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Traditional host-based anomaly detection systems model normal behavior of applica-
tions by analyzing system call sequences. The current sequence is then examined (using
the model) for anomalous behavior, which could correspond to attacks. Though these
techniques have been shown to be quite effective, a key element is missing – the inclusion
and utilization of the system call arguments. Recent research shows that sequence-based
systems are prone to evasion. We propose an idea of learning different representations
for system call arguments. Results indicate that this information can be effectively used
for detecting more attacks than traditional sequence-based techniques, with reasonable
storage and computational overhead.
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1. Introduction

Intrusion detection systems (IDSs) are generally categorized as signature-based and

anomaly-based. In signature detection, systems are modeled upon known attack

patterns and the test data is checked for the occurrence of these patterns. Such

systems have a high degree of accuracy but suffer from the inability to detect novel

attacks. Anomaly detection complements signature detection by modeling normal

behavior of applications. Significant deviations from this behavior are considered

anomalous. Such systems can detect novel attacks, but generate false alarms since

not all anomalies are necessarily hostile. Intrusion detection systems can also be

categorized as network-based, which deals with network traffic; and host-based,

where operating system events are monitored.

Most of the traditional host-based anomaly detection systems focus on system

call sequences, the assumption being that a malicious activity results in an abnor-

mal (novel) sequence of system calls. Recent research has shown that sequence-based

systems can be compromised by conducting mimicry attacks. Such attacks are pos-
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sible by inserting dummy system calls with invalid arguments such that they form

a legitimate sequence of events.

A drawback of sequence-based approaches lies in their non-utilization of other

key attributes, namely system call arguments. The efficacy of such systems might

be improved upon if a richer set of attributes (return value, error status and other

arguments) associated with a system call is used to create the model. In this paper

we present a host-based anomaly detection system that is based upon system call

arguments. We learn the important attributes using a variant of a rule learning algo-

rithm called LERAD. We also present various argument-based representations and

compare their performance with some of the well-known sequence-based techniques.

Our main contributions are:

• we propose enriched representations using various system call attributes (return

value, error status and other arguments) for better application modeling;

• we use a variant of a rule learning algorithm to learn the important attributes

from the feature space;

• we demonstrate the effectiveness of our models (in terms of number of attack

detections, time and space overhead) by performing experiments on three different

data sets; and

• we present an analysis of the anomalies detected.

Our argument-based models are able to detect more attacks than their sequence-

based counterparts. The time and storage requirements for our models are reason-

able for online detection.

2. Related Work

Time-delay embedding (tide) records executions of normal application executions

using look-ahead pairs.1 A fixed length sliding window records correlations between

pairs of system calls. Anomalies are accumulated over the entire sequence and an

alarm is raised if the anomaly count exceeded the threshold. UNIX command se-

quences were also examined to capture user profiles and compute sequence similarity

using adjacent events in a sliding window.2 Sequence time-delay embedding (stide)

memorizes all contiguous sequences of predetermined, fixed lengths during training.3

An anomaly count is defined as the number of mismatches in a temporally local

region. A further extension, called sequence time-delay embedding with (frequency)

threshold (t-stide), was similar to stide with the exception that the frequencies of

these fixed length sequences were also taken into account. Rare sequences were ig-

nored from the normal sequence database in this approach. All these techniques

modeled normal behavior by using fixed length patterns of training sequences. A

scheme to generate variable length patterns by using Teiresias,4 a pattern-discovery

algorithm in biological sequences, was proposed.5,6 Though all the above approaches

use system call sequences, none of them make use of the system call arguments.

Given some knowledge about the IDS, attackers can devise some methodologies to
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evade such intrusion detection systems.7,8 Such attacks might be detected if the sys-

tem call arguments are also evaluated,9 and this motivates our current work. Our

technique models only the important characteristics and generalizes from them;

previous work emphasizes on the structure of all the arguments.

3. Approach

Since our goal is to detect host-based intrusions, system calls are instrumental

in our system. We incorporate the system calls with its arguments to generate a

richer model. Then we present different representations for modeling a system using

LERAD, which is discussed next.

3.1. Learning Rules for Anomaly Detection

Algorithms for finding association rules, such as Apriori,10 generate all rules that

exceed a user defined support and confidence. A large number of rules could incur

substantial overhead for rule checking and might not be appropriate for on-line de-

tection. We would like to have a minimal set of rules describing the normal training

data. Moreover, association rules do not allow a set of values in the consequent.

LERAD11 is a conditional rule-learning algorithm that forms a small set of rules.

LERAD learns rules of the form:

A = a ∧ B = b ∧ . . . ⇒ X ∈ {x1, x2, . . .} (1)

where A, B, and X are attributes and a, b, x1, x2 are values for the corresponding

attributes. The learned rules represent the patterns present in the normal training

data. The set {x1, x2, . . . } in the consequent constitutes all unique values of X

when the antecedent occurs in the training data.

During the detection phase, records (or tuples) that match the antecedent but

not the consequent of a rule are considered anomalous and an anomaly score is

associated with every rule violation. The degree of abnormality is based on the

probability estimation of novel (zero frequency) events.12 For each rule, from the

training data, the probability, p, of observing a value not in the consequent is

estimated by:

p =
r

n
(2)

where r is the cardinality of the set, {x1, x2, . . . }, in the consequent and n is the

number of records (tuples) that satisfy the rule during training. p is the probability

of observing a novel event (P (Event = novel)), not the probability of observing each

event (P (Event = value)). That is, we are not interested in the relative probability

of observed events in the training data, rather, we are interested in events not

observed in the training data and have zero frequency. In a sequence of observations,

a novel event is one that has not been observed previously in the sequence. The rate

of seeing novel events is the number of unique events (r) divided by the number
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of observations (n). This rate is used to estimate p, the probability of observing a

novel event.

Consider two sequences of events: 1110001100 and 1020506079, where an event

is represented by an integer in the closed interval [0,9]. It can be seen that the first

sequence has a lower degree of randomness than the second sequence. Hence the

probability of a novel subsequent event for the former sequence (equal to 0.2) is

lower than the latter sequence, where it is 0.7, using Eq. 2. Since p estimates the

probability of a novel event, the larger p is, the less anomalous a novel event is.

Hence, during detection, when a novel event is observed, the degree of abnormality

(anomaly score) is estimated by:

AnomalyScore =
1

p
=

n

r
(3)

A non-stationary model is assumed for LERAD only the last occurrence of

an event is assumed important. Since novel events are bursty in conjunction with

attacks, a factor t is introduced which is the time interval since the last novel

(anomalous) attribute value. If a novel event occurred recently (small value of t), a

novel event is more likely to occur at the present moment. Conside two sequences of

events: 1111000010 and 1111100000. Even though both sequences have two distinct

events, the first sequence is more likely (and hence less alarming) to encounter

a novel susbequent event since it has seen change more recently than the second

sequence. Thus, the anomaly score is measured by t/p. For simplicity, no non-

linearities are considered in the anomaly score.

Since a record can deviate from the consequent of more than one rule, the total

anomaly score of a record is aggregated over all the rules violated by the tuple to

combine the effect from violation of multiple rules:

TotalAnomalyScore =
∑ t

p
=

∑ tn

r
(4)

The more the violations, more significant the anomaly is, and the higher the anomaly

score should be. An alarm is raised if the total anomaly score is above a threshold.

The rule generation phase of LERAD comprises four main steps:

(i) Generate initial rule set: Training samples are picked up at random from a

random subset S of training examples. Candidate rules (as depicted in Eq. 1)

are generated from these samples.

(ii) Coverage test: The rule set is filtered by removing rules that do not

cover/describe all the training examples in S. Rules with lower rate of ab-

normalities (lower r/n) are kept.

(iii) Update rule set beyond S: Extend the rules over the remaining training data

by adding values for the attribute in the consequent when the antecedent is

true.

(iv) Validate the rule set: Rules are removed if they are violated by any tuple in

the validation set.
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Since system call is the key (pivotal) attribute in a host based system, we mod-

ified LERAD such that the rules were forced to have a system call as a condition

in the antecedent. The only exception we made was the generation of rules with no

antecedent.

3.2. System call and argument based representations

We conjecture that even though augmentation of attributes to system call sequences

may tend to make the hypotheses space more complex, it will also enable an al-

gorithm to learn the hypotheses more accurately. We now present the different

representations for LERAD.

3.2.1. Sequence of system calls: S-LERAD

Using sequence of system calls is a very popular approach for anomaly detection.

We used a window of fixed length six (as this is claimed to give best results in stide

and t-stide 1,3) and fed these sequences of six system call tokens as input tuples to

LERAD. This representation is selected to explore whether LERAD would be able

to capture the correlations among system calls in a sequence. Also, this experiment

would assist us to compare and better evaluate argument based models. A sample

rule learned in a particular run of S-LERAD is:

(s0 = close) ∧ (s1 = mmap) ∧ (s5 = open) ⇒ s2 ∈ {munmap}

[1/p = n/r = 455/1]

This rule is analogous to encountering close as the first system call (represented

as s0), followed by mmap and munmap, and open as the sixth system call (s5) in a

window of size six sliding across the audit trail. Each rule is associated with an n/r

value. The number 455 in the numerator refers to the number of training instances

that comply with the rule (n in Eq. 3). The number 1 in the denominator implies

that there exists just one distinct value of the consequent (munmap in this case)

when all the conditions in the premise hold true (r in Eq. 3).

3.2.2. Argument based model: A-LERAD

We propose that argument and other key attribute information is integral to mod-

eling a good host-based anomaly detection system. We extracted arguments, return

value and error status of system calls from the audit logs and examined the effects

of learning rules based upon system calls along with these attributes. Any value

for the other arguments (given the system call) that was never encountered in the

training period for a long time would raise an alarm. A typical argument based rule

is

(s0 = close) ⇒ a0 ∈ {0x2, 0x3, 0x4, 0x5, 0x6}

[1/p = n/r = 500/5]
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where a0 is the first argument for the first system call (close).

We performed experiments on the training data to measure the maximum num-

ber of attributes (MAX) for every unique system call. We did not use the test

data for these experiments so that we do not get any information about it before

our model is built. Since LERAD accepts the same (fixed) number of attributes

for every tuple, we had to insert a NULL value for an attribute that was absent

in a particular system call. The order of the attributes within the tuple was made

system call dependent. By including all attributes we utilized the maximum amount

of information possible.

It can be argued that inclusion of NULL values in a rule may result in the

formation of many not-so-important rules, thereby making the rule set large and

incurring high time and space overhead. But it is also important to note that even

though NULL values do not seem to be adding any useful information, they could

still help to detect anomalies. Consider the rule

(s0 = munmap) ∧ (a0 = 0x10) ⇒ a2 ∈ {NULL}

[1/p = n/r = 2000/1]

The rule has only one acceptable value for the third argument when the system call

(s0) is munmap and the first argument is 0x10. The rule has a large coverage (=

2000 tuples) in the training data (assuming 2000 tuples is large for a given system

call with respect to entire data set). Thus, one would never expect to see any other

value for the third argument when the antecedent is true. However, an intruder could

craft a mimicry attack by introducing arbitrary argument values (without realizing

what a valid value for that argument should be), resulting in a novel value. In such a

situation we could say with high confidence that it is a highly unexpected event and

hence depicts anomalous behavior. Even though the NULL value for the argument

might not determine the nature of the attack, it could be decisive in detecting the

anomaly introduced due to a slight carelessness on the part of the intruder.

3.2.3. Merging system call sequence and argument information of the current

system call: M-LERAD

The first representation we discussed is based upon sequence of system calls; the

second one takes into consideration other relevant attributes, whose efficacy we

claim in this paper; so fusing the two to study the effects was an obvious choice.

Merging is accomplished by adding more attributes in each tuple before input to

LERAD. Each tuple now comprises the system call, MAX number of attributes for

the current system call, and the previous five system calls. The n/r values obtained

from the all rules violated are aggregated into an anomaly score, which is then used

to generate an alarm based upon the threshold. A sample rule for M-LERAD is of

the form

(s0 = close) ∧ (s5 = open) ⇒ a0 ∈ {0x4, 0x5}
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[1/p = n/r = 107/2]

where s0 and s5 correspond to the system calls at the extremities of the sliding

window and a0 is the first argument for the current system call (i.e. close).

3.2.4. Merging system call sequence and argument information for all system

calls in the sequence: M*-LERAD

A-LERAD and M-LERAD take system call arguments into account for the current

system call. We extend this representation further in multiple argument LERAD

(M*-LERAD) in addition to using the system call sequence and the arguments for

the current system call, the tuples now also comprise the arguments for all system

calls within the fixed length sequence of size six. Each tuple now comprises the

current system call, MAX attributes for the current system call, 5 previous system

calls and MAX attributes for each of those system calls. An actual rule formed by

M*-LERAD is

(s0 = close) ∧ (a5,1 = 4) ∧ (s4 = mmap) ⇒ a3,3 ∈ {0xe000}

[1/p = n/r = 117/1]

In the rule above, s0 and s4 are the first and fifth system calls respectively in the

current window, a5,1 is the second argument for the last system call and a3,3 is the

fourth argument for the fourth system call in the sliding window.

4. Experimental Evaluation

The goal is to study if our variant of LERAD with feature spaces comprising system

calls and their arguments can detect attack-based anomalies.

4.1. Data sets and experimental procedure

We used the following data sets for our experiments:

(i) The 1999 DARPA intrusion detection evaluation data set: Developed at the

MIT Lincoln Lab,13 we selected the Basic Security Module (BSM) logs from So-

laris host tracing system calls that contains 33 attacks. The attack taxonomy14

is briefly explained here.

(a) Probes or scan attacks are attempts by hackers to collect information

prior to an attack. Examples include illegalsniffer, ipsweep, mscan, portscan

amongst others.

(b) DoS (Denial of Service) attacks are the ones in which a host or a network

service is disrupted. For example, arppoison, selfping, dosnuke and crashiis

are all DoS attacks.

(c) R2L (Remote to Local) are those attacks wherein an unauthorized user

gains access to a system. Examples of R2L attacks are guest, dict, ftpwrite,

ppmacro, sshtrojan and framespoof.
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(d) U2R (User to Root) / Data attacks are those in which a local user is able

to execute non-privileged commands, which only a super user can execute.

Examples are eject, fdformat, ffbconfig, perl, ps and xterm.

The following applications were chosen: ftpd, telnetd, sendmail, tcsh, login,

ps, eject, fdformat, sh, quota and ufsdump, due to their varied sizes (about 1500

to over one million system calls). We expected to find a good mix of benign

and malicious behavior in these applications. Training was performed on week

3 data and testing on weeks 4 and 5. An attack is considered to be detected

if an alarm is raised within 60 seconds of its occurrence (same as the DARPA

evaluation).

(ii) lpr, login and ps applications from the University of New Mexico (UNM): The

lpr application comprised of 2703 normal traces from hosts running SUNOS

4.1.4. Another 1001 traces result from the execution of the lprcp attack script.

Traces from the login and ps applications were obtained from Linux machines

running kernel 2.0.35. Trojan programs were used for the attack traces.

(iii) Microsoft excel macros executions (FIT-UTK data): Normal excel macro exe-

cutions are logged in 36 distinct traces. Two malicious traces modify registry

settings and execute some other application. Such a behavior is exhibited by

the ILOVEYOU worm which opens the web browser to a specified website and

executes a program, modifying registry keys and corrupting user files, resulting

in a distributed denial of service (DDoS) attack.

The input tuples for S-LERAD were six contiguous system calls; for A-LERAD

they were system calls with their return value, error status and arguments; The

inputs for M-LERAD were sequences of system calls with arguments of the current

system call; whereas in M*-LERAD, they were system call sequences with argu-

ments for all the six system calls. For tide, the inputs were all the pairs of system

calls within a window of fixed size six; stide and t-stide comprised all contiguous

sequences of length six. For all the techniques, alarms were merged in decreasing

order of the anomaly scores and evaluated at varied false alarm rates.

4.2. Comparison of sequence based methods

t-stide is supposed to give best results among the traditional sequence-based

techniques.3 As the UNM and FIT-UTK data sets do not have complete argu-

ment information, we only evaluated and compared S-LERAD and t-stide on these

data sets. The receiver operating characteristic (ROC) curves from this set of ex-

periments are displayed in Fig. 1. The X-axis in the plots corresponds to various

false alarm rates and the Y-axis represents the percentage of attacks detected. The

drawback of anomaly detection lies in the generation of false alarms. Typically, a hu-

man expert (administrator) has to deal with all the alarms and the cost of wrongly

flagging an alarm can be quite high. Our goal is thus to detect as many attacks as

possible while minimizing the generation of false alarms. We have therefore limited
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Fig. 1. ROCs for UNM And FIT-UTK data.

our ROCs to a maximum of 1% false alarms (0.01 on the X-axis). Results from

Fig. 1 show that both the techniques were able to detect all the attacks for the

UNM data without generating any false alarm. However, for the FIT-UTK data

set, there was a difference in the performance. t-stide was initially able to detect

more attacks, but S-LERAD was able to detect all the attacks at 0.1% false alarm

rate.
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Fig. 2. Number of detections at different false alarm rates for the BSM data.
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We also performed experiments on the DARPA BSM data sets to evaluate all

the techniques. Fig. 2 illustrates the total attacks detected (Y-axis) at different

false alarms rates (X-axis). The original DARPA evaluation13 used a threshold of

10 false alarms per day. We used the same evaluation criterion for consistency. The

tolerance limit of allowed false alarms may vary from one organization to the other.

A government organization dealing with sensitive data would not want to miss any

anomaly, keeping the threshold high. On the other hand, a small company may not

have the infrastructure to sustain the cost associated with many false alarms per

day, thereby preferring a lower threshold but at the risk of missing some intrusions.

In order to encompass the viability for a broader range of organizations, we also

evaluated the techniques at 0 and 5 false alarms per day. At zero false alarms, tide,

stide and t-stide detected the most attacks, suggesting that maximum deviations in

temporal sequences are true representations of actual attacks. But as the threshold

is relaxed, S-LERAD outperformed all the 3 sequence-based techniques. This can

be attributed to the fact that S-LERAD is able to generalize well and learns the

important correlations between the system calls within the given window size.

For completeness, we also present the ROC curves for various techniques in

Fig. 3. As can be observed from the figure, S-LERAD performs better at false

alarm rates less than 0.1%. But t-stide detects more attacks at higher false alarm

rates.

We also list the area under the curve (up to 1% false alarms) in Table 1, where

higher area implies better performance.15 The area under curve of the rectangle

with false alarm rate of range [0,0.01] and detection rate of range [0,1] is 0.01. We

consider a detector with an area under its ROC curve of 0.01 as the perfect detector

(with at most 0.01 false alarm rate). The detector that decides randomly has a

diagonal line from (0,0) to (0.01, 0.01), called the uninformative ROC, and its area

is 0.01 × 0.01/2 or 0.00005, which is 0.5% of the perfect detector. Results in the

table show that overall t-stide performs better than S-LERAD in the range of 0 to

1% false alarm rates.

There are two noteworthy points about the DARPA evaluation criterion that we

used in our experiments. Firstly, the evaluation had a strict requirement of 10 false

alarms per day (Fig. 2), which corresponds to less than 0.1% false alarms on the

ROC curve (Fig. 3). Secondly, an attack is considered detected only if an alarm is

raised within one minute of its occurrence. Thus, an alarm after 60 seconds would

be considered a false positive even though it may have resulted due to some unusual

activity by the intruder.

4.3. Comparison of system call sequence and argument based

methods

For the DARPA BSM data set, A-LERAD fared better than S-LERAD and the

other sequence-based techniques when evaluated in terms of both absolute number

(Fig. 2) and the percentage (Fig. 3) of false alarms, suggesting that argument infor-
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Fig. 3. ROC for BSM data.

Table 1. Area under curve up to 1%
false alarm rates. Equivalent area of
the uninformative prediction (diago-
nal) is 0.5%.

Technique Area under curve (%)

t-stide 46.79
S-LERAD 39.12
A-LERAD 60.25
M-LERAD 60.46
M*-LERAD 54.51

mation is more useful than sequence information. Using arguments could also make

a system robust against mimicry attacks which evade sequence-based systems. It

can also be seen from Fig. 3 that the A-LERAD curve closely follows the curve

for M-LERAD. This implies that the sequence information is redundant; it does

not add substantial information to what is already gathered from arguments. M*-

LERAD performed the worst among all the techniques, as can be seen in Fig. 2.

The reason for such a performance is that M*-LERAD generated alarms for both

sequence and argument based anomalies. An anomalous argument in one system

call raised an alarm in six different tuples, leading to a higher false alarm rate. As

the alarm threshold was relaxed, the detection rate improved (Fig. 3). Table 1 also

shows that A-LERAD and M-LERAD perform the best under 1% false alarm rates,

followed by M*-LERAD and S-LERAD.

Generally, the better performance of LERAD can be attributed to its anomaly

scoring function. It associates a probabilistic score with every rule. Instead of a

binary (present/absent) value (as in the case of stide and t-stide), this probability

value is used to compute the degree of abnormality. It also incorporates a parameter
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for the time elapsed since a novel value was seen for an attribute. The advantage is

twofold

(i) it assists in detecting long term anomalies;

(ii) suppresses the generation of multiple alarms for novel attribute values in a

sudden burst of data.

 0

 1

 2

 3

 4

 5

 6

 7

R2LU2RDoS

N
u
m

b
e
r 

o
f 
d
e
te

c
ti
o
n
s

Attack types

tide

stide

t-stide

S-LERAD

A-LERAD

M-LERAD

M*-LERAD

Fig. 4. Types of attacks detected at 10 false alarms per day for the BSM data.

Figure 4 plots the different types of attacks (mentioned in Sec. 4.1) detected at

10 false alarms per day (criterion used in the 1999 DARPA evaluation). Different

attack types (DoS, U2R and R2L) are represented along the X-axis and the Y-axis

denoted the total attacks detected in each attack category. M-LERAD was able to

detect the largest number of attacks 5 DoS, 3 U2R and 6 R2L attacks A-LERAD

followed closely with 5 DoS, 2 U2R and 6 R2L attacks. An interesting observation is

that the sequence-based techniques generally detected the U2R attacks whereas the

R2L and DoS attacks were better detected by the argument-based techniques. Our

techniques were able to detect some poorly detected attacks,13 warezclient being

one of them. Our models also detected stealthy ps attacks.

4.4. NULL attribute values

As described in Section 3.2.2, we inserted NULL values for attributes not present for

a given system call. The expectation is that LERAD would form a rule if the NULL

attribute value is characteristic for a system call in an application. Experiments were

performed to see if NULL attributes help in detecting anomalies or if they formed
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meaningless rules. We added a constraint that the NULL values could not be added

to the attribute values in the rules and called this feature variant AC -LERAD

(A-LERAD with constraint). Table 2 compares the number of attacks detected

by A-LERAD and AC -LERAD by varying the false alarm rate. Results indicate

that A-LERAD was able to detect more attacks than the constrained counterpart,

suggesting that rules with NULL valued attributes are beneficial to the detection

of anomalies corresponding to attacks.

Table 2. Attacks detected by A-LERAD and
AC -LERAD.

False Alarms per day Number of attacks detected
A-LERAD AC -LERAD

5 10 9
10 13 11
20 17 16

To analyse why A-LERAD was able to perform better, two metrics were devised

to characterize the rule set:

(i) Rule Ratio (RR): the ratio of the number of rules formed by AC -LERAD to

the number of rules formed by A-LERAD. This ratio conveys which technique

formed a smaller rule set, resulting in a lower run-time overhead.

(ii) Coverage Ratio (CR): Coverage is the count of the tuples in the training set

that are covered by the rule set. Since the coverage is descriptive of the number

of tuples it describes, we would want a high value for coverage. Coverage ratio

is the ratio of the coverage of AC -LERAD to the coverage of A-LERAD.

Table 3. Comparison of rule ratio and coverage ratio.

Application Rule Ratio (RR) Coverage Ratio (CR)

ftpd 0.35 0.51
telnetd 0.33 0.33
tcsh 0.44 0.48

sendmail 0.52 0.56
quota 0.50 0.53
login 0.36 0.38
sh 0.29 0.27
eject 0.62 0.56
ps 0.50 0.55
ufsdump 0.50 0.49

RR should ideally be low since a small rule set is desired. The coverage ratio

should be close to 1, indicating that a comparable number of tuples are covered by

AC -LERAD and A-LERAD. Table 3 shows the results for various applications in the
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BSM log. For example, the size of the rule set for AC -LERAD was 35% of the size

of the rule set of A-LERAD for ftpd. This implies fewer rules for AC -LERAD and

hence a lower run-time overhead during the detection phase. However, the coverage

ratio was 51%. The anomaly score is higher for rules with higher coverage (Eq. 3).

This assists A-LERAD to assign higher scores to tuples that violate rules and hence

detect more attacks than AC -LERAD. Overall results indicate that even though

discarding NULL attribute values results in a drastic reduction in the rule set,

they also cause smaller coverage amongst the training tuples. Another interesting

observation from Table 3 was that a decrease in the size of the rule set generally

yields a similar decrease in the coverage.

4.5. Analysis of anomalies - attack detections and false alarms

An anomaly is a deviation from normalcy and, by definition, does not necessarily

identify the nature of an attack. Anomaly detection serves as an early warning sys-

tem; humans need to investigate if an anomaly actually corresponds to a malicious

activity. Table 4 list the anomalous attributes that resulted in the detection of the

attack. It is interesting to note that the argument based anomalies that led to the

attacks detected by LERAD, in many cases, do not represent the true nature of

the attacks. Instead, it may be representative of behavioral patterns resulting from

the execution of some other program after the intruder successfully gained access

to the host. For example, an instance of guest attack is detected by A-LERAD not

by observing attempts by the hacker trying to gain access, but by encountering

novel arguments to the ioctl system call which was executed by the hacker trying to

perform a control function on a particular device. A stealthy ps attack was detected

by our system when the intruder tried to change owner using a novel group id.

Table 4. Anomalous arguments for attacks detected by
A-LERAD.

Attack Attribute anomalies

ftpwrite set audit without ownership,
invalid file descriptor,
invalid mmap return value,
invalid device-dependent request code

guesstelnet novel ioctl return value
ps change group ownership with anomalous group id,

invalid device,
inappropriate ioctl for device

guessftp fail file open on remote system
warez invalid device-dependent request code,

change ownership of file without privileges
guest inappropriate ioctl for device
warezclient not owner to set audit state
syslogd novel ioctl argument
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Even if the anomaly is related to the attack itself, it may reflect very little

information about the attack. Our system is able to learn only a partial signature

of the attack. guessftp is detected by a bad password for an illegitimate user trying

to gain access. However, the attacker could have made interspersed attempts to

evade the system. Attacks were also detected by capturing errors committed by

the intruder, possibly to evade the IDS. ftpwrite is a vulnerability that exploits

a configuration error wherein a remote ftp user is able to successfully create and

add files and gain access to the system. An instance of this attack is detected by

monitoring the subsequent actions of the intruder, wherein he attempts to set the

audit state using an invalid preselection mask. This anomaly would go unnoticed in

a system monitoring only system calls.

We re-emphasize that our goal is to detect anomalies, the underlying assump-

tion being that anomalies generally correspond to attacks. Since not all anomalous

events are malicious, we expect false alarms to be generated. Table 5 lists the at-

tributes responsible for the generation of alarms and whether these resulted in actual

detections or not. It is observed that some anomalies were part of benign applica-

tion behavior. At other instances, the anomalous value for the same attribute was

responsible for detecting actual malicious execution of processes. As an example,

many attacks were detected by observing novel arguments for the ioctl system call,

but many false alarms were also generated by this attribute. Even though not all

novel values correspond to any illegitimate activity, argument-based anomalies were

instrumental in detecting the attacks.

Table 5. Top anomalous attributes for A-LERAD.

Attribute causing false alarm Whether some attack was detected
by the same attribute

ioctl argument Yes
ioctl return value Yes
setegid mask Yes
open return value No
open error status No
fcntl error status No
setpgrp return value No

4.6. Storage and computational overheads

Compared to sequence-based methods, our techniques extract and utilize more in-

formation (system call arguments and other attributes), making it imperative to

study the feasibility of our techniques for online usage. For t-stide, all contiguous

system call sequences of length six are stored during training. For A-LERAD, system

call sequences and other attributes are stored. In both the cases, space complexity

is of the order of O(n), where n is the total number of system calls, though the
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A-LERAD requirement is more by a constant factor k since it stores additional

argument information.

During detection, A-LERAD uses only a small set of rules (in the range 10-25 for

the applications used in our experiments). t-stide, on the other hand, still requires

the entire database of fixed length sequences during testing, which incur larger

space overhead during detection. We conducted experiments on tcsh application in

the BSM data set, which comprises over 2 million system calls in training and has

over 7 million system calls in test data. The rules formed by A-LERAD require

around 1 KB space, apart from a mapping table to map strings and integers. The

memory requirements for storing a system call sequence database for t-stide were

over 5 KB plus a mapping table between strings and integers. The results suggest

that A-LERAD has better memory requirements during the detection phase. We

reiterate that the training can be done offline. Once the rules are generated, A-

LERAD can be used to do online testing with lower memory requirements.

Table 6. Computational overhead for one week training and two weeks testing.

Application Total training time (seconds) Testing time per sample (milliseconds)
tstide ALERAD tstide ALERAD

ftpd 0.19 0.90 0.04 0.16
telnetd 0.96 7.12 0.02 0.17
tcsh 6.32 29.56 0.13 0.17
sendmail 2.73 14.79 0.05 0.17
quota 0.20 3.04 0.01 0.14
login 2.41 15.12 0.04 0.17
sh 0.21 2.98 0.03 0.16
ufsdump 6.76 30.04 0.01 0.14

The time overhead incurred by A-LERAD and t-stide in our experiments is given

in Table 6. The CPU times have been obtained on a Sun Ultra 5 workstation with

256 MB RAM and 400 MHz processor speed. It can be inferred from the results

that A-LERAD is slower than t-stide. During training, t-stide is a much simpler

algorithm and processes less data than A-LERAD for building a model and hence

t-stide has a much shorter training time. During detection, t-stide just needs to

check if a sequence is present in the database, which can be efficiently implemented

with a hash table. On the other hand, A-LERAD needs to check if a record matches

any of the learned rules. Also, A-LERAD has to process additional argument infor-

mation. Run-time performance of A-LERAD can be improved with more efficient

rule matching algorithm. Also, t-stide will incur significantly larger time overhead

when the stored sequences exceed the memory capacity and disk accesses become

unavoidable A-LERAD does not encounter this problem as easily as t-stide since it

will still use a small set of rules. Moreover, the run-time overhead of A-LERAD is

below a couple of hundred microseconds per sample, which is reasonable for practical

purposes.
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5. Conclusions

Sequence based anomaly detection systems are known to suffer from high false alarm

rates. In this paper, we portrayed the efficacy of incorporating system call argument

information and used a rule-learning algorithm to model a host-based anomaly

detection system. We performed experiments on data sets from varied operating

systems and applications. We empirically demonstrated that the argument-based

model, A-LERAD, detected more attacks than all the sequence-based techniques,

stressing on the importance of system call arguments for modeling host based sys-

tems.

Merging argument and sequence information creates a richer model for anomaly

detection, as illustrated by the empirical results of M-LERAD. M*-LERAD detected

lesser number of attacks at lower false alarm rates since every anomalous attribute

results in alarms being raised in six successive tuples, leading to either multiple

detections of the same attack (counted as a single detection) or multiple false alarms

(all separate entities). Results also indicated that sequence-based methods help

detect U2R attacks whereas R2L and DoS attacks were better detected by argument-

based models. The argument-based models detected different types of anomalies.

Some anomalies did not represent the true nature of the attack. Some attacks were

detected by subsequent anomalous user behavior, like attempts to change group

ownership. Some other anomalies were detected by learning only a portion of the

attack, while some were detected by capturing intruder errors.

Though our proposed variants incur higher time overhead (due to the complex-

ity of LERAD and enriched feature space) as compared to t-stide, they build more

succinct models that incur much less space overhead our techniques aim to gener-

alize from the training data, rather than pure memorization. Moreover, under 200

microseconds per sample (during testing phase) is reasonable for online systems,

even though it is significantly longer than t-stide.

Though our representations detected more attacks with fewer false alarms, there

arises a need for more sophisticated attributes. Instead of having a fixed sequence,

we could extend our models to incorporate variable length sub-sequences of system

calls. Even the argument-based models are of fixed window size, creating a need

for a model accepting varied argument information. Our techniques can be easily

extended to monitor audit trails in continuum. Since we model each application

separately, some degree of parallelism can also be achieved to test process sequences

as they are being logged. The rule learning algorithm can also be modified further

by associating penalty with rules violated during the validation phase, instead of

eliminating them completely.
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