
82 communicationS of the acm | deCeMBer 2013 | vOL. 56 | nO. 12

review articles

r e P liCated storaGe systems for the cloud deliver
different consistency guarantees to applications that
are reading data. Invariably, cloud storage providers
redundantly store data on multiple machines so that
data remains available in the face of unavoidable
failures. Replicating data across datacenters is not
uncommon, allowing the data to survive complete
site outages. However, the replicas are not always kept
perfectly synchronized. Thus, clients that read the
same data object from different servers can potentially
receive different versions.

Some systems, like Microsoft’s Windows Azure,
provide only strongly consistent storage services to

their applications.5 These services
ensure clients of Windows Azure
Storage always see the latest value
that was written for a data object.
While strong consistency is desirable
and reasonable to provide within a
datacenter, it raises concerns as sys-
tems start to offer geo-replicated ser-
vices that span multiple datacenters
on multiple continents.

Many cloud storage systems, such
as the Amazon Simple Storage Ser-
vice (S3), were designed with weak
consistency based on the belief that
strong consistency is too expen-
sive in large systems. The designers
chose to relax consistency in order
to obtain better performance and
availability. In such systems, clients
may perform read operations that
return stale data. The data returned
by a read operation is the value of the
object at some past point in time but
not necessarily the latest value. This
occurs, for instance, when the read
operation is directed to a replica that
has not yet received all of the writes
that were accepted by some other
replica. Such systems are said to be
eventually consistent.12

Recent systems, recognizing the
need to support different classes of
applications, have been designed
with a choice of operations for ac-
cessing cloud storage. Amazon’s
DynamoDB, for example, provides
both eventually consistent reads and
strongly consistent reads, with the
latter experiencing a higher read la-
tency and a twofold reduction in read
throughput.1 Amazon SimpleDB of-
fers the same choices for clients that

Doi:10.1145/2500500

A broader class of consistency guarantees
can, and perhaps should, be offered to clients
that read shared data.

BY DouG teRRY

Replicated
Data
consistency
explained
through
Baseball

 key insights
 although replicated cloud services

generally offer strong or eventual
consistency, intermediate consistency
guarantees may better meet an
application’s needs.

 consistency guarantees can be defined in
an implementation-independent manner
and chosen for each read operation.

 Dealing with relaxed consistency need
not place an excessive burden on
application developers.

deCeMBer 2013 | vOL. 56 | nO. 12 | communicationS of the acm 83

P
h

o
t

o
g

r
a

P
h

 f
r

o
m

 s
h

u
t

t
e

r
s

t
o

C
k

.C
o

m

read data. Similarly, the Google App
Engine Datastore added eventually
consistent reads to complement its
default strong consistency.8 PNUTS,
which underlies many of Yahoo’s
Web services, provides three types
of read operations: read-any, read-
critical, and read-latest.7 Modern
quorum-based storage systems allow
clients to choose between strong and
eventual consistency by selecting dif-
ferent read and write quorums.4

In the research community over
the past 30 years, a number of consis-
tency models have been proposed for
distributed and replicated systems.10
These offer consistency guarantees
that lie somewhere in between strong
consistency and eventual consistency.
For example, a system might guarantee
that a client sees data that is no more
than five minutes out of date or that a
client always observes the results of its
own writes. Actually, some consistency

models are even weaker than eventual
consistency, but those I ignore as being
less than useful.

The reason for exploring differ-
ent consistency models is that there
are fundamental trade-offs between
consistency, performance, and avail-
ability.9,10,12,13 Offering stronger con-
sistency generally results in lower
performance and reduced availability
for reads or writes or both. The CAP
theorem has proven that, for systems

84 communicationS of the acm | deCeMBer 2013 | vOL. 56 | nO. 12

review articles

writes whose results are visible to a
read operation. Table 1 summarizes
these six consistency guarantees.

Strong consistency is particularly easy
to understand. It guarantees a read op-
eration returns the value that was last
written for a given object. If write oper-
ations can modify or extend portions of
a data object, such as appending data
to a log, then the read returns the result
of applying all writes to that object. In
other words, a read observes the effects
of all previously completed writes.

Eventual consistency is the weakest
of the guarantees, meaning it allows
the greatest set of possible return
values. For whole-object writes, an
eventually consistent read can return
any value for a data object that was
written in the past. More generally,
such a read can return results from
a replica that has received an arbi-
trary subset of the writes to the data
object being read. The term “eventu-
al” consistency derives from the fact
that each replica eventually receives
each write operation, and if clients
stopped performing writes then read
operations would eventually return
an object’s latest value.

By requesting a consistent prefix,
a reader is guaranteed to observe an
ordered sequence of writes starting
with the first write to a data store. For
example, the read may be answered by
a replica that receives writes in order
from a master replica but has not yet
received some recent writes. In other
words, the reader sees a version of
the data store that existed at the mas-
ter at some time in the past. This is
similar to the “snapshot isolation”
consistency offered by many database
management systems. For reads to a
single data object in a system where
write operations completely overwrite
previous values of an object, even
eventual consistency reads observe a
consistent prefix. The main benefit of
requesting a consistent prefix arises
when reading multiple data objects or
when write operations incrementally
update an object.

Bounded staleness ensures read re-
sults are not too out of date. Typically,
staleness is defined by a time period
T, say five minutes. The storage sys-
tem guarantees a read operation will
return any values written more than
T minutes ago or more recently writ-

that must tolerate network partitions,
designers must choose between con-
sistency and availability.5 In practice,
latency is an equally important con-
sideration.1 Each proposed consisten-
cy model occupies some point in the
complex space of trade-offs.

Are different consistencies useful
in practice? Can application develop-
ers cope with eventual consistency?
Should cloud storage systems offer
an even greater choice of consistency
than the consistent and eventually
consistent reads offered by some of
today’s services?

This article attempts to answer
these questions, at least partially, by
examining an example (but clearly fic-
titious) application: the game of base-
ball. In particular, I explore the needs
of different people who access the
score of a baseball game, including the
scorekeeper, umpire, radio reporter,
sportswriter, and statistician. Suppos-
ing the score is stored in a cloud-based,
replicated storage service, I show even-
tual consistency is insufficient for
most of the participants, but strong
consistency is not needed either. Most
participants benefit from some inter-
mediate consistency guarantee.

The next section defines six pos-
sible consistency guarantees for read
operations. Then I present an algo-
rithm that emulates a baseball game,
indicating where data is written and
read, and I enumerate the results that
might be returned when reading the
score with different guarantees. I also
examine the roles of various people
who want to access the baseball score
and the read consistency that each de-
sires and draw conclusions from this
simple example.

Read consistency Guarantees
While replicated systems have provid-
ed many types of data consistency over

the past 30 years, and a wide variety of
consistency models have been explored
in the computer science research com-
munity, many of these are tied to spe-
cific implementations. Frequently,
one needs to understand how a system
operates in order to understand what
consistency it provides in what situa-
tions. This places an unfortunate bur-
den on those who develop applications
on top of such storage systems.

The six consistency guarantees I
advocate here can be described in a
simple, implementation-indepen-
dent way. This not only benefits appli-
cation developers but also can permit
flexibility in the design, operation,
and evolution of the underlying stor-
age system.

These consistency guarantees are
based on a simple model in which
clients perform read and write op-
erations to a data store. Multiple cli-
ents may concurrently access shared
information, such as social network
graphs, news feeds, photos, shopping
carts, or financial records. The data is
replicated among a set of servers, but
the details of the replication protocol
are hidden from clients. A write is any
operation that updates one or more
data objects. Writes are eventually
received at all servers and performed
in the same order. This order is con-
sistent with the order in which clients
submit write operations. In practice,
the order could be enforced by per-
forming all writes at a master server
or by having servers run a consensus
protocol to reach agreement on the
global order. Reads return the values
of one or more data objects that were
previously written, though not nec-
essarily the latest values. Each read
operation can request a consistency
guarantee, which dictates the set of
allowable return values. Each guar-
antee is defined by the set of previous

table 1. Six consistency guarantees.

Strong Consistency See all previous writes.

eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic reads See increasing subset of writes.

read My Writes See all writes performed by reader.

review articles

deCeMBer 2013 | vOL. 56 | nO. 12 | communicationS of the acm 85

ten values. Alternative, some systems
have defined staleness in terms of the
number of missing writes or even the
amount of inaccuracy in a data value.
I find that time-bounded staleness is
the most natural concept for applica-
tion developers.

Monotonic reads is a property that ap-
plies to a sequence of read operations
performed by a given storage system
client. As such, it is called a “session
guarantee.”11 With monotonic reads,
a client can read arbitrarily stale data,
as with eventual consistency, but is
guaranteed to observe a data store that
is increasingly up to date over time. In
particular, if the client issues a read op-
eration and then later issues another
read to the same object(s), the second
read will return the same value(s) or a
more recently written value.

Read my writes is a property that
also applies to a sequence of opera-
tions performed by a single client.
It guarantees the effects of all writes
that were performed by the client
are visible to the client’s subsequent
reads. If a client writes a new value for
a data object and then reads this ob-
ject, the read will return the value that
was last written by the client (or some
other value that was later written by
a different client). For clients that
have issued no writes, the guarantee
is the same as eventual consistency.
(Note: In previous articles this has
been called “Read Your Writes,”11 but
I have chosen to rename it to more ac-
curately describe the guarantee from
the client’s viewpoint.)

These last four read guarantees
are all a form of eventual consistency
but stronger than the eventual con-
sistency model that is typically pro-
vided in cloud storage systems. The
“strength” of a consistency guarantee
does not depend on when and how
writes propagate between servers, but
rather is defined by the size of the set
of allowable results for a read opera-
tion. Smaller sets of possible read re-
sults indicate stronger consistency.
When requesting strong consistency,
there is a single value that must be
returned, the latest value that was
written. For an object that has been
updated many times, an eventually
consistent read can return one of
many suitable values. Of the four in-
termediate guarantees, none is stron-

ger than any of the others, meaning
each might have a different set of pos-
sible responses to a read operation. In
some cases, as will be shown later, ap-
plications may want to request multi-
ple guarantees. For example, a client
could request both monotonic reads
and read my writes so that it observes
a data store that is consistent with its
own actions.11

In this article, the data store used
for baseball scores is a traditional
key-value store, popularized by the
“noSQL” movement. Writes, also
called puts, modify the value asso-
ciated with a given key. Reads, also
called gets, return the value for a key.
However, these guarantees can apply
to other types of replicated data stores
with other types of read and write op-
erations, such as file systems and rela-
tional databases. This is why the guar-
antees are defined in terms of writes
rather than data values. For example,
in a system that offers an increment
or an append operation, all writes per-
formed on an object contribute to the
object’s observed value, not just the
latest write. Moreover, the guarantees
could apply to atomic transactions
that access multiple objects, though
the examples in this article do not re-
quire atomic updates.

Table 2 shows the performance
and availability typically associated
with each consistency guarantee. It
rates the three properties on a scale
from poor to excellent. Consistency
ratings are based on the strength of
the consistency guarantee as previ-
ously defined. Performance refers to
the time it takes to complete a read
operation, that is, the read latency.
Availability is the likelihood of a read
operation successfully returning suit-
ably consistent data in the presence
of server failures.

Strong consistency is desirable

from a consistency viewpoint but of-
fers the worst performance and avail-
ability since it generally requires
reading from a designated primary
site or from a majority of replicas.
Eventual consistency, on the other
hand, allows clients to read from any
replica, but offers the weakest con-
sistency. The inverse correlation be-
tween performance and consistency
is not surprising since weaker forms
of consistency generally permit read
requests to be sent to a wider set of
servers. With more choices of servers
that are sufficiently up to date, clients
are more able to choose a nearby serv-
er. The latency difference between ac-
cessing a local rather than a remote
server can be a factor of 100. Similar-
ly, a larger choice of servers means a
client is more likely to find one (or a
quorum) that is reachable, resulting
in higher availability.

Each guarantee offers a unique
combination of consistency, perfor-
mance, and availability. Labeling each
cell in Table 2 is not an exact science
(and I could devote a whole article to
this topic). One might argue that some
entry listed as “okay” should really be
“good”, or vice versa, and indeed the
characteristics do depend to some
extent on implementation, deploy-
ment, and operating details. For some
clients, eventually consistent reads
may often return strongly consistent
results, and may not be any more
efficient than strongly consistent
reads.3,13 But, the general compari-
sons between the various consistency
guarantees are qualitatively accurate.
The bottom line is that one faces sub-
stantial trade-offs when choosing a
particular replication scheme with a
particular consistency model.

Without offering any evidence,
I assert that all of these guarantees
can be provided as choices within

table 2. consistency, performance, and valuability trade-offs.

Guarantee consistency Performance availability

Strong Consistency excellent poor poor

eventual Consistency poor excellent excellent

Consistent Prefix okay good excellent

Bounded Staleness good okay poor

Monotonic reads okay good good

read My Writes okay okay okay

86 communicationS of the acm | deCeMBer 2013 | vOL. 56 | nO. 12

review articles

stretch), and the home team is win-
ning 2-5.

Suppose the key-value store that
holds the visitors and home team’s
run totals resides in the cloud and is
replicated among a number of serv-
ers. Different read guarantees may re-
sult in clients reading different scores
for this game that is in progress. Ta-
ble 3 lists the complete set of scores
that could be returned by reading the
visitors and home scores with each of
the six consistency guarantees. Note
that the visitors’ score is listed first,
and different possible return values
are separated by comas.

A strong consistency read can only
return one result, the current score,
whereas an eventual consistency read
can return one of 18 possible scores.
Observe that many of the scores that
can be returned by a pair of eventually
consistent reads are ones that were
never the actual score. For example,
reading the visitors’ score may return
two and reading the home team’s
score may return zero, even though the
home team never trailed. The consis-
tent prefix property limits the result
to scores that actually existed at some
time. The results that can be returned
by a bounded staleness read clearly
depend on the desired bound. Table
3 illustrates the possible scores for a
bound of one inning, that is, scores
that are at most one inning out of date;
for a bound of seven innings or more,

the same storage system. In fact, my
colleagues and I at the MSR Silicon
Valley Lab have built a prototype of
such a system (but that is the topic
for another article). In our system,
clients requesting different consis-
tency guarantees experience differ-
ent performance and availability for
the read operations they perform,
even when accessing shared data.
Here, let’s assume the existence of a
storage system that offers its clients
a choice of these six read guarantees.
I proceed to show how they would be
used…in baseball.

Baseball as a Sample application
For those readers who are not famil-
iar with baseball, but who love to read
code, Figure 1 illustrates the basics
of a nine-inning baseball game. The
game starts with the score of 0-0. The
visitors bat first and remain at bat
until they make three outs. Then the
home team bats until it makes three
outs. This continues for nine innings.
Granted, this leaves out many of the
subtleties that are dear to baseball afi-
cionados, like myself. But it does ex-
plain all that is needed for this article.

Assume the score of the game is
recorded in a key-value store in two

objects, one for the number of runs
scored by the “visitors” and one for
the “home” team’s runs. When a team
scores a run, a read operation is per-
formed on its current score, the re-
turned value is incremented by one,
and the new value is written back to the
key-value store.

As a concrete example, consider the
write log for a sample game as shown
in Figure 2. In this game, the home
team scored first, then the visitors tied
the game, then the home team scored
twice more, and so on.

This sequence of writes could be
from a baseball game with the inning-
by-inning line score that is illustrated
in Figure 3. This hypothetical game is
currently in the middle of the seventh
inning (the proverbial seventh-inning

table 3. Possible scores read for each consistency guarantee.

Strong Consistency 2-5

eventual Consistency 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0,
2-1, 2-2, 2-3, 2-4, 2-5

Consistent Prefix 0-0, 0-1, 1-1, 1-2, 1-3, 2-3, 2-4, 2-5

Bounded Staleness scores that are at most one inning out-of-date: 2-3, 2-4, 2-5

Monotonic reads after reading 1-3: 1-3, 1-4, 1-5, 2-3, 2-4, 2-5

read My Writes for the writer: 2-5
for anyone other than the writer: 0-0, 0-1, 0-2, 0-3, 0-4, 0-5,
1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1, 2-2, 2-3, 2-4, 2-5

figure 2. Sequence of writes for
a sample game.

Write (“home”, 1)
Write (“visitors”, 1)
Write (“home”, 2)
Write (“home”, 3)
Write (“visitors”, 2)
Write (“home”, 4)
Write (“home”, 5)

figure 3. the line score for this sample game.

1 2 3 4 5 6 7 8 9 RunS

Visitors 0 0 1 0 1 0 0 2

home 1 0 1 1 0 2 5

figure 1. a simplified baseball game.

Write (“visitors”, 0);
Write (“home”, 0);
for inning = 1 .. 9
 outs = 0;
 while outs < 3
 visiting player bats;
 for each run scored
 score = Read (“visitors”);
 Write (“visitors”, score + 1);
 outs = 0;
 while outs < 3
 home player bats;
 for each run scored
 score = Read (“home”);
 Write (“home”, score + 1);
end game;

review articles

deCeMBer 2013 | vOL. 56 | nO. 12 | communicationS of the acm 87

the result set is the same as for eventu-
al consistency in this example. In prac-
tice, a system is unlikely to express
staleness bounds in units of “innings.”
So, for this example, assume the read-
er requested a bound of 15 minutes
and the previous inning lasted exactly
that long. For monotonic reads, the
possible return values depend on what
has been read in the past. For read my
writes they depend on who is writing to
the key-value store; in this example, as-
sume all of the writes were performed
by a single client.

Read Requirements for Participants
Now, let’s examine the consistency
needs of a variety of people involved in
a baseball game who want to read the
score. Certainly, each of these folks
could perform a strongly consistent
read to retrieve the visiting and home
team’s score. In this case, as pointed
out in the previous section, only one
possible value would be returned: the
current score. However, as shown in
Table 2, readers requesting strong
consistency will likely receive longer
response times and may even find that
the data they are requesting is not cur-
rently available due to temporary server
failures or network outages. The point
of this section is to evaluate, for each
participant, the minimum consistency
that is required. By requesting read
guarantees that are weaker than strong
consistency, these clients are likely to
experience performance benefits and
higher availability.

Official scorekeeper. The official
scorekeeper is responsible for main-
taining the score of the game by writ-
ing it to the persistent key-value store.
Figure 4 illustrates the steps taken by
the scorekeeper each time the visit-
ing team scores a run; his action when
the home team scores is similar. Note
that this code is a snippet of the overall
baseball game code that was presented
in in Figure 1.

What consistency does the score-
keeper require for his read opera-
tions? Undoubtedly, the scorekeeper

needs to read the most up-to-date
previous score before adding one to
produce the new score. Otherwise,
the scorekeeper runs the risk of writ-
ing an incorrect score and undermin-
ing the game, not to mention inciting
a mob of angry baseball fans. Suppose
the home team had previously scored
five runs and just scored the sixth. Do-
ing an eventual consistency read, as
shown in Table 3, could return a score
of anything from zero to five. Perhaps,
the scorekeeper would get lucky and
receive the correct score in response
to his read, but he should not count
on it.

Interestingly, while the scorekeeper
requires strongly consistent data, he
does not need to perform strong con-
sistency reads. Since the scorekeeper is
the only person who updates the score,
he can request the read my writes guar-
antee and receive the same effect as a
strong read. Essentially, the scorekeep-
er uses application-specific knowledge
to obtain the benefits of a weaker con-
sistency read without actually giving up
any consistency.

This might seem like a subtle dis-
tinction, but, in fact, could be quite
significant in practice. In processing
a strong consistency read the stor-
age system must pessimistically as-
sume that some client, anywhere in
the world, may have just updated the
data. The system therefore must ac-
cess a majority of servers (or a fixed set
of servers) in order to ensure the most
recently written data is accessed by
the submitted read operation. In pro-
viding the read my writes guarantee,
on the other hand, the system simply
needs to record the set of writes that
were previously performed by the cli-
ent and find some server that has
seen all of these writes.11 In a base-
ball game, the previous run that was
scored, and hence the previous write
that was performed by the scorekeep-
er, may have happened many minutes
or even hours ago. In this case, almost
any server will have received the pre-
vious write and be able to answer the

next read that requests the read my
writes guarantee.

Umpire. The umpire is the person
who officiates a baseball game from
behind home plate. The umpire, for
the most part, does not actually care
about the current score of the game.
The one exception comes after the top
half of the 9th inning, that is, after
the visiting team has batted and the
home team is about to bat. Since this
is the last inning (and a team cannot
score negative runs), the home team
has already won if they are ahead in
the score; thus, the home team can
and does skip its last at bat in some
games. The code for the umpire who
needs to make this determination is
illustrated in Figure 5.

When accessing the score during
the 9th inning, the umpire does need
to read the current score. Otherwise,
he might end the game early, if he in-
correctly believes the home team to
be ahead, or make the home team bat
unnecessarily. Unlike the scorekeeper,
the umpire never writes the score; he
simply reads the values that were writ-
ten by the official scorekeeper. Thus,
in order to receive up-to-date informa-
tion, the umpire must perform strong
consistency reads.

Radio reporter. In most areas of the
U.S., radio stations periodically an-
nounce the scores of games that are
in progress or have completed. In the
San Francisco area, for example, KCBS
reports sports news every 30 minutes.
The radio reporter performs the steps
outlined in Figure 6. A similar, perhaps
more modern, example is the sports
scores that scroll across the bottom of
the TV screen while viewers are watch-
ing ESPN.

figure 6. Role of the radio sports reporter.

do {
 vScore = Read (“visitors”);
 hScore = Read (“home”);
 report vScore and hScore;
 sleep (30 minutes);
}

figure 4. Role of the scorekeeper.

score = Read (“visitors”);
Write (“visitors”, score + 1);

figure 5. Role of the umpire.

if first half of 9th inning complete then
 vScore = Read (“visitors”);
 hScore = Read (“home”);
 if vScore < hScore
 end game;

88 communicationS of the acm | deCeMBer 2013 | vOL. 56 | nO. 12

review articles

goes out to a leisurely dinner before
sitting down to summarize the game.
He certainly wants to make sure that
he reports the correct final score for
the game. So, he wants the effect of a
strong consistency read. However, he
does not need to pay the cost. If the
sportswriter knows he spent an hour
eating dinner after the game ended,
then he also knows it has been at least
an hour since the scorekeeper last up-
dated the score. Thus, a bounded stale-
ness read with a bound of one hour is
sufficient to ensure the sportswriter
reads the final score. In practice, any
server should be able to answer such
a read. In fact, an eventual consisten-
cy read is likely to return the correct
score after an hour, but requesting
bounded staleness is the only way for
the sportswriter to be 100% certain he
is obtaining the final score.

Statistician. The team statistician
is responsible for keeping track of the
season-long statistics for the team and
for individual players. For example, the
statistician might tally the total num-
ber of runs scored by her team this sea-
son. Suppose these statistics are also
saved in the persistent key-value store.
As shown in Figure 8, the home team’s
statistician, sometime after each game
has ended, adds the runs scored to the
previous season total and writes this
new value back into the data store.

When reading the team’s score
from today, the statistician wants to
be sure to obtain the final score. Thus,
she needs to perform a strong con-
sistency read. If the statistician waits
for some time after the game, then a
bounded staleness read may achieve
the same effect (as discussed earlier
for the sportswriter).

When reading the current statistics
for the season, that is, for the second
read operation in Figure 8, the statisti-
cian also wants strong consistency. If an
old statistic is returned, then the updat-
ed value written back will undercount
the team’s total runs. Since the statisti-
cian is the only person who writes statis-
tics into the data store, she can use the
read my writes guarantee to get the lat-
est value (as discussed previously).

Stat watcher. Others who periodi-
cally check on the team’s season statis-
tics are usually content with eventual
consistency. The statistical data is only
updated once per day, and numbers

If the radio reporter broadcasts
scores that are not completely up to
date, that is okay. People are accus-
tomed to receiving old news. Thus,
some form of eventual consistency
is fine for the reads he performs. But
what guarantees, if any, are desirable?

As shown in Table 3, the read with
the weakest guarantee, an eventual
consistency read, may return scores
that never existed. For the sample
line score given in Figure 3, such a
read might return a score with the
visitors leading 1-0, even though the
visiting team has never actually been
in the lead. The radio reporter does
not want to report such fictitious
scores. Thus, the reporter wants both
his reads to be performed on a snap-
shot that hold a consistent prefix of
the writes that were performed by the
scorekeeper. This allows the reporter

to read the score that existed at some
time, without necessarily reading the
current score.

But reading a consistent prefix is
not sufficient. For the line score in Fig-
ure 3, the reporter could read a score
of 2-5, the current score, and then, 30
minutes later, read a score of 1-3. This
might happen, for instance, if the re-
porter happens to read from a primary
server and later reads from another
server, perhaps in a remote datacen-
ter, that has been disconnected from
the primary and has yet to receive the
latest writes. Since everyone knows
that baseball scores are monotonically
increasing, reporting scores of 2-5 and
1-3 in subsequent news reports would
make the reporter look foolish. This
can be avoided if the reporter requests
the monotonic reads guarantee in ad-
dition to requesting a consistent pre-
fix. Observe that neither guarantee is
sufficient by itself.

Alternatively, the reporter could
obtain the same effect as a monotonic
read by requesting bounded staleness
with a bound of less than 30 minutes.
This would ensure the reporter ob-
serves scores that are at most 30 min-
utes out of date. Since the reporter
only reads data every 30 minutes, he
must receive scores that are increas-
ingly up to date. Of course, the re-
porter could ask for a tighter bound,
say five minutes, to get scores that are
reasonably timely.

Sportswriter. Another interesting
person is the sportswriter who watch-
es the game and later writes an article
that appears in the morning paper or
that is posted on some website. Differ-
ent sportswriters may behave different-
ly, but my observations (from having
been a sportswriter) is they often act as
in Figure 7.

The sportswriter may be in no hurry
to write his article. In this example, he

table 4. Read guarantees for baseball participants.

Official scorekeeper read My Writes

umpire Strong Consistency

radio reporter Consistent Prefix & Monotonic reads

Sportswriter Bounded Staleness

Statistician Strong Consistency, read My Writes

Stat watcher eventual Consistency

figure 7. Role of the sportswriter.

While not end of game {
 drink beer;
 smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

figure 8. Role of the statistician.

Wait for end of game;
score = Read (“home”);
stat = Read (“season-runs”);
Write (“season-runs”, stat + score);

figure 9. Role of the stat watcher.

do {
 stat = Read (“season-runs”);
 discuss stats with friends;
 sleep (1 day);
}

review articles

deCeMBer 2013 | vOL. 56 | nO. 12 | communicationS of the acm 89

that are slightly out of date are okay.
For example, a fan inquiring about
the total number of runs scored by his
team this season, as shown in Figure 9,
can perform an eventual consistency
read to get a reasonable answer.

conclusion
Clearly, storing baseball scores is not
the killer application for cloud storage
systems. And we should be cautious
about drawing conclusions from one
simple example. But perhaps some les-
sons can be learned.

Table 4 summarizes the consisten-
cy guarantees desired by the variety
of baseball participants that were dis-
cussed in the previous section. Recall
that the listed consistencies are not
the only acceptable ones. In particular,
each participant would be okay with
strong consistency, but, by relaxing the
consistency requested for his reads, he
will likely observe better performance
and availability. Additionally, the stor-
age system may be able to better bal-
ance the read workload across servers
since it has more flexibility in select-
ing servers to answer weak consistency
read requests.

These participants can be thought
of as different applications that are
accessing shared data: the baseball
score. In some cases, such as for the
scorekeeper and sportswriter, the
reader, based on application-specif-
ic knowledge, knows he can obtain
strongly consistent data even when
issuing a weakly consistent read us-
ing a read my writes or bounded stale-
ness guarantee. In some cases, such
as the radio reporter, multiple guar-
antees must be combined to meet the
reader’s needs. In other cases, such
as the statistician, different guaran-
tees are desired for reads to different
data objects.

I draw four main conclusions from
this exercise:

 ˲ All of the six presented consistency
guarantees are useful. Observe that
each guarantee appears at least once in
Table 4. Systems that offer only even-
tual consistency would fail to meet the
needs of all but one of these clients,
and systems that offer only strong con-
sistency may underperform in all but
two cases.

 ˲ Different clients may want differ-
ent consistencies even when accessing

the same data. Often, systems bind a
specific consistency to a particular da-
taset or class of data. For example, it is
generally assumed that bank data must
be strongly consistent while shopping
cart data needs only eventually con-
sistency. The baseball example shows
that the desired consistency depends
as much on who is reading the data as
on the type of data.

 ˲ Even simple databases may have
diverse users with different consis-
tency needs. A baseball score is one
of the simplest databases imaginable,
consisting of only two numbers. Nev-
ertheless, it effectively illustrates the
value of different consistency options.

 ˲ Clients should be able to choose
their desired consistency. The system
cannot possibly predict or determine
the consistency that is required by a
given application or client. The pre-
ferred consistency often depends on
how the data is being used. Moreover,
knowledge of who writes data or when
data was last written can sometimes
allow clients to perform a relaxed
consistency read, and obtain the as-
sociated benefits, while reading up-
to-date data.

The main argument often expressed
against providing eventual consistency
is that it increases the burden on ap-
plication developers. This may be true,
but the extra burden need not be ex-
cessive. The first step is to define con-
sistency guarantees developers can
understand; observe that the six guar-
antees presented in Table 1 are each
described in a few words. By having
the storage system perform write op-
erations in a strict order, application
developers can avoid the complica-
tion of dealing with update conflicts
from concurrent writes. This leaves
developers with the job of choosing
their desired read consistency. This
choice requires a deep understanding
of the semantics of their application,
but need not alter the basic structure
of the program. None of the code snip-
pets that were provided in the previous
section required any additional lines to
deal specifically with stale data.

Cloud storage systems that offer
only strong consistency make it easy
for developers to write correct pro-
grams but may miss out on the bene-
fits of relaxed consistency. The inher-
ent trade-offs between consistency,

performance, and availability are
tangible and may become more pro-
nounced with the proliferation of geo-
replicated services. This suggests that
cloud storage systems should at least
consider offering a larger choice of
read consistencies. Some cloud pro-
viders already offer two both strongly
consistent and eventually consistent
read operations, but this article shows
their eventual consistency model may
not be ideal for applications. Allowing
cloud storage clients to read from di-
verse replicas with a choice of several
consistency guarantees could benefit
a broad class of applications as well
as lead to better resource utilization
and cost savings.

References
1. abadi, d. Consistency tradeoffs in modern distributed

database system design. IEEE Computer, (feb. 2012).
2. amazon. amazon dynamodb; http://aws.amazon.

com/dynamodb/.
3. anderson, e., li, X., shah, m., tucek, j. and wylie, j.

what consistency does your key-value store actually
provide? In Proceedings of the Usenix Workshop on
Hot Topics in Systems Dependability, (2010).

4. bailis, P., Venkataraman, s., franklin, m., hellerstein,
j. and stoica, I. Probabilistically bounded staleness
for practical partial quorums. In Proceedings VLDB
Endowment, (aug. 2012).

5. brewer. e. CaP twelve years later: how the “rules”
have changed. IEEE Computer, (feb. 2012).

6. Calder, b. et. al. windows azure storage: a highly
available cloud storage service with strong
consistency. In Proceedings ACM Symposium on
Operating Systems Principles, (oct. 2011).

7. Cooper, b., ramakrishnan, r., srivastava, u.,
silberstein, a., bohannon, P., jacobsen, h.a., Puz, n.,
weaver, d. and yerneni, r. Pnuts: yahoo!’s hosted
data serving platform. In Proceedings International
Conference on Very Large Data Bases, (aug. 2008).

8. google. read Consistency & deadlines: more Control
of your datastore. google app engine blob, mar. 2010;
http://googleappengine.blogspot.com/2010/03/read-
consistency-deadlines-more-control.html.

9. kraska, t., hentschel, m., alonso, g. and kossmann,
d. Consistency rationing in the cloud: Pay only when it
matters. In Proceedings International Conference on
Very Large Data Bases, (aug. 2009).

10. saito, y. and shapiro, m. optimistic replication. ACM
Computing Surveys, (mar. 2005).

11. terry, d., demers, a., Petersen, k., spreitzer, m.,
theimer, m., and welch, b. session guarantees for
weakly consistent replicated data. In Proceedings
IEEE International Conference on Parallel and
Distributed Information Systems, (1994).

12. Vogels, w. eventually consistent. Commun. ACM, (jan.
2009).

13. wada, h., fekete, a., zhao, l., lee, k. and liu, a.
data consistency properties and the trade-offs
in commercial cloud storages: the consumers’
perspective. In Proceedings CIDR, (jan. 2011).

Doug Terry (terry@microsoft.com) is a Principal
researcher in the microsoft research silicon Valley lab,
mountain View. Ca.

Copyright held by owner/author(s). Publication rights
licensed to aCm. $15.00

