
An Image Encryption Algorithm Utilizing Julia Sets and
Hilbert Curves
Yuanyuan Sun1*, Lina Chen2, Rudan Xu1, Ruiqing Kong1

1 College of Computer Science and Technology, Dalian University of Technology, Dalian, China, 2 National Astronomical Observatories, Chinese Academy of Sciences,

Beijing, China

Abstract

Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption
algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a
random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert
curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few
parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties,
such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental
results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective
resistance to the chosen-plaintext attack.

Citation: Sun Y, Chen L, Xu R, Kong R (2014) An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves. PLoS ONE 9(1): e84655. doi:10.1371/
journal.pone.0084655

Editor: Helmut Ahammer, Medical University of Graz, Austria

Received June 12, 2013; Accepted November 17, 2013; Published January 3, 2014

Copyright: � 2014 Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research is supported by the National Natural Science Foundation of China (No. 61103147, 61075018, 61070098, http://www.nsfc.gov.cn), the
National Key Project of Science and Technology of China (No. 2011ZX05039-003-4, http://www.most.gov.cn) and the Fundamental Research Funds for the Central
Universities (No. DUT12JB06, http://www.dlut.edu.cn). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: syuan@dlut.edu.cn

Introduction

With the increasingly wide reach of the Internet, communica-

tions via Internet are getting more frequent. Due to a large

number of threats against communications security, information

protection has become an important issue. Especially because

digital images contain so much information, security for images is

a widespread concern. Nowadays, image encryption has been a

focus in the research of information security.

Most conventional encryption algorithms put the emphasis on

text data or binary data. Therefore, they have highly computa-

tional complexity. Because the digital images have special coding

structures and large amounts of data, the conventional encryption

algorithm may change the original data format in the image

encryption. So, among the popular applications of multimedia,

research on image encryption has both theoretical and practical

significance.

Currently, there are various kinds of image encryption

techniques, including image-scrambling-based techniques, data-

processing-based techniques, key-based encryption techniques, etc.

Some algorithms are based on certain transformation rules. For

instance, Shyu used random grids to accomplish the encryption of

secret gray-scale and color images [1]. Some algorithms are

proposed according to the characteristics of the image itself, such

as Yuen’s proposal of a chaos-based joint image compression and

encryption algorithm using discrete cosine transformation (DCT)

and Secure Hash Algorithm-1 (SHA-1) [2]. Combining the

encryption with other data processing technologies, Hermassi

introduced a new scheme based on joint compression and

encryption using the Huffman code [3]. Among the algorithms

utilizing the keys, there has been a great deal of research in chaotic

cryptography. For example, Chen produced a key through 3D

chaotic cat maps and operated a pixel value with XOR to get the

cipher image [4].

In the fractal research field, image encryptions are also

explored. Using the fractal set directly as the key is the common

method. Kumar proposed a method of encrypting a Mandelbrot

set with the RSA method and Elliptical curve [5]. Liu studied a

novel fractal cryptographic algorithm based on a fractal model and

fractal dimension [6]. Rozouvan encrypted an image with the

transformed Mandelbrot set [7]. Lock compressed the original

picture for matrix multiplication with the fractal image [8]. Sun

used a Mandelbrot set and the Hilbert transformation to generate

the random key [9]. Lin encrypted an image by assembling the

fractal image additional method and the binary encoding method

[10]. Tong proposed an image encryption scheme based on 3D

baker with dynamical compound chaotic sequence cipher

generator [11].

At the same time, a great deal of analysis has been performed on

the image encryption algorithms based on fractal sets or chaos sets.

Yuen made a cryptanalysis on secure fractal image coding based

on fractal parameter encryption [12]. For some shortcomings in

encryption algorithms, Li et al. made the optimal quantitative

cryptanalysis of permutation-only multimedia ciphers against

plaintext attacks [13] [14].

Many conventional fractal-based encryption methods are

combined with fractal coding compression or treat the fractal

image as a host image to hide some information, e.g., keys. For the

former, fractal coding operation itself may bring the time

consumption. This will result in reducing efficiency of the

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e84655

algorithm. For the latter, usually the key length is invariant, which

is not flexible and may have some restrictions in the encryption.

To meet these challenges, we propose a novel image encryption

algorithm. The algorithm uses several parameters to generate the

keys with the same size as the plain images and has a good

efficiency in the encryption. Firstly, we generate a Julia set and

scramble it with the Hilbert curve in bit-level, and then make the

scrambled Julia set modulo with the plain image. Finally, the

cipher image is obtained by diffusion process. The Julia set is a

classical set in fractal theory and can be calculated by several

parameters iteratively. For this property, the key is much easier to

store and transmit. What’s more, the Julia set has the infiniteness

and the chaotic features, so tiny changes of the parameters will

lead to dramatic changes of the cipher image. In addition, the

diffusion process guarantees that if one pixel value changes, then

all the pixels will change, which makes the algorithm resist the

chosen plaintext attack effectively.

The Algorithm

1 Julia Set
According to the Escape Time Algorithm, a generalized Julia set

can be constructed in the complex plane by the mapping function

f (z)~zmzc,(m[R,c[C). Studies have shown that the Julia set J(f)

is a closure of the repelling periodic points in the polynomial f [15].

The Julia set has sophisticated structures, infinity feature, and self-

similarity. When an area of a Julia set border is enlarged, it is still a

Julia-like image. What is more, a Julia set has an important feature

that f is chaotic on the border of Julia set, that is, f has sensitive

dependence relation to the initial conditions [15]. An arbitrary

small perturbation can cause drastic changes in the iterated

sequence of f. Therefore, we choose the border of the Julia image

in the algorithm.

2 Hilbert Scrambling
The two-dimensional Hilbert curves are drawn as follows:

divide a square into four squares and start the curve from the

southwest corner of the center square to the northwest corner;

then go to the northeast center, and finally go to the southeast

corner. This is one iteration for a Hilbert curve. If we repeat the

above process, we can get a curve that fills the whole square.

Considering that the Hilbert curve can fill the square and has been

proven to be a continuous closed curve, we utilize the curve to

scramble the Julia image.

It is known that the RGB color model is commonly used for

representing and displaying the images on the computer screen.

The pixel value in each layer can be represented by eight binary

bits. Figure 1 displays the scrambling process, where the odd bits

are calculated with the forward pixel along the Hilbert curve and

the even bits are calculated with the backward pixel along the

curve simultaneously. In Figure 1, the values in R layer of pixels A,

B, and C are denoted by (a7 a6 a5 a4 a3 a2 a1 a0), (b7 b6 b5 b4 b3 b2 b1

b0) and (c7 c6 c5 c4 c3 c2 c1 c0) respectively. The odd bits of A are

calculated through an AND operation with B, and the even bits

are obtained in the same way with C, then the pixel value in R

layer of A is reset. The scrambling process is recyclable along the

Hilbert curve. Equation (1) shows the scramble function.

ai~
bi&ai,i~1,3,5,7

ci&ai,i~0,2,4,6

�
ð1Þ

Taking R channel for example, the current pixel value of A is 182,

10110110 in binary. B is the forward pixel along the Hilbert curve

with the value 154, 10011010 in binary. C is the backward pixel

along the curve with the value 62, 00111110 in binary. Applying

Equation (1), we can get the new value of A. Its odd bits are

16060616 and even bits are 60616160. So the final pixel

value of A changes to 150 in decimal after scrambling. Figure 2

shows the pseudocode.

3 Encryption and Diffusion
The final keys are obtained after the Julia set is scrambled by

Hilbert curve. Using Equation (2), we encrypt the plain image with

the final keys and get a temporary cipher image.

e0ij~(eijzdij) mod l ð2Þ

where eij is the pixel value of (i,j) coordinate in the plain image, e’ij
is the pixel value after encryption, and dij is the pixel value in the

final keys. Because the image in the experiments is 256-color, the

value of l is 256.

The diffusion algorithm is also an important image encryption

process. Based on a single pixel unit having three layers R, G, and

Figure 1. The scrambling process. It is assumed that A, B and C are coordinates in the image, and their pixel values of the R-layer are denoted by
(a7 a6 a5 a4 a3 a2 a1 a0), (b7 b6 b5 b4 b3 b2 b1 b0) and (c7 c6 c5 c4 c3 c2 c1 c0) respectively. a`0 is obtain from the AND operation between a0 and c0. Other
values are in the same way.
doi:10.1371/journal.pone.0084655.g001

Encryption Algorithm Utilizing Fractal Sets

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e84655

Figure 2. Hilbert scrambling pseudocode.
doi:10.1371/journal.pone.0084655.g002

Figure 3. Encryption process. The encryption process can be recycled in the circulation encryption for a better effect. The final encrypted image is
the cipher image.
doi:10.1371/journal.pone.0084655.g003

Encryption Algorithm Utilizing Fractal Sets

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e84655

Figure 4. Julia set generation pseudocode.
doi:10.1371/journal.pone.0084655.g004

Figure 5. Julia set. The Julia set maps from the complex plane with
the ranges from 22 to 2 in X-coordinate and Y-coordinate to the screen
with the size of 2566256. The formula is f(z) = zm+c, in which the m = 15,
and c = 0.5–0.7i.
doi:10.1371/journal.pone.0084655.g005

Figure 6. Partial image. This image is partial enlarged one from the
Figure 4, and the enlarged area is 20.466866–0.426705 of X-axis, and
20.603235–0.563074 of Y-axis.
doi:10.1371/journal.pone.0084655.g006

Encryption Algorithm Utilizing Fractal Sets

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e84655

B, we propose a diffusion method. To ensure each pixel in the

image can be affected in the diffusion process, the method diffuses

the temporary cipher image in horizontal direction firstly, then in

vertical direction. Equation (3) shows the diffusion function,

qi~(pizpiz1zqi{1) mod l ð3Þ

where qi and qi-1 are the pixel values in the cipher image, pi and

pi+1 are the pixel values in the temporary cipher image. For each

layer in the diffusion process, the last pixel value is assigned to the

initial value for the next layer iteration, that is q
N2~q0. There are

no specific values of q0 in the cipher image and piz1 in the

Figure 7. Plain image. The plain image has the same size with the
Figure 6.
doi:10.1371/journal.pone.0084655.g007

Figure 9. Correct decryption image.
doi:10.1371/journal.pone.0084655.g009

Figure 8. Cipher image. The encryption image is obtained through
the scrambling process and the diffusion process.
doi:10.1371/journal.pone.0084655.g008

Figure 10. Cipher image with the wrong key and decrypted
images. (a) shows the cipher image with the value of m changed to
15.000000000000001. (b) is the corresponding decrypted image. (c) is
the decrypted image with the value of scrambling key 5001 instead of
5000, which has obvious differences from the Lena image in Figure 9.
(d) is the decrypted image with the diffusion key pi+1 changed from 42
to 41 and the value of qi-1 remains 100.
doi:10.1371/journal.pone.0084655.g010

Encryption Algorithm Utilizing Fractal Sets

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e84655

temporary cipher image; therefore they are the keys in the

diffusion process.

4 Decryption
As the proposed algorithm is a symmetric algorithm, the

decryption process is the reverse order of the encryption, noting

that the iteration order is reversed correspondingly.

The diffusion process starts from the first pixel in the temporary

cipher image, with directions from left to right and top to bottom.

So, for the inverse diffusion process, it starts from the last pixel in

the cipher image, with the directions from bottom to top and right

to left. The equation is as follows:

pi~(qi{piz1{qi{1) mod l ð4Þ

For the module operation decryption, the order is also reversed

and the equation is as follows:

eij~(e0ij{dij) mod l ð5Þ

The Encryption System
Suppose the initial image is of the size M6N. The whole

encryption process is as follows:

(1) Generate a Julia image by Escape Time Algorithm, select a

Julia-like set at the boundary of the Julia set, and then enlarge

it to the size of M6N;

(2) Scramble the Julia-like image by the Hilbert curve to a key

image;

(3) Encrypt the plain image by the modulo operation with the key

image;

(4) Diffuse the temporary cipher image;

(5) Repeat step (2) - (4) if needed;

An encryption flow diagram of the system is shown in Figure 3.

The details of Escape Time Algorithm are as follows:

(1) For complex mapping f (z)~zmzc,(m[R,c[C), c is a

complex constant, L is the escape radius and T is the

maximum escape time. z is a point in the mapping region of

the size M|N . Denote counter½M�½N� as the two-dimen-

sional array with the initial value 0.

(2) For z, its coordinate on the screen is (i,j),i,j[2N,0ƒiƒM,
0ƒjƒN.

(3) If jf T (z)jvL, then counter½i�½j�~T or if jf k(z)jvL,

jf l(z)j§R, 1ƒkƒl, lƒT , then counter½i�½j�~l.

(4) Repeat step (2) and (3) until all points in the mapping region

are covered.

(5) The color of the point(i,j)is marked according to counter½i�½j�.

The pseudocode of the algorithm is shown in Figure 4.

Experiment Results and Security Analysis

1 Simulation Results
We use the Miscellaneous [16] as our database, which consists

of 16 color images and 28 monochrome images. All the

experiments were conducted on a Core(TM) i5(2.40 GHz) PC.

The mapping function of Julia set is f(z) = zm+c (m[R,

c = p+q6i,p,q[R). In our experiments, m = 15, c = 0.5–0.7i. The

Julia set is shown in Figure 5. The area of 20.466866 to

20.426705 of X-axis and 20.603235 to 20.563074 of Y-axis in

Figure 5 is selected to map to a Julia-like set, as shown in Figure 6.

In our experiments, the whole algorithm runs in one iteration.

There are two keys in the Hilbert scrambling process, forward step

and backward step. They are assigned as 5000 and 9000

Table 1. Different ratio between Lena image and encrypting Lena image with a certain key changed.

Rate of change in R-Layer Rate of changes in G-Layer Rate of changes in B-Layer

key value–m(15 changed to 15.000000000000001) 99.612% 99.612% 99.632%

key value–forward scrambling key(5000 changed to 5001) 99.167% 99.249% 99.196%

key value–qi-1 of R-Layer(80 changed to 81) 99.608% 99.619% 99.622%

doi:10.1371/journal.pone.0084655.t001

Table 2. The NPCR values for encrypting Lena image.

Change pixel-value in plain image NPCR in R-Layer NPCR in G-Layer NPCR in B-Layer

(195,112,76) in (0,0) (196,112,76) 100% 100% 100%

(195,111,76) 100% 100% 100%

(195,112,75) 100% 100% 100%

(186,139,124) in (100,150) (185,139,124) 99.451% 100% 100%

(185,138,124) 99.976% 100% 100%

(186,139,125) 100% 100% 99.451%

(69,39,37) in (255,255) (68,39,37) 100% 100% 100%

(69,40,37) 100% 100% 100%

(69,39,36) 100% 100% 100%

doi:10.1371/journal.pone.0084655.t002

Encryption Algorithm Utilizing Fractal Sets

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e84655

respectively. As discussed in Section 3 in the algorithm part, the

diffusion process needs only two keys. One is q0 in R layer of

the horizontal direction, and the other is pN2z1 in B layer of the

vertical direction. Experimental results show that the images with

size of 2566256 cost less than 610 ms for the whole encryption

process, in which the Julia set generation costs about 550 ms and

the Hilbert scrambling process costs about 15 ms. The experi-

ments produce a satisfying result. In fact, once the Julia set is

generated, the scrambling, encryption and diffusion process can be

accomplished in a flash. Figure7 shows the plain image, Figure 8

shows the corresponding cipher image and Figure 9 shows the

correct decryption result.

2 Key Space
The keys in the algorithm consist of the parameters of the Julia

set, forward step and backward step along the Hilbert curve, and

two diffusion keys. The Julia keys are the mapping parameters m,

p, and q (c = p+qi) and the area Xmax, Xmin, Ymax, Ymin (four

parameters represent an image area, such as the X-axis scope

ranges from Xmin to Xmax). There are a total of seven keys. They are

stored in double data type; the required memory space for one

parameter is eight bytes, i.e. 64 bits. The keys for scrambling a

Hilbert curve and the keys for diffusion are both in integer data

type, with values ranging from 0 to 65535 and 0 to 255

respectively. Therefore, they need 16 bits and 8 bits for storage

respectively. As all the above mentioned, the size of the key space

is larger than 264676216626k628626k = 2448+48k, in which k

denotes the iterations times (k = 1, 2, 3……).

3 Key-sensitive Analysis
The whole encryption process includes three sub-processes.

They are Julia set generation, Hilbert scrambling, and diffusion

process. If the key values change, the corresponding cipher image

or decrypted images will be of great difference.

In the decryption, if any key value of the Julia image is changed,

the cipher image cannot be decrypted correctly. Taking the key m

for example, we change the value of m from 15 to

15.000000000000001. Figure 10(a) shows the cipher image when

m value is changed. Comparing the right cipher image (Figure 8)

and the wrong cipher image (Figure 10(a)), there are 99.620%,

99.591%, and 99.624% difference in R, G, and B layers,

respectively. Figure 10(b) shows the decrypted image by the

wrong key. It can be seen that the decrypted image in Figure 10(b)

has obvious difference from the plain image in Figure 9, which

illustrates the algorithm has a high sensitivity for tiny changes of

the initial value m.

The scrambling by the Hilbert curve is in bit-level. The keys in

this process include a forward scrambling key and a backward

scrambling key ranging from 0 to 65535. Figure 10(c) shows the

decrypted image with the forward scrambling key 5001 instead of

5000, which has great differences from the Lena image in Figure 9.

The diffusion keys are q0 for R layer in horizontal direction

diffusion and pN2z1 for B layer in vertical direction diffusion. In

the experiment, the value of pN2z1 is changed from 42 to 41 and

the value of q0 remains 100. Decrypting the cipher image in

Figure 8, we get the wrong decrypted image shown in Figure10 (d).

Table 1 shows the different ratio between two decrypted images

in R, G, and B layers, respectively. The correct cipher image and

the wrong cipher image have great differences when a key value is

changed slightly, that means the correct decryption will happen

only when all keys are correct. So it is easy to conclude that the

keys have a high-sensitivity.

4 Plain image Sensitivity Analysis
Generally speaking, a chosen-plaintext attack is an attack model

in which the attacker obtains the right to use the encryption

system, makes a minor change of the plaintext and examines the

changes of the ciphertext. The purpose of the attack is to gain

some further information to reduce the security of the encryption

Table 3. The UACI values for encrypting Lena image.

Change pixel-value in plain image UACI in R-Layer UACI in G-Layer UACI in B-Layer

(195,112,76) in (0,0) (196,112,76) 33.46% 33.45% 33.52%

(195,111,76) 32.16% 33.5% 33.33%

(195,112,75) 33.45% 32.45% 33.58%

(186,139,124) in (100,150) (185,139,124) 33.58% 33.71% 33.41%

(185,138,124) 33.45% 33.28% 33.5%

(186,139,125) 33.47% 33.56% 33.60%

(69,39,37) in (255,255) (68,39,37) 33.41% 33.32% 33.46%

(69,40,37) 33.6% 32.8% 33.5%

(69,39,36) 33.4% 33.6% 32.8%

doi:10.1371/journal.pone.0084655.t003

Table 4. The entropy of the ciphertext.

Cipher image Entropy in R-layer Entropy in G-layer Entropy in B-layer Average entropy

Lena 7.99728 7.99746 7.99716 7.99730

Baboon 7.99693 7.99695 7.99706 7.99698

pepper 7.99604 7.99457 7.99610 7.99567

doi:10.1371/journal.pone.0084655.t004

Encryption Algorithm Utilizing Fractal Sets

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e84655

scheme. In the worst case, the attack could reveal the scheme’s

secret keys. If a minor change in the plaintext could cause large

changes in the ciphertext, then the aggressive behaviors may be

meaningless.

The common standards to test plain image sensitivity are NPCR

(the number of pixels change rate) and UACI (unified average

changing intensity) [17]. Usually, the plaintext sensitivity will be

better if the NPCR value is larger. The formulas are shown in

Equation (6) and Equation (7).

NPCR~
1

W|H

XW ,H

i~1,j~1

D(i, j)|100% ð6Þ

UACI~
1

W|H

XW ,H

i~1,j~1

jC1(i, j){C2(i, j)j
255

|100% ð7Þ

where C1 and C2 are the encrypted images, and their correspond-

ing plaintexts have only a one-bit difference in the same pixel

before encrypted. The C1(i,j) and C2(i,j) are the pixel value at grid

(i,j) in C1 and C2, respectively. And W and H are the width and

height of the images. If C1(i,j) = = C2(i,j) then D(i,j) = 1; otherwise,

D(i,j) = 0. Therefore NPCR is to measure the percentage of the

different pixels between two images. And the UACI is to test the

average intensity of differences.

Table 2 and Table 3 show the plain image sensitivity. We

calculate NPCR and UACI values for each pixel LSB (Least

Significant Bit) changed in the R channel of the Lena image,

Baboon image and Pepper image. Their average NPCR are all

about 99.6% and their average UACI are 33.4877%, 33.4175%,

and 33.4743%, respectively. Some NPCR and UACI are listed in

Table 2 and Table 3.

The experimental results show that the sensitivity of the plain

image is significant. When any pixel bit is changed in one layer, it

can influence almost all the pixel values of the cipher image. In this

case, the cipher image cannot be decrypted correctly. It is noted

that such experimental effects partially owes to the diffusion

process in the algorithm. From the above experimental results, we

can draw the conclusion that the encryption algorithm can resist

chosen plaintext attacks effectively.

5 Information Entropy Analysis
It is widely known that the entropy H(g) of a message source g

can be calculated in Equation (8) [17].

H(g)~
XN|N

i~1

P(gi) log2

1

P(gi)
bits ð8Þ

Where N|N is the amount of the information, P(gi) is the

occurrence probability of the gi value in all of values. The

logarithmic function is to represent the entropy in bit form. If the

source sends 28 symbols (containing gi) with equal probability, i.e.,

G = {g1, g2, g3, ……g28 }, then the entropy value should be equal to

8. In this case, it is a truly random source. So, the entropy value of

an encrypted image should be up to 8.

Table 4 lists the entropy value of the cipher image, which is

close to the ideal standard value. It is a clear proof that the

encryption system has a good randomness, which indicates it can

resist the entropy attack.

6 Statistical Analysis
The plain image histograms are shown in Figure 11(a) to

Figure 11(c) and cipher image histograms are shown in Figure 12(a)

to Figure 12(c), in which the X-ordinate represents the gray-level

value and the Y-ordinate represents the occurrence frequency for

each gray-level value. The experimental results indicate that each

layer’s gray value distribution of the cipher image tends toward

equilibrium. These figures demonstrate a uniform distribution of

pixel color values for the three image channels, which proves the

success of the algorithm in randomizing the output.

Figure 11. (a), (b), (c) are the R, G, B channel distributions of Lena image, respectively.
doi:10.1371/journal.pone.0084655.g011

Figure 12. (a), (b), (c) are the R, G, B channel distributions of encrypting Lena image, respectively.
doi:10.1371/journal.pone.0084655.g012

Encryption Algorithm Utilizing Fractal Sets

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e84655

7 Randomness Test
Table 5 shows that our encrypting Lena image passes the

sp800–22 test suite. It proves once again that the cipher image has

a good randomness.

Conclusions

In this study, we have proposed an encryption algorithm

combining the classical Julia set and the Hilbert curve. In the

algorithm, the Julia set is scrambled in bit-level by the Hilbert

curve to enhance the key sensitivity. The diffusion operation is

implemented to resist the chosen plaintext attack. Through the

analysis of the experimental results, we obtained the following

conclusions:

(1) The abundant Julia-like images are the copies of a Julia set

and can be generated by a few parameters, which greatly

reduces the key store space. The chaotic characteristic of the

boundaries in the Julia image gives the key extreme sensitivity

to the slight parameter changes, improving the security of the

encryption algorithm greatly. In our experiments, the key

sensitivity achieves 10215.

(2) The diffusion process has a good effect in the pixel spread,

and provides much large key space, has a high sensitivity to

the plain image and keys, and especially enhances the

resistance against chosen plaintext attack.

(3) The entropy value of the cipher image achieves an ideal value,

illustrating that the encryption system not only has a good

randomness but also can resist the entropy attack. The

statistical analysis shows that the distributions of the cipher

image are uniform, also indicating the success of the algorithm

in randomizing the output. In addition, the randomness test

passes the sp800-22 test suite, proving the randomness of the

cipher image on another side.

For future work, we will consider choosing better Julia set keys

and other methods to improve the algorithm for the key

conversion.

Author Contributions

Conceived and designed the experiments: YYS. Performed the experi-

ments: LNC. Analyzed the data: RDX. Contributed reagents/materials/

analysis tools: RQK. Wrote the paper: YYS RDX.

References

1. Shyu SJ (2007) Image encryption by random grids. Pattern Recognition 40:

1014–1031.

2. Yuen CH, Wong KW (2011)A chaos-based joint image compression and

encryption scheme using DCT and SHA-1. Applied Soft Computing 11: 5092–

5098.

3. Hermassi J, Rhouma R, Belghith S (2010) Joint compression and encryption

using chaotically mutated Huffman trees. Communications in Nonlinear Science

and Numerical Simulation 15: 2987–2999.

4. Chen GR, Mao YB, Chui CK (2004) A symmetric image encryption scheme

based on 3D chaotic cat maps. Chaos, Solitons & Fractals 21: 749–761.

5. Kumar S (2006) Public key cryptographic system using Mandelbrot sets. Military

Communications Conference in Washington DC, 1–5.

6. Liu WT, Sun WS (2008) Application of Fractal theory in cryptographic

algorithm. Journal of China Acadamy of Electronics and Information

Technology.3: 580–585. (In Chinese).

7. Rozouvan V (2009) Modulo image encryption with fractal keys. Optics and

Lasers in Engineering, 47: 1–6.

8. Lock AJJ, Loh CH, Juhari SH, Samsudin A (2010) Compression-encryption

based on fractal geometric. Second International Conference on Computer

Research and Development. 213–217.

9. Sun YY, Kong RQ, Wang XY, Bi LC (2010) An Image Encryption Algorithm

Utilizing Mandelbrot Set. International Workshop on Chaos-Fractal Theories

and Applications. 170–173.
10. Lin KT, Yeh SL (2012) Encrypting image by assembling the fractal-image

addition method and the binary encoding method. Optics Communications 285:
2335–2342.

11. Tong XJ, Cui MG (2009) Image encryption scheme based on 3D baker with

dynamical compound chaotic sequence cipher generator. Signal processing 89:
480–491.

12. Yuen CH, Wong KW (2012) Cryptanalysis on secure fractal image coding based
on fractal parameter encryption. Fractals 20: 41–51.

13. Li CQ, Lo KT (2011) Optimal quantitative cryptanalysis of permutation-only
multimedia ciphers against plaintext attacks. Signal processing 4: 949–954.

14. Li CQ, Zhang LY, Ou R, Wong KW, Shu S (2012) Breaking a novel colour

image encryption algorithm based on chaos. Nonlinear Dynamics 70: 2383–
2388.

15. Falconer KJ (2003) Fractal: Mathematical Foundations and Applications
(Second Edition). Chichester: Wiley.

16. http://sipi.usc.edu/database/database.php?volume = misc.

17. Chen GR, Mao YB, Chui CK (2004) A symmetric image encryption scheme
based on 3D chaotic cat maps. Chaos, Solitons & Fractals 21: 749–761.

Table 5. The encrypting Lena image result of sp800–22 test
suit for encrypting Lena image.

Statistical test P-value Result

Frequency 0.936447 SUCCESS

Block Frequency (m = 128) 0.584900 SUCCESS

Cusum-Forward 0.372175 SUCCESS

Cusum-Reverse 0.427874 SUCCESS

Runs 0.602041 SUCCESS

Long Runs of Ones 0.731317 SUCCESS

Rank 0.030824 SUCCESS

Spectral DFT 0.712291 SUCCESS

NonOverlapping Templates
(m = 9,B = 000000001)

0.292611 SUCCESS

Overlapping Templates (m = 9) 0.919983 SUCCESS

Universal 0.819843 SUCCESS

Approximate Entropy (m = 10) 0.946813 SUCCESS

Random Excursions (x = +1) 0.882358 SUCCESS

Random Excursions Variant (x = 21) 0.538752 SUCCESS

Linear Complexity (M = 500) 0.278069 SUCCESS

Serial 0.960519 SUCCESS

0.934595 SUCCESS

doi:10.1371/journal.pone.0084655.t005

Encryption Algorithm Utilizing Fractal Sets

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e84655

