
CONTENT MANAGEMENT IN RUBY ON RAILS

Antonio Tapiador, Joaquín Salvachúa
Universidad Politécnica de Madrid

Avda. Complutense 30, Madrid, Spain.

ABSTRACT

Web development is currently driven by model-view-controller (MVC) frameworks. How has content management

adapted to this scenario? This paper reviews content management features in Ruby on Rails framework and its most

popular plug-ins. These features are distributed among the different layers of the MVC architecture.

KEYWORDS

Content management, model-view-controller, web development, ruby on rails

1. INTRODUCTION

How has content management adapted to the arrival of web development frameworks? Using frameworks

for web development has become a common practice. Model-view-controller (MVC) patterns facilitate

development. They hide complexity, give structure and consistence and promote best practices. Their code is

better tested. Finally, a framework becomes popular if it has something useful to offer (Johnson 2005).

On the other hand, content management is the process behind matching what your organization has to

what your audience wants (Boiko 2001). It comprises collection, management and publishing content to any

outlet. Web content management is the result of delivering content to the web. Web content management

became popular with the growth of web pages (McKeever 2003). But, did it catch up with the emergence of

web development frameworks?

We have hardly found related work in literature filling the gap between MVC and content management.

There is recent work that introduces the implementation of a web content management system using J2EE

MVC technologies (Liduo et al. 2010). It presents a successful case using a 3-tier (MVC) architecture and

collects the requisites for web content management. However, it does not explain how content management

features are supported by a MVC framework.

In this article, we explore this issue from our experience building web content management systems with

Ruby on Rails, a popular web development framework developed to increase productivity. It implements

MVC architecture, and relies on “convention over configuration” and “don’t repeat yourself” (Bachle and

Kirchberg 2007).

2. METHOD

We have wide experience developing Ruby on Rails applications, including the GlobalPlaza

(http://globalplaza.org/), a Web content management system developed in the context of the EU 7
th

 FP

Global project.

We have reviewed the implementation of content management features (McKeever 2003, Liduo 2010) in

Ruby on Rails and its plug-ins. Table 1 shows each feature and where it is implemented: Rails or a external

plug-in. We have measured their popularity relative to Rails (which is the most popular project). The most

popular full-featured content management project built with Ruby on Rails (RadiantCMS) is also included.

http://globalplaza.org/

Popularity is measured using The Ruby Toolbox (http://ruby-toolbox.com/), a web site that collects projects

from Github. Github (http://github.com/) is the web site where the Rails community lives in. The score of

each project in The Ruby Toolbox is proportional to the number of developers that are watching it and its

forks in Github.

3. RESULTS

Table 1: Content management features (McKeever 2003, Liduo 2010)

and their support by Rub on Rails or an external plug-in

4. DISCUSSION

Almost all the content

management features are

available in the Ruby on

Rails development

framework. Most of them

are integrated in the core

framework, but some of

them are available as

plug-ins.

Web authentication means have evolved a lot in the last years. The most popular authentication plug-in

(Devise) provides methods like User name and password: nowadays it is implemented by almost every web

site providing authentication. Credentials can be provided as parameters of a POST request, as result of

filling a web form, or through HTTP authentication headers such as basic or digest authentication (Franks

1999). Access token: A token is generated and stored in the server associated to the user. This token is

Content collection Content delivery

Standard tools for content creation Rails,

Formstastic,

WillPaginate

Static content Rails

Multi-user support & authorship Devise Dynamic content Rails

Separation of content from presentation Rails Automatic link checking Rails

Content syndication Rails Data error checking Rails

Content preview Rails* Separate environments Rails

Content versioning VestalVersions Content version rollback Vestal versions

Relevant content types Paperclip Multi-channel support Rails, Prawn

Form support for catalogue type data Rails Automatic site changes Rails*

Localization Rails Content personalization Devise

Shared database for content storage Rails Control and administration

Thin client Rails Role definition and user security Devise, CanCan

Real time access to CM functions Rails Taxonomy ActsAsTaggableOn

Workflow Audit trail Rails*

Flexible, multi-threaded AASM Reporting functions Rails*, Devise

Workflow monitoring and control

features

Rails

Rails* means that feature needs implementation Workgroups CanCan

Figure 1 Popularity of Ruby on Rails content management plug-ins

http://ruby-toolbox.com/
http://github.com/

passed as a parameter in the request URL, or stored. in the user client, as a cookie. This method is useful for

syndication feeds, or remembering user authentication in the browser of a trusted computer. OpenID

(Recordon and Reed 2006). The user-centric framework emerged as a solution to the “multiple user name

and password” problem. OpenID’s aims is managing only the authentication of you identity provider. The

rest of web sites rely authentication on it. OAuth: Initially a protocol for secure API authorization, OAuth

(Hammer-Lahav 2010) has become a popular authentication mean used by Facebook and Twitter, among

others. Other features like confirm email address, recover passwords, track user information like IP address,

timeout session or lock user account. Devise’s authentication methods are configurable in the model, letting

the content management developer decide which methods are appropriate for each case. It provides with

custom controller and views for authentication mechanisms. Besides, it provides with helping methods so the

developer can check if the user is authenticated and which is his identity.

Authorization is transverse to the MVC architecture. Model: the state of the data in the persistence layer

(e.g. roles assignations and resources relationships) determines whether authorization is granted or denied.

Controller: authorization mandate which actions can be performed in the business logic layer. View: the

interface changes depending on authorization issues. For example, some links are displayed if the user has

rights to perform the actions behind them. CanCan, provides methods for controller and views. The

authorization policies are decoupled from the MVC architecture. They are described in a separate Ability

class, which it is instantiated for the user in every request.

Ruby on Rails follows resource oriented architecture (ROA). The framework provides resources

management support at the three levels of the MVC architecture. Resources are tight related with the life

cycle of content, collecting, managing and publishing (Boiko 2001). At the model level, AASM state

declarations for workflows, VestalVersions revisions and FriendlyID slug generation. At the controller,

inherited resources provide the basic functionality for the life cycle of resources. Several plug-ins enhance

the views. Formstatic powering forms generation, WillPaginate for index paginations and Prawn for PDF

views. Finally, there are transversal plug-ins to the MVC architecture. These provide functionality at several

levels of the MVC architecture. Examples are Paperclip for file management. RailsAdmin interface for

resources management and ActsAsTaggableOn for taxonomies and folksonomies.

5. CONCLUSION

Content management features keep up with Ruby on Rails development framework. Most of them are

integrated in the framework itself, while others are distributed as plug-ins. However, some of them are more

popular than others, even than the most popular full-featured content management solution. Content

management features are transversal to the MVC architecture, they use some or even all the layers.

REFERENCES

Bachle M, Kirchberg P. Ruby on Rails. IEEE Software, Vol. 24, Iss. 6, pp. 105 - 108

Boiko B, 2001, Understanding Content Management, Bulletin of the American Society for Information Science and
Technology, 28: 8-13

Franks J. et al. 1999. HTTP Authentication: Basic and Digest Access Authentication. RFC 2617. IETF.

Hammer-Lahav E. 2010, The OAuth 1.0 Protocol. RFC 5849, IETF

Johnson R, 2005. J2EE Development Frameworks. IEEE Computer, Vol 38, Iss 1, pp 107-110

Liduo H, Yan C and Ming Y. 2010. Design and implementation of Web Content Management System by J2EE-based

three-tier architecture: Applying in maritime and shipping business. The 2nd IEEE International Conference on
Information Management and Engineering (ICIME). pp 513 - 517

McKeever S, 2003, Understanding Web content management systems: evolution, lifecycle and market. Industrial
Management & Data Systems, Vol. 103, Iss. 9, pp. 686 - 692

Recordon D. Reed D, 2006, OpenID 2.0: a platform for user-centric identity management. Proceedings of the second

ACM workshop on Digital Identity Management. ACM.

