Deep Learning using Linear Support Vector Machines

Yichuan Tang

TANGQCS.TORONTO.EDU

Department of Computer Science, University of Toronto. Toronto, Ontario, Canada.

Abstract

Recently, fully-connected and convolutional
neural networks have been trained to achieve
state-of-the-art performance on a wide vari-
ety of tasks such as speech recognition, im-
age classification, natural language process-
ing, and bioinformatics. For classification
tasks, most of these “deep learning” models
employ the softmax activation function for
prediction and minimize cross-entropy loss.
In this paper, we demonstrate a small but
consistent advantage of replacing the soft-
max layer with a linear support vector ma-
chine. Learning minimizes a margin-based
loss instead of the cross-entropy loss. While
there have been various combinations of neu-
ral nets and SVMs in prior art, our results
using L2-SVMs show that by simply replac-
ing softmax with linear SVMs gives signifi-
cant gains on popular deep learning datasets
MNIST, CIFAR-10, and the ICML 2013 Rep-
resentation Learning Workshop’s face expres-
sion recognition challenge.

1. Introduction

Deep learning using neural networks have claimed
state-of-the-art performances in a wide range of tasks.
These include (but not limited to) speech (Mohamed
et al., 2009; Dahl et al., 2010) and vision (Jarrett
et al., 2009; Ciresan et al., 2011; Rifai et al., 2011a;
Krizhevsky et al., 2012). All of the above mentioned
papers use the softmax activation function (also known
as multinomial logistic regression) for classification.

Support vector machine is an widely used alternative
to softmax for classification (Boser et al., 1992). Using
SVMs (especially linear) in combination with convolu-
tional nets have been proposed in the past as part of a

International Conference on Machine Learning 2013: Chal-
lenges in Representation Learning Workshop. Atlanta,
Georgia, USA.

multistage process. In particular, a deep convolutional
net is first trained using supervised/unsupervised ob-
jectives to learn good invariant hidden latent represen-
tations. The corresponding hidden variables of data
samples are then treated as input and fed into linear
(or kernel) SVMs (Huang & LeCun, 2006; Lee et al.,
2009; Quoc et al., 2010; Coates et al., 2011). This
technique usually improves performance but the draw-
back is that lower level features are not been fine-tuned
w.r.t. the SVM’s objective.

Other papers have also proposed similar models but
with joint training of weights at lower layers using
both standard neural nets as well as convolutional neu-
ral nets (Zhong & Ghosh, 2000; Collobert & Bengio,
2004; Nagi et al., 2012). In other related works, We-
ston et al. (2008) proposed a semi-supervised embed-
ding algorithm for deep learning where the hinge loss
is combined with the “contrastive loss” from siamese
networks (Hadsell et al., 2006). Lower layer weights
are learned using stochastic gradient descent. Vinyals
et al. (2012) learns a recursive representation using lin-
ear SVMs at every layer, but without joint fine-tuning
of the hidden representation.

In this paper, we show that for some deep architec-
tures, a linear SVM top layer instead of a softmax
is beneficial. We optimize the primal problem of the
SVM and the gradients can be backpropagated to learn
lower level features. Our models are essentially same
as the ones proposed in (Zhong & Ghosh, 2000; Nagi
et al., 2012), with the minor novelty of using the loss
from the L2-SVM instead of the standard hinge loss.

Compared to nets using a top layer softmax,
we demonstrate superior performance on MNIST,
CIFAR-10, and on a recent Kaggle competition on
recognizing face expressions. Optimization is done us-
ing stochastic gradient descent on small minibatches.
Comparing the two models in Sec. 3.4, we believe the
performance gain is largely due to the superior regu-
larization effects of the SVM loss function, rather than
an advantage from better parameter optimization.



Deep Learning using Linear Support Vector Machines

2. The model
2.1. Softmax

For classification problems using deep learning tech-
niques, it is standard to use the softmax or 1-of-K
encoding at the top. For example, given 10 possible
classes, the softmax layer has 10 nodes denoted by p;,
where ¢ = 1,...,10. p; specifies a discrete probability
distribution, therefore, Z;O p; = 1.

Let h be the activation of the penultimate layer nodes,
W is the weight connecting the penultimate layer to
the softmax layer, the total input into a softmax layer,
given by a, is

ai = hWhi, (1)
k

then we have

_exp(a) )
" exp(ay) )

The predicted class ¢ would be

¢ = arg maxp;
i

= arg max a; (3)

2.2. Support Vector Machines

Linear support vector machines (SVM) is originally
formulated for binary classification. Given train-
ing data and its corresponding labels (x,,yn), n =
1,...,N, x, € RP ¢, € {~1,+1}, SVMs learning
consists of the following constrained optimization:

N
min %WTW + C; én (4)

w,&n

st. Wixpt, >1—6, Vn

&, are slack variables which penalizes data points
which violate the margin requirements. Note that we
can include the bias by augment all data vectors x,,
with a scalar value of 1. The corresponding uncon-
strained optimization problem is the following;:

N
1
m“i,n §WTW +C Z max(l — w'x,t,,0) (5)

n=1

The objective of Eq. 5 is known as the primal form
problem of L1-SVM, with the standard hinge loss.
Since L1-SVM is not differentiable, a popular variation

is known as the L2-SVM which minimizes the squared
hinge loss:

N
1
rrti,n §WTW +C Z max(1 — w'x,t,,0)? (6)

n=1

L2-SVM is differentiable and imposes a bigger
(quadratic vs. linear) loss for points which violate the
margin. To predict the class label of a test data x:

arg max(w' x)t (7)
t

For Kernal SVMs, optimization must be performed in
the dual. However, scalability is a problem with Ker-
nal SVMs, and in this paper we will be only using
linear SVMs with standard deep learning models.

2.3. Multiclass SVMs

The simplest way to extend SVMs for multiclass prob-
lems is using the so-called one-vs-rest approach (Vap-
nik, 1995). For K class problems, K linear SVMs
will be trained independently, where the data from
the other classes form the negative cases. Hsu & Lin
(2002) discusses other alternative multiclass SVM ap-
proaches, but we leave those to future work.

Denoting the output of the k-th SVM as

ap(x) = w'x (8)

The predicted class is

arg max ay (x) (9)
k

Note that prediction using SVMs is exactly the same
as using a softmax Eq. 3. The only difference between
softmax and multiclass SVMs is in their objectives
parametrized by all of the weight matrices W. Soft-
max layer minimizes cross-entropy or maximizes the
log-likelihood, while SVMs simply try to find the max-
imum margin between data points of different classes.

2.4. Deep Learning with Support Vector
Machines

Most deep learning methods for classification using
fully connected layers and convolutional layers have
used softmax layer objective to learn the lower level
parameters. There are exceptions, notably in papers
by (Zhong & Ghosh, 2000; Collobert & Bengio, 2004;
Nagi et al., 2012), supervised embedding with nonlin-
ear NCA (Salakhutdinov & Hinton, 2007), and semi-
supervised deep embedding (Weston et al., 2008). In
this paper, we use L2-SVM’s objective to train deep



Deep Learning using Linear Support Vector Machines

neural nets for classification. Lower layer weights are
learned by backpropagating the gradients from the top
layer linear SVM. To do this, we need to differentiate
the SVM objective with respect to the activation of
the penultimate layer. Let the objective in Eq. 5 be
I(w), and the input x is replaced with the penultimate
activation h,

ol(w)
oh,,

= —Ct,w(I{1 > w'h,t,}) (10)

Where I{-} is the indicator function. Likewise, for the
L2-SVM, we have

ol(w)

Th = —20t,w(max(l — w'h,t,,0)) (11)

From this point on, backpropagation algorithm is ex-
actly the same as the standard softmax-based deep
learning networks. We found L2-SVM to be slightly
better than L1-SVM most of the time and will use the
L2-SVM in the experiments section.

3. Experiments
3.1. Facial Expression Recognition

This competition/challenge was hosted by the ICML
2013 workshop on representation learning, organized
by the LISA at University of Montreal. The contest
itself was hosted on Kaggle with over 120 competing
teams during the initial developmental period.

The data consist of 28,709 48x48 images of faces under
7 different types of expression. See Fig 1 for examples
and their corresponding expression category. The val-
idation and test sets consist of 3,589 images and this
is a classification task.

WINNING SOLUTION

We submitted the winning solution with a public val-
idation score of 69.4% and corresponding private test
score of 71.2%. Our private test score is almost 2%
higher than the 2nd place team. Due to label noise
and other factors such as corrupted data, human per-
formance is roughly estimated to be between 65% and
68%:".

Our submission consists of using a simple Convolu-
tional Neural Network with linear one-vs-all SVM at
the top. Stochastic gradient descent with momentum
is used for training and several models are averaged to
slightly improve the generalization capabilities. Data
preprocessing consisted of first subtracting the mean

!Personal communication from the competition orga-
nizers: http://bit.ly/13Zr6Gs

Figure 1. Training data. Fach column consists of faces of
the same expression: starting from the leftmost column:
Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral.

value of each image and then setting the image norm
to be 100. Each pixels is then standardized by remov-
ing its mean and dividing its value by the standard
deviation of that pixel, across all training images.

Our implementation is in C++ and CUDA, with ports
to Matlab using MEX files. Our convolution routines
used fast CUDA kernels written by Alex Krizhevsky?.
The exact model parameters and code is provided
on by the author at https://code.google.com/p/deep-
learning-faces.

3.1.1. SoFrrMAX vs. DLSVM

We compared performances of softmax with the deep
learning using L2-SVMs (DLSVM). Both models are
tested using an 8 split/fold cross validation, with a
image mirroring layer, similarity transformation layer,
two convolutional filtering+pooling stages, followed by
a fully connected layer with 3072 hidden penultimate
hidden units. The hidden layers are all of the rectified
linear type. other hyperparameters such as weight de-
cay are selected using cross validation.

Softmax | DLSVM L2
Training cross validation | 67.6% 68.9%
Public leaderboard 69.3% 69.4%
Private leaderboard 70.1% 71.2%

Table 1. Comparisons of the models in terms of % accu-
racy. Training c.v. is the average cross validation accuracy
over 8 splits. Public leaderboard is the held-out valida-
tion set scored via Kaggle’s public leaderboard. Private
leaderboard is the final private leaderboard score used to
determine the competition’s winners.

*http://code.google.com /p/cuda-convnet



Deep Learning using Linear Support Vector Machines

We can also look at the validation curve of the Soft-
max vs L2-SVMs as a function of weight updates in
Fig. 2. As learning rate is lowered during the latter

Cross Validation Performance

0.750=@-

. T
—e—DLSVM
07k I —6— Softmax
0.65
06
5 \\
2 os5
B \ X
05 \
045 \\ -
0a s == s O .
©—6——6-6-o
035 ! :
o 05 1 15 2 25 3 35 4 45 5
Weight Updates x10*

Figure 2. Cross validation performance of the two models.
Result is averaged over 8 folds.

half of training, DLSVM maintains a small yet clear
performance gain.

We also plotted the 1st layer convolutional filters of
the two models:

Fdl=Ldl =
OF 0 ™ D ]
= AS I FELEE
A=A NEED

Figure 3. Filters from convolutional net with softmazx.

Figure 4. Filters from convolutional net with L2-SVM.

While not much can be gain from looking at these
filters, SVM trained conv net appears to have more
textured filters.

3.2. MNIST

MNIST is a standard handwritten digit classification
dataset and has been widely used as a benchmark
dataset in deep learning. It is a 10 class classification
problem with 60,000 training examples and 10,000 test
cases.

We used a simple fully connected model by first per-
forming PCA from 784 dimensions down to 70 dimen-
sions. Two hidden layers of 512 units each is followed
by a softmax or a L2-SVM. The data is then divided up
into 300 minibatches of 200 samples each. We trained
using stochastic gradient descent with momentum on
these 300 minibatches for over 400 epochs, totaling
120K weight updates. Learning rate is linearly decayed
from 0.1 to 0.0. The L2 weight cost on the softmax
layer is set to 0.001. To prevent overfitting and criti-
cal to achieving good results, a lot of Gaussian noise is
added to the input. Noise of standard deviation of 1.0
(linearly decayed to 0) is added. The idea of adding
Gaussian noise is taken from these papers (Raiko et al.,
2012; Rifai et al., 2011b).

Our learning algorithm is permutation invariant with-
out any unsupervised pretraining and obtains these
results: Softmax: 0.99% DLSVM: 0.87%

An error of 0.87% on MNIST is probably (at this time)
state-of-the-art for the above learning setting. The
only difference between softmax and DLSVM is the
last layer. This experiment is mainly to demonstrate
the effectiveness of the last linear SVM layer vs. the
softmax, we have not exhaustively explored other com-
monly used tricks such as Dropout, weight constraints,
hidden unit sparsity, adding more hidden layers and
increasing the layer size.

3.3. CIFAR-10

Canadian Institute For Advanced Research 10 dataset
is a 10 class object dataset with 50,000 images for
training and 10,000 for testing. The colored images
are 32 x 32 in resolution. We trained a Convolutional
Neural Net with two alternating pooling and filtering
layers. Horizontal reflection and jitter is applied to
the data randomly before the weight is updated using
a minibatch of 128 data cases.

The Convolutional Net part of both the model is fairly
standard, the first C layer had 32 5 x5 filters with Relu
hidden units, the second C layer has 64 5 x 5 filters.
Both pooling layers used max pooling and downsam-
pled by a factor of 2.

The penultimate layer has 3072 hidden nodes and uses
Relu activation with a dropout rate of 0.2. The dif-



Deep Learning using Linear Support Vector Machines

ference between the Convnet+Softmax and ConvNet
with L2-SVM is the mainly in the SVM’s C constant,
the Softmax’s weight decay constant, and the learning
rate. We selected the values of these hyperparameters
for each model separately using validation.

ConvNet+SVM
11.9%

ConvNet+Softmax
14.0%

Test error

Table 2. Comparisons of the models in terms of % error on
the test set.

In literature, the state-of-the-art (at the time of writ-
ing) result is around 9.5% by (Snoeck et al. 2012).
However, that model is different as it includes con-
trast normalization layers as well as used Bayesian op-
timization to tune its hyperparameters.

3.4. Regularization or Optimization

To see whether the gain in DLSVM is due to the su-
periority of the objective function or to the ability to
better optimize, We looked at the two final models’
loss under its own objective functions as well as the
other objective. The results are in Table 3.

ConvNet | ConvNet

+Softmax | +SVM
Test error 14.0% 11.9%
Avg. cross entropy 0.072 0.353
Hinge loss squared 213.2 0.313

Table 3. Training objective including the weight costs.

It is interesting to note here that lower cross entropy
actually led a higher error in the middle row. In ad-
dition, we also initialized a ConvNet+Softmax model
with the weights of the DLSVM that had 11.9% error.
As further training is performed, the network’s error
rate gradually increased towards 14%.

This gives limited evidence that the gain of DLSVM
is largely due to a better objective function.

4. Conclusions

In conclusion, we have shown that DLSVM works bet-
ter than softmax on 2 standard datasets and a recent
dataset. Switching from softmax to SVMs is incredibly
simple and appears to be useful for classification tasks.
Further research is needed to explore other multiclass
SVM formulations and better understand where and
how much the gain is obtained.

Acknowledgment

Thanks to Alex Krizhevsky for making his very fast
CUDA Conv kernels available! Many thanks to
Relu Patrascu for making running experiments pos-
sible! Thanks to Tan Goodfellow, Dumitru Erhan, and
Yoshua Bengio for organizing the contests.

References

Boser, Bernhard E., Guyon, Isabelle M., and Vapnik,
Vladimir N. A training algorithm for optimal margin
classifiers. In Proceedings of the 5th Annual ACM Work-
shop on Computational Learning Theory, pp. 144-152.
ACM Press, 1992.

Ciresan, D., Meier, U., Masci, J., Gambardella, L.. M., and
Schmidhuber, J. High-performance neural networks for
visual object classification. CoRR, abs/1102.0183, 2011.

Coates, Adam, Ng, Andrew Y., and Lee, Honglak. An
analysis of single-layer networks in unsupervised feature
learning. Journal of Machine Learning Research - Pro-
ceedings Track, 15:215-223, 2011.

Collobert, R. and Bengio, S. A gentle hessian for efficient
gradient descent. In IEEFE International Conference on
Acoustic, Speech, and Signal Processing, I[CASSP, 2004.

Dahl, G. E., Ranzato, M., Mohamed, A., and Hinton, G. E.
Phone recognition with the mean-covariance restricted
Boltzmann machine. In NIPS 23. 2010.

Hadsell, Raia, Chopra, Sumit, and Lecun, Yann. Dimen-
sionality reduction by learning an invariant mapping. In
In Proc. Computer Vision and Pattern Recognition Con-
ference (CVPRO6. IEEE Press, 2006.

Hsu, Chih-Wei and Lin, Chih-Jen. A comparison of meth-
ods for multiclass support vector machines. IEEE Trans-
actions on Neural Networks, 13(2):415-425, 2002.

Huang, F. J. and LeCun, Y. Large-scale learning
with SVM and convolutional for generic object cate-
gorization. In CVPR, pp. I. 284-291, 2006. URL
http://dx.doi.org/10.1109/CVPR.2006.164.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun,
Y. What is the best multi-stage architecture for object

recognition? In Proc. Intl. Conf. on Computer Vision
(ICCV’09). IEEE, 2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In NIPS, pp. 1106-1114, 2012.

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. Convo-
lutional deep belief networks for scalable unsupervised
learning of hierarchical representations. In Intl. Conf.
on Machine Learning, pp. 609-616, 2009.

Mohamed, A., Dahl, G. E., and Hinton, G. E. Deep belief
networks for phone recognition. In NIPS Workshop on
Deep Learning for Speech Recognition and Related Ap-
plications, 2009.



Deep Learning using Linear Support Vector Machines

Nagi, J., Di Caro, G. A., Giusti, A., , Nagi, F., and
Gambardella, L. Convolutional Neural Support Vector
Machines: Hybrid visual pattern classifiers for multi-
robot systems. In Proceedings of the 11th Interna-
tional Conference on Machine Learning and Applica-
tions (ICMLA), Boca Raton, Florida, USA, December
12-15, 2012.

Quoc, L., Ngiam, J., Chen, Z., Chia, D., Koh, P. W., and
Ng, A. Tiled convolutional neural networks. In NIPS
23. 2010.

Raiko, Tapani, Valpola, Harri, and LeCun, Yann. Deep
learning made easier by linear transformations in per-
ceptrons. Journal of Machine Learning Research - Pro-
ceedings Track, 22:924-932, 2012.

Rifai, Salah, Dauphin, Yann, Vincent, Pascal, Bengio,
Yoshua, and Muller, Xavier. The manifold tangent clas-
sifier. In NIPS, pp. 2294-2302, 2011a.

Rifai, Salah, Glorot, Xavier, Bengio, Yoshua, and Vincent,
Pascal. Adding noise to the input of a model trained with
a regularized objective. Technical Report 1359, Uni-
versité de Montréal, Montréal (QC), H3C 3J7, Canada,
April 2011b.

Salakhutdinov, Ruslan and Hinton, Geoffrey. Learning a
nonlinear embedding by preserving class neighbourhood
structure. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, volume 11, 2007.

Vapnik, V. N. The nature of statistical learning theory.
Springer, New York, 1995.

Vinyals, O., Jia, Y., Deng, L., and Darrell, T. Learning
with Recursive Perceptual Representations. In NIPS,
2012.

Weston, Jason, Ratle, Frdric, and Collobert, Ronan. Deep
learning via semi-supervised embedding. In Interna-
tional Conference on Machine Learning, 2008.

Zhong, Shi and Ghosh, Joydeep. Decision boundary fo-
cused neural network classifier. In Intelligent Engineer-
ing Systems Through Articial Neural Networks, 2000.



