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ABSTRACT 

Web development is currently driven by model-view-controller (MVC) frameworks. How has content management 

adapted to this scenario? This paper reviews content management features in Ruby on Rails framework and its most 

popular plug-ins. These features are distributed among the different layers of the MVC architecture. 
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1. INTRODUCTION 

How has content management adapted to the arrival of web development frameworks? Using frameworks 

for web development has become a common practice. Model-view-controller (MVC) patterns facilitate 

development. They hide complexity, give structure and consistence and promote best practices. Their code is 

better tested. Finally, a framework becomes popular if it has something useful to offer (Johnson 2005). 

 

On the other hand, content management is the process behind matching what your organization has to 

what your audience wants (Boiko 2001). It comprises collection, management and publishing content to any 

outlet. Web content management is the result of delivering content to the web. Web content management 

became popular with the growth of web pages (McKeever 2003). But, did it catch up with the emergence of 

web development frameworks?  

 

We have hardly found related work in literature filling the gap between MVC and content management. 

There is recent work that introduces the implementation of a web content management system using J2EE 

MVC technologies (Liduo et al. 2010). It presents a successful case using a 3-tier (MVC) architecture and 

collects the requisites for web content management. However, it does not explain how content management 

features are supported by a MVC framework. 

 

In this article, we explore this issue from our experience building web content management systems with 

Ruby on Rails, a popular web development framework developed to increase productivity. It implements 

MVC architecture, and relies on “convention over configuration” and “don’t repeat yourself” (Bachle and 

Kirchberg 2007). 

2.  METHOD 

We have wide experience developing Ruby on Rails applications, including the GlobalPlaza 

(http://globalplaza.org/), a Web content management system developed in the context of the EU 7
th

 FP 

Global project.  

We have reviewed the implementation of content management features (McKeever 2003, Liduo 2010) in 

Ruby on Rails and its plug-ins. Table 1 shows each feature and where it is implemented: Rails or a external 

plug-in.  We have measured their popularity relative to Rails (which is the most popular project). The most 

popular full-featured content management project built with Ruby on Rails (RadiantCMS) is also included. 

http://globalplaza.org/


Popularity is measured using The Ruby Toolbox (http://ruby-toolbox.com/), a web site that collects projects 

from Github. Github (http://github.com/) is the web site where the Rails community lives in. The score of 

each project in The Ruby Toolbox is proportional to the number of developers that are watching it and its 

forks in Github. 

3. RESULTS 

Table 1: Content management features (McKeever 2003, Liduo 2010) 

and their support by Rub on Rails or an external plug-in 

 

4. DISCUSSION 

Almost all the content 

management features are 

available in the Ruby on 

Rails development 

framework. Most of them 

are integrated in the core 

framework, but some of 

them are available as 

plug-ins. 

 

 

Web authentication means have evolved a lot in the last years. The most popular authentication plug-in 

(Devise) provides methods like User name and password: nowadays it is implemented by almost every web 

site providing authentication. Credentials can be provided as parameters of a POST request, as result of 

filling a web form, or through HTTP authentication headers such as basic or digest authentication (Franks 

1999). Access token: A token is generated and stored in the server associated to the user. This token is 
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Figure 1 Popularity of Ruby on Rails content management plug-ins 
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passed as a parameter in the request URL, or stored. in the user client, as a cookie. This method is useful for 

syndication feeds, or remembering user authentication in the browser of a trusted computer. OpenID 

(Recordon and Reed 2006). The user-centric framework emerged as a solution to the “multiple user name 

and password” problem. OpenID’s aims is managing only the authentication of you identity provider. The 

rest of web sites rely authentication on it. OAuth: Initially a protocol for secure API authorization, OAuth 

(Hammer-Lahav 2010) has become a popular authentication mean used by Facebook and Twitter, among 

others. Other features like confirm email address, recover passwords, track user information like IP address, 

timeout session or lock user account. Devise’s authentication methods are configurable in the model, letting 

the content management developer decide which methods are appropriate for each case. It provides with 

custom controller and views for authentication mechanisms. Besides, it provides with helping methods so the 

developer can check if the user is authenticated and which is his identity. 

 

Authorization is transverse to the MVC architecture. Model: the state of the data in the persistence layer 

(e.g. roles assignations and resources relationships) determines whether authorization is granted or denied. 

Controller: authorization mandate which actions can be performed in the business logic layer. View: the 

interface changes depending on authorization issues. For example, some links are displayed if the user has 

rights to perform the actions behind them. CanCan, provides methods for controller and views. The 

authorization policies are decoupled from the MVC architecture. They are described in a separate Ability 

class, which it is instantiated for the user in every request. 

 

Ruby on Rails follows resource oriented architecture (ROA). The framework provides resources 

management support at the three levels of the MVC architecture. Resources are tight related with the life 

cycle of content, collecting, managing and publishing (Boiko 2001). At the model level, AASM state 

declarations for workflows, VestalVersions revisions and FriendlyID slug generation. At the controller, 

inherited resources provide the basic functionality for the life cycle of resources. Several plug-ins enhance 

the views. Formstatic powering forms generation, WillPaginate for index paginations and Prawn for PDF 

views. Finally, there are transversal plug-ins to the MVC architecture. These provide functionality at several 

levels of the MVC architecture. Examples are Paperclip for file management. RailsAdmin interface for 

resources management and ActsAsTaggableOn for taxonomies and folksonomies. 

5. CONCLUSION 

Content management features keep up with Ruby on Rails development framework. Most of them are 

integrated in the framework itself, while others are distributed as plug-ins. However, some of them are more 

popular than others, even than the most popular full-featured content management solution. Content 

management features are transversal to the MVC architecture, they use some or even all the layers. 
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