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Abstract. The problem of clustering a set of points so as to minimize the maximum intercluster 
distance is studied. An O(kn) approximation algorithm, where n is the number of points and k 
is the number of clusters, that guarantees solutions with an objective function value within two 
times the optimal solution value is presented. This approximation algorithm succeeds as long as 
the set of points satisfies the triangular inequality. We also show that our approximation algorithm 
is best possible, with respect to the approximation bound, if PZ NP. 
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maximum intercluster distance. 

1. Introduction 

The problem of clustering a set of objects arises in many disciplines. Because of 
the wide range of applications, there are many variations of this problem. The main 
difference between these problems is in the objective function. Research in different 
fields of study during the past thirty years has produced a long list of clustering 
algorithms. However, very little is known about the merits of these algorithms. Even 
simple questions regarding to the computation complexity of most clustering prob- 
lems have not yet been answered. In this paper we study the computational com- 
plexity of generating optimal and near optimal solutions to the problem of clustering 
a set of points so as to minimize the maximum intercluster distance. 

Let G = ( V, E, W) be a weighted undirected graph with vertex set V, edge set E 
and a dissimilarity or weight function W: E + R,’ (the set of nonnegative reals). A 
partition of the set of vertices into k sets, (B,, I?*,. . . , I&), is called a k-split. The 
sets Bi in a k-split are called clusters. An objective function, f: B,, BZ, . . . , Bk + a,‘, 
is defined for each k-split. In this paper we study clustering problems whose objective 
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function is max{M,, M2, . . . , Mk}, where Mi is the maximum weight of an edge 
whose endpoints are vertices in cluster Bi (we call this objective function MM). 

Clustering problems usually have one of the following forms: 
(Pl) Given a graph G, an objective function f and an integer k, find a k-split 

with least objective function value, i.e. find a k-split (BT, Bf, . . . , Bz) such that 
“VT, %, * - - , Bz) = min{f( BI, &, . . . , Bk) I(&, I?,, . . . , I&) is a k-split for G}. 

(P2) Given a graph G, an objective function f and a real number w, find for the 
least value of k a k-split with objective function value less than or equal to w, 
i.e. find a k-split (BT, Bz, . . . , Bf) such that f( BT, BF, . . . , B?) s w and 
ft &, &t - - * 2 &) > w for all k’-splits with k’ < k. 

(P3) Given a graph G, an objective function f, an integer k’ and a real number 
w. Is there a k-split (B,, B,, . . . , Bk) with objective function value G w for some 
k s k’? 

It can be easily shown that the decision problem (P3) is computationally not 
harder than (Pl) and (P2), i.e. any algorithm that solves (Pl) or (P2) can be used 
to solve (P3). This relation implies that if problem (P3) is NP-complete then both 
(Pl) and (P2) are NP-hard. In what follows when we refer to optimization clustering 
problems, it is implied that we refer to problems of the form (Pl). Whenever we 
wish to consider problems of the form (P2), we shall state it explicitly. 

An m-dimensional clustering problem is one in which the vertices of G are points 
in the m-dimensional euclidean’space, the set of edges is complete and the weight 
of each edge is given by the distance between the points it joins, i.e. W(X, xj) = 
IIxi-xjll, where IIxkII = (Cl ((x,),)~)“~. W e assume that no two points have the same 
coordinates in all the dimensions. 

We shall refer to our clustering problem as an (Y-/3MM problem, where (Y E 
{2,3, * - * , k} is the number of clusters and p means that it is either a p-dimensional 
clustering problem (p E { 1,2, . . . , m}), a problem defined over an arbitrarily 
weighted graph (/3 = g) or a problem defined over a graph whose set of weights 
satisfies the triangular inequality (p = t). As mention above, MM refers to the 
objective function ‘max max’. In our notation we use k-2MM to refer to a 2- 
dimensional euclidean problem in which the number of clusters, k, is an input to 
the problem. Note that in the k-mMM problem both k and m are inputs to any 
algorithm that solves the problem. 

A reader not familiar with NP-complete problems and approximate solutions is 
referred to [ 11, 10, 151. Our notation is that of [ 111. 

Using an approach similar to the one in [ 171, one can easily show that the k-gMM 
problem and its corresponding approximation problem are NP-hard for k > 2. The 
2-gMM problem can be solved efficiently by reducing it to the problem of testing 
whether a graph is bipartite or not [4]. Brucker [4) also shows that the k-1MM 
problem can be solved in polynomial time. For optimization problems of the form 
(P2), one can easily show that the 2-approximation problem’ is NP-hard. The proof 

’ By 2-approximation problem we mean the problem of generating solutions with objective function 
value within two times the optimal solution value. 
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follows the same approach as the one in [ 171, but uses the fact that the 2-approxima- 
tion problem for graph coloration is NP-hard [9]. Algorithms for other clustering 
problems appear in [l, 13, 18, 2, 3, 4, 10, 7, 19, 6, 5, 16, 20, 141. 

In Section 2 we present an 0( nk) algorithm for the k-tMM problem that 
guarantees a solution with objective function value within two times the optimal 
solution value. The k-2MM problem is shown to be NP-hard in Section 3, and in 
Section 4 it is shown that our approximation algorithm is best possible with respect 
to the approximation bound if P # NP. 

2. Approximation algorithm for the k-tMM problem 

In this section we present an approximation algorithm for the k-tMM problem. 
Our algorithm has worst case time complexity 0( nk) and it generates solutions with 
an objective function value within two times the true optimal solution value. 

Let S be the set of points to be clustered and T be a subset of S. Assume that 
ISI > k as otherwise the problem can be trivially solved. Set T is said to form a 
(k + 1) -clique of weight h if the cardinality of set T is k + 1 and every pair of distinct 
elements in T are at least h units apart. Let OPT(S) be the value of an optimal 
solution for the instance S of the k-tMM problem. 

Lemma 2.1. If there is a (k+ I)-clique of weight h for S, then OPT(S) a h. 

The proof of this lemma is obvious. 
Our algorithm consists of an initialization phase and k - 1 ‘expanding’ phases. 

In the initialization phase all the elements are assigned to set B,, the first cluster. 
One of these elements is labeled the head of the cluster, (head,). The selection of 
this element is arbitrary. During the jth expanding phase, some elements in clusters 
B,, . . . , Bj are moved to cluster Bj+,. Also, one of these elements will be labeled 
the head of the new cluster (headj+l). The construction of the new cluster is 
accomplished by first finding a node, vi, in one of the first j clusters (B,, . . . , Bj) 
whose distance to the head of the cluster it belongs is maximal. Such a node will 
be moved to cluster Bj+, and called the head of the cluster. A node in any of the 
previously defined clusters will be moved to cluster Bj+, if its distance to V, is not 
larger than the distance to the head of cluster it belongs to. 

It is simple to show that our procedure constructs a k-split. Let Vi E Bj, 1 d j d k, 
be a node whose distance to headj is maximal. Let h be that distance. Since the set 
of weights satisfies the triangular inequality, we have that our solution has an 
objective function value ~2* h. It is simple to show that at all time during the 
execution of the algorithm the distance from this point to the head of the cluster 
to which it belonged to was at least h. Since this node never became a head of a 
new cluster, we then have that every time a new cluster was defined the distance 
from its head to the head of any previously defined cluster was at least h, i.e. 
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W( head, head,) 2 h for p # q. Let T = {head,, . . . , headk, vi}. Clearly, T is a 
(k + l)-clique of weight h for S and by Lemma 2.1 we have that OPT.(S) 2 h. Hence, 
the solution generated by our algorithm has an objective function value < 2 * OPT(S). 

The procedure just described is formally defined below. 

Algorithm APPROX 
let {vi, . . . , v,} be the set of elements to be clustered; 
let head, represent v, ; let B, + {v,, . . . , v,}; 

for I+1 to k-l do 
h+max{W(headj,vi)lviEBj and l<jGZ}; 
let vi be one of the nodes whose distance to the head of the cluster it belongs 

to is h; 
move Vi t0 &+I ; 

let head,,, represent 4; 
for each v, E (I?, u - * - u &) do 

let j be such that v1 E I$; 
if W( v,, headj) 2 W( v,, vi) then move v1 from Bj to B, ; 
endif 

endfor 
endfor 
return ( B1, . . . , Bk) ; 

end of algorithm; 

In what follows we analyze the performance of our algorithm. 

Theorem 2.2. Algorithm APPRQX generates a solution with an objective function 
value <2*OPT(S). 

The proof of this theorem follows from the above discussion. 

Theorem 2.3. The time complexity of Algorithm APPROX is 0( kn). 

The proof of this theorem is straightforward. 
The bound of two given by Theorem 2.2 cannot be decreased because there are 

problem instances for which Algorithm APPROX generates solutions with an objec- 
tive function value equal to 2* OPT( S) - E, for any E > 0. One of these instances is 
given by the following example. 

Example 2.4. k-1MM (all points lie on a straight line). 
Case (n=4 and k=2): 
&+); x1 =I* 3, x2=+--e and x3=1. 
Step 1: head, is x1 and B, =(x0, x1, x2, x3}. 
Step 2: head, is x ,; B1 = {x0, x1, x2}; .head,, is x3 and B2 is {x3}. 
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Clearly, the objective function value of the solution generated is $ - E. An optimal 
k-split is given by {{x0, x,}, {x2, x,}} and its objective function value is $+ E. 

General Case (n = k+2 and k>2): 
&)=(); x1 =‘a 37 X2=$- E and &=i--2 for 3si<n--l. 
Phase 1: head, is x, and B1 = {x0, . . . , x,,-~}, 

Phase k: head, is x1 ; B1 = {x0, xl, x2}; each of &, . . . , ilk contains exactly one of 
x3, . * * , X,-l, . and the head of each of these clusters is the only element 
in it. 

The value of the objective function for an optimal solution and the one for the 
solution generated by our algorithm are identical to the ones obtained in the previous 
case. 

It Section 4 it is shown that the factor of two in the approximation bound is best 
possible if P # NP. Before proving such a result we need to show that some versions 
of our clustering problem are NP-hard. 

3. The complexity of the k-2MM decision problem 

In this section it is shown that the k-2MM 
This result is obtained by reducing a restricted 
sets problem to it. 

decision problem is NP-complete. 
version of the exact cover by three 

The exact cover by three sets (XC3) problem was shown to be NP-complete in 
[lo] and is defined as follows. 

Exact Cover by Three Sets (XC3). Given a finite set of elements X = {x1, x2, 
. . . , x3q} and a collection of 3-element subsets of X, C = {(xi,, xj,, xk,) 1 
1 s I s m}, in which no element in X appears in more than three subsets. The 
problem consists of determining whether C has an exact cover for X, i.e. a subcollec- 
tion C’ of C such that every element in X occurs in exactly one member of C’. 

The restricted version of this problem, to be used in our reduction, is denoted 
RXC3. This problem is exactly like the XC3 problem, except that each element in 
X appears in exactly three subsets of C. Problem RXC3 is shown to be NP-complete 
in Appendix A. 

In order to simplify the presentation of our result, we begin by showing that the 
k-gMM decision problem is NP-complete (Lemma 3.1). The construction used in 
this lemma is then modified to show that the k-gMM decision problem is NP- 
complete even when the input graph, after deleting all edges with weight different 
than one, is planar and no node is of degree greater than six (Lemma 3.2). We then 
show how this result can be used to prove that the k-2MM decision problem is 
NP-complete (Theorem 3.3). The reduction RXC3 cc k-gMM is identical to the one 
in [lo], which was used to show that partition of a graph into triangles is NP-complete. 
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Lemma 3.1. The decision problem k-gMM is NP-complete. 

Proof. It is simple to show that the decision problem k-gMM can be solved in 
nondeterministic polynomial time. We now show that RxC30c k-gMM. 

Given an instance, (X, C), of the restricted exact cover by 3-sets problem, we 
construct an instance of the k-gMM decision problem which we denote KG. The 
instance KG = (G = ( V, E, W), k, d) is defined as follows: 

Vertex set: There is a vertext (Vi) for each element of the set X and nine vertices 
are introduced for each 3-element subset of X in C. 

Edge set: The set of edges is complete, i.e. for every pair of vertices i #j edge 
{i,j} is in E. 

Weights: For each 3-element subset of X in C, eighteen edges will get a wieght 
of one. The edges introduced for (Xi, Xjp xk,) E C are shown in Fig. 1. All other edges 
are given the weight of two. 

k and d: The value for k is 3m + q and d is one. 

Fig. 1. Component representing a triplet in C. 

In order to complete the proof of the lemma it is only required to show that KG 
has a k-split with objective function value sd iff (X, C) has an exact cover, since 
the construction of KG can be carried out in polynomial time. 

Claim. KG has a k-split with objective function value s d ifl (X, C) has an exact cover. 

Proof. First it is shown that if (X, C) has an exact cover, then KG has a k-split 
(4, &, * - - 9 Bk) with objective function value Ed = 1. Let C’ be any exact cover 
for (X, C). Each subgraph representing a triplet in C’ is grouped into the four 
clusters shown in Fig. 2(a). The subgraphs representing triples in C - C’ are grouped, 
as shown in Fig. 2(b), into three clusters. It is simple to show that such clustering 
forms a k-split with objective function value equal to d for KG. 

In order to complete the proof of the claim it is only required to show that if KG 
has a k-split with objective function value s d = 1, then (X, C) has an exact cover. 
Let B,, B,, . . . , Bk be a k-split with objective function value sd for KG. Since no 
four nodes are completely connected by edges with a weight of one and since the 
number of nodes in KG is 3 * k, we have that each Bi must have exactly three nodes. 
This fact together with the construction rule (Fig. 1) can be used to show that each 
component (subgraph introduced for a triplet) is clustered as in Fig. 2(a) or (b). 
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(4 

Fig. 2. Clusterings for the components representing triplets in 
triplets in C - C’ (b). 

(b) 

C’ (a) and the components representing 

Since all nodes must be included in exactly one cluster, it must be that there are 
exactly q components clustered as in Fig. 2(a) and each of these components must 
include a different set of u-nodes. It is simple to show that the triplets in C 
represented by these q components form an exact cover for C. This completes the 
proof of the claim and therewith the lemma. 0 

Before proving our next result, we outline the construction to be used in it. First 
of all, the construction used in Lemma 3.1 (Fig. 1) is replaced by the one given in 
Fig. 3. 

r- 
I 
I 
I 
c- 
l 
r- 
I 

I-- 
L-- 

r-i r-i r-7 
--we-- 

- - -- 

Fig. 3. Subgraph (component) representing each triplet in C. 

Each vertical subgraph in Fig. 3 is called an s-graph. The topmost three nodes 
in each s-graph are said to be in level 0, the next set of three nodes belong to level 
1 and so on, until level h is reached. 

It is simple to show that not all the graphs constructed by using the above rule, 
starting with an instance of RXC3, are planar. In order to guarantee planarity, we 
shall modify our construction rule. The value for h is selected in such a way that 
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at each level z (z 2 1) only two adjacent s-graphs cross and at level h the three 
s-graphs that include node Vi are side by side without having edges cross. It is 
simple to show that a value for h d (3m)* can always be found. The crossing of two 
s-graphs at level z is handled by applying the transformation shown in Fig. 4. 

level 

level 

Fig. 4. Elimination of the crossing at level z between two s-graphs. 

Lemma 3.2. The decision problem k-gMM is NP-complete even when the input graph, 
after deleting all the edges with a weight di$erent than one, is planar and no node is 
of degree greater than six (we call this problem ‘restricted k-gMM’). 

Proof. Clearly this problem is in NP. Let us now show that RXC3 cy restricted 
k-gMM. Given any instance (X, C) of the exact cover by 3-sets, we construct an 
instance KG = (G = (V, E, W), k, d) of the restricted k-gMM decision problem. 
The construction follows the rules described immediately preceding this lemma. All 
the edges introduced by the rules implied by Figs. 3 and 4 will have the weight of 
one (note that every time we use the rule given by Fig. 4 four of the edges introduced 
by Fig. 3 are deleted). Since the graph is complete, the remaining edges will receive 
a weight of two. It is simple to show that the number of nodes is 3( 4 + 3m( h + 1) + h). 
The value for d is one and the number of clusters, k, is q + 3 m( h + 1) + h. Clearly, 
KG is an instance of the restricted k-gMM problem and it can be constructed in 
polynomial time (with respect to the size of the RXC3 problem). In order to complete 
the proof of the lemma it is only required to show that KG has a k-split with 
objective function value sd iff (X, C) has an exact cover. 

Claim. KG has a k-split with objective function value d d if (X, C) has an exact cover. 

Proof. Our proof follows the same lines as the one for Lemma 3.1. First we show 
that if (X, C) has an exact cover, then KG has a k-split, (B,, &, . . . , Ilk), with 
objective function value s d = 1. Let C’ be any exact cover for (X, C). If we consider 
the graph before introducing the crossings (Fig. 4), the grouping of nodes into 
clusters is similar to the one used in the previous lemma for the components 
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representing elements in C - C’ and C’. The way one deals with the crossings is 
shown in Fig. 5. It is simple to verify that the clustering obtained by following the 
above procedure is a k-split for KG with objective function value s-d = 1. 

Fig. 5. Clustering at the crossings. 

We now show that if KG has a k-split, (B,, BZ, . . . , &), with objective function 
value sd = 1, then (X, C) has an exact cover. Let B,, &, . . . , Bk be a k-split with 
objective function value sd for KG. Each Bi has exactly three nodes, since there 
is no 4-clique in which all edges have weight one and the number of nodes in KG 
is 3k Because of this and the construction rules, the top part of each component 
is clustered as the top part of the component in Fig. 2(a) or (b). If we now show 
that the clustering in the bottom part, where the u-nodes appear, is preserved as in 
Fig. 2(a) and (b), then the same arguments as the ones in the previous lemma can 
be used to complete the proof of the lemma. 

Our proof has been reduced to showing that the crossings behave as in Fig. 5. 
We prove this by contradiction. Suppose that in some crossing we do not preserve 
the desired clusterings. Then it must be one of the two cases shown in Fig. 6 or the 
mirror images of these cases. We ignore the latter two cases since their proofs are 
similar to the one for the two cases given by Fig. 6. 

For the case given by Fig. 6(a) we have that the center node has to be cluster 
with two other elements, but there are no two elements not yet been clustered that 
form a clique of size three in which all edges have a weight of one with the center 
node. Hence, either there is a cluster with less than three nodes or a cluster has an 
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. 

(a) 
Fig. 6. 

. - ‘_/ . . 

(b) 
Invalid clusterings. 

edge with a weight greater than d. A contradiction. For the case in Fig. 6(b) we 
have that the center node can only cluster with one of the exposed nodes. The other 
exposed node does not have two other nodes not yet been clustered with whom it 
forms a clique of size three in which all edges have a weight of one. Therefore, 
either there is a cluster with less than three nodes or there is an edge in a cluster 
with weight greater than d. In both cases we have a contradiction. This completes 
the proof of the claim and therewith the lemma. Cl 

In Fig. 1 the subgraphs consisting of two triangles placed side by side will be 
called a diamond. The ends are’the two nodes of degree two in it. It should be clear 
that two diamonds joined one after the other by their ends can replace any diamond 
in the construction used in Lemma 3.2 and the resulting construction can also be 
used to prove our result as long as the number of diamonds replaced is bounded 
by a polynomial on n (the number of nodes in the graph). 

In the final transformation we replace the constructions implied by Figs. 2 and 
3 by the one in Fig. 7. Note that the replacement indicated in the bottom left part 
of Fig. 7 is only applied to the u-nodes. 

After taking care of some simple details one can show that two points are at a 
distance G d + E iff these two points had an edge between them with a weight of 
one in the construction used in Lemma 3.2 (after having added several diamonds 
as implied by Fig. 7). 

Theorem 3.3. The k-2MM decision problem is NP-completq. 

Proof. The construction used to prove this result follows the rules shown in Fig. 7 
and the proof is similar to Lemma 3.2. Cl 

4. The complexity of the approximation problem 

In this section we examine the computational complexity of generating approxi- 
mate solutions to our clustering problem. It will be shown that the approximation 
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Fig. 7. Final transformations. 

algorithm presented in Section 2 is best possible, with respect to 
bound, if Pf NP. 

the approximation 

After a careful examination of the construction rules shown in Fig. 7, one can 
easily prove that the closest three points not at a distance Ed + E of each other in 
the construction for Theorem 3.3 is at least &* d. Using this fact together with the 
techniques used in [ 171, one can prove the following result. 

Lemma 4.1. The k-2MM <JTi- &)-approximation problem is NP-hard for all E > 0. 

Proof. The proof follows from the above discusion. Cl 

This result can be strengthened by replacing the construction used for the crossing 
of two s-graphs by the one shown in Fig. 8. 

Theorem 4.2. The k-2MM (2 COS(~W) - E)-approximation problem is NP-hardfor all 
E >o. 

Proof. The construction used in this proof is similar to the one used in Theorem 
3.3. The main difference is in the way one deals with the crossing of two s-graphs. 
In this construction, the crossing of the two s-graphs is avoided by using the 
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Fig. 8. 

construction shown in Fig. 8. Also, the diamonds must be rearranged in such a way 
that the angle between any two adjacent diamonds is at least 120”. The proof of 
this theorem is similar to Lemma 4.1. The main difference is that one has to show 
that solutions with the desired objective function value have exactly 2 clusters in 
each hexagon (Fig. 8). Cl 

Note that if instead of using the hexagon (Fig. 8) one uses a figure with more 
than six sides, then one cannot improve on the bound given by Theorem 4.2. The 
reason for this is that the smallest angle between the two sides (adjacent to a ‘leg’) 
in the new figure and the ‘leg’ would be less than 120”. This will allow invalid 
clustering with objective function value <2 cos(&). A stronger result can be obtained 
for three or more dimensions because crossings can be avoided by using the third 
dimension to avoid the edge overlap. 

Theorem 4.3. The k-3MM (2 - E)-approximation problem is NP-hard for all E > 0. 

Proof. The proof follows by the above discusion. Cl 

Clearly, the result for the k-3MM problem also holds for the k-tMM problem. 
However, a much simpler proof can be obtained by using the techniques in [17] 
and the reduction in Lemma 2.1. That instance KG used in Lemma 2.1 satisfies the 
triangular inequality because all the weights are 1 or 2 and the graph is completely 
connected. 

5. Discussion 

We have shown that the k-2MM (2 cos($) - &)-approximation and the k-3MM 
(2 - E)-approximation problems are NP-hard. Both of these results also hold for 
the k- tMM problem. For all of these problems we showed that the 2-approximation 
problem can be solved in O(nk) time. Clearly, for three or more dimensions our 
approximation algorithm is best possible, with respect to the approximation bound, 
if P # NP. Our results can also be used to show that the k-2M.Z and its corresponding 
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approximation problem are NP-hard. The objective function in the k-gMZ problem 
is the max{ S1 1 S, represents the sum of the weight of the edges whose endpoints are 
in cluster I}. The construction used in Section 3 can be easily adapted to show that 
partition of a graph into triangles is NP-hard even when the graphs to be partitioned 
are planar and no node is of degree greater than six. Recently, Hochbaum and 
Shmoys [ 121 obtained similar results for the k- tMM problem. However, their results 
do not apply for the k-mMM problem, where m is any integer greater than one. 

Appendix A 

In this appendix we show that the RXC3 problem is NP-complete. This is 
accomplished by reducing the XC3 problem to the RXC3 problem. 

Theorem A.l. The RXC3 problem is NP-complete. 

Proof. Since it is simple to show that RXC3 is in NP, we only show that XC3 a RXC3. 
Given an instance (X, C) of the XC3 problem, the following procedure returns an 
instance of the RXC3 problem: 

Procedure BUILD (X, C) ; 
begin 

if there is some element in X that appears in no subset in C then 

return ({x,, x2, . . - 9 &J, U% x2, x3), (Xl, x2, x4)9 

(Xl, x5, %A (x2, x5, X6), (x3, x4, x5), (x3, x4, d); 

endif 
if the number of elements in X that are included in exactly one triplet in C is 

not a multiple of three then 
Let (X, C) be three copies of the old (X, C) 

endif 
while there is an element in X that does not appear in exactly three triplets in 

C do 
let xi, Xj and xk be three distinct elements in X such that all of them appear 

in either one or two triplets in C; 
let yl, y2 and y3 be three elements not in X ; 

add y,, y2 and y3 to X; 
add (Xi, Yl, Yz), (3, Y2, Y3), (Xk, Y3, VI), (VI, Y2, Y3) to C; 

endwhile 
return (X, C); 

end of procedure; 
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It is simple to show that: 
(1) the above procedure can be carried out in polynomial time, 
(2) the output produced by the algorithm is an instance of the RXC3 problem, and 
(3) the instance of the RXC3 constructed by the algorithm has an exact cover iff 

there is an exact cover for (X, C). 
One can easily use the facts just mentioned above to complete the proof of the 

theorem. Cl 
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