib.jar that is provided with the
distribution. A particularly useful one is RegexSerDe which
enables the user to specify a regular expression to parse
various columns out from a row. The following statement can
be used for example, to interpret apache logs.

add jar 'hive_contrib.jar';
CREATE TABLE apachelog(
 host string,
 identity string,
 user string,
 time string,
 request string,
 status string,
 size string,
 referer string,
 agent string)
 ROW FORMAT SERDE
 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
 WITH SERDEPROPERTIES(
 'input.regex' = '([^]*) ([^]*) ([^]*) (-|\\[[^\\]]*\\]) ([^
\"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^
\"]*|\"[^\"]*\"))?',
 'output.format.string' = '%1$s %2$s %3$s %4$s %5$s %6$s
%7$s %8$s %9$s');

The input.regex property is the regular expression applied on
each record and the output.format.string indicates how the
column fields can be constructed from the group matches in
the regular expression. This example also illustrates how
arbitrary key value pairs can be passed to a serde using the
WITH SERDEPROPERTIES clause, a capability that can be
very useful in order to pass arbitrary parameters to a custom
SerDe.

C. File Formats

Hadoop files can be stored in different formats. A file
format in Hadoop specifies how records are stored in a file.
Text files for example are stored in the TextInputFormat and
binary files can be stored as SequenceFileInputFormat. Users
can also implement their own file formats. Hive does not
impose an restrictions on the type of file input formats, that
the data is stored in. The format can be specified when the
table is created. Apart from the two formats mentioned above,
Hive also provides an RCFileInputFormat which stores the
data in a column oriented manner. Such an organization can
give important performance improvements specially for
queries that do not access all the columns of the table. Users
can add their own file formats and associate them to a table as
shown in the following statement.

CREATE TABLE dest1(key INT, value STRING)
 STORED AS
 INPUTFORMAT
 'org.apache.hadoop.mapred.SequenceFileInputFormat'

 OUTPUTFORMAT
 'org.apache.hadoop.mapred.SequenceFileOutputFormat'

The STORED AS clause specifies the classes to be used to
determine the input and output formats of the files in the
table’s or partition’s directory. This can be any class that
implements the FileInputFormat and FileOutputFormat java
interfaces. The classes can be provded to Hadoop in a jar in
ways similar to those shown in the examples on adding
custom SerDes.

IV. SYSTEM ARCHITECTURE AND COMPONENTS

Fig. 1: Hive System Architecture

The following components are the main building blocks in
Hive:

• Metastore – The component that stores the system
catalog and metadata about tables, columns, partitions
etc.

• Driver – The component that manages the lifecycle of a
HiveQL statement as it moves through Hive. The driver
also maintains a session handle and any session
statistics.

• Query Compiler – The component that compiles HiveQL
into a directed acyclic graph of map/reduce tasks.

• Execution Engine – The component that executes the
tasks produced by the compiler in proper dependency
order. The execution engine interacts with the underlying
Hadoop instance.

• HiveServer – The component that provides a thrift
interface and a JDBC/ODBC server and provides a way
of integrating Hive with other applications.

• Clients components like the Command Line Interface
(CLI), the web UI and JDBC/ODBC driver.

• Extensibility Interfaces which include the SerDe and
ObjectInspector interfaces already described previously
as well as the UDF(User Defined Function) and
UDAF(User Defined Aggregate Function) interfaces that
enable users to define their own custom functions.

 A HiveQL statement is submitted via the CLI, the web UI
or an external client using the thrift, odbc or jdbc interfaces.
The driver first passes the query to the compiler where it goes
through the typical parse, type check and semantic analysis
phases, using the metadata stored in the Metastore. The
compiler generates a logical plan that is then optimized
through a simple rule based optimizer. Finally an optimized
plan in the form of a DAG of map-reduce tasks and hdfs tasks
is generated. The execution engine then executes these tasks
in the order of their dependencies, using Hadoop.
 In this section we provide more details on the Metastore,
the Query Compiler and the Execution Engine.

A. Metastore
The Metastore acts as the system catalog for Hive. It stores

all the information about the tables, their partitions, the
schemas, the columns and their types, the table locations etc.
This information can be queried or modified using a thrift
([7]) interface and as a result it can be called from clients in
different programming languages. As this information needs
to be served fast to the compiler, we have chosen to store this
information on a traditional RDBMS. The Metastore thus
becomes an application that runs on an RDBMS and uses an
open source ORM layer called DataNucleus ([8]), to convert
object representations into a relational schema and vice versa.
We chose this approach as opposed to storing this information
in hdfs as we need the Metastore to be very low latency. The
DataNucleus layer allows us to plugin many different
RDBMS technologies. In our deployment at Facebook, we use
mysql to store this information.

Metastore is very critical for Hive. Without the system
catalog it is not possible to impose a structure on hadoop files.

As a result it is important that the information stored in the
Metastore is backed up regularly. Ideally a replicated server
should also be deployed in order to provide the availability
that many production environments need. It is also important
to ensure that this server is able to scale with the number of
queries submitted by the users. Hive addresses that by
ensuring that no Metastore calls are made from the mappers or
the reducers of a job. Any metadata that is needed by the
mapper or the reducer is passed through xml plan files that are
generated by the compiler and that contain any information
that is needed at the run time.

The ORM logic in the Metastore can be deployed in client
libraries such that it runs on the client side and issues direct
calls to an RDBMS. This deployment is easy to get started
with and ideal if the only clients that interact with Hive are the
CLI or the web UI. However, as soon as Hive metadata needs
to get manipulated and queried by programs in languages like
python, php etc., i.e. by clients not written in Java, a separate
Metastore server has to be deployed.

B. Query Compiler
The metadata stored in the Metastore is used by the query

compiler to generate the execution plan. Similar to compilers
in traditional databases, the Hive compiler processes HiveQL
statements in the following steps:

• Parse – Hive uses Antlr to generate the abstract syntax
tree (AST) for the query.

• Type checking and Semantic Analysis – During this
phase, the compiler fetches the information of all the
input and output tables from the Metastore and uses that
information to build a logical plan. It checks type
compatibilities in expressions and flags any compile
time semantic errors at this stage. The transformation of
an AST to an operator DAG goes through an
intermediate representation that is called the query block
(QB) tree. The compiler converts nested queries into
parent child relationships in a QB tree. At the same time,
the QB tree representation also helps in organizing the
relevant parts of the AST tree in a form that is more
amenable to be transformed into an operator DAG than
the vanilla AST.

• Optimization – The optimization logic consists of a
chain of transformations such that the operator DAG
resulting from one transformation is passed as input to
the next transformation. Anyone wishing to change the
compiler or wishing to add new optimization logic can
easily do that by implementing the transformation as an
extension of the Transform interface and adding it to the
chain of transformations in the optimizer.
The transformation logic typically comprises of a walk
on the operator DAG such that certain processing actions
are taken on the operator DAG when relevant conditions
or rules are satisfied. The five primary interfaces that are
involved in a transformation are Node, GraphWalker,
Dispatcher, Rule and Processor. The nodes in the
operator DAG implement the Node interface. This
enables the operator DAG to be manipulated using the
other interfaces mentioned above. A typical

transformation involves walking the DAG and for every
Node visited, checking if a Rule is satisfied and then
invoking the corresponding Processor for that Rule in
case the later is satisfied. The Dispatcher maintains the
mappings from Rules to Processors and does the Rule
matching. It is passed to the GraphWalker so that the
appropriate Processor can be dispatched while a Node is
being visited in the walk. The flowchart in Fig. 2 shows
how a typical transformation is structured.

Fig. 2: Flowchart for typical transformation during optimization

The following transformations are done currently in
Hive as part of the optimization stage:

i. Column pruning – This optimization step
ensures that only the columns that are
needed in the query processing are actually
projected out of the row.

ii. Predicate pushdown – Predicates are pushed
down to the scan if possible so that rows can
be filter early in the processing.

iii. Partition pruning – Predicates on partitioned
columns are used to prune out files of
partitions that do not satisfy the predicate.

iv. Map side joins – In the cases where some of
the tables in a join are very small, the small
tables are replicated in all the mappers and
joined with other tables. This behavior is
triggered by a hint in the query of the form:

SELECT /*+ MAPJOIN(t2) */ t1.c1, t2.c1
FROM t1 JOIN t2 ON(t1.c2 = t2.c2);

A number of parameters control the amount
of memory that is used on the mapper to
hold the contents of the replicated table.
These are hive.mapjoin.size.key and
hive.mapjoin.cache.numrows that control
the number of rows of the table that are kept
in memory at any time and also provide the
system the size of the join key.

v. Join reordering – The larger tables are
streamed and not materialized in memory in
the reducer while the smaller tables are kept
in memory. This ensures that the join
operation does not exceed memory limits on
the reducer side.

In addition to the MAPJOIN hint, the user can also
provide hints or set parameters to do the following:

i. Repartitioning of data to handle skews in

GROUP BY processing – Many real world
datasets have a power law distribution on
columns used in the GROUP BY clause of
common queries. In such situations the
usual plan of distributing the data on the
group by columns and then aggregating in
the reducer does not work well as most of
the data gets sent to a very few reducers. A
better plan in such situations is to use two
map/reduce stages to compute the
aggregation. In the first stage the data is
randomly distributed (or distributed on the
DISTINCT column in case of distinct
aggregations) to the reducers and the partial
aggregations are computed. These partial
aggregates are then distributed on the
GROUP BY columns to the reducers in the
second map/reduce stage. Since the number
of the partial aggregation tuples is much
smaller than the base data set, this approach
typically leads to better performance. In
Hive this behavior can be triggered by
setting a parameter in the following manner:

set hive.groupby.skewindata=true;
SELECT t1.c1, sum(t1.c2)
FROM t1
GROUP BY t1;

ii. Hash based partial aggregations in the
mappers – Hash based partial aggregations
can potentially reduce the data that is sent
by the mappers to the reducers. This in turn
reduces the amount of time spent in sorting
and merging this data. As a result a lot of
performance gains can be achieved using
this strategy. Hive enables users to control
the amount of memory that can be used on
the mapper to hold the rows in a hash table
for this optimization. The parameter
hive.map.aggr.hash.percentmemory
specifies the fraction of mapper memory
that can be used to hold the hash table, e.g.
0.5 would ensure that as soon as the hash
table size exceeds half of the maximum
memory for a mapper, the partial aggregates
stored therein are sent to the reducers. The
parameter hive.map.aggr.hash.min.reduction
is also used to control the amount of
memory used in the mappers.

• Generation of the physical plan – The logical plan

generated at the end of the optimization phase is then
split into multiple map/reduce and hdfs tasks. As an
example a group by on skewed data can generate two
map/reduce tasks followed by a final hdfs task which
moves the results to the correct location in hdfs. At the
end of this stage the physical plan looks like a DAG of
tasks with each task encapsulating a part of the plan.

We show a sample multi-table insert query and its
corresponding physical plan after all optimizations below.

FROM (SELECT a.status, b.school, b.gender
 FROM status_updates a JOIN profiles b
 ON (a.userid = b.userid
 AND a.ds='2009-03-20')) subq1

INSERT OVERWRITE TABLE gender_summary
 PARTITION(ds='2009-03-20')
SELECT subq1.gender, COUNT(1)
GROUP BY subq1.gender

INSERT OVERWRITE TABLE school_summary
 PARTITION(ds='2009-03-20')
SELECT subq1.school, COUNT(1)
GROUP BY subq1.school

This query has a single join followed by two different
aggregations. By writing the query as a multi-table-insert, we

make sure that the join is performed only once. The plan for
the query is shown in Fig 3 below.

The nodes in the plan are physical operators and the edges
represent the flow of data between operators. The last line in
each node represents the output schema of that operator. For
lack of space, we do not describe the parameters specified
within each operator node. The plan has three map-reduce
jobs.

Fig. 3: Query plan for multi-table insert query with 3 map/reduce jobs

Within the same map-reduce job, the portion of the operator
tree below the repartition operator (ReduceSinkOperator) is
executed by the mapper and the portion above by the reducer.
The repartitioning itself is performed by the execution engine.

Notice that the first map-reduce job writes to two
temporary files to HDFS, tmp1 and tmp2, which are
consumed by the second and third map-reduce jobs

respectively. Thus, the second and third map-reduce jobs wait
for the first map-reduce job to finish.

C. Execution Engine
Finally the tasks are executed in the order of their

dependencies. Each dependent task is only executed if all of
its prerequisites have been executed. A map/reduce task first
serializes its part of the plan into a plan.xml file. This file is
then added to the job cache for the task and instances of
ExecMapper and ExecReducers are spawned using Hadoop.
Each of these classes deserializes the plan.xml and executes
the relevant part of the operator DAG. The final results are
stored in a temporary location. At the end of the entire query,
the final data is moved to the desired location in case of
DMLs. In the case of queries the data is served as such from
the temporary location.

V. HIVE USAGE IN FACEBOOK
Hive and Hadoop are used extensively in Facebook for

different kinds of data processing. Currently our warehouse
has 700TB of data(which comes to 2.1PB of raw space on
Hadoop after accounting for the 3 way replication). We add
5TB(15TB after replication) of compressed data daily. Typical
compression ratio is 1:7 and sometime more than that. On any
particular day more than 7500 jobs are submitted to the cluster
and more than 75TB of compressed data is processed every
day. With the continuous growth in the Facebook network we
see continuous growth in data. At the same time as the
company scales, the cluster also has to scale with the growing
users.

More than half the workload is on adhoc queries where as
the rest is for reporting dashboards. Hive has enabled this kind
of workload on the Hadoop cluster in Facebook because of the
simplicity with which adhoc analysis can be done. However,
sharing the same resources by the adhoc users and reporting
users presents significant operational challenges because of
the unpredictability of adhoc jobs. Many times these jobs are
not properly tuned and therefore consume valuable cluster
resources. This can in turn lead to degraded performance of
the reporting queries, many of which are time critical.
Resource scheduling has been somewhat weak in Hadoop and
the only viable solution at present seems to be maintaining
separate clusters for adhoc queries and reporting queries.

There is also a wide variety in the Hive jobs that are run
daily. They range from simple summarization jobs generating
different kinds of rollups and cubes to more advanced
machine learning algorithms. The system is used by novice
users as well as advanced users with new users being able to
use the system immediately or after an hour long beginners
training.

A result of heavy usage has also lead to a lot of tables
generated in the warehouse and this has in turn tremendously
increased the need for data discovery tools, especially for new
users. In general the system has enabled us to provide data
processing services to engineers and analysts at a fraction of
the cost of a more traditional warehousing infrastructure.

Added to that the ability of Hadoop to scale to thousands of
commodity nodes gives us the confidence that we will be able
to scale this infrastructure going forward as well.

VI. RELATED WORK
There has been a lot of recent work on petabyte scale data
processing systems, both open-source and commercial.
Scope[14] is an SQL-like language on top of Microsoft’s
proprietary Cosmos map/reduce and distributed file system.
Pig[13] allows users to write declarative scripts to process
data. Hive is different from these systems since it provides a
system catalog that persists metadata about tables within the
system. This allows hive to function as a traditional
warehouse which can interface with standard reporting tools
like MicroStrategy[16]. HadoopDB[15] reuses most of Hive’s
system, except, it uses traditional database instances in each of
the nodes to store data instead of using a distributed file
system.

VII. CONCLUSIONS AND FUTURE WORK
 Hive is a work in progress. It is an open-source project, and
is being actively worked on by Facebook as well as several
external contributors.

HiveQL currently accepts only a subset of SQL as valid
queries. We are working towards making HiveQL subsume
SQL syntax. Hive currently has a naive rule-based optimizer
with a small number of simple rules. We plan to build a cost-
based optimizer and adaptive optimization techniques to come
up with more efficient plans. We are exploring columnar
storage and more intelligent data placement to improve scan
performance. We are running performance benchmarks based
on [9] to measure our progress as well as compare against
other systems. In our preliminary experiments, we have been
able to improve the performance of Hadoop itself by ~20%
compared to [9]. The improvements involved using faster
Hadoop data structures to process the data, for example, using
Text instead of String. The same queries expressed easily in
HiveQL had ~20% overhead compared to our optimized
Hadoop implementation, i.e., Hive's performance is on par
with the Hadoop code from [9]. We have also run the industry
standard decision support benchmark – TPC-H [11]. Based on
these experiments, we have identified several areas for
performance improvement and have begun working on them.
More details are available in [10] and [12]. We are enhancing
the JDBC and ODBC drivers for Hive for integration with
commercial BI tools that only work with traditional relational
warehouses. We are exploring methods for multi-query
optimization techniques and performing generic n-way joins
in a single map-reduce job.

ACKNOWLEDGMENT

We would like to thank our user and developer community for
their contributions, with special thanks to Eric Hwang, Yuntao
Jia, Yongqiang He, Edward Capriolo, and Dhruba Borthakur.

REFERENCES
[1] Apache Hadoop. Available at http://wiki.apache.org/hadoop.
[2] Facebook Lexicon at http://www.facebook.com/lexicon.
[3] Hive wiki at http://www.apache.org/hadoop/hive.
[4] Hadoop Map-Reduce Tutorial at

 http://hadoop.apache.org/common/docs/current/mapred_tutorial.html.
[5] Hadoop HDFS User Guide at

http://hadoop.apache.org/common/docs/current/hdfs_user_guide.html.
[6] Mysql list partitioning at

http://dev.mysql.com/doc/refman/5.1/en/partitioning-list.html.
[7] Apache Thrift. Available at http://incubator.apache.org/thrift.
[8] DataNucleus .Available at http://www.datanucleus.org.
[9] A. Pavlo et. al. A Comparison of Approaches to Large-Scale Data

Analysis. In Proc. of ACM SIGMOD, 2009.
[10] Hive Performance Benchmark. Available at

http://issues.apache.org/jira/browse/HIVE-396
[11] TPC-H Benchmark. Available at http://www.tpc.org/tpch
[12] Running TPC-H queries on Hive. Available at

http://issues.apache.org/jira/browse/HIVE-600
[13] Hadoop Pig. Available at http://hadoop.apache.org/pig
[14] R. Chaiken, et. al. Scope: Easy and Efficient Parallel Processing of

Massive Data Sets. In Proc. of VLDB, 2008.
[15] HadoopDB Project. Available at

http://db.cs.yale.edu/hadoopdb/hadoopdb.html
[16] MicroStrategy. Available at http://www.microstrategy.com

