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ABSTRACT

In this paper we introduce the Developmental Symbolic En-
coding (DSE), a new generative encoding for evolving net-
works (e.g. neural or boolean). DSE combines elements of
two powerful generative encodings, Cellular Encoding and
HyperNEAT, in order to evolve networks that are modular,
regular, scale-free, and scalable. Generating networks with
these properties is important because they can enhance per-
formance and evolvability. We test DSE’s ability to gener-
ate scale-free and modular networks by explicitly rewarding
these properties and seeing whether evolution can produce
networks that possess them. We compare the networks DSE
evolves to those of HyperNEAT. The results show that both
encodings can produce scale-free networks, although DSE
performs slightly, but significantly, better on this objective.
DSE networks are far more modular than HyperNEAT net-
works. Both encodings produce regular networks. We fur-
ther demonstrate that individual DSE genomes during de-
velopment can scale up a network pattern to accommodate
different numbers of inputs. We also compare DSE to Hyper-
NEAT on a pattern recognition problem. DSE significantly
outperforms HyperNEAT, suggesting that its potential lay
not just in the properties of the networks it produces, but
also because it can compete with leading encodings at solv-
ing challenging problems. These preliminary results imply
that DSE is an interesting new encoding worthy of additional
study. The results also raise questions about which network
properties are more likely to be produced by different types
of generative encodings.
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1. INTRODUCTION

Networks designed by humans and evolution have certain
properties that are thought to enhance both their perfor-
mance and adaptability, such as modularity, regularity, hier-
archy, scalability, and being scale-free [12, 11, 1]. In this pa-
per we introduce a new generative representation called the
Developmental Symbolic Encoding that evolves networks
that possess these properties. We first review the mean-
ing of these terms before discussing them with respect to
previous evolutionary algorithms.

Modularity is the encapsulation of function within mostly
independently operating units, where the internal workings
of the module tend to only affect the rest of the structure
through the module’s inputs and outputs [12, 11]. For ex-
ample, a car wheel is a module because it is a separate func-
tional unit and changing its design is unlikely to affect other
car systems (e.g. the muffler). This functional independence
enables the wheel design to be optimized independently from
most other car modules. In networks, modules are clusters of
densely connected nodes, where connectivity is high within
the cluster and low to nodes outside the cluster [11, 12].

Regularity describes the compressibility of the network de-
scription, and often involves symmetries and the repetitions
of modules [12]. Regularity and modularity are distinct con-
cepts. A unicycle has one wheel module (modularity with-
out regularity), whereas a bicycle’s repetition of the wheel
module is a form of regularity. Hierarchy is the recursive
composition of lower-level modules [12].

Scalability in evolved networks refers to the ability to pro-
duce effective solutions at different networks sizes. The con-
cept applies both to the idea of being able to evolve large,
but fixed-size networks [17], or to a single genome that can
produce networks of different sizes as needed [6, 16, 5]. The
latter capability is important for transferring knowledge to
related problems of different complexity, and is a main moti-
vation for DSE. Scalability can be enhanced by other prop-
erties, such as modularity, regularity and hierarchy [12].

Scale-free networks have a few nodes with many connec-
tions, and many nodes with few connections, making them
efficient at transmitting data and robust to random node
failure [1]. Many different types of networks are scale-free,
from computer science (e.g. the Internet) and sociology (e.g.
social networks) to biology (e.g. protein and ecological net-
works) [1]. Animal brains, including the human brain, are
scale-free, and it is thought that this property is one reason
they are so capable [18]. While the scale-free property may
not help performance on all problems, it is evidently bene-



ficial on many problems, and it is therefore beneficial if an
encoding can produce it when it is useful.

Previous evolutionary algorithms have evolved networks
that have some of the aforementioned network properties.
Most such algorithms are generative encodings [17], wherein
information in a genotype can influence multiple parts of
a phenotype, instead of direct encodings, wherein genotypic
information specifies separate aspects of phenotypes. Gen-
erative encodings tend to produce more regular phenotypes
that outperform direct encodings [3, 8, 10] and can produce
modular and hierarchical structures [10]. Individual genera-
tive genomes can also produce networks of various sizes, as
appropriate [16, 9, 7, 5]. We are not aware of research that
has investigated whether evolved networks are scale-free.

Two generative encodings that DSE is inspired by have be-
come well-known in part because of their ability to produce
important network properties. Cellular Encoding (CE) iter-
atively applies instructions to manipulate network nodes and
links. The encoding allows cells to call functions, which in-
volve an entire sequence of instructions (encoded in a gram-
mar tree), facilitating the production of regular, modular,
and hierarchical networks [5]. Intriguingly, because CE al-
lows a repeated symbol to unpack into the same subnetwork,
the exhibited regularity, while high, tends to be a formulaic
repetition of the same subnetwork, without complex varia-
tion.

HyperNEAT generates patterns in neural networks via an
abstraction of biological development [16]. Just as in natu-
ral developing organisms, phenotypic attributes (in this case,
edge weights in a network) are a function of evolved geomet-
ric coordinate frames. HyperNEAT departs from nature,
however, by not having an iterative growth process. A sin-
gle HyperNEAT genome can encode networks of different
sizes; one was scaled up from thousands of connections to
millions and still performed well [16]. The neural wiring pat-
terns HyperNEAT produces are highly functional, complex,
and regular, including symmetries and repetition, with and
without variation [3]. However, HyperNEAT struggles to
produce modular networks [2] unless it is manually injected
with a bias towards modular wiring patterns [20].

Intriguingly, CE excels at producing modularity, hierar-
chy, and formulaic regularity, but fails to generate complex
regularities with variation. HyperNEAT, on the other hand,
excels at producing complex regularities, but tends to create
non-modular networks. This raises the question of whether
an encoding that combines the iterative growth of CE with
pattern-generating capabilities similar to HyperNEAT can
create modular, hierarchical networks with complex regu-
larities. DSE was designed with this motivation.

We will describe DSE (see [19] for additional details) and
then present preliminary investigations into the properties
of the networks it evolves. The properties under focus are
the modular, scalable, and scale-free nature of DSE net-
works. We explicitly reward for networks with these prop-
erties to test if DSE can produce them, and compare the
results to HyperNEAT. Unfortunately, we were unable to
obtain a functioning distribution of CE, making a compar-
ison with that encoding impossible. By explicitly selecting
for a desired property, we can study an encoding’s ability
to produce it. While we could have evolved on a problem
where it is supposed that scale-free, modular, scalable net-
works would be beneficial, it is often difficult to ensure that
these properties are beneficial on a specific problem. To per-
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form a more traditional test of the capability of an encoding,
we also compare DSE to HyperNEAT on a visual pattern
recognition task. On all three challenges DSE outperforms
HyperNEAT, suggesting that it is an encoding that deserves
additional investigation.

2. DESCRIPTION OF DSE

2.1 Phenotype
The phenotype of the individual is the network:

G=(V,E)=(v1 ... on],{ei}), 1)

where V is a vector of nodes and F is a set of connections.
Nodes and connections can have attribute values, which play
a role either in development or in computation. Weighted
connections have a weight attribute and plastic connections
can have a number of attributes (parameters). The represen-
tation of G is a bit different from conventional notation for
directed graphs, where nodes and connections are contained
in sets and the attributes are eventually imposed using func-
tions. This departure follows from the assumed sequential
model of computation, in which nodes are evaluated in an
ordered manner. It is therefore natural to have them explic-
itly ordered in a vector.

The vector V is composed of 3 contiguous subvectors:
input V,, hidden V,; and output V,. Input and output
subvectors constitute the network interface and their length
depends on the problem. The hidden part of the network is
free to vary in size.

DSE network phenotypes are executed similarly to arti-
ficial neural networks. The network is initialized before an
evaluation by zeroing the values of all nodes and setting
the weights of any plastic connections to their initial values.
Then, for any input vector u, the network is evaluated as
follows:

1: Assign inputs V, :=u

2: For each v; € [V, V] do

3:  Evaluate node: z; := f;({ei;(xi) }i=1,...,n;)
4: For each connection e;; do

5:  Update e;; (if applicable)

6: Return V,

where z; denotes the node’s value, e;;(z;) denotes the
operation performed by the connection (usually multiplying
the source node z; value by the weight of the connection),
and f; denotes a transfer function assigned to node j. The
transfer function operates on the set of incoming signals,
which are usually aggregated by summing. While DSE can
handle plastic connections, network plasticity is not explored
in this paper and is therefore not described further.

2.2 Genotype

The genotype is a program to grow the network. The
program is tree-structured, with nodes being routines. The
root of the tree constitutes the main routine and is suffi-
cient to solve many test problems. Each routine tree has
the same structure: v = (R, Body, Tail,~y,), where R is an
identifier, Body is the main list of instructions, Tail is a list
of terminating instructions, and ~, is a set of subroutines.

The whole genomic program I, i.e. the tree of v routines,
grows the network from its initial state into its final state, i.e.
G, = T'(Go). The main component of the routine is Body,
which contains instructions that act on the network to de-
velop it. Each instruction in Body can be seen as a function



A taking the network G and returning a new network, i.e.
Gi+1 = A(G¢). The instructions and their properties are
described in the subsequent list. Note that the arguments
X and Y following an instruction can select many nodes
at once, allowing operations to be carried out on groups of
nodes. A central concept of DSE is that nodes are identified
by an index and a label. Nodes having the same label make
up groups (e.g. inputs), and instructions can act on all nodes
from a group at once. Within groups, index values provide
a geometry for patterns of nodes to be selected and acted
upon.

1. Con X Y C: connect nodes X and Y, with the connec-
tion having the same attribute values as the reference
connection C.

2. Cut X Y: cut connection(s) between X and Y.

3. ConE X Y C E: connect nodes X and Y that satisfy
the expression F, using C' as reference connection.

4. CutE X Y E: cut connection(s) between X and Y that
satisfy the expression F.

5. DivP X Y divide node(s) X in parallel, which dupli-
cates the node(s) along with all its connections, places
the new node(s) in V right after the original and as-
signs label Y to them.

6. DivS X Y: same as DivP, except the division is sequen-
tial, which means that instead of duplicating connec-
tions, Y takes over the outgoing connections of X and
a connection from X to Y is created.

7. Subst X Y: substitute node symbols X with Y.

Call R X: call the subroutine R for each node X.

9. Term X Y: like Subst, except Y is necessarily terminal,
i.e. it denotes a transfer function.

®

These instructions provide DSE with interesting capa-
bilities motivated from Cellular Encoding [5] and Hyper-
NEAT [16]. As in Cellular Encoding, nodes can divide in
a parallel or sequential manner, and subroutines can be
called. These features may encourage modularity and hi-
erarchy. Similar to HyperNEAT, complex geometric pat-
terns can be evolved with an expression tree (E), which is
a genetic program that takes arguments derived from index
values of nodes, which correspond to geometric coordinates
in HyperNEAT. Expression tree outputs determine connec-
tion weights via the ConE and CutE instructions. The Con
and Cut operations can also create regular patterns by se-
lecting groups of nodes, or can adjust individual connections.
The ability to create regular and irregular changes, including
changes to single weights, can improve the performance of
an encoding [3]. The substitution operation can also create
regular patterns by selecting groups of nodes and assigning
transfer functions to them.

An initial population of genotypes consists of either empty
or randomly-generated genotypes, the latter of which have
instructions with arguments that are undetermined (explained
in Section 2.4).

2.3 Development

Development starts from an initial network Gy with an op-
tional hidden node called Ao that is fully connected (weights
= 1) to inputs and outputs. The final network G, is devel-
oped by executing the Body and Tail parts of the genomic
program, i.e. G = I'(Go).

The network G- is guaranteed to be functionally valid due
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to the Tail and the covering operator, which automatically
inserts Term instructions for any non-terminal symbol in V.

Figure 1 provides a simple example of network develop-
ment. Multiplication nodes (marked with x) without inputs
produce an output of 1.0. If the output is thresholded at
0.5, the network solves the logical equals function.

An important feature of DSE is the reuse of code via rou-
tines. For example, when the instruction Call R X is exe-
cuted, if a subroutine with an identifier matching R exists in
the list of subroutines, development replaces X with a new
subnetwork. Specifically, the new subnetwork takes on the
inputs and outputs of X, and X becomes the hidden node
in the newly developed subnetwork.

Figure 2 provides an example of this feature, and also
illustrates how DSE can encode networks with regularity,
modularity, and scalability. This network evolved to solve
the n-bit parity problem, which identifies whether a given
input vector contains an even number of ones. The net-
work is composed of n-input versions of two logical functions:
NAND (n), which returns 1 for 0 inputs and otherwise re-
turns 1 iff all inputs are 0; and OR (|), which returns 0 for
0 inputs and otherwise returns 1 if at least one input is 1.

The solution is partially scalable in that a single genotype
encodes networks that solve several different problem sizes:
the genotype produces valid solutions for 2,3,...,9 inputs,
but it fails for higher numbers. A subroutine (labeled r214 in
Figure 2), which is a genotypic module, produces a five-node
phenotypic module that computes a 2-input XOR function.
The routine is repeatedly called to generate a regular pattern
of three of these subnetwork building blocks. This genome
has thus discovered the key regularity of the problem, which
would likely enhance its evolvability were it further evolved
to solve problems with more than 9 inputs, since doing so
would only require appropriately calling the r214 subroutine.

2.4 Genetic operators

The four operators that modify the genotype are muta-
tion, crossover, cleaning and covering. We describe them in
general terms, because they are not essential to the encoding
and different implementations could be chosen.

Mutations are performed with a fixed probability (here
0.8) during reproduction. They start with the main rou-
tine and recurse deeper into the tree, and can insert a new
instruction, delete an instruction, mutate an instruction’s
argument, or duplicate an instruction while mutating an ar-
gument. A mutated argument is changed to undetermined
and is determined again during the next development of
the network. Undetermined arguments are determined dur-
ing network development to select a randomly-chosen set of
nodes already in the network (otherwise, arguments would
not match nodes in the network and instructions would be
mostly ineffective). This pertains to all node-selecting argu-
ments (denoted as X and Y'); expression trees are mutated
as is typically done in Genetic Programming [15].

The crossover operator transfers two randomly selected
instructions from a donor’s routine to a recipient’s routine,
much as in Linear Genetic Programming [15]. The cleaning
operator periodically (here, 5% of reproductions) removes
genotypic instructions that have no effect. This operator
improves genotype readability and can impact search by re-
moving neutral variation, which improved performance on
some problems in preliminary experiments, but further ex-
periments are necessary to determine its impact.



Initial network DivP A0 G

NI
DivP A0 G
Con u y0 w:-0.58
CutuG

Tail: °
TermA*
Termy +
Term G * °

Con u y0 w:-0.58

Tail, final network

Figure 1: Example of network development. The three Body instructions in the genome (left) are executed

before the Tail, which assigns valid transfer functions.

The final network performs the logical equivalence

(equals) operation. Input nodes have irregular ovals and the output is the lowest node.

Body: Callr214 A ConEn |1 (+(=jj)(=ii) Callr214|1 Callr214 |1 Callr214 |1 Callr214|1 Callr214 1

Callr214 |1 Callr214 1

DivP OR Tail:

Termyn TermDn TermRn

Routine r214 Body: DivSui B CutEuA() DivSAD ConEuB1 () Tail: TermA| Termyn TermB|

Figure 2: A modular, partially-scalable solution to the n-bit parity problem. The visualized network is
developed for 3 inputs (irregular ovals), although the genome produces solutions for 2, 3, ..., 9 inputs. The

output is the rightmost node.

Unlike the previously-described operators, covering is not
applied during reproduction, but at the end of development.
For each non-terminal symbol X remaining in V at the end
of Tail, the operator appends a new Term X Y instruction.
Covering may be applied for each routine or for the main
routine only. Either way it guarantees that all the nodes in
the final network are assigned valid transfer functions.

3. EXPERIMENTS

In all experiments the population size and number of gen-
erations is 200, and networks are feed-forward. Experiments
are implemented identically in DSE and HyperNEAT, with
default parameter settings. Full details for HyperNEAT are
in Stanley et al. [16]. Briefly, HyperNEAT evolves genomic
networks that encode the weights of neural network pheno-
types as a function of the geometric location of the weights.

3.1 Evolving scale-free networks

Networks are scale-free when the distribution of the num-
ber of connections per node (its degree) follows a power law,
such that the proportion of nodes having degree k is:

Pk) < k™7, (2)

where v is an exponent parameter, typically in the range
[2, 3] (set to 2 in our experiments). To test whether DSE
and HyperNEAT can produce scalable, scale-free networks,
we rewarded genotypes that produce scale-free networks at
several different target sizes.

The scale-free property is measured with the Bhattacharyya
coefficient as the overlap between the distributions P (the
power law distribution) and ¢ (the distribution of the evolved
network):

B(P.q) = Y v/P(k)a(k). 3)
k
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A single HyperNEAT genotype generates networks for 7
different substrate sizes: (i +3)?, where i = 0,...,6, and for
each of these resolutions the scale-free property is measured.
The fitness measure for each network size is

fi =100+ B(P,q) — (n. — 1), (4)

where n. is the number of separate network components.
The second term penalizes networks with disconnected pieces.
The 100 ensures all fitnesses are positive.

DSE is similarly challenged with generating genotypes
that encode for networks that maximize the scale-free prop-
erty and have approximate sizes of n; = (i + 3)?, i =
ny = 0,...,6. The genome produces different sized net-
works based on the number of inputs n,. To encourage
correct network sizes, an additional penalty term is added
to the DSE fitness measure for each network size

fi=1=B(P,q)+ (nc = 1) +[1 —n/ni, (%)

where n is the number of nodes in the developed network.
Contrary to HyperNEAT, the DSE fitness function is min-
imized. In both cases the overall fitness function is the fol-
lowing weighted average from all fitness cases:

oo Sidi/m
22 Vi
This equation weights the results for bigger networks as more
important than smaller networks in square root proportions.
Because the two fitness functions differ, we will compare only
the B coefficients of evolved networks.

The results from 30 runs of DSE and HyperNEAT indicate
that both encodings produce networks at different network
sizes that are scale-free (Figure 3). The DSE results are
slightly, but significantly, better (p < 0.001, permutation
test), although the networks from both encodings had B

(6)



Table 1: Target and evolved sizes of networks
evolved with DSE in both scale-free and modular

networks experiments.

Target size 9 16 25 36 49 64 81

Scale-free
Mean size | 8.7 16.5 254 36.3 49.0 64.1 76.3
Std. dev. | 0.4 0.7 0.7 0.8 1.4 1.6 3.6

Modular
Mean size | 9.2 18.2 28.0 39.3 525 653 76.5
Std. dev. | 0.4 1.8 20 2.9 2.6 2.8 2.8

coefficients near the maximum value of 1.0. The plotted
B coefficients are weighted in the same way that fitness is
weighted in eq. 6. DSE was also nearly perfect at producing
networks of the target size (Table 1). HyperNEAT networks
had fixed, predefined sizes, and thus cannot be compared on
this dimension.

Visualizing the networks reveals interesting differences in
the types of networks each encoding produces (Figures 4
and 5; produced in Graphviz with the radial layout). While
both encodings produce regular networks, the DSE networks
appear more modular, even though modularity was not re-
warded in these experiments. By quantifying modularity
with the @ metric [14] (see the next section), we validate
that DSE networks from these experiments are significantly
more modular (DSE @ = 0.48 &+ 0.08, HyperNEAT Q =
.04 £+ .05, p < 0.001, permutation test). The DSE networks
also appear hierarchical in that nodes typically have only one
path through multiple other nodes to hub nodes, although
quantifying hierarchy is beyond the scope of this paper.

06/ DSE, m.w.B = 9474+ 0038
{ ~ — — H-NEAT, mw.B = .9235+ .0097
05 : : : :
0 50 100 150 200
Generation

Figure 3: Both DSE and HyperNEAT can evolve
genomes that produce networks of different size that
are scale-free. Plotted are weighted averages + SD
of the best B coefficients from 30 runs.

3.2 Evolving modular networks

Testing the ability to evolve modular networks is formu-
lated identically to the scale-free test, except the quantity
maximized is the modularity measure @ from Newman and
Girvan [14, 13]. Let e;; denote the proportion of connections
between the i-th and j-th group of nodes (a module), and
let a; = Zj eij, then

Q= Z(eii - a;)?

is the proportion of all connections within modules minus an
expected value of the same quantity if the connections were

(7)
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distributed uniformly randomly. In other words, @ indicates
how much the modularity of the given network differs from
a network with all random connections. For a fully random
network, @) is about 0, while values above 0.3 indicate some
modularity in the network, and the the highest @) observed
at the time of publication was 0.807 [13]. Computation of
the @ coefficient requires the network to be partitioned into
modules in advance, otherwise it is not possible to calculate
the value e;;. Ideally @ would be calculated for all possible
partitions of the network and the partition maximizing @
would be selected. In practice this exhaustive approach is
computationally prohibitive, so a partition is selected with
a greedy hill-climbing approach for which @ is the maxi-
mum [13]. The algorithm starts by considering each node
a separate module and iteratively joins modules for which
the increase in @) is the highest. The complexity of the al-
gorithm is O((m + n)n), where n and m respectively denote
the number of nodes and connections.

DSE significantly outperforms HyperNEAT at evolving
modular networks of different sizes (Figure 6, p < 0.001,
permutation test). The @ values plotted are weighted iden-
tically to the B values in the previous section, averaged over
20 runs. Interestingly, DSE networks are initially quite mod-
ular, and reach near-maximum modularity within a few gen-
erations, whereas HyperNEAT required many generations
to approach its maximum, revealing the default tendencies
of these encodings. DSE also evolved to produce networks
closely approximating the required size (Table 1). Interest-
ingly, additional experiments where HyperNEAT genomes
were tested on only one network size reveal that HyperNEAT
can produce highly-modular networks (data not shown), sug-
gesting that the need to simultaneously produce modularity
on networks of different sizes is a unique challenge for Hy-
perNEAT, but not DSE.

Figures 7 and 8 (Graphviz with spring-model layout) show
the best evolved networks from both methods for increasing
numbers of inputs (DSE) or increasing network size (Hyper-
NEAT). Evolved networks display some topological patterns
that scale up in interesting ways. The DSE networks resem-
ble starfish that have one more arm than the number of
inputs. The HyperNEAT networks consist of clusters that
increase in number along with the network size, but are too
densely interconnected to yield a high average @ score.

To further probe differences between the encodings on
properties not directly selected for, we measured the scale-
free property for the networks from this experiment. Al-
though they were not selected for it, the DSE networks were
significantly more scale-free (DSE B = 0.67 + 0.07, Hyper-
NEAT B = 0.50 £ 0.18,p < 0.001, permutation test).

3.3 A visual pattern recognition problem

It is also important to test if DSE is competitive with
cutting-edge generative encodings at solving problems. We
chose a visual pattern recognition problem that HyperNEAT
was recently tested on [4], which itself was motivated by a
problem from the paper that introduced HyperNEAT [16].

In this problem, 3 shapes are visible and the network has
to identify the location of a target shape while ignoring the
other two shapes. Each shape fits within a 3 x 3 grid of
pixels (Figure 9) and all 3 shapes are distributed on a 9 x 9
pixel canvas. The S shape is most unique and thus easiest to
distinguish. The networks are fixed-size, with a 9 x 9 input
sheet of nodes and a corresponding 9 x 9 output sheet. For
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CutRX0 SubstX1+ DivSAOO Cut+0R DivP XO SubstT2V
CutRA0 DivSAOW CutuR SubstU+ DivSuP CutP0O0

DivS O3 P3 DivSuW Subst WO WO Subst+0+ CutP0X2 Con W0 PO 1
CutPOWO DivP AOU Subst T2A0 DivP X4 O Subst+OR DivPOS
ConWOR1 DivSUOS ConUP1 DivPuT DivSX5R ConR1+1
ConO0R1 CutPOR SubstT2+ DivPCL ConWW 1 DivSWN
CutWWw2 DivPAOL SubstUSO SubstR1+ ConWNO1 DivSS4W
DivSW Z DivP X2 S Cut POW Cut PO NO

3, n:36, B:0.96

ny:

n,:5 n:65 B:0.96 n,:6, n:76, B:0.97

Figure 4: The networks produced by the DSE genome that evolved the highest average B coefficient. n, =
number of inputs, n = network size, and B measures the scale-free property.

n:9, B:0.85 n:25 B:0.93

n:16, B:0.89

n:36, B:0.95

se0®

n:49, B:0.96 n:64, B:0.95 n:81, B:0.95

Figure 5: Network phenotypes for the HyperNEAT genotype that evolved the highest average B coefficient.

a single evaluation, shapes are placed at random locations
without overlap. A network evaluation is considered a suc-
cess if the output node with the highest activation value is
in the same location as the center of the target shape, oth-
erwise an error is scored. Averaged over 20 evaluations, the
fitness for DSE genotypes is the error rate (to be minimized)
and for HyperNEAT is the success rate (to be maximized).
There are 3 variants of the problem, with each shape respec-
tively being the target and the other two being distractions.

Because this task is two-dimensional, DSE uses 2D vari-
ants of the ConE and CutE instructions, which can create
connectivity patterns via an expression tree. Since these
are the only two instructions in this experiment, networks
remain a fixed size. Nodes have two indexes as in a matrix.

A key element of both encodings is that evolved functions
create geometric patterns that specify network connectiv-
ity. In DSE, such patterns are created by expression trees
(Section 2.2). In both encodings, the functions that produce
geometric patterns have 8 arguments: the z and y values of
the input and output nodes (normalized to [0,1)), A, and
A, (the difference between input and output nodes in the x
and y dimensions), and the straight-line distance and polar
angle between input and output nodes. For DSE, the node
coordinates come from normalizing their indexes.

One of the main differences between HyperNEAT and ex-
pression trees are the primitive (building block) operations
allowed in both systems. In these experiments, HyperNEAT
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Figure 6: Resultant modularity values (weighted
mean @ + SD) when modularity is selected for.

has a default set of operations following previous studies [16,
3], with sigmoid, sine, Gaussian, and bounded linear func-
tions. DSE has +, —, *, abs(), <, Gauss(), and constants
randomly generated from a normal distribution (mean 0
+1 SD). For both HyperNEAT and DSE, the output of
an evolved pattern-generating function specifies a network
weight (set to 0 if between -0.2 and 0.2). Another important
difference is that in DSE weights produced by subsequent
ConE2D instructions accumulate. CutE2D instructions cut
any connections for which the expression value is positive.
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Figure 7: The DSE genotype that produced the highest ) coefficient and the 7 networks it develops for
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Figure 8: Network phenotypes for the HyperNEAT genome with the highest ) value.

We perform 30 evolutionary runs for each of the three
task variants. DSE substantially and significantly outper-
forms HyperNEAT on all three problem variants (Table 2,
p < 0.01). These scores underrepresent DSE’s advantage,
because plots over time (not shown) suggest that only DSE
would improve with additional generations on the X and
O problems, and because DSE achieved near-perfect fitness
on the S problem much earlier than HyperNEAT. While
only from a single problem, these results suggest that DSE
can compete with cutting-edge generative encodings, such
as HyperNEAT, especially given that this problem type was
chosen to highlight HyperNEAT’s merits.

A benefit of encodings like DSE that have separate in-
structions or rules is that individual instructions can serve as
genetic modules that create wiring motifs that may be bene-

o]

Figure 9: Shape X (cross), O (circle) and S (square).
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ficial on related problems. To test whether instructions from
one task aid in solving another task, we implemented an is-
land model, where organisms on three islands are rewarded
for their performance on the three different task variants.
Migrants travel between islands, where they can be crossed
with native individuals. 5% of individuals migrate between
each pair of islands each generation, crossover occurs 40% of
the time, and 60% of genomes are mutated. Exchanging ge-
netic information between organisms rewarded for different
tasks should only be beneficial if instructions contain partial
solutions common to multiple tasks.

DSE performance significantly improves with migration
and crossover on the X and O problems (DSE 11, Table 2,
p < 0.01, permutation test). There was no meaningful room
for improvement on the S variant. To ensure that perfor-
mance gains are due to exchanging beneficial instructions,
we test DSE with migration, but not crossover (DSE 10)
and with crossover, but not migration (DSE 01). Neither of
these controls significantly improve performance over regular
DSE (Table 2, p > 0.05, permutation test), demonstrating
that DSE can exchange functional building blocks between
individuals working on similar problems to enhance perfor-



Table 2: Error rates (percent wrong) on the pat-
tern recognition problem. Averages of the final best
fitness values are shown, tested on 600 shape place-
ments to increase reporting accuracy. The letters
X, O, and S indicates which pattern was the target
to be recognized.

X (@) S
H-NEAT | 67.1 £ 5.0 63.6 £4.2 1.3 £55
DSE 29.0 £228 204 +£291 0.1=%0.3
DSE 10 31.8 £20.0 121 +219 00=+0.1
DSE 01 326 £21.7 229+£29.8 0.1+£03
DSE 11 14.2 £ 158 069 £153 0.0+ 0.1

mance. This capability should be increasingly beneficial as
the number of objectives simultaneously being solved rises.
It is an open question whether other leading generative en-
codings, such as HyperNEAT, can similarly exchange partial
solutions to different problems between individuals.

To illustrate how expression trees can solve problems by
creating connectivity patterns, we describe one of the short-
est DSE solutions for the S problem variant, which was the
easiest. This solution contained only one instruction that
had an effect: ConE2D uy (abs (< u2 0.22)). It creates con-
nections between all input-output node pairs with a straight-
line distance between them of less than 0.22, which connects
each output node to its 3 x 3-neighborhood counterpart in
the input layer. This connectivity pattern ensures that the
highest activation in the output layer is the node correspond-
ing to the center of the square shape.

4. DISCUSSION AND CONCLUSION

This paper demonstrates that a novel encoding for evolv-
ing networks, DSE, can produce networks that are regular,
modular, scalable, and scale-free. The networks also appear
hierarchical, although additional work is needed to quan-
tify this property. As such, DSE produces networks with
many properties thought to enhance evolvability and per-
formance [12, 11, 1]. DSE is interesting because it combines
concepts from two different camps of generative encodings.
Like Cellular Encoding and L-Systems, DSE has a develop-
mental process that iteratively rewrites symbols according
to instructions. Like HyperNEAT, it can also specify con-
nectivity as a function of evolved geometric patterns. Our
results suggest that this hybridization can combine the best
attributes of both camps of generative encodings. For exam-
ple, DSE can create scalable and modular networks (features
typically associated with iterative-rewrite encodings [10, 8,
5]) with regular network patterns (HyperNEAT’s forte [16,
3]). It is interesting, for instance, that DSE produced more
modular and scale-free networks than HyperNEAT when
these properties were not explicitly rewarded. Future work
is required to better understand the relative strengths and
weaknesses of both these camps of encodings and their hy-
bridizations. DSE thus raises interesting questions about
what types of networks different encodings produce. It also
appears to be a promising encoding in its own right worthy
of additional investigation.
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