EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

MASTER’S THESIS

ON COLLISIONS FOR MD5

By
M.M.J. Stevens

Supervisor:
Prof. dr. ir. H.C.A. van Tilborg

Advisors:
Dr. B.M.M. de Weger
Drs. G. Schmitz

Eindhoven, June 2007

Acknowledgements

I would like to express my gratitude to some people who were involved in this project. First of all,
I owe thanks to Henk van Tilborg for being my overall supervisor and arranging this project and
previous projects. I would like to thank Benne de Weger, who was especially involved in my work,
for all his help, advice, comments, discussions, our joint work and his patience. The NBV deserve
thanks for facilitating this project and I would like to thank Gido Schmitz especially for being my
supervisor in the NBV. My gratitude goes out to Arjen Lenstra for comments, discussions, our
joint work and my previous and future visits at EPFL. Thanks is due to Johan Lukkien for being
on my committee.

This work benefited greatly from suggestions by Xiaoyun Wang. I am grateful for comments
and assistance received from the anonymous Eurocrypt 2007 reviewers, Stuart Haber, Paul Hoff-
man, Pascal Junod, Vlastimil Klima, Bart Preneel, Eric Verheul, and Yiqun Lisa Yin. Further-
more, thanks go out to Jan Hoogma at LogicaCMG for technical discussions and sharing his
BOINC knowledge and Bas van der Linden at TU/e for allowing us to use the Elegast cluster.
Finally, thanks go out to hundreds of BOINC enthousiasts all over the world who donated an
impressive amount of cpu-cycles to the HashClash project.

2 CONTENTS

Contents
Acknowledgements il
Contents
1 Introduction M
1.1 Cryptographic hash functions o @
1.2 Collisions for MD5 @
1.3 Our Contributions e
1.4 Overview o
2 Preliminaries ird
3 Definition of MD5]
3.1 MD5 Message Preprocessing Lo e B
3.2 MDS5 compression functiono Lo B
4 MD5 Collisions by Wang et al.
4.1 Differential analysis. I
4.2 Two Message Block Collision I
4.3 Differential paths I
4.4 Sufficient conditions Lo 12
4.5 Collision Finding e
5 Collision Finding Improvements o4
5.1 Sufficient Conditions to control rotations 14
5.1.1 Conditions on @; for block 1
5.1.2 Conditions on @; for block 2 I
5.1.3 Deriving Q; conditions I
5.2 Conditions on the Initial Value for the attack 1K
5.3 Additional Differential Paths 19
5.4 Tunnels L e e 20
5.4.1 Example: Qo-tunnel L 20
5.4.2 Notation for tunnels 211
5.5 Collision Finding Algorithm
6 Differential Path Construction Method 26
6.1 Bitconditions 26]
6.2 Differential path construction overview
6.3 Extending partial differential paths
6.3.1 Carry propagation 28
6.3.2 Boolean function
6.3.3 Bitwise rotation 29
6.4 Extending backward Lo L 30
6.5 Constructing full differential paths o 0oL 301
7 Chosen-Prefix Collisions 32]
7.1 Near-collisions e e e e 32
7.2 Birthday Attack B3
7.3 TIteratively Reducing ITHV -differences B3
7.4 TImproved Birthday Search L o B4
7.5 Colliding Certificates with Different Identities 35]
7.5.1 To-be-signed parts 36]

7.5.2 Chosen-Prefix Collision Construction B7

CONTENTS 3

7.5.3 Attack Scenarios B3]

7.6 Other Applications 35
7.6.1 Colliding Documents L 3]

7.6.2 Misleading Integrity Checking 39

7.6.3 Nostradamus Attack B9

7.7 Remarks on Complexity Z10)

8 Project HashClash using the BOINC framework 41l
9 Conclusion
References 43
A MD5 Constants and Message Block Expansion
B Differential Paths for Two Block Collisions [48]
B.1 Wang et al.’s Differential Paths L L. 43
B.2 Modified Sufficient Conditions for Wang’s Differential Paths B0l
B.3 New First Block Differential Path
B.4 New Second Block Differential Paths %1}
B.4.1 New Second Block Differential Path nr. 1 B4

B.4.2 New Second Block Differential Pathnr. 2 50l

B.4.3 New Second Block Differential Pathnr. 3 58

B.4.4 New Second Block Differential Pathnr. 4 60

C Boolean Function Bitconditions 62
C.1 Bitconditions applied to boolean function ¥ G2l
C.2 Bitconditions applied to boolean function G 63
C.3 Bitconditions applied to boolean function H 64
C.4 Bitconditions applied to boolean function I 65

D Chosen-Prefix Collision Example - Colliding Certificates [66]
D.1 Chosen Prefixes e 60
D.2 Birthday attack 67
D.3 Differential Paths [
D.3.1 Block 1of 8 ird0)

D.3.2 Block 20f 8

D.3.3 Block 30f 8 [r4

D.3.4 Block4of 8. [[Q

D.3.5 Block 5of 8 e 78

D.3.6 Block 6of 8 e R0

D.3.7 Block 7of 8 82

D.3.8 Block 80f 8 B4

D4 RSAModuli. [S6]

4 1 INTRODUCTION

1 Introduction

This report is the result of my graduation project in completion of Applied Mathematics at the
Eindhoven University of Technology (TU/e). It has been written in order to obtain the degree
of Master of Science. The project has been carried out at the Nationaal Bureau Verbindings-
beveiliging (NBV), which is part of the Algemene Inlichtingen en Veiligheids Dienst (AIVD) in
Leidschendam.

1.1 Cryptographic hash functions

Hash functions are one-way functions with as input a string of arbitrary length (the message) and
as output a fixed length string (the hash value). The hash value is a kind of signature for that
message. One-way functions work in one direction, meaning that it is easy to compute the hash
value from a given message and hard to compute a message that hashes to a given hash value.

They are used in a wide variety of security applications such as authentication, commitments,
message integrity checking, digital certificates, digital signatures and pseudo-random generators.
The security of these applications depend on the cryptographic strength of the underlying hash
function. Therefore some security properties are required to make a hash function H suitable for
such cryptographic uses:

P1. Pre-image resistance: Given a hash value h it should be hard to find any message m such
that h = H(m).

P2. Second pre-image resistance: Given a message m; it should be hard to find another message
ms # my such that H(mq) = H(ma).

P3. Collision resistance: It should be hard to find different messages my, mq such that H(m;) =
H(WLQ)

A hash collision is a pair of different messages my # mo having the same hash value H(m,) =
H(mg). Therefore second pre-image resistance and collision resistance are also known as weak and
strong collision resistance, respectively. Since the domain of a hash function is much larger (can
even be infinite) than its range, it follows from the pigeonhole principle that many collisions must
exist. A brute force attack can find a pre-image or second pre-image for a general hash function
with n-bit hashes in approximately 2" hash operations. Because of the birthday paradox a brute
force approach to generate collisions will succeed in approximately 2("/2) hash operations. Any
attack that requires less hash operations than the brute force attack is formally considered a break
of a cryptographical hash function.

Nowadays there are two widely used hash functions: MD5[17] and SHA-1[I6]. Both are iterative
hash functions based on the Merkle-Damgard[13] [I] construction and using a compression function.
The compression function requires two fixed size inputs, namely a k-bit message block and a n-bit
Intermediate Hash Value (internal state between message blocks denoted as IHV'), and outputs
the updated Intermediate Hash Value. In the Merkle-Damgard construction any message is first
padded such that it has bitlength equal to a multiple of k£ and such that the last bits represent the
original message length. The hash function then starts with a fixed ITHV called the initial value
and then updates T HV by applying the compression function with consecutive k-bit blocks, after
which the THV is returned as the n-bit hash value.

1.2 Collisions for MD5

MD5 (Message Digest algorithm 5) was designed by Ronald Rivest in 1991 as a strengthened
version of MD4 with a hash size of 128 bits and a message block size of 512 bits. It is mainly
based on 32-bit integers with addition and bitwise operations such as XOR, OR, AND and bitwise
rotation. As an Internet standard, MD5 has been deployed in a wide variety of security applications
and is also commonly used to check the integrity of files. In 1993, B. den Boer and A. Bosselaers[3]
showed a weakness in MD5 by finding a ”pseudo collision” for MD5 consisting of the same message

1.3 Our Contributions 5

with different initial values. H. Dobbertin[4] published in 1996 a semi free-start collision which
consisted of two different 512-bit messages with a chosen initial value. This attack does not
produce collisions for the full MD5, however it reveals that in MD5, differences in the higher order
bits of the working state do not diffuse fast enough.

MD5 returns a hash value of 128 bits, which is small enough for a brute force birthday attack
of order 264, Such a brute force attack was attempted by the distributed computing project
MD5CRK which started in March 2004. However the project ended in August 2004 when Wang
et al. [24] published their collisions for MD4, MD5, HAVAL-128 and RIPEMD, it is unknown
to us how far the project was at that time. Later, Xiaoyun Wang and Hongbo Yu presented in
[25] the underlying method to construct collisions using differential paths, which are a precise
description how differences propagate through the MD5 compression function. However, they did
so after Hawkes et al. [6] described in great detail a derivation of all necessary bitconditions on
the working state of MD5 to satisfy the same differential paths.

The complexity of the original attack was estimated at 23° calls to the compression function of
MD5 and could be mounted in 15 minutes up to an hour on an IBM P690. Early improvements
[26], [18], [12], [9] were able to find collisions in several hours on a single pc, the fastest being [9J]
which could find collisions for MD5 in about 233 compressions.

Several results were published on how to abuse such collisions in the real world. The first were
based only on the first published collision. In [7] it was shown how to achieve colliding archives,
from which different contents are extracted using a special program. Similarly, in [I4] a method
was presented to construct two colliding files, both containing the same encrypted code, however
only one file allows the possibly malicious code to be decrypted and executed by a helper program.

More complex applications use Wang’s attack to find collisions starting and ending with some
content, identical for both messages in the collision, specifically tailored to achieve a malicious
goal. The most illustrative application is given by Daum and Lucks in [2] where they construct
two colliding PostScript documents, each showing a different content. For other document formats,
similar results can be achieved [5]. Also, the setting of digital certificates is not entirely safe as
Lenstra and de Weger[I1] presented two colliding X.509 certificates with different public keys, but
with identical signatures from a Certificate Authority. Although as they contain the same identity
there is no realistic abuse scenario.

1.3 Our Contributions

The contributions of this thesis are split into three main topics: speeding up collision finding,
constructing differential paths and chosen-prefix collisions.

First we will show several improvements to speed up Wang’s attack. All implementations of
Wang’s attack use bitconditions on the working state of MD5’s compression function to find a
message block which satisfies the differential path. We show how to find bitconditions on the
working state such that differences are correctly rotated in the execution of the compression
function, which was often neglected in collision finding algorithms and led to loss of efficiency.
Also, in an analysis we show that the value of the THV at the beginning of the attack has an
impact on the complexity of collision finding. We give a recommendation to two bitconditions on
this THV to prevent a worst case complexity. Furthermore, we presented in [21], together with
the above results, two new collision finding algorithms based on [9] which together allowed us to
find collisions in about 2263 compressions for recommended THV’s. We were the first to present
a method to find collisions in the order of one minute on a single pc, rather than hours. Later,
Klima [10] gave another such method using a technique called Tunnels which was slightly faster,
which we incorporated in our latest collision finding algorithm presented here. Currently, using
also part of our second main result discussed below, we are able to find collisions for MD5 in about
2241 compressions for recommended IHV’s which takes approx. 6 seconds on a 2.6Ghz Pentium4.
Parts of our paper [2I] were used in a book on applied cryptanalysis [20].

Wang’s collision attack is based on two differential paths for the compression function which
are to be used for consecutive message blocks where the first introduces differences in the ITHV and
the second eliminates these differences again. These two differential paths have been constructed

6 1 INTRODUCTION

by hand using great skill and intuition. However, an often posed question was how to construct
differential paths in an automated way. In this thesis we present the first method to construct
differential paths for the compression function of MD5. To show the practicality of our method
we have constructed several new differential paths which can be found in the Appendix. Five of
these differential paths were used to speedup Wang’s attack as mentioned before. Our method
even allows one to optimize the efficiency of the found differential paths for collision finding.

Our third contribution is the joint work with Arjen Lenstra and Benne de Weger in which we
present a new collision attack on MD5, namely chosen-prefix collisions. A chosen-prefix collision
consists of two arbitrarily chosen prefixes M and M’ for which we can construct using our method
two suffixes S and S’, such that M extended with S and M’ extended with S’ collide under MD5:
MD5(M||S) = MD5(M’||S"). Such chosen-prefix collisions allow more advanced abuse scenarios
than the collisions based on Wang’s attack. Using our method we have constructed an example
consisting of two colliding X.509 certificates which (unlike in [I1]) have different identities, but still
receive the same signature from a Certification Authority. Although there is no realistic attack
using our colliding certificates, this does constitute a breach of PKI principles. We discuss several
other applications of chosen-prefix collisions which might be more realistic. This joint work [22]
was accepted at EuroCrypt 2007 and has been chosen by the program committee to be one of the
three notable papers which were invited to submit their work to the Journal of Cryptology.

1.4 Overview

In the following sections [2] and [3] we will fix some notation and give a definition of MD5 which we
shall use throughout this thesis. Then we will describe the original attack on MD5 of Wang et al.
in Our several improvements to speed up Wang’s attack are presented in In
we will discuss our method to construct differential paths for the compression function
of MD5. Our joint work with Arjen Lenstra and Benne de Weger on chosen-prefix collisions and
colliding certificates with different identities is presented in [section 7| In [section 8 we describe
our use of the distributed computing framework BOINC in our project HashClash. Finally, we

make some concluding remarks in [section 9

2 Preliminaries 7

2 Preliminaries

MD5 operates on 32-bit unsigned integers called words, where we will number the bits from 0
(least significant bit) up to 31 (most significant bit). We use the following notation:

e Integers are denoted in hexadecimal together with a subscript 16, e.g. 12efqg,
and in binary together with a subscript 2, e.g. 00010010111011115,
where the most significant digit is placed left;

e For words X and Y, addition X + Y and substraction X — Y are implicitly modulo 232;
e X[i] is the i-th bit of the word X;

e The cyclic left and right rotation of the word X by n bitpositions are denoted as RL(X,n)
and RR(X,n), respectively:
RL(111100001111001001111010100111002, 5)
= 00011110010011110101001110011110,
= RR(111100001111001001111010100111005, 27);

e X AY is the bitwise AND of words X,Y or bits X,Y;
e X VY is the bitwise OR of words X,Y or bits X,Y;
e X @Y is the bitwise XOR of words X,Y or bits X,Y;

e X is the bitwise complement of the word or bit X;

31

1=

A binary signed digit representation (BSDR) of a word X is a sequence Y = (k;)
denoted as Y = (k;), of 32 digits k; € {—1,0,+1} for 0 < i < 31, where

o, often simply

31
X =) k2 mod2”, eg £c00£00056 = (—1-2'%) + (+1-2'0)+ (—1-2%).
1=0

Since there are 332 possible BSDR’s and only 232 possible words, many BSDR’s may exist for any
given word X. For convenience, we will write BSDR'’s as a (unordered) sum of positive or negative
powers of 2, instead of as a sequence, e.g. —2'2 4216 226 This should not cause confusion, since
it will always be clear from the context whether such a sum is a BSDR or a word.

The weight w(Y) of a BSDR Y = (k;) is defined as the number of non-zero k;’s:

31
w¥) = lkil, Y = (k);
i=0

We use the following notation for BSDRs:

e Y =X for a BSDR Y of the word X;

e Y =Y’ for two BSDR’s Y and Y’ of the same word;
Y[¢] is the i-th signed bit of a BSDR Y;

Cyclic left and right rotation by n positions of a BSDR Y is denoted as RL(Y,n) and
RR(Y,n), respectively:

RL(=2°" 422 - 219420 5) = —2* 4 2%7 — 215 1. 25,

A particularly useful BSDR of a word X which always exists is the Non-Adjacent Form (NAF),
where no two non-zero k;’s are adjacent. The NAF is not unique since we work modulo 232 (making
k31 = —1 equivalent to k3; = +1), however we will enforce uniqueness of the NAF by choosing
k31 € {0,+1}. Among the BSDRs of a word, the NAF has minimal weight (see e.g. [15]).

8 3 DEFINITION OF MD5

3 Definition of MD5

A sequence of bits will be interpreted in a natural manner as a sequence of bytes, where every group
of 8 consecutive bits is considered as one byte, with the leftmost bit being the most significant bit.

E.g. 01010011 11110000 = 010100115 111100002 = 5315 £01¢

However, MD5 works on bytes using Little Endian, which means that in a sequence of bytes, the
first byte is the least significant byte. E.g. when combining 4 bytes into a word, the sequence ef g,
Cd16, ab16, 8916 will result in the word 89abcdef16.

3.1 MD5 Message Preprocessing
MD5 can be split up into these parts:

1. Padding:
Pad the message with: first the ‘1’-bit, next as many ‘0’ bits until the resulting bitlength
equals 448 mod 512, and finally the bitlength of the original message as a 64-bit little-endian
integer. The total bitlength of the padded message is 512N for a positive integer N.

2. Partitioning:
The padded message is partitioned into N consecutive 512-bit blocks My, Ms, ..., My.

3. Processing:
MD5 goes through N + 1 states THV;, for 0 < i < N, called the intermediate hash values.
Each intermediate hash value I HV; consists of four 32-bit words a;, b;, ¢;, d;. For i = 0 these
are initialized to fixed public values:

THV, = (ao, bo, co, do) = (67452301, EFCDAB89, ¢, 98BADCFE ¢, 10325476),

and for i = 1,2, ... N intermediate hash value I HV; is computed using the MD5 compression
function described in detail below:

ITHV; = MD5Compress(IHV;_1, M;).

4. Output:
The resulting hash value is the last intermediate hash value I HVy, expressed as the concate-
nation of the sequence of bytes, each usually shown in 2 digit hexadecimal representation,
given by the four words ay, by, cy,dy using Little-Endian. E.g. in this manner THV| will
be expressed as the hexadecimal string

0123456789ABCDEFFEDCBA9876543210

3.2 MD5 compression function

The input for the compression function MD5Compress(IHV, B) is an intermediate hash value
IHV = (a,b,c,d) and a 512-bit message block B. There are 64 steps (numbered 0 up to 63), split
into four consecutive rounds of 16 steps each. Each step uses a modular addition, a left rotation,
and a non-linear function. Depending on the step t, an Addition Constant AC; and a Rotation
Constant RC, are defined as follows, where we refer to for an overview of these values:

AC, = |22 |sin(t+1)|] , 0<t<64,

(7,12,17,22) for t =0,4,8,12,

(5,9,14,20) for ¢ = 16,20, 24, 28,
(4,11,16,23) for t = 32, 36,40, 44,
(6,10,15,21) for ¢ = 48,52, 56, 60.

(RCt, RCt—‘rla Rct+27 RCt+3) =

3.2 MD5 compression function 9

The non-linear function f; depends on the round:

FX,Y,Z)=(XAY)® (X ANZ) for0<t<16,

GX,Y,Z)=(ZANX)D(ZNY) forl6<t< 32,

ft (X7 Y’a Z) =
HX)Y,Z)=XaYaoZ for 32 <t < 48,
I(X,)Y,Z2)=Y @ (X VZ) for 48 <t < 64.
The message block B is partitioned into sixteen consecutive 32-bit words mg, my, ..., m5 (using

Little Endian byte ordering), and expanded to 64 words (W;)$2, for each step using the following

relations, see for an overview:

Wi

me

for 0 <t < 16,

M(145t) mod 16 for 16 < ¢ < 32,
M(513t) mod 16 fOr 32 <1 < 48,
M(7t) mod 16 for 48 <t < 64.

We follow the description of the MD5 compression function from [6] because its ‘unrolling’ of
the cyclic state facilitates the analysis. For t = 0,1,...,63, the compression function algorithm
maintains a working register with 4 state words Q;, Q;_1, Q¢+—2 and Q;_3. These are initialized
as (Qo, Q-1,Q-2,Q_3) = (b,¢,d,a) and, for t =0,1,...,63 in succession, updated as follows:

Fy
T;
Ry
Qt+1

[i(Qr, Qi—1, Qi—2),
Fy+ Qi3+ AC; + Wy,
RL(T;, RCY),

Qt + Ry.

After all steps are computed, the resulting state words are added to the intermediate hash value

and returned as output:

MD5Compress(IHV, B) = (a + Qg1, b+ Qp4, ¢+ Qo3, d+ Qs2).

10 4 MD5 COLLISIONS BY WANG ET AL.

4 MD5 Collisions by Wang et al.

X. Wang and H. Yu [25] revealed in 2005 their new powerful attack on MD5 which allowed them
to find the collisions presented in 2004 [24] efficiently. A collision of MD5 consists of two messages
and we will use the convention that, for an (intermediate) variable X associated with the first
message of a collision, the related variable which is associated with the second message will be
denoted by X'.

Their attack is based on a combined additive and XOR differential method. Using this dif-
ferential they have constructed 2 differential paths for the compression function of MD5 which
are to be used consecutively to generate a collision of MD5 itself. Their constructed differential
paths describe precisely how differences between the two pairs (IHV, B) and (IHV', B’), of an
intermediate hash value and an accompanying message block, propagate through the compression
function. They describe the integer difference (—1, 0 or +1) in every bit of the intermediate
working states (J; and even specific values for some bits.

Using a collision finding algorithm they search for a collision consisting of two consecutive
pairs of blocks (By, Bj) and (B, By), satisfying the 2 differential paths which starts from arbitrary
ITHV = IHV'. Therefore the attack can be used to create two messages M and M’ with the same
hash that only differ slightly in two subsequent blocks as shown in the following outline where
ITHV = IHV, for some k:

IHYV, . THYV, THYV, THV, . 9:0%
0]\Z 1\71)9 k 1;(; k+1];; k+2 MZ3 I\Zv N
= = # = =

IH IH IHV/ IHV/ IH

oo s brd Vi B Vi B Vit frd VN

We will use this outline throughout this work with respect to this type of collisions. Note that
all blocks M; = M/ can be chosen arbitrarily and that only By, Bj, B1, B] are generated by the
collision finding algorithm.

This property was used in [I1] to create two X.509 certificates where the blocks By, B, B1, Bj
are embedded in different public keys. In [2] it was shown how to create two PostScript files with
the same hash which showed two different but arbitrary contents.

The original attack finds MD5 collisions in about 15 minutes up to an hour on a IBM P690 with
a cost of about 239 compressions. Since then many improvements were made [18, 12} 26, @] 211, [10].
Currently collisions for MD5 based on these differential paths can be found in several seconds on
a single powerful pc using techniques based on tunnels [10], controlling rotations in the first round
[21] and additional differential paths which we will present here.

4.1 Differential analysis

In [25] a combination of both integer modular substraction and XOR is used as differences, since
the combination of both kinds of differences gives more information than each by themselves.
So instead of only the integer modular difference between two related words X and X', this
combination gives the integer differences (—1, 0 or +1) between each pair of bits X [i] and X'[i]
for 0 <4 < 31. We will denote this difference as AX and represent it in a natural manner using
BSDR’s as follows

We will denote the regular modular difference as the word 6X = X’ — X and clearly X = AX.
As an example, suppose the integer modular difference is §X = X’ — X = 2%, then more than
one XOR difference is possible:

e A one-bit difference in bit 6 (X’ @& X = 000000401) which means that X'[6] =1, X[6] =0
and AX = +26.

e Two-bit difference in bits 6 and 7 caused by a carry. This happens when X'[6] = 0, X[6] = 1,
X'[7] =1 and X[7] = 0. Now AX = —26 + 27,

4.2 Two Message Block Collision 11

e n-bit difference in bits 6 up to 6+n—1 caused by n—1 carries. This happens when X'[i] = 0
and X[i] =1fori=6,....,6 +n—2and X'[6 +n—1] =1 and X[6 4+ n — 1] = 0. In this
case AX = =26 —27... _0+n=2 4 o6+n—1

e A 26-bit difference in bits 6 up to 31 caused by 26 carries (instead of 25 as in the previous
case). This happens when X'[{] =0 and X[i] =1 for i =6,...,31.

We extend the notation of 6.X and AX for a word X to any tuple of words coordinatewise.
E.g. ATHV = (Aa, Ab,Ac, Ad) and 6B = (6m;)15,.

4.2 Two Message Block Collision

Wang’s attack consists of two differential paths for two subsequent message blocks, which we will
refer to as the first and second differential path. Although By and B; are not necessarily the the
first blocks of the messages M and M’, we will refer to By and B as the first and second block,
respectively. The first differential path starts with any given IHV}, = IHV] and introduces a
difference between IHVj 1 and ITHV;/ ; which will be canceled again by the second differential
path:

STHViy1 = (8a,6b,6c,6d) = (231,231 4275 231 4 925 931 4 925)

The first differential path is based on the following differences in the message block:
omg =23 omyy =2, dmyy =23, om; =0, i & {4,11,14}
The second differential path is based on the negated message block differences:
omy = =231 dmy = -2, omyy =23, dm; =0, i ¢ {4,11,14}

Note that —23! = 23! in words, so in fact dm4 and dmq4 are not changed by the negation.
These are very specific message block differences and were selected to ensure a low complexity
for the collision finding algorithm as will be shown later.

4.3 Differential paths

The differential paths for both blocks (Tables see the Appendix) were constructed
specifically to create a collision in this manner. The differential paths describe precisely for each
of the 64 steps of MD5 what the differences are in the working state and how these differences
pass through the boolean function and the rotation. More precisely, a differential path is defined
through the sequences (0m4)12,, (AQ:)% 5 and (073)$2, of differences.

The first differential path starts without differences in the THV', however differences will be
introduced in step t = 4 by dmy4. The second differential path starts with the given 6/ HVy11. In
both, all differences in the working state will be canceled at step t = 25 by dm14. And from step
t = 34 both paths use the same differential steps, although with opposite signs. This structure

can easily be seen in the Tables and
Below we show a fraction of the first differential path:

([30 [o [ow] on_[&d]
13 || =224 1 925 1 931 || _9134 931 _ _ol2 12
14 +231 218+231 231 218_230 17
15 423 _ 913 4 931 225 4 931 _ _9T_ 913492 29
16 029 4 981 931 _ 924
17 +231 231 _ _

18 +231 231 215 23 14
19 +217 + 231 231 _ _229 20

12 4 MD5 COLLISIONS BY WANG ET AL.

The two differential paths were made by hand with great skill and intuition. It has been an
open question for some time how to construct differential paths methodically. In we
will present the first method to construct differential paths for MD5. Using our method we have
constructed several differential paths for MD5. We use 5 differential paths in [section 5] to speedup
the attack by Wang et al. and 8 others were used in for a new collision attack on MD5.

4.4 Sufficient conditions

Wang et al. use sufficient conditions (modified versions are shown in Tables to efficiently
search for message blocks for which these differential paths hold. These sufficient conditions
guaranteed that the necessary carries and correct boolean function differences happen. Each
condition gives the value of a bit Q;[¢] of the working state either directly or indirectly as shown
in Later on we will generalize and extend these conditions to also include the value of
the related bit Q}[7].

Table 4-1: Sufficient bitconditions.

Symbol | condition on Q|| | direct/indirect
none direct
Qi[i] =0 direct
1 Qi) =1 direct
) Q¢li] = Q¢—1]1] indirect
! Qii] = Q¢_1]1] indirect

These conditions are only to find a block B on which the message differences will be applied
to find B’ and should guarantee that the differential path happens. They can be derived for any
differential path and there can be many different possible sets of sufficient conditions.

However, it should be noted that their sufficient conditions are not sufficient at all, as they
do not guarantee that in each step the differences are rotated correctly. In fact as we will show
later on, one does not want sufficient conditions for the full differential path as this increases the
collision finding complexity significantly. On the other hand, sufficient conditions over the first
round and necessary conditions for the other rounds will decrease the complexity. This can be
seen as in the first round one can still choose the working state and one explicitly needs to verify
the rotations, whereas in the other rounds the working state is calculated and verification can be
done on the fly.

4.5 Collision Finding

Using these sufficient conditions one can efficiently search for a block B. Basically one can choose a
random block B that meets all the sufficient conditions in the first round. The remaining sufficient
conditions have to be fulfilled probabilistically and directly result in the complexity of this collision
finding algorithm. Wang et al. used several improvements over this basic algorithm:

1. Early abortion:
Abort at the step where the first sufficient condition fails.

2. Multi-Message Modification:
When a certain condition in the second round fails, one can use multi-message modification.
This is a substitution formula specially made for this condition on the message block B,
such that after the substitution that condition will now hold without interfering with other
previous conditions.

An example of multi-message modification is the following. When searching a block for the first
differential path using [Table B-3| suppose Q17[31] = 1 instead of 0. This can be corrected by
modifying mi, ms, ms3, my, ms as follows:

4.5 Collision Finding 13

1. Substitute my «— (m; + 226), this results in a different @\2

2. Substitute m3 — (RR(Qs — Q2,17) — Q_1 — F(Q2,Q1, Qo) — ACS).

(
(

3. Substitute m3 — (RR(Q4 — Q3,22) — Qo — F(Q3,Q2,Q1) — ACS).
4. Substitute my « (
(

(
(
RR(Qs5 — Qu,7) — Q1 — F(Q1,Q3,Q2) — ACY).
5. Substitute 5 — (RR(Qs — Qs,12) — Q2 — F(Qs5, Qa, Q3) — ACs).

The first line is the most important, here m; is changed such that 6/2;[31] = 0, assuming Q13 up
to (Y16 remain unzll@red. The added difference +226 in mq results in an added difference of +231
in Q17[31], hence Q17[31] = 0. The four other lines simply change mo, m3, m4, ms such that Q3 up
to Q16 remain unaltered by the change in m;. Since there are no conditions on)2, all previous
conditions are left intact.

Wang et al. constructed several of such multi-message modifications which for larger ¢t become
more complex. Klima presented in [9] two collision finding algorithms, one for each block, which
are much easier and more efficient than these multi-message modifications. Furthermore, Klima’s
algorithms work for arbitrary differential paths, while multi-message modifications have to be
derived specifically for each differential path.

14 5 COLLISION FINDING IMPROVEMENTS

5 Collision Finding Improvements

In [6] a thorough analysis of the collisions presented by Wang et al. is presented. Not only a set
of ‘sufficient’ conditions on @, similarly as those presented in [25], is derived but also a set of
necessary restrictions on Ty for the differential to be realized. These restrictions are necessary to
correctly rotate the add-difference §7; to dR;. Collision finding can be done more efficiently by
also satisfying the necessary restrictions on T; used in combination with early abortion.

Fast collision finding algorithms as presented in [9] can choose message blocks B which satisfy
the conditions for Q1, ..., Q6. As one can simply choose values of Q1, ..., Q¢ fulfilling conditions
and then calculate m; for t =0,...,15 using

my = RR(QtH - QthCt) - ft(QthtflaQtfﬂ - Qt—3 — AC,.

Message modification techniques are used to change a block B such that Qq,...,Q1s are changed
slightly maintaining their conditions and that Q17 up to some @ do not change at all. Naturally,
we want k to be as large as possible.

Although conditions for @1, . .., Q16 can easily be fulfilled, this does not hold for the restrictions
on T} which still have to be fulfilled probabilistically. Our first collision finding improvement we
present here is a technique to satisfy those restrictions on T} using conditions on); which can be
satisfied when choosing a message block B.

The first block has to fulfill conditions of its differential path, however there are also conditions
due to the start of the differential path of the second block. Although not immediately clear, the
latter conditions have a probability to be fulfilled that depends on I HV}, the intermediate hash
value used to compress the first block. We will show this dependency and present two conditions
that prevent a worst-case probability. The need for these two conditions can also be relieved with
our following result.

Another improvement is the use of additional differential paths we have constructed using the
techniques we will present in We present one differential path for the first block and
4 additional differential paths for the second block. The use of these will relax some conditions
imposed on the first block due to the start of the differential path for the second block. As each
of the now five differential paths for the second block has different conditions imposed on the first
block, only one of those has to be satisfied to continue with the second block.

We were the first to present in [21] a collision finding algorithm which was able to find collisions
for MD5 in the order of minutes on a single pc, based on Klima’s algorithm in [9]. Shortly after,
Klima presented in [I0] a new algorithm which was slightly faster than ours using a technique
called tunneling. We will explain this tunneling technique and present an improved version of our
algorithm in [2I] using this technique. These improvements in collision finding were crucial to
our chosen-prefix construction, as the differential paths for chosen-prefix collisions usually have
significantly more conditions than Wang’s differential paths. Hence, the complexity to find collision
blocks satisfying these differential paths is significantly higher (about 242 vs. 224! compressions).

Currently using these three improvements we are able to find collisions for MD5 in several
seconds on a single pc (approx. 6 seconds on a 2.6Ghz Pentium4 pc). Source code and a windows
executable can be downloaded from http://www.win.tue.nl/hashclash/.

5.1 Sufficient Conditions to control rotations

The first technique presented here allows to fulfill the restrictions on T; by using extra conditions
on Q11 and @, such as those in By using the relation Q¢41 — Q¢ = Ry = RL(T:, RC})
we can control specific bits in T;. In our analysis of Wang’s differential paths, we searched for those
restrictions on Ty with a significant probability that they are not fulfilled. For each such restriction
on T;, for t =0,...,19, we have found bitconditions on @41 and @; which were sufficient for the
restriction to hold. For higher steps it is more efficient to directly verify the restriction instead of
using conditions on Q.

All these restrictions can be found in [6] with a description why they are necessary for the
differential path. The resulting conditions together with the original conditions can be found in

http://www.win.tue.nl/hashclash/

5.1 Sufficient Conditions to control rotations 15

Table B-3| Below we will show the original set of sufficient conditions in [25] in black and our
added conditions will be underlined and in blue.

5.1.1 Conditions on @; for block 1

1.

Restriction: AT, = —231,

This restriction is necessary to guarantee that Ry = —2° instead of +2%. The condition
Ty[31] = 1 is necessary and sufficient for AT, = —23! to happen. Bit 31 of T} is equal to
bit 6 of Ry, since Ty is equal to RR(R4,7). By adding the conditions Q4[4] = Q4[5] = 1
and Qs[4] = 0 to the conditions Q4[6] = Q5[6] = 0 and Q5[5] = 1, it is guaranteed that
R4[6] = T4[31] = 1. Satisfying other @; conditions, this also implies that Qg[4] = Q5[4] = 0.

Qs[6 — 4] 010 ---
Q4[6—4] 011 -+ -
Raf6—4 | 11. -+ =

This table shows the bits 4,5 and 6 of the words @5, @4 and R, with the most significant bit
placed left, this is notated by @Q5[6 — 4] extending the default notation for a single bit Q5[6].

Restriction: add-difference —2' in §7T; must propagate to at least bit 15 on Tj.
This restriction implies that T5[14] must be zero to force a carry. Since T[14] = Rg[31], the
condition Tg[14] = 0 is guaranteed by the added conditions Qg[30 — 28,26] = 0. This also
implies that @5[30 — 28,26] = 0 because of other conditions on Q;.

Q7[31 — 23] 000000111
Qs[31 — 23] 0000001.0 --- —
Rg[31—23] | 0000000.. --- =

Note: in [26] these conditions were also found by statistical means.

Restriction: add-difference +2'? in T}y, must not propagate past bit 14 on T,.
The restriction is satisfied by the condition T10[13] = R10[30] = 0. The conditions Q11[29 —
28] = Q10[29] = 0 and Q10[28] = 1 are sufficient.

Q11[31 — 28] 0010 ---
Q10[31 — 28] 0111 --- —
Ry0[31 — 28] ‘ 101. ... =

. Restriction: add-difference —2% in §7}; must not propagate past bit 9 on T;.

This restriction can be satisfied by the condition 711[8] = R;1[30] = 1. With the above
added condition Q11[29] = 1 we only need the extra condition 12[29] = 0.

Q12[31 —29] | 000 ---
Qu1[31—-29] | 001 -+ —
R11[31—29]‘ 1. - =

Restriction: add-difference —23° in §7}, must not propagate past bit 31 on Ti,.
For Ty4 the add difference —23° must not propagate past bit 31, this is satisfied by either
T14[30] = R14[15] = 1 or T14[31] = R14[16] = 1. This always happens when Q15[16] = 0 and
can be shown for the case if no carry from the lower order bits happens as well as the case
if a negative carry does happen. A positive carry is not possible since we are subtracting.

no carry negative carry from lower bits
Q1516 — 15] o1 --- Q15[16 — 15] 01
Q14[16 — 15] 1 - - Q14[16 — 15] 1 - -

Riy[16—15] | 10 --- = Ri4[16—15] | 01 --- =

16

5 COLLISION FINDING IMPROVEMENTS

6. Restriction: add-difference —27 in §T}5 must not propagate past bit 9 on T7;.
This can be satisfied by the added condition Q16[30] = Q15[30].
Ri5[29] = 1, T15[8] = 1 or T15[9] = 1 holds. This can be shown if we distinguish between
Q15[30] = 0 and @Q15[30] = 1 and also distinguish whether or not a negative carry from the

lower order bits happens.

Since then either Ty5[7] =

no carry negative carry from lower bits
Qu6[31—29] | o001 --- Qu6[31—29] | o001 ---
Q15[31 — 29] 011 .-+ — Q15[31 — 29] 011 .-+ —
R15[31 — 29] 110 -+ = R15[31 — 29] 101 - =

om lower bits

no carry negative carry fr
Q16[31 — 29] 011 --- Q16[31 — 29] 011 ---
Q15[31 — 29] 001 .-+ — Q1531 — 29] 001 .-+ —
R15[31 — 29] 010 --- = Ry5[31 — 29 001 --- =

7. Restriction: add-difference +2%° in §T}5 must not propagate past bit 31 on T}5.

This is satisfied by the added condition Qq4[17] =

Q15[17]. Since then either T'5[25] =

R15[15] = 0, T15[26] = 0 or T15[27] = 0 holds. We compactly describe all cases by mentioning
which values were assumed for each result:

no carry

Q17— 15] | L. -

Q15[17 — 15) .01 - —

Ry5[17 — 15] o011 --- = (Q16[17 — 15] = .00)
100 - (Q6[17 — 15] = .01)
101 - (Q16[17 — 15] = .10)
110 --- (Qu6[17 — 15] = .11)

negative carry from lower bits

Quoll7—15] | 1.

Q15[17 — 15] .01 - —

Ry5[17 — 15] 010 --- = (Q16[17 — 15] = .00)
011 --- (Q6[17 — 15] = .01)
100 --- (Q16[17 — 15] =)
101 --- (Q16[17 — 15] = .11)

8. Restriction: add-difference +22* in §T}s must not propagate past bit 26 on 1.
This can be achieved with the added condition Q17[30] = Q16[30

|, since then always either

T16[24] = R16[29] =0or T16[25} = R16[30] =0.
no carry

Q17[30 — 29] 1.

Q30 -29] | .1 - —

R16[30 — 29] o1 .- = (Q17[30 — 29] = 00)
10 --- (Q17[30 — 29] = 01)
01 --- (Q17[30 — 29] = 10)
10 --- (Q17[30 — 29] = 11)

negative carry from lower bits

Qur[30 29 | 1.

Q16[30—29] 1 =

R16[30 — 29] 00 --- = (Q17[30 — 29] = 00)
01 --- (Q17[30 — 29] = 01)
00 --- (Q17[30 — 29] = 10)
01 --- (Q17[30 —29] = 11)

5.1 Sufficient Conditions to control rotations 17

9. Restriction: add-difference —22° in §T}9 must not propagate past bit 31 on Tig.
This can be achieved with the added condition Q20[18] = Q19[18], since then always either
T19[29] =1or T19[30] =1.

no carry

Q2018 —-17] | L. -

Q19[18 — 17] .0 - =

R19[18 — 17] 10 -+ = (Q20[18 — 17] = 00)
11 - (Q20[18 — 17] = 01)
10 --- (Q20[18 — 17] = 10)
11 .- (Q20[18 — 17] = 11)

negative carry from lower bits

Quol18 - 17] | 1.

Q10[18 — 17] .0 - =

Ry9[18 — 17] 01 .-+ = (Q20[18 — 17] = 00)
10 --- (Q20[18 — 17] = 01)
01 --- (Q20[18 — 17] = 10)
10 --- (Q20[18 — 17] = 11)

10. Restriction: add-difference +2'7 in §75; must not propagate past bit 17 on Th;.
It is possible to satisfy this restriction with two @Q; conditions. However T5o will always be
calculated in the algorithm we used, therefore it is better to verify directly that T53[17] = 0.
This restriction holds for both block 1 and 2.

11.

Restriction: add-difference +2'° in 6734, must not propagate past bit 15 on T3,.
This restriction also holds for both block 1 and 2 and it should be verified with T54[15] = 0.

5.1.2 Conditions on @; for block 2

Using the same technique as in the previous subsection we found 17 @Q:-conditions satisfying 12
T; restrictions for block 2. An overview of all conditions for block 2 is included in

1.

Restriction:
Conditions:

. Restriction:

Conditions:

Restriction:
Conditions:

Restriction:
Conditions:

Restriction:
Conditions:

Restriction:
Conditions:

Restriction:
Conditions:

Restriction:
Conditions:

ATy[31] = +1.
Q1[16] = Q2[16] = Q3[15] = 0 and Q2[15] = 1.

ATs[31] = +1.
Qs[14] =1 and Q7[14] = 0.

ATs[31] = +1.
Qs[5] = 1 and Qq[5] = 0.

add-difference —227 in 7} must not propagate past bit 31 on Tg.
Q10[11] = 1 and Q1 [11] = 0.

add-difference —2'2 in §7}5 must not propagate past bit 19 on T}s.
@13[23] = 0 and Q14[23] = 1.

add-difference +23° in §774 must not propagate past bit 31 on T}4.
Q15[14] = 0.

add-difference —225 in §7}5 must not propagate past bit 31 on T}s.
Q16[17] = Q15[17].

add-difference —27 in §7}5 must not propagate past bit 9 on T}s.
Q16[28] = 0.

18 5 COLLISION FINDING IMPROVEMENTS

9. Restriction: add-difference +2%* in 6T} must not propagate past bit 26 on Tig.
Conditions: @Q17[30] = Q14[30].

10. Restriction: add-difference —22° in 7,9 must not propagate past bit 31 on Tig.
Conditions: Q20[18] = Q19[18]

11. Restriction: add-difference +2'7 in 875, must not propagate past bit 17 on Ths.
See previous

12. Restriction: add-difference +2'° in §T34 must not propagate past bit 15 on Tay.

See previous [item 11]

5.1.3 Deriving @Q; conditions

Deriving these conditions on Q; to satisfy T} restrictions can usually be done with a bit of intuition
and naturally for step ¢ one almost always has to look near bits 31 and RC} of @; and Q¢41. An
useful aid is a program which, given conditions for @, ..., Qr+1, determines the probabilities of
the correct rotations for each step t = 1,...,k and the joint probability that for stepst =1,...,k
all rotations are correct. The latter is important since the rotations affect each other.

Such a program could also determine extra conditions which would increase this joint probabil-
ity. One can then look in the direction of the extra condition(s) that increases the joint probability
the most. However deriving such conditions is not easily fully automated as the following two
problems arise:

e Conditions guaranteeing the correct rotation of 67} to d R; may obstruct the correct rotation
of 6T;41 to 0Riy1. Or even other d7;4y for £ > 0 if these conditions affect the values of
Qi+x and/or Q441 through indirect conditions.

e It is possible that to guarantee the correct rotation of some §7; there are several solutions
each consisting of multiple conditions. In such a case it might be that there is no single extra
condition that would increase the joint probability significantly.

5.2 Conditions on the Initial Value for the attack

The intermediate hash value, I HV}, in the outline in used for compressing the first block
of the attack, is called the initial value I'V for the attack. This does not necessarily have to be the
MD?5 initial value, it could also result from compressing leading blocks. Although not completely
obvious, the expected complexity and thus running time of the attack does depend on this initial
value IV.

The intermediate value THVj;41 = (ag+41, bk+1, Ck+1,dr+1) resulting from the compression of
the first block is used for compressing the second block and has the necessary conditions cxy1[25] =
1 and di4+1[25] = 0 for the second differential path to happen. The IHVjy; depends on the
1V = (a, b, ¢,d) for the attack and Qg1, ..., Qs of the compression of the first block:

ITHVi1 = (1, bkt1s Cg1, A1) = (@ + Qe1, b + Qoa, ¢ + Qo3,d + Qo2).

In [6] the sufficient conditions Qe2[25] = 0 and Qg3[25] = 0 are given. These conditions on
ck+1[25] and Qg3[25] can only be satisfied at the same time when

e cither ¢[25] = 1 and there is no carry from bits 0-24 to bit 25 in the addition ¢ + Qgs;
e or ¢[25] = 0 and there is a carry from bits 0-24 to bit 25 in the addition ¢ 4+ Qg3.

The conditions on di+1[25] and Qs2[25] can only be satisfied at the same time when
e cither d[25] = 0 and there is no carry from bits 0-24 to bit 25 in the addition d + Qg2;

e or d[25] = 1 and there is a carry from bits 0-24 to bit 25 in the addition d 4+ Qg2.

5.3 Additional Differential Paths 19

Satisfying all these conditions at the same time can even be impossible if for instance ¢[25—0] = 0,
or d[25] = 1 A d[24 — 0] = 0, since the necessary carry can never happen.

Luckily this doesn’t mean the attack cannot be done for those I'V’s, since the conditions
Qe2[25] = 0 and Q3[25] = 0 are only sufficient. They allow the most probable differential path at
those steps to happen, however there are other (less probable) differential paths that are also valid.
If this normally most probable differential path cannot happen or happens with low probability
(depending on the carry) then the average complexity of the attack depends on the probability
that other differential paths happen. Experiments clearly indicated that the average runtime for
this situation is significantly larger than the average runtime in the situation where the most
probable differential path happens with high probability.

Therefore we relaxed all conditions on bit 25 of Qgo, ..., Q3 to allow those other differential
paths to happen. We also give a recommendation for the following two IV conditions to avoid
this worst case:

c[25] = c[24) A d[25] = d[24] for IV = (a,b,c,d)

5.3 Additional Differential Paths

Furthermore, we have constructed new differential paths and conditions using the techniques we
will present in We have constructed one differential path for the first block, which can
be used as a replacement of the original first differential path.

We also have constructed four differential paths for the second block, each having different sets
of conditions imposed on the first block. The first block only has to satisfy one of those sets of
conditions. Then one can continue with the differential path for the second block that is associated
with the satisfied set of conditions. Hence, together the five differential paths for the second block
allow more freedom and improved collision finding for the first block.

Our differential paths for the first and second block were constructed using the exact same
message block differences and ITHV differences as the original first and second differential path,
respectively. Also in step ¢t = 26, ours and Wang’s original differential paths have the same
differences in the working state (§Qag, 0Q25,0Q24,Q23) = (0,0,0,0). Hence, also in later steps
t = 26,...,63 our differential paths and conditions are equal to the respective original differential
path and conditions.

Therefore we will omit steps ¢ = 26, ..., 63 of our differential paths. We also applied conditions
to control rotations using our technique in Our differential path for the first block
is shown in and below, its conditions are shown in Our differential paths for
the second block are shown in [Table B-7}, [Table B-9] [Table B-11] and [Table B-13] The respective
conditions are listed in [Table B-g| [Table B-10} [Table B-12| and [Table B-14]

20

5 COLLISION FINDING IMPROVEMENTS

Table 5-1: New first block differential path

|t [[AQ: (BSDRof Q) | 5F, | sw: | 5T, | RC: |
0-3 - — - - :
4 — - 23T 251 7
5 —20. . 2% % —28 4911 919 — —284214_ 919 12
9234925 9234925
6 +20-2142% 21 2829421 - 2°—2421° 17
425 _06_07 98 920 418_920_922 418_920_922
4021922926931
7 LN —201 26 210 — 9096 _oT0 22
+213_925 4213 _925
S 0423 206 515 — 251284015 _ 21284215 7
0224 928 531 921926928 921926928
9 2008 T2 53T 9093 9 53T — ol 95 920 5% 12
10 T2 [pTT 53T 90 98 {oTZ 93T — 20 97 {912 17
11 o2 o8 574 90_56_ol7 oT5 93 _o7_ol7 22
42294 931 —9294 931 _922_928
192 T T3 21 53T o7 912931 — 20498 7
13 22 3T 23T — —oT2 ot7 12
14 +229 53T 921929 53T 93T oIz 918 530 17
15 23 o5 53T 921 931 _ 9T 1397 29
16 229 531 93T — 921 5
17 —23T —2294 951 — — 9
18 —231 231 21° 23 14
19 217231 231 — —22%9 20
20 —231 231 — — 5
21 —231 231 - - 9
22 —231 251 — 217 14
23 — — 231 — 20
24 - 231 — — 5
25 - - 231 — 9
5.4 Tunnels

In [10], Klima presented a new collision finding technique called tunneling. A tunnel allows one
to make controlled changes in the message block B such that in @7 up to a certain @, where k
depends on the tunnel used, only small changes occur and all conditions remain unaffected. In
fact, the effect of a tunnel is best shown using changes in a certain Q,, as we will show in the
following example with m = 9 which is called the Qg-tunnel.

5.4.1 Example: Qg-tunnel

Assume that we have found a block By that meets all first block conditions in up to
(Q24. The conditions for Qg, Q1o and ()11 are:

’ t \ Conditions on Qy: b3y ...bg ‘
9 | 11111011 ...10000 0.1"1111 00111101
10| 0111.... 0..11111 1101...0 01....00
11 | 0010....0001 1100...0 11....10

As this table shows, there are four bits in Qg that can be chosen freely, namely Qg[14], Q9[21],
Q9[22] and Q9[23]. If we change one of these bits, say Q9[22], without changing @1, ...,Qs and

5.4 Tunnels 21

Q1o0, - - -, Q16 then only the following message block words are changed:

ms = Ws = RR(Qo—Qs7) — [fs(@s,Q7,Q) — Q5 — ACs

mg = Wy = RR(Qu—Qo,12) — fo(Qe,@s,Q7) — Qs — ACy

mio = Wio = RR(Qu —Q19,17) — f10(Q10,Qe,Qs) — Q7 — ACpo

mi1 = Wi = RR(Qi2—Q11,22) — f11(Q11,Q010,Qe) — Qs — ACH

miz = Wiz = RR(Qi3—Q12,7) — fi12(Q12,Q11,Q10) — Qo — ACH
Hence, all conditions in the first round remain satisfied. In the second round @17 and Q15 do not
change, as steps t = 16,17 do not depend on msg, ..., m12 as shown below:

Step t 16 17 18 19 20 21 22 23 24 25 26

Message block Wt mi me mi1 mo ms mip Mis my mg miq ms

Affected Q41 Qir Qs Qo Q2 Q21 Q22 Q23 Qo Qa5 Qs Qor

On the other hand, a different m,; may lead to a different Q19.
Suppose that Q11[22] = 1 then

F11[22] = f11(Q11[22], Q10[22], Q9[22]) = (Q11[22] A Q10[22]) @ (Q11[22] A Q9[22]) = Q10[22].

Hence Fi; and thus also m1; do not change. In this case, actually Q17 up to Q21 remain unaffected
by the change in (QQ9[22].
Furthermore, if we suppose that Q19[22] = 0 then

F10[22] = f10(Q10[22], Q0[22], Qs[22]) = (Q10[22] A Qo[22]) & (Q10[22] A Qs[22]) = Qs[22]

and also myo does not change. In this case we have achieved that a change in a single bit Qg[22]
actually leaves Q17 up to Q24 unchanged and therefore all conditions in ; up to Q24 remain
satisfied.

In general, over multiple bits Qg[i1], ..., Qolin] With Q1o[i1] = ... = Quo[in] = 0 and Q11[i1] =
... = Q1[in] = 1, we find that changing those bits leads to a total of 2" different message blocks,
including the one we started with. And all those message blocks meet all conditions for Q1 up to
Q24

In the case of the first block conditions in [Table B-3| we find that only bits Q9[21], Q9[22] and
Q9[23] can be part of the Qo-tunnel as Q19[14] = 1 instead of 0. We need the extra conditions
Q10[21] = Q10[22] = 0 and Q11[21] = Q11[22] = Q11[23] = 1 to make use of this tunnel, as shown
below in green and underlined.

’ t \ Conditions on @Q¢: bz ...by ‘
9 | 11111011 10000 0.171111 00111101
10 | 0111.... 00011111 1101...0 01....00
11 | 0010.... .0001 1100...0 11....10
Initially the bits should be set to 000 in a collision finding algorithm and when a message
block By is found that meets all conditions for ()1 up to Q24 then we expand this By into a set of
8 different message blocks using the 8 different values for these bits . Q25 is the first affected

@; for which we have to check if conditions are met, and is called the point of verification or POV.
The number of bits that can be changed in a tunnel, in this case 3, is called the strength of the
tunnel.

5.4.2 Notation for tunnels

We will use the notation 7 (Q;, m;) for the tunnel consisting of those bits of @); that do not change
Wis, ..., Wi but do change Wj41 = m;. In other words those bits of @; that we can change
such that Q17,...,Qk+1 remain unaffected while Qx42 does change. Naturally all such possible
tunnels are disjoint as each bit of @); changes an unique first message word Wj41. E.g. the example

22 5 COLLISION FINDING IMPROVEMENTS

tunnel above consisting of the bits Qg[21], Q9[22] and Qg[23] and changing Wa4 = myg is notated
as 7(Qog, mg). Also since Q19[14] = 1 the bit Qg[14] changes m1, the bit Qg[14] is part of the
tunnel 7 (Qg,m10). Furthermore, the strength of a tunnel is the number of bits it consists of and
is denoted as S; ; = |7 (Q4, m;)|.

The tunnels that we will use in our results are:

Table 5-2: Tunnels for collision finding

Tunnel Required bitconditions | First affected Qy, t > 16
T(Qo,mg) | Quoli] =0AQu[1] =1 Q25
T(Q4,my4) Qs[i] =0AQgli] =1 Q24
T(Qo,m10) | Quoli] =1AQu[i]=1 Q22
T (Q10,m10) Quli]=0 Q22
T(Q4,ms5) Qsli] = 1A Qgli] =1 Q21
T(Qs,ms5) Qsli] =0 Q21

It should be noted that the tunnels and their required bitconditions above depend only on
the bits of Q; and not on the bits of Q}. Below we show the different tunnel strengths for all
differential paths in the Appendix:

Table 5-3: Tunnel strengths for known differential paths

’ Differential path H 89’9 ‘ 8474 ‘ 89’10 ‘ 810’10 ‘ 84’5 ‘ 55’5 H Total ‘
Wang’s first differential path 3 0 1 11 4 0 19
Wang’s second differential path 9 6 2 3 0 1 21
Our first block diff. path 16 4 1 2 0 0 23
Our second block diff. path 1 9 0 3 2 0 0 15
Our second block diff. path 2 9 1 2 2 0 0 14
Our second block diff. path 3 9 0 2 3 0 1 15
Our second block diff. path 4 9 1 1 2 0 0 13
Our diff. path [Table D-6 12 | 13 1 5 0 3 34
Our diff. path 11 17 1 5 1 1 36
Our diff. path 11 | 14 0 6 3 2 36
Our diff. path 10 | 14 1 8 1 4 38
Our diff. path 12 | 17 0 7 0 4 40
Our diff. path 12 | 15 1 7 1 1 37
Our diff. path 10 | 17 2 6 1 2 38
Our diff. path [Table D-20| 15 | 19 0 4 0 2 40

Especially in the last 8 differential paths above, one can see that we are able to optimize the
tunnel strength when constructing differential paths.

5.5 Collision Finding Algorithm

In this section we will present our near-collision block search algorithm. It is an extension of our
collision finding algorithms [21I] shown here as Algorithm and which were again based on
Klima’s algorithms [9]. For each of the two collision blocks we used a separate collision finding
algorithm. Using these two collision finding algorithms we were the first to be able to find collisions
for MD5 in the order of minutes. Currently with our three improvements (conditions for the
rotations, additional differential paths and the algorithms shown here) we are able to find collisions
for MD5 in several seconds on a single pc.

5.5 Collision Finding Algorithm 23

These algorithms depend on the fact that given ¢, the message block word W; = my, for some
k can be calculated from Qi4+1, Q, Qi—1, Qt—2, Q-3 using the formula

my =Wy = RR(Q41 — Qi, RCy) — fi(Qr, Qi—1, Qi—2) — Qi—3 — AC,.

Hence, we can choose the working states for the first round satisfying their bitconditions and then
determine the corresponding message block.

We extended these two collision finding algorithms using the tunnels in [subsubsection 5.4.2]
Furthermore we joined them into one near-collision block search algorithm in Algorithm [5.3] which
also is suited for our differential paths we use later on (e.g. . As these differential paths
have a lot more bitconditions than the differential paths by Wang et al., we tried to maximize the
number of choices at each step. During the construction of the differential paths themselves we
also tried to maximize their total tunnel strength.

Using these optimizations we were able to efficiently find collision blocks for the differential
paths we use later on (e.g. in chosen-prefix collisions using in the order of 2*? com-
pressions, whereas using the basic algorithm in [fubsection 4.5 this would be infeasible. As these
differential paths have a lot more bitconditions than e.g. the ones used in Wang’s attack, the basic
algorithm would need in the order of 2'% compressions to find a collision block, which is even
harder than a brute-force collision search of approx. 264 compressions.

Algorithm 5.1 Block 1 search algorithm
Note: conditions are listed in [Table B-3] See [subsection 5.1] for the conditions on Tsy and T3y.

1. Choose Q1,@s, - .., Q16 fulfilling conditions;
2. Calculate mqg, mg, ..., m1s5;
3. Loop until @17, ...,Q2; are fulfilling conditions:
(a) Choose Q17 fulfilling conditions;
(b) Calculate m; at ¢t = 16;
(c) Calculate Q2 and ma,ms, my, ms;
(d) Calculate Q1s, ..., Q21;

4. Loop over all possible Qq, Q1¢ satisfying conditions such that mq; does not change:
(Use tunnels 7 (Qg, m10), 7 (Qg,mg) and T (Q10,™M10))

(a) Calculate mg, mg, mig, Mm12,M13;
(b) Calculate Qa2, .- ., Qea;

(¢) Verify conditions on Qas, ..., Qe4, To2, T34 and the I HV -conditions for the next block.
Stop searching if all conditions are satisfied and a near-collision is verified.

5. Start again at step 1.

24 5 COLLISION FINDING IMPROVEMENTS

Algorithm 5.2 Block 2 search algorithm
Note: conditions are listed in [Table B-4l See [subsection 5.1] for the conditions on T59 and T34.

1. Choose Qs, ..., Q14 fulfilling conditions;

2. Calculate ms, ..., m1s;

3. Loop until @17, ...,Q21 are fulfilling conditions:
(a) Choose @ fulfilling conditions;
(b) Calculate myo,...,my;
(¢) Calculate Q17,...,Q21;

4. Loop over all possible Qq, Q1¢ satisfying conditions such that mi; does not change:
(Use tunnels T (Qg, m10), 7 (Qg,mg) and T (Q10,M10))

(a) Calculate mg, mg, mig, Mm12,M13;

(b) Calculate Qa2, - ., Qs4;

(¢) Verify conditions on Qas, ..., Qs4, Ta2, T34.
Stop searching if all conditions are satisfied and a near-collision is verified.

5. Start again at step 1.

In our near-collision block search algorithm below in [5.3] one should keep the bits of tunnels
T(Q4,m4), T(Q4,m5), T(Q5,m5), T(Qg,?ﬂg), T(Qg,mlo) and T(Qlo,mlo) zero-valued. Only
at the step where one uses the tunnel we will use the different values for the bits involved. It is
more efficient to fix these tunnels before starting the collision search by applying their required
conditions and making use of precomputed tables. However it is also possible to determine these
tunnels at the step they are used. Furthermore, when e.g. using Wang’s first block differential
path one should not actually build the set Mg as all values of mg will do and 232 words would
require 16GB of memory. In general one should not build this set if it would require more memory
than some large memory bound, and simply use random values mq at step 11. and then verify if
@1 and Q- satisfy their conditions.

We have done a complexity analysis using our latest implementation of Wang’s attack where
we distinguish between three cases for the IV: the MD5 initial value IHVj, recommended I'V’s
as in and arbitrary I'V’s. Table below shows the collision finding complexity as
the cost equivalent to computing the stated number of compressions and the amount of time it
takes on a 2.6Ghz Pentium4 pc.

Table 5-4: Collision finding complexity

Avg. complexity | Avg. time

IV case in compressions | in seconds
MD5 IV =1HV, 2236 4.2
Recommended I'V'’s 2241 6.2

Random IV'’s 024.8 10.0

5.5 Collision Finding Algorithm 25

Algorithm 5.3 Near-collision block search algorithm

1.
2.
3.

© XN o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

Choose random Qs, ..., Qs and @13, ..., Q17 fulfilling conditions;
Calculate my at step t = 16;

Build a set M of values mg such that Q1 and Q2
resulting from mg and my fulfill their conditions;

For all values of @7 that fulfill conditions do:
Calculate mg at step t = 6 and Q15 at step t = 17;
If Q15 does not satisfy conditions continue at step 4.;
For all values of Qs, ..., Q12 fulfilling conditions do:
Calculate mq; at step t = 11 and @19 at step t = 18;
If Q19 does not satisfy conditions continue at step 7.;
For all mg € Mg do:
Calculate 1, Q2 and Q2o at steps t = 0, 1, 19 respectively;
If Q20 does not satisfy conditions continue at step 10.;
Use tunnels 7 (Q4,m5) and 7 (Qs5,ms) and do:
Calculate my at step t = 5 and Q27 at step t = 20;
If Q21 does not satisfy conditions continue at step 13.;
Use tunnels 7 (Qg, m1g) and T (Q10,m10) and do:
Calculate myg at step t = 10 and Q22 at step t = 21;
Calculate my5 at step t = 15 and Q23 at step t = 22;
If Q22 or Q23 does not satisfy conditions continue at step 16.;
Use tunnel 7 (Q4, my), do:
Calculate my4 at step t = 4 and Q24 at step t = 23;
If Q24 does not satisfy conditions continue at step 20.;
Use tunnel 7 (Qg,myg), do:
Calculate remaining m; at t =i € {0,...,15};
Calculate Qos5, . . ., Qg4;
Verify near-collision and return B = (m;)13, if so;
od; (step 23.)
od; (step 20.)
od; (step 16.)
od; (step 13.)
od; (step 10.)
od; (step 7.)
od; (step 4.)
Start again at step 1.

26 6 DIFFERENTIAL PATH CONSTRUCTION METHOD

6 Differential Path Construction Method

Assume MD5Compress is applied to pairs of inputs for both intermediate hash value and message
block, i.e., to (IHV, B) and (IHV’, B"). We will assume that both 6IHV and §B = (6m;)}2, are
given and possibly even ITHV and IHV' or bits thereof. Note the slight abuse of notation here as
we use only differences such as dm; without specifying the values m; and m/. We will continue to
do so in our differential analysis.

A differential path for MD5Compress is a precise description of the propagation of differences
through the 64 steps caused by I HV and §B:

oy = ft(QQ,QQq,QLz)—ft(Qt,Qttht—z);

5Tt = 5Ft +6Qt_3 +5Wt,
(SRt = RL(TtI, RC’t) — RL(Tt, RCt),
6Qt+1 = (SQt + (SRt

Note that F; is not uniquely determined by 0Q;, §Q:—1 and dQ;_o, so it is necessary to describe
the value of §F; and how it can result from the Q;, @} in such a way that it does not conflict with
other steps. Similarly R, is not uniquely determined by 67; and RCY, so also the value of §R;
has to be described.

6.1 Bitconditions

We will use bitconditions on (Q, Q}) to describe differential paths, where a single bitcondition
specifies directly or indirectly the values of the bits Q;[i] and Q}[i]. Therefore, a differential path
can be seen as a matrix of bitconditions with 68 rows (for the possible indices t = —3,—2,...,64
in Q¢ @}) and 32 columns (one for each bit). A direct bitcondition on (@[], Q;[i]) does not
involve other bits Q;[k] or Q; [k], whereas an indirect bitcondition does, and specifically one of
Qi—2[i], Qi—1[i], Qi+1[i] or Qus2[i]. Using only bitconditions on (Qy, Q) we can specify all the
values of §Q¢, 0F; and thus 67; and 0 R; = 0Q¢+1 — dQ: by the relations above. A bitcondition on
(Q:[7], Q3]7]) is denoted by g¢[é], and symbols like 0,1, +, =, ~, ... are used for g;[¢], as defined below.
The 32 bitconditions (q¢[i])?1, are denoted by q;. We discern between differential bitconditions
and boolean function bitconditions. The former, shown in Table are direct, and specify the

Table 6-1: Differential bitconditions.
q:+[i] | condition on (Qq[¢], QL[7]) | ki
- Qe[1] = Q4[] 0
+ Qi) =0, @lil=1 | +1
- Qli]=1, @Qj=0 | -1

Note: 6Q; = Z?io 2ik; and AQy = (k;).

value k; = Q}[i] — Q;[i] which together specify 6Q; = > 2'k; by how each bit changes. Note that
AQ: = (k;) is actually a BSDR of §Q;. The boolean function bitconditions, shown in Table
are used to resolve any ambiguity in

AFR[i] = fu(@ili], Qi1 [i], Q15 [i]) — fe(Q:[i], Qe—1i], Qe—2[i]) € {—1,0,+1}

caused by different possible values for Q;[i], Q’[i] for given bitconditions.

As an example, for t = 0 and bitconditions (q¢[i], q¢—1[i], q¢—2[i]) = (.,+,-) there are two
different possible values for the tuple (Q:[i], Q:[i], Q+—11[i], Q}_1[i], Qr—2]i], Q}_5i]) satisfying these
bitconditions. As each case leads to a different boolean function difference, there is an ambiguity:

if Q¢[i] = Q}[i] = 0 then AF[i] = f:(0,1,0) — £:(0,0,1) = —1,
but if Q:[i] = Q}[i] =1 then AF[i] = f:(1,1,0) — f:(1,0,1) = +1.

6.2 Differential path construction overview 27

Table 6-2: Boolean function bitconditions.

q¢[] condition on (Qq[¢], Q}[7]) direct/indirect | direction
Q:i] = Qi =0 direct
Qi = Qi =1 direct
Q+i] = Qi) = Qe-1l7] indirect backward
v Q+[i] = Qi) = Qe41l] indirect forward
! Q+[i] = Qi) = Qe-117] indirect backward
v Q+li] = Qi) = Qe41l7] indirect forward
m Q+i] = Q4li] = Qi—2l] indirect backward
W Q7] = Qili] = Qu+2[7] indirect forward
Q+i] = Qi) = Qi—2l7] indirect backward
h Q+[i] = Q7] = Qe42]] indirect forward
? | Qi) = Qi) A Qi) =1V Qr—2[i] =0) indirect backward
q | Qi) = Qi) AM(Qes2]i] = 1V Q4i] = 0) indirect forward

To resolve this ambiguity, the bitconditions (.,+,~) can be replaced by either (0,+,-) or (1,+-).
Later on we will show how one can efficiently determine and resolve ambiguities methodically.

All boolean function bitconditions include the constant bitcondition Q[i] = Q}[é], so they
do not affect §Q);. Furthermore, indirect boolean function bitconditions never involve a bit with
condition + or -, since then it could be replaced by one of the direct bitconditions ., 0 or 1.
We distinguish in the direction of indirect bitconditions, since that makes it easier to resolve an
ambiguity later on. It is quite easy to change all backward bitconditions into forward ones in a
valid (partial) differential pathm, and vice versa.

When all §@Q; and 0 F} are determined by bitconditions then also §7; and § R; can be determined,
which together describe the bitwise rotation of §7; in each step. Note that this does not describe
if it is a valid rotation or with what probability the rotation from 67} to dR; occurs.

6.2 Differential path construction overview

The basic idea in constructing a differential path is to construct a partial lower differential path
over steps t = 0,1,..., K for some K and a partial upper differential path over steps t = K +
5,17,...,63, so that the @; involved in the partial paths meet but do not overlap. Then we will
try to connect those partial paths over the remaining 4 steps into one full differential path. This
will most likely fail and in general one will have to try to connect many pairs before finding a
full valid differential path. The success probability depends heavily on the amount of freedom
left by those bitconditions in the partial differential paths that affect the remaining steps ¢ =
K+1,K+2 K+3 K+4.

Connecting those two partial paths will result in a lot of bitconditions, hence it is best to
have K + 4 < 17 to keep collision finding feasible. We chose K = 12 as then one can already
determine (and maximize) the total tunnel strength of the resulting full differential path even
before connecting. However, this choice may lead to problems as there can be a lot of conditions
on Q_o,...,Q2 and @13, ...,Q17 which can result in a very limited (perhaps empty) set of values
my for which these conditions can simultaneously be satisfied. In this case, another good choice
would be K = 11 as there one also has a good idea of total tunnel strength, however there will be
less conditions on Q17 and more freedom for m;.

Constructing the partial lower path can be done by starting with bitconditions q_3, q_2, q_1,
qo that are equivalent to given values of THV, IHV’ and then extend this step by step. Similarly
a partial upper path can be constructed by extending the partial path in Table [7-1] step by step.
Alternatively one can construct by hand any partial lower or upper differential path and then
extend this step by step using our method. E.g. one could use the first and last parts of Wang’s
original differential paths and extend those till they meet and try to complete them in an effort
to maximize the total tunnel strength.

28 6 DIFFERENTIAL PATH CONSTRUCTION METHOD

To summarize, the algorithm for constructing a differential path consist of the following sub-
steps:

1. Using IHV and IHV’ determine bitconditions (g;)?__; which already form a partial lower
differential path.

2. Generate a partial lower differential path by extending (q;)?__5 forward up to step ¢t = K.

3. Generate a partial upper differential path by extending the path in Table down to
t=K+5.

4. Try to connect these lower and upper differential paths over t = K +1, K +2, K + 3, K + 4.
If this fails generate other partial lower and upper differential paths and try again.

6.3 Extending partial differential paths

Suppose we have a partial differential path consisting of at least bitconditions q;—1 and gq;—» and
that the values §Q); and dQ;_3 are known. We assume that all indirect bitconditions are forward
and do not involve bits of Q);. We want to extend this partial differential path forward with step
t resulting in the value §Q;41 and (additional) forward bitconditions q¢, q¢—1, qi—2 fulfilling our
assumptions for the next step ¢ + 1. If we also have q; instead of only the value §Q: (e.g. qo
resulting from given values THV, THV’), then we can skip the carry propagation and continue at

Section [6.3.2

6.3.1 Carry propagation

First we want to use the value §Q; to select bitconditions gq;. This can be done by choosing any
BSDR of 6@, which directly translates into a possible choice for g consisting of only differential
bitconditions as given in Table [6-1} Since we want to construct differential paths with as few
bitconditions as possible, but also want to be able to randomize the process, we may choose any
low weight BSDR (such as the NAF).

6.3.2 Boolean function

For some 1, let (a,b,c) = (q:+]¢], q:—1[¢], q:—2[¢]) be any triple of bitconditions such that all indirect
bitconditions involve only Q:[i], Q:—1[i] or Q:—2[i]. The triple (a,b,c) is associated with the set
Uabe of tuples of values (x,2’,y, v, z,2") = (Q[i], Q4[i], Qe—1[i], Qi_1[i], Qi—2[i], Q:_5[i]):

Uabe = {(z, 2, y,y', 2,2") € {0,1}° satisfies bitconditions (a,b,c)}.

If Ugpe = 0 then (a,b,c) is said to be contradicting and cannot be part of any valid differential
path. We define F; as the set of all triples (a, b, ¢) such that all indirect bitconditions involve only
Q+li], Qi—1[i] or Q¢—2[i] and Ugpe # 0.

We define V. as the set of all possible boolean function differences AF[i] = fi(2',y',2") —
fi(x,y, z) for given bitconditions (a, b, c) € Fy:

Vabe = {ft(xlay/7zl) - ft($7y7z) | (x,x/,y,y/,z7zl) € Uabc} - {_1707+1}‘

There are bitconditions (d, e, f) such that |Vges| = 1, hence they leave no ambiguity and the
triple (d, e, f) is said to be a solution. Let S; C F; be the set of all solutions.

Now for arbitrary (a,b,c) and for each g € Vi we define Wype 4 as the set of solutions
(d,e, f) € S; that are compatible with (a,b,c) and that have g as boolean function difference:

Wabc,g = {(daevf) Sy | Udef C Ugpe N Vdef = {g}}

Note that for all g € Vg there is always a triple (d,e, f) € Wype 4 that consists only of direct
bitconditions 01+~ fixing a certain tuple in Ugpe, hence Wype g # 0. Even though W 4 is not

6.3 Extending partial differential paths 29

empty for all g € Vi, we are interested in bitconditions (d, e, f) € Wape, ¢ that maximizes |Ugey|
as this maximizes the amount of freedom in the bits of @y, Q;—1 and @Q;—2 while fixing AF[i].

The direct and forward (resp. backward) boolean function bitconditions in were
chosen such that for all ¢, i and (a,b,c¢) € F; and for all g € V. there exists a triple (d,e, f) €
Wape,q consisting only of direct and forward (resp. backward) bitconditions such that

{(55733/73/72//72,2/) S Uabc | ft(iﬂ/,y/yzl) - ft($7y,2) = g} = Udef-

In other words, the chosen boolean function bitconditions allows one to resolve an ambiguity in
an optimal way.

If this triple (d, e, f) € Wape,g is not unique, then we prefer direct over indirect bitconditions
and short indirect bitconditions (vy~!) over long indirect bitconditions (whqm#?) for simplicity
reasons. For given ¢, bitconditions (a,b,c), and g € V. we define FC(t,abe,g) = (d,e, f) and
BC(t,abc, g) = (d,e, f) as the preferred triple (d, e, f) € Wapc, 4 consisting of direct and forward,
respectively backward bitconditions satisfying

{(xﬂxlvyvylﬂz’zl) € Uabe | ft(x/ay/azl) - ft(x,y,z) = g} = Udef~

These values can easily be determined and should be precomputed for all cases. Tables
and show these values F'C(t,abc,g) and BC(t,abc,g) for all ¢ (grouped per boolean
function) and all (a, b, ¢) consisting of differential bitconditions.

For all ¢ = 0,1,...,31 we have by assumption valid bitconditions (a,b,c) = (q¢[i], qt—1[i],
q¢—2[i]) where only ¢ can be an indirect bitcondition. If so, it must involve Q¢—1[i]. Therefore
(a,b,c) € Fi. If [Vape| = 1 there is no ambiguity and we let {g;} = Vipe. Otherwise, if |[Vipe| > 1,
then we choose any g; € Vgp. and we resolve the ambiguity left by bitconditions (a, b, ¢) by replacing
them by (d, e, f) = FC(t, abc, g;), which results in boolean function difference g;.

Given all g;, the values 0F; = Z?io 2ig; and 6T, = 0F, + 6Q¢_3 + W, can be determined.

6.3.3 Bitwise rotation

The word 07; does not uniquely determine the value of dR; = RL(T/,n) — RL(T;,n), where
n = RC}. To determine a likely dR; we use the fact that any BSDR (k;) of 67} fixes a dRy:

31 31 31—n 31
(5Rt — Z 2i+n mod 32 (Tt/[l] _ Tt [Z]) — Z 21+n mod 32ki — 2TL Z 2Zk1 + 2%—32 Z 27’]61
=0 =0 =0 1=32—n

One can easily see that different BSDRs (k;) and (I;) of 6T} result in the same 6R, as long as

31—n 31—n 31 31
S 2ki= Y 2% and Y k= Y 2.
=0 =0 i=32—n i=32—n

In general, let (o,) € Z? be a partition of the word 6T} with a+8 = 6T; mod 232, |a| < 23277,
|3| < 232 and 2327"|B. For any partition there is a BSDR, (k;) of 6T} such that

31-n 31
a= Z 2k, and = Z 2k,
i=0 i=32—n

The converse also holds as for any BSDR (k;) of 7} defining o and 3 as above forms a partition
(a, B) of §T;. We will denote (k;) = («, 3) in this case.
The rotation of (a,) is defined as

6R; = RL((a, B),n) = (2" +2""*?3 mod 2*?) (= RL((k;),n)).

This matches exactly the definition of rotating the BSDR (k;). Clearly different partitions (a,)
of 0T} lead to different d R;. We actually can describe all possible partitions quite easily and also
determine their probability Pr[dR; = RL(X + 6T;,n) — RL(X,n)].

30 6 DIFFERENTIAL PATH CONSTRUCTION METHOD

Let x = (6T; mod 2327") and y = (67; — x mod 232), then 0 < x < 2327 and 0 < y < 232,
This gives rise to at most 4 partitions of 67}:

o (a,f8)=(z,y);

b (a76) = ($,y—232), lfy#oa

o (a,f8) = (x— 237" y+ 23277 mod 232), if x #0;

o (a,8)=(x—2%"" (y+2327" mod 232) — 232) if x # 0 and y + 2327" # 0 mod 2%2.

And these are all possible partitions of 67;. The probability of each partition (a, 8) equals

_ 2% o] 22 g
PaB) = T o32=n T 932 -

This formula is derived by counting the number of 0 < X < 232 such that for the BSDR defined
by k; = (X 4+ 6T)[i] — X[¢] it holds that («, 5) = (k;). Looking only at the first 32 — n bits we can
determine for a given « the probability that it will occur as a = Zfig" k;. This can be done by
determining the number 7 of 0 < X < 2327 such that 0 < o + X < 2327, Now we distinguish
cases: if @ < 0 then r = 2327 4+ o and if @ > 0 then 7 = 2327 — . Hence r = 232" — |a] out
of 23277 X’s. If a = Zfig” k; holds then there is no carry to the higher bits and we can use the
same argument for 3/232=". Hence, we conclude

232771 _ |C¥‘ on _ |ﬂ|2n732 B 2327n _ |Oé| 232 _ |ﬂ|

Plap) = To32=n on 932—n 932

One then chooses any partition («, 3) for which p(, 5) > 1 and determines 6R; as RL((a,), n).
Previously in practice, we used 6R; = RL(NAF(0T;),n) as this often leads to the highest proba-
bility, especially given that we try to minimize the amount of differences in dQ; and therefore also
in 67; and 0 R;.

We would like to note that in previous work [19] a brute-force approach was used over all
232 words X to find all possible 6R; = RL(X + §T;,n) — RL(X,n) resulting from §7; and their
probabilities. As we show here, finding all possible d R; and their probabilities can be done very
efficiently using a tiny number of computations.

6.4 Extending backward

Similar to extending forward, suppose we have a partial differential path consisting of at least
bitconditions q; and q;—; and that the differences 0Q;11 and §Q;_o are known. We want to
extend this partial differential path backward with step t resulting in §@Q;—3 and (additional)
bitconditions q¢, q:—1,q¢t—2. We assume that all indirect bitconditions are backward and do not
involve bits of Q;_s.

We choose a BSDR of §Q;_2s with weight at most 1 or 2 above the lowest weight, such as the
NAF. We translate the chosen BSDR into bitconditions q;—_s.

For all ¢ = 0,1,...,31 we have by assumption valid bitconditions (a,b,c) = (q:[7], qe—1[Z],
q+—2[i]) where only b can be an indirect bitcondition. If so, it must involve Q;_s[i]. Therefore
(a,b,c) € Fi. If |Vape| = 1 there is no ambiguity and we let {g;} = Vipe. Otherwise, if |Vipe| > 1,
then we choose any g; € Vgpe and we resolve the ambiguity left by bitconditions (a, b, ¢) by replacing
them by (d, e, f) = BC(t, abc, g;), which results in boolean function difference g;. Given all g;, the
value 6F;, = 3221 27g; can be determined.

To rotate dR; = 0Q+1 — 0Q¢ over n = 32 — RC} bits, we simply choose a partition («, 3) of
0R; with probability > 1/4 and determine 67; = RL((«, 3),n). Finally, we determine 6Q;_5 =
0Ty — 0F; — W, to extend our partial differential path backward with step t¢.

6.5 Constructing full differential paths

Construction of a full differential path can be done as follows. Choose 6@ _3 and bitconditions q_s,
q—1, qo and extend forward up to step 11. Also choose dQ¢s and bitconditions gg3, qe2, qe1 and

6.5 Constructing full differential paths 31

extend backward down to step 16. This leads to bitconditions q_s,q—1,.-.,911, 914, 915, - - - , 463
and differences 6Q_3,3Q12,0Q13,0Q¢64. It remains to finish steps t = 12,13,14,15. As with
extending backward we can, for ¢t = 12,13, 14, 15, determine dR;, choose the resulting §7T; after
right rotation of § R; over RC; bits, and determine F; = 6T — Wy — 6Q4_3.

We aim to find new bitconditions q19,q11,--.,q15 that are compatible with the original bit-
conditions and that result in the required 6Q12, 6Q13, 0 F12,6F13,0F14,dF15, thereby completing
the differential path. First we can test whether it is even possible to find such bitconditions.

For i = 0,1,...,32, let U; be a set of tuples (q1,q2, f1, f2, f3, f1) of 32-bit integers with ¢; =
fr =0 mod 2 for j = 1,2 and k = 1,2,3,4. We want to construct each U; so that for each
tuple (q1, q2, f1, fo, f3, f4) € U; there exist bitconditions qi1[¢], q11[4], ..., q15[¢], determining the
AQ114;[¢] and AF114£[¢] below, over the bits £ =0,...,i — 1, such that

i—1
0Qui; =g+ 2°AQuyld, j=1.2
=0
i—1
0Fiiyr = frut+ > 2°AFngl], k=1,234
=0

This implies Uy = {(§Q12,0Q13,0F12,0F13,0F14,0F15)}. The other U; are constructed inductively
by Algorithm by exhaustive search. Furthermore, |U;| < 25, since for each gj, fi there are at
most 2 possible values that can satisfy the above relations.

If we find Uss # 0 then there exists a path ug,u1,...,uss with u; € U; where each u;y1 is
generated by u; in Algorithm Now the desired new bitconditions (qi5[¢], q14[é], - - ., q10[i]) are
(a0, ", d",e", f), which can be found at step 13 of Algorithm [6.1} where one starts with u;
and ends with ;1.

Clearly, the probability of success and thus the complexity of constructing a full differential path
depends on several factors, where the amount of freedom left by the bitconditions q19, q11, 914, 915
and the number of possible BSDR’s of §Q)12 and §Q)13 are the most important.

Algorithm 6.1 Construction of U; 1 from U;.

Suppose U; is constructed as desired. Set U;11 = @) and for each tuple (g1, qo, f1, f2, f3, f1) € U;
do the following:

1. Let (a,b,e, f) = (q15[d], q14[4], a11[7], q10[?])-
2. For each bitcondition d = qy2[i] € { {-} if .11 i (1) do

S i gl
3 Let ¢; =0,—1,+1 for resp. d =.,-,+
4 For each different f{ € {—fi[d], +f1[i]} N Vaes do
5 Let (d, ¢, f') = FC(12,def, f])
L . : if gofi] = 0
6. For each bitcondition ¢ = qy3[i] € { %_7}_‘_} if g H _ do
7 Let ¢5 = 0,—1,+1 for resp. ¢ =.,-+
8 For each different f; € {—fa[i], +f2[i]} N Veqrer do
9 Let (¢/,d",e") = FC(13,cd'e, f})
10. For each different f5 € {—f3[i], + f3[i]} N Vierar do
11. Let (¥, ¢",d") = FC(14,bdd", 3)
12. For each different f) € {—fa[i], +fa[i]} N Vaprerr do
13. Let (a',0",c") = FC(15,ab'c", 1)
14. Insert (q1 —2%q), g2 — 2qh, f1 — 201, fa — 20 5, fa — 20 f4, fa— 20 f}) into Uy 1.

Keep only one of each tuple in U471 that occurs multiple times. By construction we find U;11 as
desired.

32 7 CHOSEN-PREFIX COLLISIONS

7 Chosen-Prefix Collisions

A chosen-prefix collision is a pair of messages M and M’ which consist of arbitrary chosen prefixes
P and P’ (not necessarily of the same length), together with constructed suffixes S and S’ such
that M = P||S, M’ = P'||S" and MD5(M) = MD5(M’). Furthermore, appending an arbitrary
suffix S to each of these messages still leads to a collision M D5(M||S”) = M D5(M'||S") of MD5.
In this section we will present our joint work with Arjen Lenstra and Benne de Weger which is
a method to construct such chosen-prefix collisions. Using this method we have constructed one
example of a chosen-prefix collision, namely two colliding X.509 certificates with different identities
[22] which we will refer to often. Details on this example itself are discussed in

The two suffixes we will construct consist of three parts: padding bitstrings S, and SI’), followed
by ‘birthday’ bitstrings S and S}, followed by ‘near collision’ blocks S. and S.. The padding
bitstrings S, and S, are chosen to guarantee that the bitlengths of P||S, and P’||S} are both
equal to L = 512n — 96 for a positive integer n. They can be chosen arbitrarily but must meet the
length requirements. The ‘birthday’ bitstrings .S, and S; both consist of 96 bits and complete the
n-th block. Applying MD5 to P||S,||Sy and P’||S}||S, will result in IHV,, and I HV,), respectively.
The ‘birthday’ bitstrings are constructed in such a manner that 6/ HV,, can be eliminated using
several near-collision blocks in S, and S, as described below.

The main idea is to eliminate the difference 61 HV;, using several consecutive near-collisions that
together constitute S, and S.. The number of differences in 61 HV,, = (da, db, dc, dd) is measured
using the NAF weight, the total weight of the NAF's of da, §b, éc and dd. For each near-collision we
need to construct a differential path such that the NAF weight of the new 61 HV;,1 ;41 is lower than
the NAF weight of 6IHV,,4;, until after r near-collisions we have reached 6IHV,4, = (0,0,0,0).

7.1 Near-collisions

We will use near-collisions based on a family of upper differential paths using the message block
difference émq, = 2% for varying 0 < d < 31 and dm; = 0 for 4 # 11. This was suggested to
us by Xiaoyun Wang as with this type of message difference the number of bitconditions over the
final two rounds can be kept very low. This is illustrated in where the corresponding
upper differential path is shown for the final 31 steps. As one can see in these message
block differences maximizes the number of steps in the third and fourth round with §@Q; = 0.

Table 7-1: Partial differential path with dmq; = £2¢.

t] 5Q [6F [W, | oT; | SR, | RC, |

30 T2

31 0

32 0

33 0 0 [+£2¢] 0 0 16
34— 60 | 0 oo] o] 0 - |

61 0 0 |29 | £2¢ | £2d+10mod 32 11 7

62 42d+10mod 32 11 () 0 0 0 15

63 42d+10mod 32 11 () 0 0 0 21

64 i2d+10 mod 32

Although the number of bitconditions over the final two rounds is very low, the second round
will contain in the order of 100 bitconditions. Would these bitconditions have occurred in the
third or fourth round, they would have implied a collision finding complexity of approx. 21°° com-
pressions. However, in our case there will be in the order of only 30 bitconditions from Q25 up to
Q33, where Qo5 is the POV of the most efficient tunnel 7 (Qq, mg) (See. Because of this
fact and using the collision finding techniques described in we were able to find actual
near-collision blocks within feasible time.

7.2 Birthday Attack 33

7.2 Birthday Attack

The differential paths under consideration can only add (or substract) a tuple (0,2¢,2¢ 2%) to
0IHV,; and therefore cannot eliminate arbitrary dIHV;,,. Specifically, we need 6/ HV,, to be of
the form (0, &b, 0b, db) for some word §b.

To solve this we first use a birthday attack to find ‘birthday’ bitstrings Sy, and S{ such that
0IHV, = (0,6b,06b,0b) for some db. The birthday attack actually searches for a collision of
IHV, = (a,b,e,d) and THV,, = (a’, ¥, ¢, d’) such that (a,b—c,b—d) = (a/, ' =/, —d'), implying
indeed da = 0 and 6b = dc = dd. The search space consists of 96 bits, 3 words (a,b—c¢,b—d) of 32
bits each, and therefore the birthday step can be expected to require on the order of |/52% =~ 249
calls to the MD5 compression function.

As soon as a collision with some 0b is found, one can start eliminating the differences in 0b.
Using our family of upper differential paths we can eliminate any signed bit of b. Since the NAF
of b has lowest weight among BSDR’s, eliminating the signed bits in this NAF will lead to the
lowest number of near-collisions required. Hence, on average one may expect to find a b of NAF
weight 32/3 ~ 11. One may extend the birthdaying by searching for a db of lower NAF weight.
In the case of our colliding certificates example we found a db of NAF weight only 8, after having
extended the search somewhat longer than absolutely necessary.

When actually implementing such a birthday attack, one needs to fix a IHV selection function
¢ (x,y,2) — {IHV,,IHV,} and a message block generating function ¢ : (z,y,z) — B. E.g.
for ¢ one can use the parity of x to map either to THV,, or IHV, and for ¢ one can use a
partial 416 bit block R and map to R|/z|ly||z. These functions are used to compose the function
®: (z,y,2) — (a,b—c,b—d) where (a,b,c,d) = MD5Compress(¢(z,y, z),¥(z,y, z)), which is a
deterministic pseudo-random walk in our 96 bit search space.

Applying generic Pollard-Rho, one can find a collision ®(x,y, z) = ®(2',y', 2’) with (z,y, z) #
(2,9, 2"). The collision is useful only if ¢(z,y, z) # ¢(2',y’, 2’), i.e. the collision does not consist
of only one of our chosen prefixes. Directly parallelizing Pollard-Rho using K instances does not
lead to a factor K speedup, rather to a v/K speedup. We refer to [23] for a method to parallelize a
birthday search leading to a factor K speedup. We have implemented this method in our birthday
search for our chosen-prefix collision example.

Their general idea is to fix a relatively small set S of tuples (z,y, z) called distinguished points.
E.g. all tuples (z,y, z) having x = 0. Each instance will generate ‘trails’ starting with a random
(20,Y0,20) and iteratively calculate (z;y1,¥yit1,2i+1) = P(24,v:, 2;) until a distinguished point
(x1,y1,21) € S is reached. Each trail can be stored using only its starting point (o, Yo, 20), its
ending point (x;, y;, ;) € S and its length [. When one trail meets another trail in a point then the
two trails will coincide from that point on and will end in the same distinguished point. Hence,
a collision is detected when different trails result in the same distinguished point. The collision
itself can then be found by recalculating both trails to the point where they meet first.

However, there are some small issues one has to be aware of. When a trail reaches its starting
point it will fall into an endless cycle without ever reaching a distinguished point. To avoid this
case one should abort any trail whose length exceeds a certain limit, e.g. a limit set to 20 times
the expected trail length. It is also possible that a trail reaches the starting point of another trail
so that both end in the same distinguished point without yielding an actual collision. This cannot
be avoided and should only occur with a very small probability.

7.3 Iteratively Reducing I HV-differences

Assume we have found birthday bitstrings such that dTHV,, = (0, b, b, db) and let (k;) be the
NAF of §b. Then we can reduce 6T HV,, = (0, b, db, §b) to (0,0, 0,0) by using, for each non-zero k;,
a differential path based on the partial differential path inwith dmyg = —k; 20710 mod 32,
In other words, the signed bit difference at position i in db can be eliminated by choosing a message
difference only in dmq1, with just one opposite-signed bit set at position ¢ — 10 mod 32. Let i; for
j =1,2,...,r be the indices of the non-zero k;. Starting with n-block messages M = P||S,||S
and M’ = P'||S]||S], and the corresponding resulting IHV,, and IHV, we do the following for

34 7 CHOSEN-PREFIX COLLISIONS

j=1,2,...,r in succession:
L. Let 6Mpq; = (0m;) where dmyy = —k;; 25710 med 32 and §my = 0 for € # 11.

2. Find a full differential path as shown in by connecting a lower differential path
starting from THV,,4; 1 and IHV,,; ; and an upper differential path based on [Table 7-1l

3. Find message blocks Sc ; and S; ; = S.; + 6M,;, that satisfy the differential path using
the techniques shown in

4. Let IHV,4; = MD5Compress({ H V-1, Sc ;), I[HV, . ; = MD5Compress(IHV, ; 1,5 ;),
and append S. ; to M and S ; to M'.

After r iterations we will have found a chosen-prefix collision consisting of M = P||\S,||Ss||S. and
M’ = P'||S,||Sy]|Se. where S, and S consist of the near-collision blocks S, = Sc1| - |5, and
S, =S|l [ISe, just found. Any suffix S; appended to both messages M||S,, M’||S, will still
lead to a full collision of MD5, which is useful to construct meaningful collisions for MD5.

7.4 Improved Birthday Search

The following partial differential path is a variant of using the same message block
differences. They differ only in the very last step where an additional bitdifference occurs. Both
partial differential paths have almost the same probability, one never differing more than a factor
2 from the other. If we also incorporate the use of this variant upper differential path then we

Table 7-2: Variant partial differential path with dm; = +2¢.

t 0Q; [6F, [oW | 0T, | OR, [RC: |

30 F24

31 0

32 0

33 0 0 |x2¢| 0 0 16
34— 60 | 0 o]0]o0 | 0 - |

61 0 0 [£29] £29 [£2dF10med 32177

62 +492d+10 mod 32 0 0 0 0 15

63 +2d+10 mod 32 0 0 0 0 21

64 :l:2d+10 mod 32 ES 2d+31 mod 32

can eliminate any 6IHV,, = (da,d0b,dc,dd) of the form da = 0, d¢c = dd. Note that there is no
limitation on db which corresponds to §Qg4.

A strategy eliminating the differences in a 61 HV;, of that form using near-collisions based on
the differential paths in [lable 7-1f and [Table 7-2| denoted as DP; and D P, respectively, is the
following. Let de = db—dc and consider (v;) = RR(NAF(—dc),10) and (w;) = RR(NAF(de), 31).
Then a non-zero v; corresponds to a bitdifference in db, dc, dd that can be eliminated using DP;
with dm1; = v;2¢ as shown in the previous subsection. Similarly a non-zero w; corresponds to a
difference in b — dd, i.e. one of the extra differences we allowed, which can be eliminated with
DP, using émy; = w;2%. In the latter case one still has to deal with a corresponding difference in
0b, dc, dd as we show below.

As a trivial example, suppose 6] HV = (0, +212—-21 4212 42!2), This clearly can be eliminated
using DP, with émy; = —22% as also the BSDR’s (v;) and (w;) indicate:

(v;) = RR(NAF(—2'%),10) = RR(—2'%,10) = —22,

(w;) = RR(NAF(-2"),31) = RR(-2%,31) = —2°.

7.5 Colliding Certificates with Different Identities 35

Depending on the values of v; and w; for each bit ¢ = 0,...,31 we can eliminate the corre-
sponding bitdifferences in §IHV,, with either 1 or 2 near-collision blocks. There are five distinct
cases which we analyze below:

1. When v; = 0 and w; = 0 there is no difference to be eliminated.

2. Suppose v; # 0 and w; = 0, then we can use DP;, with dm;; = ;2% as before to eliminate
the corresponding bitdifferences.

3. Suppose v; = w; # 0 then we can use DP, with dm1; = v;2° to eliminate the corresponding
bitdifferences as shown in the example.

4. Suppose v; = 0 and w; # 0 then we can use one near-collision based on D P, with dmy; =
w;2%. This introduces a new difference w;2!710 ™°d 32 in §b §¢ = §d, which we correct using

a second near-collision based on DP; with dmq; = —w;2°.
5. Suppose v; # 0 and w; = —v;. In this case we use DP, with dmq; = w;2¢. As in the previous
case this introduces the bitdifference w;2/710 mod 32 in §b. 5c = §d. As v; = —w; this signed

bitdifference was already present in 6b and dc = éd and a carry happens. If i + 10 = 31 then
this carry is lost and both differences v; and w; are eliminated. However if ¢ + 10 # 31 then
we can eliminate this carry bitdifference using DP; with dmq; = v;2°+! mod 32

As in the previous section we use DP; and DP, with a given dmq; and the current THV, 4 ;_;
and IHV, j—1 to construct a full differential path. Making use of our collision finding algorithm
we find message blocks S. ; and Sé)j satisfying this differential path. We append these message
blocks to M and M’, respectively, and continue with the resulting IHV,; and IHV,, 4; until
SIHV = (0,0,0,0).

Given that (v;) and (w;) are rotated NAF’s, the probability that a signed bit v; or w; is non-
zero equals 1/3. Also, v; or w; equals a specific value +1 or —1 with probability 1/6. Hence, we
can determine the probability for each of the five cases above:

Case 1 2 3 4 5
13 22 4 1 2 2 1 1 1 2 1 2 1 1 1
Probability |5 =5 |3-3=5|3°6=3|3°3=5 |3 6= 1s
Near-collisions 0 1 1 2 2

The expected number of required near-collisions per bit is (2 + x) -1+ (2 + 15) -2 = 2. It follows
that we can expect to need % -32 =~ 27 near-collision blocks to eliminate all differences in a random
01HYV, of the form da = 0 and dc = dd.

The birthday search has to be slightly modified as we only need a 64-bit search space. As before,
we need a THV selection function ¢ : (z,y) — {I[HV,,IHV.} and a message block generating
function ¢ : (z,y) — B. These functions are used to compose the function ® : (x,y) — (a,c — d)
where (a, b, ¢,d) = MD5Compress(¢(z,y), ¥ (x,y)). When a birthday collision ®(x,y) = ®(z’,y’)
with ¢(z,y) # ¢(2',y") occurs, we have found message blocks which result in a JTHV of the
required form da = 0 and dc = dd.

This more advanced strategy has not been tried, however we intend to construct another
chosen-prefix collision using this strategy in future work. One can also optimize between birthday
complexity and the number of required near-collision blocks. Finding a single birthday collision
costs /5204 ~ 233 compressions which is much more feasible compared to the previous birthday
search. One can easily extend the birthday search, as the cost for subsequent birthday collisions
decreases, to find collisions with fewer required near-collision blocks. An experimentation indi-
cated that the cost of finding a collision requiring approx. 14 near-collision blocks is approx. 23°
compressions.

7.5 Colliding Certificates with Different Identities

In March 2005 it was shown how Wangs collisions could be used to construct two different valid
and unsuspicious X.509 certificates with identical digital signatures [II]. These two colliding

36 7 CHOSEN-PREFIX COLLISIONS

certificates differed only in the two collision blocks which were hidden in the RSA moduli. In
particular, their Distinguished Name fields containing the identities of the certificate owners were
equal.

It would be interesting to be able to select Distinguished Name fields which are different and
chosen at will, non-random and human readable as one would expect from these fields. This can be
realized now as in our chosen-prefix collisions one can extend two arbitrarily chosen messages such
that the extended message collide. To achieve identical digital signatures for X.509 certificates one
does not need to construct full certificates which collide under MD5, rather only the to-be-signed
parts of the certificates need to collide under MD5.

We have constructed such an example of colliding X.509 certificates with different Distinguished
Name fields where the suffixes S, and S, are hidden in the first half of the RSA moduli. The second
half of the RSA moduli was constructed as in [I1] to complete the RSA moduli n; and ns in such
a manner that both are the product of two large primes and that the full certificates still collide
under MD5.

7.5.1 To-be-signed parts

The to-be-signed parts up to the first bit of the RSA moduli were carefully constructed to have
equal bitlength with the last block exactly 96 bits short of a full block. These to-be-signed parts
consist of several fields compliant with the X.509 standard and the ASN.1 DER encoding rules.

We actually constructed three chosen-prefixes to increase the probability that ¢(x,y,z) #
o(a',y',2') when a birthday collision ®(z,y,2) = ®(2’,4/,2’) is found. Naturally we continued
with only two of the three chosen-prefixes after the birthday search. The three chosen-prefixes
have Distinguished Names ” Arjen K. Lenstra”, ”Marc Stevens” and ”Benne de Weger”, notated
as Par, Pus and Ppyw respectively. The chosen-prefixes are given as bitstrings in
[Table D-2] and [Table D-3] Below we list all fields, and their values, which are contained in the
encoded chosen-prefixes:

Field 1. X.509 version number: Version 8 and identical for all three certificates;

Field 2. Serial number: Different in each chosen-prefix:

Par, : 010c00014¢,
Puys : 020c000146,
PBW : 030C000116;

Field 3. Signature algorithm: md5withRSAEncryption for all chosen-prefixes;
Field 4. Issuer Distinguished Name: The Certificate Authority (CA) and identical in each

case:
CN (Common Name) = "Hash Collision CA”,
L (Locality) = "Eindhoven”,
C (Country) = ”NL7;

Field 5. Validity period: Our certificates have the same validity period:

Not before : Jan. 1, 2006, 00h00m01s GMT
Not after : Dec. 31, 2007, 23h59m59s GMT

Field 6. Subject Distinguished Name: The identities are different in the Common Name
(CN) and Organisation (O) fields for each certificate: (The organisation name is chosen
such that the CN and O fields together hold exactly 29 characters to meet the length re-
quirements on the chosen-prefixes.)

Par | Pus | Ppw
CN = "Arjen K. Lenstra” | CN = "Marc Stevens” | CN="Benne de Weger”
O = ”Collisionairs” O="Collision Factory” | O="Collisionmakers”
L="Eindhoven” L="FEindhoven” L="Eindhoven”

C:7’ NL” C:77 NL’? C:” NL”

7.5 Colliding Certificates with Different Identities 37

Field 7. Public key algorithm: rsaFEncryption for all chosen-prefixes;

Field 8. RSA modulus: Only the length specifier of the RSA modulus is part of the chosen-
prefixes and is set to 8192 bits. The first byte after each chosen-prefix is also the first byte
of the RSA modulus itself.

When we have found the RSA moduli we only need to complete the to-be-signed parts with the
following fields and compute the digital signature of the CA using the MD5 hash of the colliding
to-be-signed parts:

Field 9. RSA exponent: 0100015 = 65537;
Field 10. Version 3 extensions: We use default values for these extensions:

Basic Constraints : End Entity (not an CA), no limit on certification path length
Key Usage : Digital Signature, Non-Repudiation, Key Encipherment

7.5.2 Chosen-Prefix Collision Construction

Each of these chosen-prefixes consist of three full message blocks, resulting in some I H V3, and one
partial message block R of 416 bits which is identical for all three prefixes. We denote the three
different THV3's as THVay,, IHVs and ITHVgw for prefixes Par, Pus and Pgw, respectively.
There is very limited space in a RSA modulus of 8192 bit and we also need enough freedom to
complete the RSA moduli as a product of two large primes. Therefore we chose to use the original
birthday search in

Given the three THV’s and R we defined the pseudo-random walk in the 96-bit search space
as follows:

IHVyap, if x=0 mod 3;
(2, y,2) = IHVyg, if =1 mod 3;
IHVBV\/, lf x =2 mod 3.

P(xy,2) = Rllzfyllz
p(IHV) = p(a,b,c,d) = (a,d—0b,d—c)
O(z,y,2) = p(MD5Compress(é(z,y, 2), ¥ (2,y, 2)))

So given a 96-bit value (z,y, z) we use it to complete the message block R, determine which THV3
to use and compute the resulting THV,. We map this THV, = (a,b,c,d) to the 96-bit search
space as (a,d — b,d — ¢) as then a collision implies da = 0, db = ¢ = dd. We used the method of
distinguished points to parallelize the birthday search where we defined the set of distinguished
points as:

S ={(x,y,2) | (t=0 mod 2'°) A (RL(y,15) =0 mod 2'°)}.

Our birthday search resulted in a total of 120 collisions of which 80 were useful (different
THV’s). We chose the following birthday collision as it requires only 8 near-collisions to eliminate
the resulting 61 HVjy:

()(7 Y, Z) = (cbb4091a16, 7a26c74016, 9b7f01af16)

(X',Y',Z") = (d6e773ee;5, badfb3b3;s, 023d39alig)

This birthday collision gives us birthday bitstrings S, = X||Y||Z and S; = X'||Y”||Z’" which are
appended to Pyg and Par, respectively, as ¢(X,Y, Z) = ITHVys and ¢(X',Y', Z') = IHVar,. The
extended chosen-prefixes Pys||Sy and Pay|| S} consist of exactly four message blocks and result in
5IHV4 = (0, (5b47 (51)47 (5()4) where

by = —25 — 27 _ 913 4 915 _ 918 _ 922 4 926 _ 930,

38 7 CHOSEN-PREFIX COLLISIONS

We eliminated these bitdifferences in 61 HV,; with 8 consecutive near-collision blocks based on the
differential path in

As outlined before, we construct a full differential path starting with THV, and THV, and
usingwith dmi1 = +229 to eliminate —23° in §b,. The differential path we have found is
shown in in the Appendix. The near-collision blocks Ms, M{ satisfying this differential
path and the resulting THV5, THV/ that we have found are shown in The other
differences were eliminated similarly using the values —26, +212 428 25 423 19229 and 4227
for dmq;1 in that order. The differential paths we have constructed using these values for dmq;
and the near-collision blocks Mg, M{, ..., My2, M{, we found which satisfying them are shown in
Tables up to

The birthday bitstrings Sy, S; and the 8 near-collisions blocks together form S, S, and are
the 96 + 8 x 512 = 4192 most-significant bits of the RSA moduli. Using the method described
in [I1] we have found a bitstring S, such that S| Sc|[Sp, and Sp||S.| Sy form RSA moduli ny
and ng, respectively, as products of two large primes. The bitstring S,,, and the smallest primes
dividing n; and my are given in the Appendix in [Table D-24] and [Table D-25]

We completed the to-be-signed parts using identical suffixes for both messages (including S,,)
after the chosen-prefix collision Pyis||Sp||Sec and ar||S;||S., hence the resulting to-be-signed parts
collide under MD5. These certificates have identical signatures and can be found at our website:
http://www.win.tue.nl/hashclash/TargetCollidingCertificates/|

7.5.3 Attack Scenarios

Though our colliding certificates construction involving different identities should have more at-
tack potential than the one with identical identities in [I1], we have not been able to find truly
convincing attack scenarios. The core of PKI is to provide a relying party with trust, beyond
reasonable cryptographic doubt, that the person belonging to the identity in the certificate has
exclusive control over the private key corresponding to the public key in the certificate. Ideally, a
realistic attack should attack this core of PKI and also enable the attack to cover his trails.
However, our construction requires that the two colliding certificates are generated simultane-
ously. Although each resulting certificate by itself is completely unsuspicious, the fraud becomes
apparent when the two certificates are put alongside, as may happen during a fraud analysis.
Another problem is that the attacker must have sufficient control over the CA to predict all
fields appearing before the public key, such as the serial number and the validity periods. It has
frequently been suggested that this is an effective countermeasure against colliding certificate con-
structions in practice, but there is no consensus how hard it is to make accurate predictions. When
this condition of sufficient control over the CA by the attacker is satisfied, colliding certificates
based on chosen-prefix collisions are a bigger threat than those based on random collisions.
Obviously, the attack becomes effectively impossible if the CA adds a sufficient amount of fresh
randomness to the certificate fields before the public key, such as in the serial number (as some
already do, though probably for different reasons). This randomness is to be generated after the
approval of the certification request. On the other hand, in general a relying party cannot verify
this randomness. In our opinion, trustworthiness of certificates should not crucially depend on
such secondary and circumstantial aspects. On the contrary, CAs should use a trustworthy hash
function that meets the design criteria. Unfortunately, this is no longer the case for MD5.

7.6 Other Applications
7.6.1 Colliding Documents

Entirely different abuse scenarios are also possible. In [2] it was shown how to construct a pair of
PostScript files which collide under MD5, and that show different messages to output media such
as screen or printer. Similar constructions for several other document formats are presented in
[5]. However, in those constructions both messages had to be hidden in each of the colliding files,
which obviously raises suspicions upon inspection at bit level.

http://www.win.tue.nl/hashclash/TargetCollidingCertificates/

7.6 Other Applications 39

This can be avoided using chosen-prefix collisions. For example, two different messages can be
entered into a document format which allows insertion of color images (such as PostScript, Adobe
PDF, Microsoft Word), with one message per document. Each document can be constructed
carefully with at the last page a color image containing constructed birthday and near-collision
bitstrings such that the documents collide under MD5. The image itself can be a short one pixel
wide line, or hidden inside a layout element, a company logo, or in the form of a nicely colored
barcode claiming to be some additional security feature, obviously offering far greater security
than those old-fashioned black and white barcodes.

Figure 1: The example chosen-prefix collision built into bitmap images.

In [Figure 1] the actual 4192-bit collision-causing appendages computed for the certificates are
built into bitmaps to get two different barcode examples. Each string of 4192 bits leads to one
line of 175 pixels, say A and B, and the barcodes consist of the lines ABBBBB and BBBBBB
respectively. Apart from the 96 most significant bits corresponding to the 4 pixels in the upper
left corner, the barcodes differ in only a few bits, which makes the resulting color differences hard
to spot for the human eye.

7.6.2 Misleading Integrity Checking

In [T4] and [7] it was shown how to abuse existing MD5 collisions to mislead integrity checking soft-
ware based on MD5. Similar to the colliding Postscript applications, they also used the differences
in the colliding inputs to construct deviating execution flows of some programs.

Here too, chosen-prefix collisions allow a more elegant approach, especially since common op-
erating systems ignore any random bitstring when appended to an executable: such a program
will run unaltered. Thus one can imagine constructing a chosen-prefix collision for two executa-
bles: a ‘good’ program file named Word.exe and a ‘bad’ one named Worse.exe. The resulting
altered files, say Word2.exe and Worse2.exe, have the same MD5 hash value and are functionally
equivalent to the original files. The altered ‘good’ program Word2.exe can then be offered to a
executable signing authority (e.g. a software publisher) and receive an ’official’ MD5 based digital
signature from the publisher. This signature will be equally valid for the attacker’s Worse2.exe
which the attacker might be able to place on an appropriate download site.

This construction affects a common functionality of MD5 hashing and may pose a practical
threat.

7.6.3 Nostradamus Attack

In [§] the authors present a strategy to commit to a certain hash value and afterwards construct
a document, which hashes to the committed hash value, containing an arbitrary message faster
than a trivial pre-image attack. The main idea is to construct a tree-structure with a root node
ITHVy,q and 2¢ end nodes IHYV}, ; where for each node IHV}; ; there is a known message block
By ; resulting to its parent node. Hence, starting from any node IHVjy;; there is a known
suffix consisting of message blocks By j, Bitit1,j/, - - - tesulting in the root node 1HVjqq.

Starting from an arbitrary message one can brute force search for an extended message which
results in some node of this tree. Further extending this message with message blocks Bj; ;
results in the root node I HV} 4. Hence, one can commit to the hash value I HVj 4 and afterwards
construct a document containing an arbitrary message resulting in this hash value. The complexity
of this attack depends on the number of nodes 2¢, constructing the tree-structure costs approx.
2(n+d)/242 compressions (where n = 128 is the bit length of the MD5 hash value) and finding
the extended message resulting in some node costs approx. 2" ~% compressions. This attack is not
practical as the total cost is at least 286 compressions.

40 7 CHOSEN-PREFIX COLLISIONS

A variant of this attack is now feasible using chosen-prefix collisions. Suppose we have r
messages and we want to commit to a certain hash value without committing to one of the
messages specifically. Using r — 1 chosen-prefix collisions we can construct r documents containing
these r messages all with the same hash value. When committing to this hash value, afterwards
we can still show any one of the r documents to achieve some malicious goal. E.g. predicting the
next European Soccer Champion in a bet with large winnings.

This is the only attack we could think of where fraud cannot be revealed, as only one of the
colliding messages is made public and there is no other message to hold it against to reveal fraud.

7.7 Remarks on Complexity

The amount of work required to construct a chosen-prefix collision is hard to estimate, since it is
difficult to estimate the complexity for constructing the differential paths involved and finding the
actual near-collision blocks. However, in our example construction of colliding certificates the work
we spent in our birthday search outweighed by far the amount of work we spent in constructing
the 8 differential paths and finding the actual near-collisions blocks.

Our chosen-prefix example was constructed in about 2°2 compressions, which is much faster
than the brute-force approach of about 254 compressions. One can do even better using the
improved birthday search, however this has not been tried yet.

8 Project HashClash using the BOINC framework 41

8 Project HashClash using the BOINC framework

For this work we maintained the project HashClash at http://boinc.banaan.org/hashclash/
which is a distributed computing project based on the BOINC framework. BOINC is a software
platform for distributed computing using volunteer computer resources. Each project can operate
completely on its own and can present work through its servers. Anybody can then use a BOINC
client to register with the project. The BOINC client will then fetch, process and return workunits
of the project while maintaining a background profile, i.e. as a screensaver, on the volunteer’s
computer. A project can customize the whole BOINC framework to its own needs, whereas the
volunteer can use a standard BOINC client independent of the projects it wants to join.

A BOINC project consists of a database, data server(s), scheduling server(s), a web interface
and the project backend possibly all on the same physical server as in the case of our project
HashClash. The project backend is used to insert applications and workunits into the BOINC
project and to receive and process returned workunits. The files of the applications and workunits
are then stored on the data servers. The database contains all information about the applications,
workunits, participants, participants computers and (un)returned results and is maintained by the
project backend and scheduling server(s).

When a participants computer connects to the BOINC project it will use a scheduling server
to request work. The scheduling server will then assign one or more workunits (if available) to the
computer, after which the BOINC client will download the application and workunit files needed
from the data servers. When the participants computer finishes computing a workunit it will
upload all result files to the data servers and report to a scheduling server that it has finished and
possibly requesting new work.

In return for the volunteered cpu-cycles the project maintains a credit system. The volunteers
can compete with other users with their credit gained by donating cpu-cycles and even grouping
into teams is possible. This creates a situation in which volunteers driven by competition want to
donate more cpu-cycles.

Currently, there are 2752 registered volunteers most of which are part of one of the 417 teams,
running a total of 8686 pc’s. At its peak, the combined effort of these volunteers was about 400
Gflops. The project HashClash volunteers community was quite active and even requested for the
HashClash logo competition we held (see http://boinc.banaan.org/hashclash/logos.php).

Using project HashClash we performed the birthday search, as shown in [subsubsection 7.5.2|
for our chosen-prefix collision example, by sending out workunits that generate a birthday trail
starting from a given random startpoint and ending in a distinguished point. Locally, we calculated
the actual collisions when two trails ending in the same distinguished point were found.

On our projects webpage we maintained a list of all found collisions and for each the two users
who generated the two trails involved, whether it was useful (different IHV3’s) and how many
near-collision blocks are required to eliminate the resulting 61 HV}.

In the second phase of our project we used project HashClash to distribute the work involved
in finding a full differential path by connecting a lower and upper differential path given large sets
of each. Using the Elegast cluster we precomputed these large sets of lower and upper differential
paths and performed the collision finding when a full differential path was found.

http://boinc.banaan.org/hashclash/
http://boinc.banaan.org/hashclash/logos.php

42 9 CONCLUSION

9 Conclusion

This work presented several results related to constructing collisions for MD5. We have presented
three improvements speeding up the attack by Wang et al. and also MD5 collision finding in
general, namely a method to find Q; bitconditions which satisfy T; restrictions [21], five new
differential paths to be used together with Wang’s original differential paths, and our near-collision
search algorithm which uses Klima’s tunnels.

Together these improvements allow us to find Wang-type collisions for MD5 in approx.
compressions or approx. 10 seconds on a 2.6Ghz Pentium4 for random IV’s, here IV is the THV
used to compress to first collision block. Note that the number of compressions we show here are
the work-equivalent of finding collisions instead of simply the number of different message blocks
we've tried, i.e. we can find collisions on average as fast as computing approx. 224® compressions.
If we restrict ourselves to using recommended I'V’s (see [subsection 5.2)) and the MD5 IV = ITHVj
we can find collisions in even approx. 224! compressions (6.2 seconds) and 223> compressions (4.2
seconds), respectively. This is a large improvement over the original attack (which took approx.
239 compressions using the MD5 IV) and earlier improvements where finding a single collision
could take several hours on such a pc. The method of Klima [I0] using tunnels is a bit slower
than ours taking approx. 2263 compressions (28 seconds) to find collisions using the MD5 I'V (the
easiest case). Our earlier paper [2I] (containing the improvements on satisfying T} restrictions,
our first collision finding algorithms (see Algorithms .1l and B.2]) and the notion of recommended
IV’s) was submitted to the IACR Cryptology ePrint Archive and parts of this paper were used in
the book [20].

Furthermore, we presented the first automated way to construct differential paths for MD5
and showed its practicality by constructing several new differential paths (see Appendix). As
mentioned above, five differential paths to speed up finding Wang-type collisions, and another
eight were used in the next result.

Our most significant result is the joint work with Arjen Lenstra and Benne de Weger [22], where
we have shown how to use our differential path construction method to build chosen-prefix colli-
sions. Starting with two arbitrary different messages M, M’, a chosen-prefix collision consists of
these messages extended with constructed suffixes S, S’ such that M D5(M|S) = MD5(M’||S").
Hence, chosen-prefix collisions allow more advanced abuse scenarios than Wang-type collisions
where the only difference between colliding messages is contained in two random looking blocks.
To show that chosen-prefix collisions for MD5 are feasible, we have constructed an example chosen-
prefix collision consisting of two X.509 certificates with different identities but identical signatures.
Our construction required substantial cpu-time, however chosen-prefix collisions might be con-
structed much faster by using the improved birthday search (see Eubsection 7.4]) and allowing
more near-collision blocks (about 14). Our joint work [22] was accepted at EuroCrypt 2007 and
has been chosen by the program committee to be one of the three notable papers which were
invited to submit their work to the Journal of Cryptology.

As part of this research we maintained the HashClash project, which is a distributed computing
project using the BOINC framework. Volunteers all over the world could join our project and
donate idle cpu-cycles to process computational jobs. The amount of volunteers joining our project
and their enthusiasm was unexpected. Within the HashClash community we even held a logo-
designing contest upon their request. It appears that the BOINC community is enthusiastic to help
further such cryptography related projects, even without a good understanding of the underlying
theory. With literally thousands of pc’s working for our project (even if only for a small fraction
of their time), we completed our chosen-prefix collisions much faster than we would have without
them.

224.8

REFERENCES 43

References

[1]

2]

Ivan Damgard, A design principle for hash functions, CRYPTO 1989 (Gilles Brassard, ed.),
LNCS, vol. 435, Springer, 1989, pp. 416-427.

M. Daum and S. Lucks, Attacking hash functions by poisoned messages, the story of alice and
her boss, http://www.cits.rub.de/MD5Collisions/.

Bert den Boer and Antoon Bosselaers, Collisions for the compression function of MD5, EU-
ROCRYPT 1993 (Tor Helleseth, ed.), LNCS, vol. 765, Springer, 1993, pp. 293-304.

Hans Dobbertin, Cryptanalysis of MD5 compress, 1996, presented at the rump session of
Eurocrypt’96.

M. Gebhardt, G. Illies, and W. Schindler, Note on practical value of single hash
collisions for special file formats, NIST First Cryptographic Hash Workshop, 2005,
http://csrc.nist.gov/pki/HashWorkshop/2005/0ct31_Presentations/Illies_NIST_05

Philip Hawkes, Michael Paddon, and Gregory G. Rose, Musings on the Wang
et al. MD5 collision, Cryptology ePrint Archive, Report 2004/264, 2004,
http://eprint.iacr.org/2004/264.

D. Kaminsky, MD¥5 to be considered harmful someday, Cryptology ePrint Archive, Report
2004/357, 2004, http://eprint.iacr.org/2004/357.

John Kelsey and Tadayoshi Kohno, Herding hash functions and the nostradamus attack, EU-
ROCRYPT 2006 (Serge Vaudenay, ed.), LNCS, vol. 4004, Springer, 2006, pp. 183-200.

Vlastimil Klima, Finding MD5 collisions on a notebook PC using multi-message modifications,
Cryptology ePrint Archive, Report 2005/102, 2005, http://eprint.iacr.org/2005/102!

Vlastimil Klima, Tunnels in hash functions: MDS5 collisions within a minute, Cryptology
ePrint Archive, Report 2006/105, 2006, http://eprint.iacr.org/2006/105.

Arjen K. Lenstra and Benne de Weger, On the possibility of constructing meaningful hash
collisions for public keys, ACISP 2005 (Colin Boyd and Juan Manuel Gonzélez Nieto, eds.),
LNCS, vol. 3574, Springer, 2005, pp. 267-279.

Jie Liang and Xuejia Lai, Improved collision attack on hash function MD5, Cryptology ePrint
Archive, Report 2005/425, 2005, http://eprint.iacr.org/2005/425.

Ralph C. Merkle, One way hash functions and DES, CRYPTO 1989 (Gilles Brassard, ed.),
LNCS, vol. 435, Springer, 1989, pp. 428-446.

Ondrej Mikle, Practical attacks on digital signatures using MD5 message digest, Cryptology
ePrint Archive, Report 2004/356, 2004, http://eprint.iacr.org/2004/356.

Jamer A. Muir and Douglas R. Stinson, Minimality and other properties of the width-w
nonadjacent form, Mathematics of Computation, vol. 75, 2006, pp. 369-384.

National Information Standards Organisation, FIPS PUB 180-1: Secure hash standard, April
1995, http://www.itl.nist.gov/fipspubs/fip180.htm.

R.L. Rivest, The MD5 Message-Digest algorithm, Internet RFC, April 1992, RFC 1321.

Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta, Improved col-
lision attack on MD5, Cryptology ePrint Archive, Report 2005/400, 2005,
http://eprint.iacr.org/2005/400.

.pdf.

http://www.cits.rub.de/MD5Collisions/
http://csrc.nist.gov/pki/HashWorkshop/2005/Oct31_Presentations/Illies_NIST_05.pdf
http://eprint.iacr.org/2004/264
http://eprint.iacr.org/2004/357
http://eprint.iacr.org/2005/102
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2005/425
http://eprint.iacr.org/2004/356
http://www.itl.nist.gov/fipspubs/fip180.htm
http://eprint.iacr.org/2005/400

44

REFERENCES

[19]

Yu Sasaki, Yusuke Naito, Jun Yajima, Takeshi Shimoyama, Noboru Kunihiro, and Kazuo
Ohta, How to construct sufficient condition in searching collisions of MD¥5, Cryptology ePrint
Archive, Report 2006/074, 2006, http://eprint.iacr.org/2006/074.

Mark Stamp and Richard M. Low, Applied cryptanalysis, Wiley, 2007.

Marc Stevens, Fast collision attack on MDS5, Cryptology ePrint Archive, Report 2006/104,
2006, http://eprint.iacr.org/2006/104.

Marc Stevens, Arjen Lenstra, and Benne de Weger, Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities, EUROCRYPT 2007 (Moni Naor, ed.),
LNCS, vol. 4515, Springer, 2007, pp. 1-22.

Paul C. van Oorschot and Michael J. Wiener, Parallel collision search with cryptanalytic
applications, Journal of Cryptology 12 (1999), no. 1, 1-28.

Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu, Collisions for hash functions
MD/4, MD5, HAVAL-128 and RIPEMD, Cryptology ePrint Archive, Report 2004/199, 2004,
http://eprint.iacr.org/2004/199.

Xiaoyun Wang and Hongbo Yu, How to break MD5 and other hash functions, EUROCRYPT
2005 (Ronald Cramer, ed.), LNCS, vol. 3494, Springer, 2005, pp. 19-35.

Jun Yajima and Takeshi Shimoyama, Wang’s sufficient conditions of MD5 are not sufficient,
Cryptology ePrint Archive, Report 2005/263, 2005, http://eprint.iacr.org/2005/263!

http://eprint.iacr.org/2006/074
http://eprint.iacr.org/2006/104
http://eprint.iacr.org/2004/199
http://eprint.iacr.org/2005/263

REFERENCES

45

46

A MD5 CONSTANTS AND MESSAGE BLOCK EXPANSION

A MD5 Constants and Message Block Expansion

Table A-1: MD5 Addition and Rotation Constants and message block expansion.

[t] AC, [RC [W,]
0 | d76aa478:4 7 mg
1 e8c7b75616 12 mi
2 242070db16 17 mo
3 | clbdceeesg 22 ms3
4 f57c0faf16 7 my
5 | 4787c62ai4 12 ms
6 a830461316 17 me
7 fd46950116 22 mr
8 | 698098d8:¢ 7 mg
9 8b44f7af16 12 mg
10 | ££££5bblyg 17 mio
11 895Cd7b616 22 mi1
12 | 6b9011224¢4 7 mio
13 fd98719316 12 mis
14 a679438e16 17 mig
15 | 49b4082146 22 mis

[t] A4C, [RC, [Wi |
32 fffa394216 4 ms
33 | 8771£68114 11 mg
34 6d9d612216 16 mi1
35 fde538OC16 23 miaq
36 | adbeeadd g 4 mq
37 | 4bdecfa9g 11 my
38 | £6bb4b60+¢ 16 mr
39 bebbe7016 23 mio
40 289b7ec€16 4 mis
41 | eaal27fajg 11 mg
42 d4ef308516 16 ms
43 | 04881d05:¢ 23 me
44 | d9d4d0394 4 Mg
45 e6db99e516 11 mio
46 | 1fa27cf8¢ 16 mis
47 | c4acb665g 23 mo

[t] AC, [RC [W,]
16 | £61e25621¢4 5 mq
17 CO40b34016 9 me
18 26595&5116 14 mi1
19 | e9b6cT7aaig 20 mo
20 | d62£105d;¢ 5 ms
21 | 0244145344 9 mig
22 d8a1e68116 14 mis
23 | e7d3fbc8g 20 my
24 | 21elcdebyg 5 My
25 C33707d616 9 miq
26 | £4d450d871¢ 14 ms
27 455&146(116 20 mg
28 a9e3e90516 5 mis
29 | fcefa3f8i4 9 mo
30 | 676£02d9:¢ 14 mry
31 | 8d2a4c8ag 20 mio
[t A4C, [RC, [Wi |
48 [£4292244.6 | 6 | mo
49 | 432aff974 10 mry
50 ab9423a716 15 miq
51 fc93a03916 21 ms
52 655b59C316 6 mio
53 | 8f0ccc9244 10 ms
54 ffeff47d16 15 mio
55 | 85845dd1ig 21 mi
56 6:fa87e4f16 6 mg
57 | fe2cebely4 10 | mas
58 a301431416 15 me
59 490811&116 21 mis
60 f753768216 6 ny
61 bd3af23516 10 mi1
62 2ad7d2bb16 15 mo
63 eb86d39116 21 ™o

A MD5 Constants and Message Block Expansion

47

48 B DIFFERENTIAL PATHS FOR TWO BLOCK COLLISIONS

B Differential Paths for Two Block Collisions

B.1 Wang et al.’s Differential Paths

Table B-1: Wang et al.’s first block differential

omy =423 Smyy = +2'°, dmyg = +2%, om;=0,i ¢ {4,11,14}

t] AQ: (BSDR of Q1) I S, | sw, | 5T, | RC: |
0-3 — — — — .
4 _ _ 231 231 7
5 +26 . +2217 _222 211+219 _ 211+219 12
6 _26+223+231 _210_214 _ _210_214 17
7 420, 424 2% 426 4210 —224.25 4910 — | —224254210 22
72117 023 7225’ 4226 4081 4216_925_ 927 4216 _925_ 927
8 +20+215_216+217 26+28+210 _ 28+210+216 7
4218419 920523 4916 _924 4 931 924 931
9 0 DT {28 o7 58 531 20426 _520 — 20_920 9% 12
9231926 931
10 T2 T3 53T 20 {98 9T8 923 — oT3 _ 927 17
11 42301931 90 _98 oT5 [98 917 _923 22
12 +27_28’ +213 . +2187 _219+231 27+217+231 _ 20+26+217 7
13 _224+225+231 _213+231 — _212 12
14 +231 218+231 231 2187230 17
15 +23_215+231 225+231 _ _27_213+225 29
16 _229_|_231 231 _ 224 5
17 +231 231 — — 9
18 +231 231 ote 23 14
19 42174231 231 — —2% 20
20 +231 231 — — 5
21 _|_231 231 _ _ 9
22 +231 231 — 217 14
23 — - 231 — 20
24 - 231 - - 5
25 — — 231 — 9
26— 33 | - [- [- | - [-]
34 — — 215 215 16
35 5Q35 = 231 231 231 — 23
36 6@36 — 231 — — — 1
37 6Qs7 = 27" 231 231 — 11
38 — 49 0Q: =231 231 — — .
50 0Qs0 = 2°¢ — 231 — 15
51 — 59 0Q; = 2% 231 — — .
60 0Qe0 = 2°1 — 231 — 6
61 0Qe1 = 271 251 215 215 10
62 0Qe2 = 231427 231 — — 15
63 0Qez = 251427 231 — — 21
64 0Qeq = 231427 X X X x

B.1 Wang et al.’s Differential Paths

49

Table B-2: Wang et al.’s second block differential

omg =28 omyy = -2 Smyy =23 om;=0,i¢ {4,11,14}

t [AQ:. (BSDR of Q) 5F, | ow: | 5T, [RC: |
-3 +231 X X X X
-2 42254281 X X X X
-1 —22542264 531 X X X X
O +225+231 231 _ 7

1 +225+231 231 _ 225 12
2 +25+225+231 225 _ 231+226 17
3 L I, LS Y QI 52T 575 — _oIT_92T_926 292

_ol6 7220’ 4021 927 931
_0225 _2297 42304 931
4 2T 22428 04008 9T _93_ol8 93T 21122 518 7
_225+226+231 +226+230 +225+226+230
5 420204 27128 o9 9% 95 _98_ 920 — 9% 98 920 12
_010_9l1 512 531 _925_ 926 928 | 930 926 928 _ 930
6 216 pTT 520 52T 53T 95 _95_9l0_oIT — 95 _9l0_92T_ 531 17
_916_921_ 925
7 +26+27+28729 21672274»231 — T 95 9T6 29
4227 _928 4 531 4925 _927

) 5 T8 171 523 b oT6 9% — 209899 7

+224+225_226+231 +216+225_231

9 _20_‘_217 o6 _287 1294231 20916 526 531 — 90 _920_ 536 12
10 42124231 204231 — —27 17
11 RN 93T _ol5 _9l7_923 29
12 7277 +213 - +2187219+231 217+231 — 20+26+217 7
13 —2% 229 4230031 —213 4931 — —212 12
14 _|_231 218+230 231 218+230 17
15 23215 o3t 925 53T — 9T _9I3_925 22
16 29 531 93T — 924 5
17 +231 231 — — 9
18 +231 231 —21® 23 14
19 42174231 231 — —2%9 20
20 +231 251 — — 5
21 +2° 2% - - 9
22 +231 231 — 217 14
23 — — 231 — 20
24 — 231 — — 5
25 — 231 — 9

26— 33 | - - [- | - [
34 — — —ol5 —ol5 16
35 5Qs5 = 2% 231 231 — 23
36 8Qz6 = 231 — — — 4
37 5Qar = 21 251 231 — 11

38 — 49 0Q: = 2% 231 — — .
50 5Qs0 = 231 — 231 — 15

51 — 59 5Q, = 2% 231 — — .
60 8Qe0 = 231 — 231 — 6
61 5Qe1 = 21 251 215 215 10
62 0Qez = 251 —27%° 231 — — 15
63 0Qez =231 — 2% 231 — — 21
64 0Qps = 251 — 2% X X X X

50

B DIFFERENTIAL PATHS FOR TWO BLOCK COLLISIONS

B.2 Modified Sufficient Conditions for Wang’s Differential Paths

Table B-3: Modified first block bitconditions

l t [Conditions on Qy: b31...bo [# ‘
S J R O 000 L0 3
4 1o, 07""17"" Sttt co1dL L. | 1942
5 1000100. 01..0000 00000000 0010.1.1 | 2245
6 0000001~ 01111111 10111100 0100701 32
7 00000011 11111110 11111000 00100000 32
8 00000001 1..10001 0.0.0101 01000000 28
9 11111011 ...10000 0.171111 00111101 28
10 011i1.... 0..11111 1101...0 01....00 | 17+ 2
11 0010....0001 1100...0 11....10 15+2
12 000...7"1000 0001...1 O....... 14+1
13 01....01 L.1111 111....0 0...1.. 14
14 0.0...00 . 1011 111 11...1 14
15 0.1...01 0 1eeunn.. 6+1
16 011 s i, Ve 242
17 0l i, 0.~ - 441
18 0.7 vt ool 1. oo e, 3
19 O.eviin it 0. v e 2
20 O Vo 141
21 O.eviin it T e e 2
22 Ot e e e e 1
23 [1
24 L e e e 1

Sub-total # conditions 278

25— 45 | ... o o 0
46 T i e e e 0
47 P 0
48 T e e e 1
49 B 1
50 K e s e 1
51 N 1
52 Koo s e e 1
53 T e e 1
54 Koo i e e 1
55 B 1
56 K e s e 1
57 N 1
58 Koo i i e 1
59 S 1
60 T e e e 1
61 B 1
62 PN 1
63 N 1
64 | o e e e 0

l [Sub-total # conditions [16 ‘

[Sub-total # IV conditions from 2nd block [8 ‘

‘ Total # conditions

| 302 |

Note: I,J,K € {0,1} and K = 1.

B.2 Modified Sufficient Conditions for Wang’s Differential Paths

Table B-4: Modified second block bitconditions

l t [Conditions on Qy: b31...bo [# ‘
—2 A..... 0 e e e (1)
I (3)
0 Aeiii00. e e L0 (4)
Total # IV conditions for st block [(8)]
1 B...010. ..1....00... .10..... 8+1
2 B~~"110. ..0""""0 1..71... 710..00. | 20+ 1
3 BO11111. ..011111 0..01..1 011°"11. | 23+ 1
4 BO11101. ..000100 ...00~"0 0001000~ 26
5 A10010 ..101111 ...01110 01010000 25
6 A..0010. 1.10..10 11.01100 01010110 | 24+ 1
7 B..1011" 1.00..01 10.11110 00..... 112041
8 B..00100 0.11..10 1..... 11 111...70 | 18+ 1
9 B..11100 O..... 01 0..7..01 110...01 | 17+1
10 B....111 1....011 11001.11 11....00 | 18+ 1
11 B.......7101 11000.11 11....11 | 1541
12 |1000 0001 1....... 17
13 AO111111 O...1111 111..... 0...1... | 17+1
14 A1000000 1 1011 111..... 1...1 1741
15 01111101 00...... 10+1
16 |0.10.... Ve 2+2
17 [0 0. ~....... - 441
18 0.7 vt oo 1. ool 3
19 O v e 0. i i 2
20 | 0eiiiii . Ve i 1
21 Oueviin i T e e 2
22 Ot e e e 1
23 L 1
24 L e e e 1
Sub-total # conditions 307
2545 o o
46 T i e e e 0
47 PN 0
48 N 1
49 S 1
50 Koo e e e e 1
51 N 1
52 Koo i i e 1
53 S 1
54 Koo i i e 1
55 T 1
56 K e i e e 1
57 N 1
58 Koo i e e 1
59 P 1
60 T e e e 1
61 T 1
62 PN 1
63 N 1
64 | o e e e 0
| [Sub-total # conditions | 16 |
l [Total # conditions [323 ‘

Note: A,B,I,J,K €{0,1}and B=A, K =1.

52

B DIFFERENTIAL PATHS FOR TWO BLOCK COLLISIONS

B.3 New First Block Differential Path

Table B-5: New first block differential path

|t [AQ: (BSDR of 6Q:) | 5F | dw, | 6T, | RC: |
0-3 — — — - .
4 — — 231 231 7
5 —20... —2%42% —2842M 2 | — —2%421 2" 12
—9234925 —9234925
6 Jr20721Jr23724 23729+215 — 23729+215 17
4250607 98,220 4918 _920_922 4218_920_922
4221922926531
7 —264231 —20426_210 — —204926_210 22
4218_925 4218_925
] Q03 96 515 95198 915 — 25 198 915 7
0224 928 531 921926928 9214926 928
9 200 T2 53T 90 93 9 53T — T 95 920 5% 12
10 _212+217+231 Q0964 912 931 — Q0 o7 912 17
11 T2 pI8 52 20_96_ol7 oT5 93 _97_ol7 29
42294931 929 931 _922_ 928
12 T I o 31 97 912931 — 204 9F 7
13 22T 3T 93T — o121 oT7 12
14 +229+231 224+229+231 231 _212+218_230 17
15 28 o1 sl 2% 981 _ Q7 o181 9% 22
16 029 531 93T — 924 5
17 2% —2%94.2% - - 9
18 7231 231 215 23 14
19 4217231 231 — —2% 20
20 -2t 231 — — 5
21 —231 231 — — 9
22 —231 231 — 217 14
23 — — 231 — 20
24 — 231 — — 5
25 — — 231 — 9

B.3 New First Block Differential Path

93

Table B-6: New first block conditions

t Conditions on Qy: b3y ...bg #
3| ... 1 .1111... .1....01 11...... 10
4 0..... “0 ~0000°""" "0""""10 11..0... 22
5 01...701 11111111 11111111 11°71.°7 28
6 10.1.000 01001011 10000010 11010.10 29
7 0..0.010 01000000 00011011 .1000.11 27
8 0!.0.0.. .101.... 1..1...0 11010.11 17
9 0!10...0 .0...17. 0..0.... 011.1..0 15
10| 0.01...0 .1...00. 1..1.... 1...1..1 12
11| 0!'0....1 01. ..71.. 00..... 0 11
12| 0!'0....0 ..!'..01. ..1..... 1....... 9
13] 0.1....0 1.. 1.01.... 0...1 9
141 0'0..... 1.1..... 1...1 7
15 1.0....0 L A 6
16 | 111..... s 4
170 100 oo 0. ~....... - 5
18 1.7 1. oo e 3
S O, i i 2
20 1. ol L e e 2
) Y e e 2
22 | L e e 1
23 | 0.t e e e 1
24 | L. e e e 1

Subtotal # conditions 223

54 B DIFFERENTIAL PATHS FOR TWO BLOCK COLLISIONS

B.4 New Second Block Differential Paths
B.4.1 New Second Block Differential Path nr. 1

Table B-7: New second block differential path nr. 1

[t | AQ: (BSDRof 6Q:) | 5F, | dw, | 5T, [RC: |
-3 +231 X X X X
-2 42254231 X X X X
-1 42254231 x X X
0 2251031 925 931 — 225 7
1 +20+225+231 225+231 _ 226 12
2 +20+26+225+231 225+231 _ 226 17
3 +20+26+211+225+231 20_211+225+231 _ 20_211+226 29
4 20 T 6 o7 20 96 {98 9Tl 931 9T 96198 7

+28+211+216+222 _216_222+225 +211_216_222
—025_ 926 527 | 531 —927 4 931 926 931
5 || 420422423424 25428 20493925497 — 21423425497 12
+2117213721572174>219 +211+216+219 +211+216+219
+222+223+224+229+230 +222_225_229 +222_229+231
6 +2142% . 42172 —20-2342°42742° - —2%-2° 254210 17
0204 921922923924 || 4 9ll 9134915 917 921 —9124 915_ 917
42264 928 929 | 930 | 531 4923 _925 4 928 4 931 92149238 928
7 0 o8 pT3 52T 52 909395197 910 — QT {93 951 98910 292
9184918 922 924 9184916 918 923
49227 _929 4 931 49254 927_929
) 328 o 17 20 99 1 9T8 oI5 _9To — T 98 9T 912 516 7
_219_223+225+228 +221+226_228+230 _218_221_225
9271929 4 931
9 905258 Q0 98 92 925 978 — 20920 922 576 192
10 +2°7 —20-2042° - | 2427422727 | 17
11 T T8 521 530 _ o5 93198 o7 910 22
7223+225+228
12 2729 T8 p2a 53T — — 9097 98 7
13 —224 081 — — 212 12
14 3T 921 53T 231 QT 518 530 17
15 EE N 92 931 — 27 991913 925 29
16 Jr2297231 23T — — o2 5
17 —2st 251 — — 9
18 +2° - -2 -2° 14
19 —217 4281 251 — 229 20
20 +2° 2% - - 5
21 +231 231 - - 9
22 +231 231 — —27 14
23 — — 231 — 20
24 — 251 — — 5
25 — — 231 — 9

B.4 New Second Block Differential Paths

95

Table B-8: New second block conditions nr. 1
’ t \ Conditions on @Q¢: b3y ... b \ +# ‘
= 0. e e e (1)
—1]~..... O e e e 11 (3)
0 |~..... O, v i Ao, 1 (4)
’ | Total # IV conditions for Ist block [(8) |

1 T 0. s R ¢ 6
2 | ~7...1.0.0 1., 10..0 00..... 0| 10
3 | ~00.0700 00..0.10 1.1.0..1 101.0.70 | 22
4 101100110 000.1.10 1.1.0.00 11071710 | 27
) .0010100 001°0"11 17170710 00100000 | 31
6 | 0001001 11010100 00000000 01011000 | 32
7 10.111001 01001011 1101.100 .1011011 | 29
8 | 10100001 11011000 01.11100 .00.1001 | 29
9 .1111.10 1...0.0. 0.11...1 .11.00.1 | 18
10 | 1111..10 1...171. 17.0...0 .1..10.1 | 18
11 | 100....0 1.! .170..7. "1...1.1| 14
12 | .01....1 ..!'..0.. .001..1. O....... 10
13| 71..... 1 1.. 110...0. 0...1... | 10
14 | 100..... 1.1 1.1...1.. 8
15 {001....0 L O 1 7
16 | 110..... Lo e e 4
17 [1.0 ool 0. - 5
18 | 0.7 oon Lot 1. oo e 3
19 [0 ot Lo i e 2
20 [0.eveen oann. b e e 2
21 [O0vevvnen ot T e e 2
22 [0. e e e e 1
23 | 0 e e e 1
7 1

Subtotal # conditions 292

56

B DIFFERENTIAL PATHS FOR TWO BLOCK COLLISIONS

B.4.2 New Second Block Differential Path nr. 2

Table B-9: New second block differential path nr. 2

[t | AQ: (BSDRofdQ:) || 5F | ow, | 6T, [RC: |
-3 4231 X X x X
-2 42254231 X X X X
-1 42254231 X X X X
0 2251931 925 981 — 225 7
1 +20+225+231 225+231 _ 226 12
2 +20+26+225+231 20+225+231 _ 20+226 17
3 +20+26+211 20+225+231 _ 20+226 29

+217+225+231
4 || —2°—2'42°-20-2742° 204+2%42°4-2° 2% —2'4+2°42042° 7
_oll_p12 513 516_ 518 _9ll 4 916_9l8 922 _9ll4916_918
+219+222_225+226+231 _225+227+231 _222+227+231
5 +20-22_23_2142° 2296498 ol — 20492498 oll 12
_08_pl0_pl2 4 9l4_9l5 _9ld 4 916 919 _9ld 916919
4222923 924 929 | 530 922925 930 9224930
6 | —2'—2°42%,42%... 427 || —20-2942°—272" | — —2°-2°_29 21 17
_216_220+221+222+226 +211_213+215+217 +215_218_222+224
4227929 4 930931 _919_922_924 4 931
7 —20_221 074227 _p30 20492 95498 — 21425495198 22
_910_9l13_916_ 922 4210_9134 917
4227929 931 42254 927_929
S 22 DA P8 15 o1 90 _93_9I3_oT6_5I7 — ol 98 _9l0 912 7
_219_223+225+228 +221+223_226+230 +216_218_221_223
925929 931
9 Q02 pF 530 098 9™ — 20 919 922576 12
9239274 929
10 212 %0 9092978 — ol 9T 92T 9% 17
11 72147218+224+230 22 o5 723+28+2177219 22
923925 4 928
12 27T 29 T8 28 53T 230 — 909798 7
13 —221_p31 —2%0 — 212 12
14 1257 21 93T 93T QM I8 530 17
15 3015 924 531 — 27 99 918 9% 22
16 +2297231 23T — _ 924 5
17 +231 251 — — 9
18 2% - -2 -2 14
19 —217_231 231 — 2%9 20
20 2% 2% - - 5
21 —23! 231 — - 9
22 —2s1 231 — —2l7 14
23 — — 231 — 20
24 — 231 — — 5
25 — — 251 — 9

B.4 New Second Block Differential Paths

o7

Table B-10: New second block conditions nr. 2

’ t \ Conditions on @Q¢: b3y ... b +# ‘
=20 ... 0 e e e (1)
—1]~..... 0 et e e 0] (3)

0 |~..... O, v i Ao, 0] (4)
’ | Total # IV conditions for Ist block ®) |
1 T 0. 0.1..1 .1..... 0 7
2 |~....00. .1..1100 ..111..0 .0...0.0| 15
3 | ~01..10. 00..0001 000000.1 ~01.11°0 | 25
4 1011.001" 10..0111 11011010 1171011 | 29
5 | 000.0010 10°°1001 10010101 01011100 | 31
6 | 10010001 10011011 00000000 01100110 | 32
7 |01.00001 0.001.01 0.011110 01100101 | 28
8 |1010.00. 11011.00 00011110 01111001 | 29
9 [01.10.00 1...1.0. 01.10..1 11.0.0.1 | 19
10 | 00.0..10 1...171. 11.01..1 .0.1...1| 17
11 | 00!....0 1.. .1700.7. ~1...0.1| 14
12 | 10..... 110.. .001..1. O....... 10
13 | 10..... 1 1.. 110...0. 0...1.. 10
14 [0.0..... 1.1 1.1...1.. 7
15| 111....0 L O R 7
16 | 1.0..... Lo e 3
17 [0 ol 0. ~....... - 4
18 | 1.7 o0 oL 1. oo e 3
19 [1....... ..., 1 2
20 | 1. ool b e 2
21 | 1.0 o T e e 2
22 | Lo e e e 1
23 | 0 e e e 1
24 | 1. e e e 1

Subtotal # conditions 299

o8

B DIFFERENTIAL PATHS FOR TWO BLOCK COLLISIONS

B.4.3 New Second Block Differential Path nr. 3

Table B-11: New second block differential path nr. 3

[t | AQ: (BSDRofsQ:) | 5F, | ow: | 5T, | RC: |
-3 +231 X X X X
-2 42254031 X X X X
-1 42254031 X X X X
0 +225+231 225+231 — 925 7
1 +2O+225+231 225+231 . 226 12
2 +20+26+225+231 225+231 _ 226 17
3 +20+26+211+225+231 20+26+225+231 _ 20+26+226 22
4 —20421 26 2l 2026499 ol 251 2t 96499 oll 7

+212_216_217_218 +213+217+219+222 +213+217+219+222
+219_222+223+225 +225_229+231 +226_229+231
_228+229_231
5 _20+22+24_25+28+211 21_25+211_214 — _20+22+25+211 12
+213+214+215_216+217 +218_221+224+230 _214+218_221
+218_219_220+221+222 _224+226_230
7224+227722S+230+231
6 2V 23421 _25_2F —20 2395429 — —23425429 212 17
_’_27_’_28_"_2107 _212 o _218 +211_213_220_223 _220_223_225_227
+219+220_222+226_228 +226_228+231
7 +20_227_229 20+23+25+27+210 _ 21+23_25+28 22
+212_214+216_219 _210_213+217_219
722272277229+231 +2254>2277229
8 _23+27_29+215+217 _20+24+29+213 _ 21_28_210+212 7
_219+223+225+228 +215+217+219 +215_219_221_225
+223_225_229 _227+229+231
9 _20+22_26_222_224 27_29+228 _ 20+25_27+210 12
+212+22()_222+226
10 +212+217_219 27_212 _ 20+27_212_227_229 17
11 _214_218+224_229 _224 _215 _23+27_29+217_219 22
_223+225+228
12 +27729+21372247231 _ _ 72O+2272672227224 7
13 _224_229 _ _ 212_"_217_219 12
14 7231 72247229 231 72147218+230 17
15 _23+215 _224+231 _ 27_29+213_225 22
16 +229_231 229 — _ o2 5
17 +231 231 — — 9
18 —231 — —ol5 —23 14
19 _217_231 251 _ 229 20
20 —231 231 — — 5
21 —231 231 - — 9
22 —231 231 — —ol7 14
23 — — 231 — 20
24 — 231 — — 5
25 — — 231 — 9

B.4 New Second Block Differential Paths

99

Table B-12: New second block conditions nr. 3

’ t \ Conditions on @Q¢: b3y ... b #
=20 ... 0 e e e (1)
—1]~..... 0 et e e 11 (3)

0 |~..... O, v i O 1 (4)

’ | Total # IV conditions for Ist block (8)

1 T 0.00.. .0'....0 7
2 |~.11..0. .1..0110 ...00100 0O..... 0| 17
3 | ~7001..00 ~“0111100 00110010 1011.0°0 | 29
4 11017001 01010111 11101111 11010001 | 32
) .00101.1 00011001 00000000 10101011 | 31
6 .0110011 01000111 11110000 01101111 | 31
7 101111001 1110101. 1001111. 01..0110 | 28
8 |1.100101 01.01000 0001.011 01101101 | 29
9 ..111.01 01..0.0. 0..0..1. 111100.1 | 19
10 | 1011..10 10..170. 1°.0..1. 00..10.0 | 20
11 | 111....0 .1..010! .170..1. 01...1.1| 17
12 | 100....1101. .001..1. O....... 12
13 |011....1 1.. 110...0. 0...1 11
) 1.1 1.1...1.. 8
15| 101....0 L O R 7
16 | 100..... Lo e e 4
17 [0 ol 0. ~....... - 4
18 | 1.7 o0 oL 1. oo e 3
19 [1....... ..., 1 2
20 | 1. ool b e 2
21 | 1.0 o T e e 2
22 | Lo e e e 1
23 | 0 e e e 1
24 | 1. e e e 1
Subtotal # conditions 318

60

B DIFFERENTIAL PATHS FOR TWO BLOCK COLLISIONS

B.4.4 New Second Block Differential Path nr. 4

Table B-13: New second block differential path nr. 4

[t [AQ: (BSDRofsQ.) | 5F | ow | 5Ty | RC: |
-3 +231 X X X X
—2 4224031 X X X X
-1 42254031 X X x x
0 2251931 925 931 — 225 7
1 +20+225+231 225+231 _ 226 12
2 +20+26+225+231 20+225+231 _ 20+226 17
3 2028 o1 20 {98 9Tl — 20 {98 _9TT 976 29

+217+225+231 +225+231
4 _20_26+277 oIl 54 90 _96_9I2_ 516 93T 9T _96_9I2_oT6 7
4215_p16_9o18_ 519 4918_920 4 922 4918_920 922
40204 922925 4 926 _225_227+231 — 9274 931
28,929 931
5 +20 421423421425 26 2l 91198 _ol0 — | —29422 23425428 [12
08409 ol 91249516 517 || 4915 918 9214923 91049154 918 _ 921
4218 402l 40230524 —926_928 1 930 4923_925_928_ 930
+225_227_22’8+230_231
6 0 T 95 pI0_pTl 9399 9Tl 913 — 90 93196199 o2 17
_013_pld_ ol5_5l7_ 520 _215_217+220 9154 920_925_ 927
+221+223+224_225 +226_228+231
4226928 529
7 —27T_22 —2V 922 9% 96498 | _ 21423 95498 22
_9ll_9l13_916_ 919 9184 917_919
—922_927_ 929 931 49254927929
] _23+27_29+215+217 2019399 {913 — 9T 98 _oI0 912 7
_219+223+225+228 _215_217+221 +215_219_221_225
49254927929 9274929 931
9 Q0 92 9B 522 524 Q171 922, 978 — 20 95 {9T0 912 12
4220_922 926
10 21227 —204 27 912 — —204 97 912 17
_927_929
11 T I8 521 529 o2 —9ol5 93497 991917 29
_919_923 925 928
12 27 29 I8 p2a 531 — — —901 92 96 7
922 924
13 921529 _ol8 — 912 o175 12
14 1237 — 921929 93T _214_218+230 17
15 231015 9% 931 — 2799 918 925 29
16 42294251 229 — —o% 5
17 —231 231 — — 9
18 +231 — —2%° —23 14
19 _217+231 231 _ 229 20
20 +231 231 — — 5
21 +231 231 — — 9
22 4231 231 — —al7 14
23 — — 231 — 20
24 — 231 — — 5
25 — — 231 — 9

B.4 New Second Block Differential Paths

61

Table B-14: New second block conditions nr. 4

’ t \ Conditions on @Q¢: b3y ... b \ +# ‘
=20 ... 0 e e e (1)
—1]~..... 0 et e e 0] (3)

0 |~..... O, v i O 0] (4)
’ | Total # IV conditions for Ist block [(8) |
1 T 0. 1.1... .0..... 0 6
2 |~.10.00. .0.11111 ...00... 10..... 0| 16
3 | 0111101 11001100 ~~~10.10 0011..00 | 29
4 10010011 10101111 01111001 0110~.11 | 31
5 | 10111100 01000010 10011001 01000.00 | 31
6 | 00100010 01010111 011.1110 1.111.01 | 29
7 | 10111101 00.00100 0011.000 10110..0 | 28
8 |0..01001 01011.0. 0001111. 001.1710 | 26
9 [1.111.01 11..0.1. 0..0..0. 010.00.1 | 19
10 | 1111..10 10..171. 17.0..1. 00..10.1 | 20
11 | 101....0 .1...10! .170..1. 01...1.1| 16
12 | 010....1 ..!'..01. .001..1. O....... 12
13 | 0011...1 0.. 110...0. 0...1 12
14 | 0010.... 1.1 1.1...1.. 9
15 | 1110...0 L O R 8
16 | 0101.... Lo e e 5
17 (1.0 oo 0. ~....... - 4
18 | 0.7 oon Lot 1. oo e 3
19 |0..eveen ol 1 2
20 |0eeeeeee ol b e 2
21 |0.eeeeeen ot T e e 2
22 [0. e e e e 1
23 | 0 e e e 1
24 | 1. e e e 1

Subtotal # conditions 313

62

C BOOLEAN FUNCTION BITCONDITIONS

C Boolean Function Bitconditions

C.1 Bitconditions applied to boolean function F

Table C-1: Bitconditions applied to boolean function F

FX,V,Z)=(XAY)® (X AZ)

DB Forward bitconditions Backward bitconditions
abc g=0 g=-+1 g=-—1 g=20 g=+1 g=-1
4+ (4)] 1. (2) 0.+ (2 1. (2) | 0.+ (2)

R N (2) 0.- (2)] 1. (2) 0.- (2)
A @) o+ (2)] 1+, (2) o+. (2)]1+. (2)

e (2) e (2) e (2)

A= (2) 1+ (1) |o+= (1) 1+- (1) |0o+= (1)
- @ |o-. (2 1-. (2)||o-. (2 1-. (2)
-+ (2) 0-+ (1) | 1=+ (1) 0-+ (1) | 1=+ (1)
= (2) == (2) == (2)
.. (@) ||+ v (2) | +10 (1) |+01 (1) +~. (2)|+10 (1)|+01 (1)
+.+ (2) || 0+ (1) | +1+ (1) +0+ (1) | +1+ (1)

+.- (2| +1- (1) +0- ()| +1- (1) +0- (1)
++. (2) || ++1 (1) | ++0 (1) ++1 (1) | ++0 (1)

+++ (1) +++ (1) +++ (1)

+= (1) || ++= (1) ++= (1)

+—. (2| +0 (1) +-1 ()| +0 (1) +-1 (1)
+=+ (1) | ++ (1) ++ (1)

+== (1) +== (1) +== (1)
-.. @|-v (2)|-01 (1)|-10 (1)} - (2) | -01 (1) | -10 (1)
-+ (2) | -1+ (1) | -0+ (1) -1+ (1) | -0+ (1)

-- (2)|-0- (@) -1- (1) || -0- (1) -1- (1)
-+. (2)|-+0 (1) |-+1 (1) -+0 (1) | -+1 (1)

-++ (1) -++ (1) -++ (1)

== (1) | -+ (1) -+ (1)

= @) -1 @ -=0 (1) || --1 (1) --0 (1)
=+ (1) |-+ (1) -—+ (1)

-— (1) -— (1) — @

Here abe denotes three bitconditions (q¢[], q¢—1][7], qi—2[i]) for 0 < ¢ < 15 and 0 < ¢ < 31.
The next three columns hold the forward bitconditions FC(t, abe,0), FC(t,abe,+1) and
FC(t,abe, —1), respectively. The last three columns hold the backward bitconditions

BC(t,abc,0), BC(t,abc,+1) and BC(t,abe, —1), respectively.

Next to each triple of bitconditions def is denoted |Ugey|, the amount of freedom left.

An entry is left empty if g € Vape. See [subsubsection 6.3.2] for more details.

C.2 Bitconditions applied to boolean function G

63

C.2 Bitconditions applied to boolean function G

Table C-2: Bitconditions applied to MD5 boolean function G

GX,Y,Z)=(ZAX)D(ZAY)

DB Forward bitconditions Backward bitconditions
abc g= g=+1 | g=-1 g= g=4+1 | g=-1
A4 (4) | v+ (2) 10+ (1) |01+ (1) ~.+ (2) |10+ (1) |01+ (1)
o= @ .v- (2)]01- (1) |10- ()| ~.- (2)]01- (1)|10- (1)
A @+ (2)] .40 (2) +1 (2)] .40 (2)

A+ (2) ([o+ (1) | 14+ (1) o++ (1) | 1++ (1)

A= (2) | 1+ (D) | o+ (1) 1+- (1) | 0+= (1)

- @I .-1 2 -0 (2) | .-1 (2) -0 (2)
@ 0-+ (1) | -+ (1) 0-+ (1)
== (2) | o-- (1) 1-- (1) ||o-- (1) 1-- (1)
+.. @) ||+.0 (2)]+.1 (2 +.0 (2)]|+.1 (2

e (2) | +1e (1)] 500 (1) sie (1) [0+ (1)

o (2)] v0- (1)]+ () 0= (1) [+1- ()

. (2) . (2) . (2)

+++ (1) +++ (1) +++ (1)

= (1) = () = (1)

+-. (2) +—-1 (1) |+0 (1) +—-1 (1) |+0 (1)
v (1) |+ () = (1)

— () |) — ()

-. D] -0 (2 -1 (2)||-.0 (2 -.1 (2
- (@) -or (1) 1o (1) | -0s (1) -1 ()
- @ - (1) -1 () 0= (1
. (2) 0 (1) |-+ (1) 0 (1) |-+ (1)
(1) | () (1)

= U -)

- () — (@) - ()
— () -+ () — ()
— —) —t)

Here abc denotes three bitconditions (q¢[i], qi—1[i], qi—2[¢]) for 16 < ¢ <31 and 0 <4 < 31.
The next three columns hold the forward bitconditions F'C(t,abc,0), FC(t,abe, +1) and
FC(t,abc, —1), respectively. The last three columns hold the backward bitconditions

BC(t,abc,0), BC(t,abc,+1) and BC(t,abe, —1), respectively.

Next to each triple of bitconditions def is denoted |Ugey|, the amount of freedom left.

An entry is left empty if g ¢ Vpe. See [subsubsection 6.3.2] for more details.

64

C BOOLEAN FUNCTION BITCONDITIONS

C.3 Bitconditions applied to boolean function H

Table C-3: Bitconditions applied to MD5 boolean function H

HX)Y,Z)=XoYaZ

DB Forward bitconditions Backward bitconditions
abe g=20 g=-+1 g=-1 g=0 g=++1 g=-—1
. (8) (8) (8)

A+ (4) I (2) | Y+ (2) T (2) e (2
.- (4) Y- (2)] v (2) - (2] ~.- (2
4o (4) AW (2) | +H (2) m+. (2) | #+. (2)
4+ (2) ++ (2) ++ (2)

A= (2)]+ (2) += (2)

- (4) -HO(2) | -W(2) #=. (2) |m-. (2)
-+ (2) -+ (2) -+ (2)

S N I))

oo (4) +VO(2) [+ Y (2) o (2) [+ (2)
.+ (2) | +.+ (2) +.+ (2)

- (2) - (2 .- (2)

. (2) ||+, (2 ++. (2)

+++ (1) +++ (1) +++ (1)

++- (1) ++- (1) ++- (1)
. 2|+ (2 +—-. (2)

+=+ (1) +=+ (1) ++ (1)
+== (1) == (1) == (1)

-.. (4 =Y (2)]|-.v (2 -t (2) | - (2)
-+ (2)| -+ (2 -+ (2)

- @) - ® - (2

=+ (2) |+ (2) -+ (2)

-++ (1) -++ (1) -++ (1)
-+ (1) -+ (1) -+ (1)

= @ |- @ - (2

-—+ (1) -—+ (1) -—+ (1)

-— (1) -— (1) -— @

Here abc denotes three bitconditions (q¢[i], qi—1[i], qi—2[¢]) for 32 < ¢ <47 and 0 <4 < 31.
The next three columns hold the forward bitconditions F'C(t,abc,0), FC(t,abe, +1) and
FC(t,abc, —1), respectively. The last three columns hold the backward bitconditions

BC(t, abc,0), BC(t,abc,+1) and BC(t,abe, —1), respectively.

Next to each triple of bitconditions def is denoted |Ugey|, the amount of freedom left.

An entry is left empty if g ¢ Vpe. See [subsubsection 6.3.2] for more details.

C.4 Bitconditions applied to boolean function I

65

C.4 Bitconditions applied to boolean function I

Table C-4: Bitconditions applied to MD5 boolean function I

I(X,Y,Z)=Y & (X V Z)

DB Forward bitconditions Backward bitconditions
abc g=20 g=+1 | g=-1 g=0 g=+1 | g=-1
4+ (@) || 1.+ (2) |01+ (1) |00+ (1) 1.+ (2) |01+ (1)]|00+ (1)
o= @ t.- (2)]00- (1)]0t- (1) 1.- (2)|00- (1)|01- (1)
A (4 o+1 (1) | .+Q (3) o+1 (1) | 7+. (3)
A4+ (2) || o+ (1) 1++ (1) || o++ (1) 1++ (1)
4= (2) | o+= (1) 1+ (1) || o+= (1) 1+- (1)
-. (4 -Q (3)|0-1 (1) ?7-. (3)]0-1 (1)
(@) o (1) 1+ (1) 0-+ ()| 1+ (1)

= @) o= (1) |1-- (1) 0-- (1) | 1-- (1)

+.. Q) ||+.0 (2)|+01 (1) |+11 (1) || +.0 (2)|+01 (1) |+11 (1)
rr @)]+ () o (2)

- () 0= (1) | +1- (1) 0= (1) | +1- (1)
o (2) | () =0 (1) | ++1 (1) =0 (1)
+++ (1) +++ (1) +++ (1)
w (1) |+ (1) = (1)

+=. (2)|+1 (1) |+0 (1) +-1 (1) | +-0 (1)

= (1) = (1) = (1)

— () | — ()

- @|-0 (2]-11 (1)|-01 (1)|-.0 (2)]-11 (1)|-01 (1)
—+ () -1+ (1) [0+ (1) -1+ (1) [-or (1)
- @ @ - (@

@) 1) 0 (1) |-+ () 0 (1
(1) | () (1)

= (1) - -)
— @1 -0 —1 ()]0 (1)
()) — ()

— — —

Here abc denotes three bitconditions (q¢[i], qi—1[i], qi—2[¢]) for 48 < ¢ <63 and 0 <14 < 31.
The next three columns hold the forward bitconditions F'C(t,abc,0), FC(t,abe, +1) and
FC(t,abc, —1), respectively. The last three columns hold the backward bitconditions

BC(t,abc,0), BC(t,abc,+1) and BC(t,abe, —1), respectively.

Next to each triple of bitconditions def is denoted |Ugey|, the amount of freedom left.

An entry is left empty if g ¢ Vape. See [subsubsection 6.3.2] for more details.

66 D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D Chosen-Prefix Collision Example - Colliding Certificates
D.1 Chosen Prefixes

Table D-1: Chosen Prefix 1: Partial X.509 Certificate with identity Arjen K. Lenstra

Par, = 30820511 A0 03 02 01 02 02 04 01 0C 00 01 30
0D 06 09 2A 86 48 86 F7 0D 01 01 04 05 00 30 3D
31 1A 30 18 06 03 55 04 03 13 11 48 61 73 68 20
43 6F 6C 6C 69 73 69 6F 6E 20 43 41 31 12 30 10

06 03 55 04 07 13 09 45 69 6E 64 68 6F 76 65 6E
31 OB 30 09 06 03 55 04 06 13 02 4E 4C 30 1E 17
0D 30 36 30 31 30 31 30 30 30 30 30 31 5A 17 OD
30 37 31 32 33 31 32 33 35 39 35 39 5A 30 54 31

19 30 17 06 03 55 04 03 13 10 41 72 6A 65 6E 20
4B 2E 20 4C 65 6E 73 74 72 61 31 16 30 14 06 03
55 04 OA 13 OD 43 6F 6C 6C 69 73 69 6F 6E 61 69
72 73 31 12 30 10 06 03 55 04 07 13 09 45 69 6E

64 68 6F 76 65 6E 31 OB 30 09 06 03 55 04 06 13
02 4E 4C 30 82 04 22 30 OD 06 09 2A 86 48 86 F7
0D 01 01 01 05 00 03 82 04 OF 00 30 82 04 OA 02
82 04 01 00

THVaL =1HV3

A2934A57268FC8FB99270DB2BD42867F
= {574a93a2;4, £bc88£261¢,b20d279916, 7£8642bd 16 }

Table D-2: Chosen Prefix 2: Partial X.509 Certificate with identity Marc Stevens

Pvs = 30820511 A0 03 02 01 02 02 04 02 0C 00 01 30
0D 06 09 2A 86 48 86 F7 0D 01 01 04 05 00 30 3D
31 1A 30 18 06 03 55 04 03 13 11 48 61 73 68 20
43 6F 6C 6C 69 73 69 6F 6E 20 43 41 31 12 30 10

06 03 55 04 07 13 09 45 69 6E 64 68 6F 76 65 6E
31 0B 30 09 06 03 55 04 06 13 02 4E 4C 30 1E 17
0D 30 36 30 31 30 31 30 30 30 30 30 31 5A 17 OD
30 37 31 32 33 31 32 33 35 39 35 39 5A 30 54 31

15 30 13 06 03 55 04 03 13 0C 4D 61 72 63 20 53
74 65 76 65 6E 73 31 1A 30 18 06 03 55 04 OA 13
11 43 6F 6C 6C 69 73 69 6F 6E 20 46 61 63 74 6F
72 79 31 12 30 10 06 03 55 04 07 13 09 45 69 6E

64 68 6F 76 65 6E 31 OB 30 09 06 03 55 04 06 13
02 4E 4C 30 82 04 22 30 OD 06 09 2A 86 48 86 F7
0D 01 01 01 05 00 03 82 04 OF 00 30 82 04 OA 02
82 04 01 00

9756EBE66FC92AD60256345C8EC444A8
{e6eb569716,d62ac96f 16, 5c34560216, a844c48e16 }

IHVys =1THV3

D.2 Birthday attack

67

Table D-3: Chosen Prefix 3: Partial X.509 Certificate with identity Benne de Weger

Pew

IHVgw = 1HV3

D.2 Birthday attack

THVa;,
THWs

IHVpw

P(x,y, 2)

V(z,y,2)
p(IHV) = p(a,b,c,d)

D(z,y, 2)
S

= 30820511 A0 03 02 01 02 02 04 03 OC 00 01 30
0D 06 09 2A 86 48 86 F7 0D 01 01 04 05 00 30 3D
31 1A 30 18 06 03 55 04 03 13 11 48 61 73 68 20
43 6F 6C 6C 69 73 69 6F 6E 20 43 41 31 12 30 10

06 03 55 04 07 13 09 45 69 6E 64 68 6F 76 65 6E
31 0B 30 09 06 03 55 04 06 13 02 4E 4C 30 1E 17
0D 30 36 30 31 30 31 30 30 30 30 30 31 5A 17 OD
30 37 31 32 33 31 32 33 35 39 35 39 5A 30 54 31

17 30 15 06 03 55 04 03 13 OE 42 65 6E 6E 65 20
64 65 20 57 65 67 65 72 31 18 30 16 06 03 55 04
OA 13 OF 43 6F 6C 6C 69 73 69 6F 6E 6D 61 6B 65
72 73 31 12 30 10 06 03 55 04 07 13 09 45 69 6E

64 68 6F 76 65 6E 31 OB 30 09 06 03 55 04 06 13
02 4E 4C 30 82 04 22 30 OD 06 09 2A 86 48 86 F7
0D 01 01 01 05 00 03 82 04 OF 00 30 82 04 OA 02
82 04 01 00

= 5B2D26DB2317BEOA93D936FD47C7B013
{db262d5b1¢, 0Oabel172316, £d36d99316, 13b0cT47 16}

Table D-4: Birthday Attack

A2934A57268FC8FB99270DB2BD42867F
{574a93a2,, fbc88£2614, b20d27994, 7£8642bd ¢}

9756EBE66FC92AD60256345C8EC444A8
{666b569716, d62ac96f 16, 5C34560216, a844c48e16}

5B2D26DB2317BEOA93D936FD47C7B013
{db262d5b;4, 0abe172314, £d36d99316, 13b0c747 14}

64 68 6F 76 65 6E 31 OB 30 09 06 03 55 04 06 13

02 4E 4C 30 82 04 22 30 OD 06 09 2A 86 48 86 F7

OD 01 01 01 05 00 03 82 04 OF 00 30 82 04 OA 02

82 04 01 00 xx XX XX XX Yy YY VY VY 2Z ZZ ZZ ZZ

{ 766£68641, 0b316e6515, 0306093016, 1306045516,
304c4e0216, 3022048216, 2a09060d16, £78648861¢,
0101010d16, 8203000516, 30000£0415, 0202048216,
0001048215, X, v, z }

ITHVyr, if =0 mod 3;
ITHVg, if x =1 mod 3;
ITHVw, if =2 mod 3.
R|z(lyll=
(a,d —b,d—c)

p(MD5Compress(¢(z,y, 2), (2, y, 2)))
{(z,y,2) | (=0 mod 2'%) A (RL(y,15) =0 mod 2'%)}

68 D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

Table D-5: Birthday attack - Results

IHV3 =IHVyg = 9756EBE66FC92AD60256345C8EC444A8
= {e6eb569714,d62ac96f 16, 5c345602;¢, a844c48e4}
(X,K Z) = (cbb4091a16, 7a26c74016, 9b7f01af16)
IHV] =1HVy;, = A2934A57268FC8FB99270DB2BD42867F
= {574a93a2;4, fbc88£2614, b20d2799;¢, 7£8642bd 6 }
(X',Y',Z") = (d6e773ee;s, badfb3b31s, 023d39alys)
M, = 64686F 7665 6E 31 0B 30 09 06 03 55 04 06 13

02 4E 4C 30 82 04 22 30 0D 06 09 2A 86 48 86 F7
0D 01 01 01 05 00 03 82 04 OF 00 30 82 04 OA 02
82 04 01 00 1A 09 B4 CB 40 C7 26 7A AF 01 7F 9B
— { 766168641, 0b316e65,5, 03060930,5, 13060455,
304c4e02:¢, 302204824, 2a09060d 4, £78648866,
0101010d1g, 8203000516, 30000£046, 0202048216,
0001048216, cbb4091ass, 7a26c74015, 9b7f01af }

M; = 64686F 76 65 6E 31 0B 30 09 06 03 55 04 06 13

02 4E 4C 30 82 04 22 30 OD 06 09 2A 86 48 86 F7

0D 01 01 01 05 00 03 82 04 OF 00 30 82 04 OA 02

82 04 01 00 EE 73 E7 D6 B3 B3 4F BA A1 39 3D 02
= { 766£6864,5, 0b316e65:5, 0306093015, 1306045514,
304c4e0216, 3022048216, 2a09060d16, £78648861¢,
0101010d16, 8203000515, 30000£0415, 0202048214,

00010482167 d6e773ee16, ba4fb3b316, 023d393116 }

IHV, = 2D857B4EA419FB613F17A61017126647
= {467[)852(1167 61fb19ad4,10a6173f ¢, 4766121716}

ITHV] = 2D857B4E0479B7259F7662D47771220B
= {4e7b852d;¢, 25b77904 ¢, 44627695 15, 0b22717714}

SIHV, = {0,0by,3bys,0bs}
6b4 — _25 _ 27 _ 213 + 215 _ 218 _ 222 + 226 _ 230

D.2 Birthday attack

69

70 D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D.3 Differential Paths
D.3.1 Block 1 of 8

Table D-6: Differential Path - block 1

Using dmq; = +2%°

’ t ‘ Bits Qtt b31...b0 ‘ # ‘
-3 01001110 01111011 10000101 00101101 | 32
—2 0-00+-11 0-100-10 O0++100-+ O++10111 | 32
-1 ++010+00 -+100-10 O0++1011- +0-11111 | 32
0 0-100+01 1-11-+11 0++11001 -0-00100 | 32
1 +0.. .= 1+ ++. - oLl 1 -.-.1+.0| 16
2 1+...-+. 1.-.1..- .10"..!11 ..-700.1 |18
3 0+.0°-1. -1-011.- ~11+..7- 1.++01.+ | 25
4 11.1++1. -.01.... +0.0..-1 ..10+1.+ | 19
5 010-01.0 +00.0000 0-010001 000--00. | 29
6 1-1+1+01 +1.01111 ++1+11++ 11.00-10 | 30
7 .0.+.0.- .1....—— 1+.-..+0 .-.11——-. | 17
8 .1...0.1 0-....00 100-..0+ 1+..0.-. | 17
9 .0.10..1 .-....1+ .-1...++ 0+..101. | 16
10 .10.0011 0.0000.0 01+00!1. +.00+.01 | 25
11 0010+11+ 10111111 1+0.11-0 111110+0 | 31
12 1-0.-1+1 0101..01 00+.00+1 001.100- | 27
13 00+10-0- --+0""+- 000"1+0- -1+.0-++ | 31
14 11000+-- —=—————-- +.+-———= +—=1+--- | 31
15 +01-0100 0-1-10-0 -.1010-1 0+10100+ | 31
16 1001-11+ 01010001 +.000000 000+100- | 31
17 1.10...0 .1.0..-. 1.1...+. .0.-..10| 14
18 R T I A U B SO I I A ()
19 ... O+ 4.0 LL.-.. |10
20 - 01...0.. 0.7..1-. .0...0". |12
21 ..0...011-.71 “....-0. .1.7.1 12
22 Ao, +. e T 6
23 .+.0.. T Ot ™o v 5
24 R 1...0.. - ~.0] 8
25 T e -l 4
260 |0.. . e e 0+ | 4
27 - A T e 1+ 5
28 | ..., R T e +-1 4
29 | ..., 0 s 0| 2
30 | ..., Tt heeaeree e “11] 3
31 | ... e e e 1
5 0
33 | e L L e e 1

B4—60 | o i e e | 0]
6l | e e e e
62 e e e e
63 e e e e
64 e e e e e e

D.3 Differential Paths

Table D-7: Block 1 found using path in

Ms = A4 74 2581 8D C8 4F 86 73 6E 90 72 28 BB E8 77

02 03 85 8D 8C F1 83 7A FF 5E 6C 22 13 03 6A F3

D9 5C 77 E9 C2 23 7D 60 8C C4 A9 FB 97 30 7B BF

98 28 61 2F 15 99 E2 61 5B CC DE DA 59 30 53 2F
= { 812574ads, 864£c88d,g, 7290667316, 77e8bb28g,
8d850302;4, 7a83f18c14, 226cbeff g, £36a03131g,
€9775cd91¢, 607d23¢c2;4, £badcd8cyg, bf7b30971,

2f612898, 616299155, dadeccbb;g, 2£533059; }

M} = 1474 25818DC84F 86 73 6E 90 72 28 BB E8 77

02 03 85 8D 8C F1 83 7A FF 5E 6C 22 13 03 6A F3

D9 5C 77 E9 C2 23 7D 60 8C C4 A9 FB 97 30 8B BF

98 28 61 2F 15 99 E2 61 5B CC DE DA 59 30 53 2F
= { 812574a4 g, 864fc88d;s, 729067315, 77e8bb28 6,
8d85030214, 7a83f18c1g, 226c5eff g, £36a03131g,
69775Cd916, 607(123C2167 fba9c48c16, bf8b309716,

2f612898¢, 61629915, dadecc5byg, 2£5330591¢ }

IHVs; = ET45A147086391F0910F3B97AES5BET3
= {47al14b5e7,4,£091630814, 973b0£9115, 73be85ae g}

IHV] = ET45A14768C24DF4F16EF79A0EESTATT
= {478.1456716, f44d(226816, 9af76ef116, 777&950616}

SIHVy = {0,5bs,5bs,5bs}
(51)5 — 725 o 27 o 213 4 215 o 218 o 222 4 226

72 D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D.3.2 Block 2 of 8

Table D-8: Differential Path - block 2

Using dmq; = —216
t] Bits Q¢: bs1 ... bo | # |
-3 01000111 10100001 01000101 11100111 | 32
-2 01110+11 -+111-10 1++00101 -0-01110 | 32
-1 1001+-1- ++11-+11 0++0111- 1++10001 | 32
0 11110+00 -+0-++01 +1-0001- 0++01000 | 32
1 0.+.11.— ++1-—+.. O0+1...1- .++..... 18
2 0.+0+0.1 —.+.—-... 1+0..!1+. ..—..... 15
3 +1+10+.+ 10+1-0.. O++...11 .00..... 20
4 1l.+.——.+ 1.40.... +1...-. ..+0.7.. | 14
5 1.11-10. -0.-0000 01-000-0 00110+00 | 29
6 110.0110 -11+1111 1-+111+1 11--1011 | 31
7 +0111-.. -..-.1.. ——+.0.-. ..00.0.. | 17
8 001.+—.. +. 1=+, 4. .+.-. .. —+.... |14
9 +00.1-.. 0..+.1.. -10.0... ..-+...0 |15
10 ++100-0. 00.+.-00 -.000000 !1+.00.0 | 26
11 -0110+10 010-0-11 -001.111 ~111110- | 31
12 1000+000 101+1-"0 -.+0.00"~ ++10010+ | 30
13 -===00-- ++-——+-+ +7+11--- 0-0++++- | 32
14 110--+++ ++++1000 +---1100 —+++++++ | 32
15 1110+100 +++0101+ +010+110 010111-0 | 32
16 ..1+1101 1++1...1 1001-.0. 110000-0 | 25
17 1.1.1.1. 100..+.0 1...1.1. ..-..100 | 16
18 =TLoa-. T+l Lo - -l l10] 12
19 | ..o R N L S
20 07 T 0.1-.. .0....7. .1+..0.. | 11
21 1....0. T PR .+0..1.7 | 12
22 .. 1. 1., - R 7
23 | ... - .10.. B 0 6
24 ~.0.... 1...0.. I P 8
D275 T T +oo0 100, 4
26 B 0L 0 ..o, Foian 4
27 J1-. T 1. T e 5
28 e e - . T 4
29 B O 0 v e 2
30 J o e 3
) o e 1
77 PP 0
B S L 1
]34760\ \ 0 \

61 | e e e e

62 | e e e

63 | e e e

64 | e e e e

D.3 Differential Paths

Table D-9: Block 2 found using path in

Mg = B3DD 11 72 78 E4 94 40 14 33 63 OE 74 61 C1 DC

9B 80 1B 2E 55 20 15 A5 13 FF 7A E7 97 3E F4 4B

83 52 E4 EO 49 79 B3 1E B6 00 65 4D 51 F4 A4 81

CE BE 3F OB DO 99 D1 30 D1 45 6F AB EO 4A 3E 98
= { 7211ddb3,4, 4094e478,5, 06333146, dccl161746,
2e¢1b809byg, 2515205514, e77aff13,4, 4bf43e971g,
€0e45283;4, 1eb37949:4, 4d6500b6,6, 81a4f4511g,

Ob3fbece;s, 30d199d0,s, ab6£45d1,5, 983e4aeli }

M} = B3DD 11 72 78 E4 94 40 14 33 63 OE 74 61 C1 DC

9B 80 1B 2E 55 20 15 A5 13 FF 7A E7 97 3E F4 4B

83 52 E4 EO 49 79 B3 1E B6 00 65 4D 51 F4 A3 81

CE BE 3F OB DO 99 D1 30 D1 45 6F AB EO 4A 3E 98
= { 7211ddb316, 40946478167 0663331416, dCC1617416,
2€1b809b16, 85152055167 e77aff1316, 4bf4399716,
€0e45283,4, 1eb37949,4, 4d6500b61g, 81a3f451 1,

Ob3fbeceis, 30d199d0s, ab6£45d1,s, 983e4acOis }

IHVs = 6900FODD0821F13B2AF6DF5D3521BFC7
= {ddf00069;¢4, 3bf121081¢4, 5ddff62a;4, c7Tbf213514}

IHV{ = 6900FODD6880AD3B8A559C5D95807BC7
= {ddf000694,3bad806814,5d9c558a14, c7T7b809514}

SIHVs = {0,5bg,bg, dbe}
566 — 725 o 27 o 213 4 215 o 218 o 222

74

D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D.3.3 Block 3 of 8

Table D-10: Differential Path - block 3

Using dmq; = 422
t] Bits Q¢: bs1 ... bo | # |
-3 11011101 11110000 00000000 01101001 | 32
-2 11000111 -+111-11 +0-0000- +0-10101 | 32
-1 01011101 1-0111-- -1-101-+ +0-01010 | 32
0 00111011 1-1-++01 +0-0000- 0++01000 | 32
1 ..., - .+.-01-- 1---..10 ——+.1... | 17
2 0..!...0 .+..0-0- -1.40..- +0-.- 17
3 01..... 1 .-.0-1+. +00+0..- -+1.0... | 18
4 +0.7.... om0 O+l | 14
5 110+000~ 0.00+1+. 0001-001 00-0.010 | 29
6 +110110+ 111110-0 -1111111 00-10111 | 32
7 -..+..-000-1 +..01... -.- - 14
8 -111..-0 1-. +..-.... 1..7..0. | 13
9 10.1..+40 ..0..+-. ...+.0.. 1!11+0.0. | 16
10 0.0.00+0 .01.00.0 100-0100 ..011.." | 23
11 1110111+ 01-01-01 011+1-11 0101-01+ | 32
12 001.110- 10110-11 01001+.0 11+0-110 | 30
13 —++"+4++1 -+ - +71 +--10--1 | 32
14 010+1100 111+---= +-0+11-+ +++++++. | 31
15 1140110+ +000-111 010--011 -110-01. | 31
16 ..+00.0- ..01-001 00.0..01 +100110. | 23
17 ..00..11 ~.1.0.0. .-.0"... 1.1.1.+. |15
18 L1047 L1 -l Lkl] 12
19 T e N T T PO L
20 .0...0". “...0. 1+...0.. “Lou1-0 11
21 B Il A o B O £ B R Y
22 R oo+ L - 7
P2 T . 10...... 0....7. 6
24 I 0 B .0....7..1...0.. 8
P75 T Tt e -...1 4
26 | ..., O+0.. . - 4
27 | ... 1+ - .1 T 5
28 | ... - R - 4
29 | ..., 0 ..oovnn. L0 e 2
30 | ..., I A T e 3
1 e e 1
5 0
33 | e e Lo 1
]344—60\ \ 0 \

X

62 | ... B

63 | ... B

64 | B

D.3 Differential Paths

75

M

THV,

IHV!

0ITHV;
0br

Table D-11: Block 3 found using path in

= 85C8C4 FB29 7B 86 B5 77 52 CD 64 19 80 9F E3
TE 62 86 FO 77 32 D1 EO 69 A5 B4 E5 66 70 B8 BB
BA E5C2 11 74 2A 13 1D 05 71 1C F1 FE 22 AF 93
3F 1E EF 22 47 62 E3 AA DA C1 7C 40 E4 48 CA 41
= { fbc4c88515, b5867b2914, 64cd5277145, €39£80191¢,
£086627e14, €0d1327714, e5b4ab69:45, bbb870661¢,
11c2ebbajg, 1d132a7414, £11c710514, 93af22feq,
22efle3f 45, 2aae36247g, 407ccldajg, 41cad8ed g }

= 85 C8C4FB29 7B 86 B5 77 52 CD 64 19 80 9F E3
TE 62 86 FO 77 32 D1 EO 69 A5 B4 E5 66 70 B8 BB
BA E5 C2 11 74 2A 13 1D 05 71 1C F1 FE 32 AF 93
3F 1E EF 22 47 62 E3 AA DA C1 7C 40 E4 48 CA 41
= { be4C88516, 1)58671)29167 64Cd527716, e39f801916,
£086627e14, €0d1327714, €5b4ab69,5, bbb87066¢,
11c2ebbajg, 1d132a7414, £11c7105:4, 93af32fe g,
22efle3fis, aae3624716, 407ccldarg, 41cadBedis }

= 6F48D9E5383E55D0FC43ED4D20ABF6FS
= {e5d9486f16, d0553€3816, 4ded43f016, f8f6&b2016}

= 6F48D9E5989D51D05CA3E94D800AF3F8
= {eb5d9486f,5,d0519d9814,4de9a35¢cs, £8£30a8014}

= {0, db7,db7, b7}
— 725 o 27 o 213 4 215 o 218

76 D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D.3.4 Block 4 of 8

Table D-12: Differential Path - block 4

Using dmq; = +28

t] Bits Q¢: bs1 ... bo | # |
-3 11100101 11011001 01001000 01101111 | 32
-2 11111000 11110-1+ -0-0101- +0-00000 | 32
-1 01001101 11101-01 +-+00011 -1-11100 | 32
0 11010000 01010-01 +0-111-+ +0-11000 | 32
1 .0..0.-0=-+.. .+1+..01 -1-...0. | 15
2 . 1.4+.0-10.. 0+0+..00 --+0..0. | 17
3 I...0.++ .0.010.. .+.+...- +-10..+. | 16
4 P I R I O B i B O e I 51
5 0010.0.+ 0+.+00.- 010-0000 -0.-00-0 | 27
6 11110+1- 0+0-1101 101-1111 .10+11+1 | 31
7 10+..1.0 +..+..00 ..1-.... 10.+..1. | 15
8 110..-.0 +1.+..+1 ..0...1. .-....0. | 14
9 b e R +. ..-01.01 .-.0.7.. |14
10 -010.+0. 1170...0 .01.00+0 0-..0-00 | 23
11 00+10110 -1+10001 011001++ 1.011011 | 31
12 +0101100 1-100110 01+0+111 1011011. | 31
13 -1-1---- 0——++--1 --++-100 00+----. | 31
14 0-++10+- —+++++++ +1-11-++ ++0++10. | 31
15 1-110010 00-.-001 011-10-1 -01101-. | 30
16 0110..+1 0117111+ 1.1+.0+1 10+00.1. | 26
17 1..... + .10l oL+l 1a+10010 | 10
18 .0...71 - - 1..0. 01..+. |10
19 000 - Ll 1 -.0 c- 8
20 1+..0.. T, 01 0 - 8
21 O+1..1.7 +..0 71+ LT 11
22 O..+.. +. Lt R U 5
23 oo -. 0...1° 0 7
240.. 1...0 - 8
25 T e e 1. - - 4
26 e O+.... ... 0 4
27 1....... 1+ T, 1. - 6
28 0....... oo . oo 4
29 | ..., Ot it 0O 2
30 | ..., I - e 3
8 T e 1
3 0
1 b 1
]344—60\ \ 0 \

X

62 | ... o Fol e

63 | ... oL Fo e e

64 | ... oL, P e e

D.3 Differential Paths

7

Mg

THVq

IHV]

0THVg
0bs

Table D-13: Block 4 found using path in

— A8 79 A0 3D 3C F6 65 F2 39 C7 F3 FE 82 B3 84 E8
35 E7 C9 E8 BD EE 30 C2 68 A2 12 12 84 78 9D F4
2F 44 90 6F 19 B7 90 26 46 44 36 E1 DA 64 FA 0C
53 A3 77 FA 0D 2B 01 2B 7D DC 28 55 DA E5 B5 51
= { 3da079a8,5, £265£63c g, fef3c739;5, €884b382;6,
e8c9e73514, c230eebd;g, 121222684, £49d7884 1,
6£90442f 15, 2690b71914, e1364446,4, Ocfabddaig,
fa77a3563,5, 2b012b0d, ¢, 5528dc7d g, 51b5e5daj }

= A8 79 A0 3D 3C F6 65 F2 39 C7 F3 FE 82 B3 84 E8
35 E7 C9 E8 BD EE 30 C2 68 A2 12 12 84 78 9D F4
2F 44 90 6F 19 B7 90 26 46 44 36 E1 DA 65 FA 0OC
53 A3 77 FA OD 2B 01 2B 7D DC 28 55 DA E5 B5 51
= { 3da079a816, f265f63C167 fef3c73916, 6884b38216,
e8c9e7351¢4, c230eebd g, 1212226814, £49d7884 5,
6£90442f 16, 2690b71915, e1364446;¢, Ocfabbdajg,
fa77a3534, 2b012b0d 6, 5528dc7ds, 51bSebdajs }

= 80D9AE060626A79399F4E05AOETF318F
= {06aed980;¢,93a726061;, 5ae0£499,4, 8£317£0e14}

= B80DY9AEO66685A793F953E15A6EDE318F
= {062ed9804, 9327856614, 5ae153f9;5,8f31debe 4}

= {0, dbs, dbs, dbg}
— 725 o 27 o 213 4 215

78 D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D.3.5 Block 5 of 8

Table D-14: Differential Path - block 5

Using dmq; = —2°

t] Bits Q¢: bs1 ... bo | # |
-3 00000110 10101110 11011001 10000000 | 32
-2 10001111 00110001 +1-1111- 0++01110 | 32
-1 01011010 1110000+ -1-10-++ 1++11001 | 32
0 10010011 10100111 +0-001-+ 0++00110 | 32
1 0....0.. +..-.1.1 -.0+.1-+ 1++... .. 15
2 00.!.+.. -..0.—-.. —.+=.... -0-..... 13
3 +1..71.. 1..1.-.. —.1+..00 +—+..... 15
4 00..+417. O....=.! +.1-.... ++..... 14
5 10000.-0 -0000+0. 10.00000 0++00.00 | 28
6 +1111001 -1111110 01001111 +0+11011 | 32
7 oo 10 00. ..0..0.- +1+..00. | 13
8 -00....1 0..'..+. ."=....0 .-0..-0. | 14
9 110....+ .0....+. .+0....0 011..——. | 14
10 0.+0100+ 000070.0 0010...0 .1.!'01+0 | 25
11 10+10111 1+11-101 11.10000 00001++1 | 31
12 0000+00- .++10101 0+00101+ 000101-1 | 31
13 -+011-—= .—=#---= —=10+--- +----+1-| 31
14 10---1-- .0111011 —+++++++ ———————— 31
15 11000101 .+01110- 010+000+ 0-..-1+0 | 29
16 0-001.10 .0.0.1.. 111+1111 10°"100- | 26
17 1= 11..1.7 ...0...+ .0.!-.—— | 14
18 4o .0..- 1...0-..0| 9
19 0..0+ oo o, -0...+.7-| 9
20 0..1+.. T e +1...+..0] 8
21 .40 0.7 0. ... 1+...1..119
22 0.0, 1. Ao - -...| 6
23 ST e -.0.... "ol 0|6
24 B ¢ B 0. ...1...7 ..0.7..1| 9
25 B [N
26 R 0-. ... i I 5
27 S0 1-. - 0 16
28 I o T 5
29 |l 0.00 2
O I R T 3
3L | e I T 1
32 | e s e 0
33 | i s e oo 1
ERIE | 0]

L

62 | .. e e

63 | .. e e

64 | ... oLl e e

D.3 Differential Paths

79

My

THV,

IHV]

0THVq
0bg

Table D-15: Block 5 found using path in

— 51 E280 34 11 21 20 B5 E7 9E C5 F2 6A 9F 69 DA
85 D7 4E F6 A9 7A OB 11 64 EF A2 5F B1 AE 26 BA
45 1C CD A7 A2 E7 84 33 9C 44 7D 56 25 49 A6 OB
FO 67 62 94 BF 58 0C 91 9E C4 57 02 5D 3C 78 60
= { 34802515, b5202111,5, f2c59ee7:6, da699f6ag,
£64ed785, 110b7aa9:4, 5fa2ef64,4, ba26aeblig,
aT7cd1cd5y4, 3384e7a2;4, 567d449¢c g, 0bab4925,g,
94626705, 910c58bf g, 0257c49e g, 60783cbdis }

= b51E280 34 11 21 20 B5 E7 9E C5 F2 6A 9F 69 DA
85 D7 4E F6 A9 7A OB 11 64 EF A2 5F B1 AE 26 BA
45 1C CD A7 A2 E7 84 33 9C 44 7D 56 05 49 A6 OB
FO 67 62 94 BF 58 0C 91 9E C4 57 02 5D 3C 78 60
= { 3480625116, b5202111167 f2C596€716, da699f6a16,
f64ed78516, 110b7aa916, 5fa2ef6416, ba26aeb116,
a7cdlc4515, 338467&2167 567d449C16, Oba6490516,
946267£015, 910c58bf 5, 0257c49e1s, 60783c5dig }

= T3A7T0ACO9AC9B2233ECC7BE4C30C64838
= {c00aa773;4,23b2c99a;4, e47bcc3e g, 88640cc3i6}

= T73A7T0ACOFAA8B2239EAB7BE423EC6388
= {c00aa7734,23b2a8fa4, e47bab9e s, 8863ec2314}

= {0, 8bo, by, by}
— 725 o 27 o 213

80 D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D.3.6 Block 6 of 8

Table D-16: Differential Path - block 6

Using dmq; = +23

t] Bits Q¢: bs1 ... bo | # |
-3 11000000 00001010 10100111 01110011 | 32
—2 10001000 01100-++ +++01100 --+00011 | 32
-1 11100100 01111011 1-+01-++ +0-11110 | 32
0 00100011 10110010 1-+0100- 1++11010 | 32
1 J1..0=+. +.+..0. L. 00- 0++.10.. | 15
2 00..-0+. +..-..+. .11..1.. .-1.40.. | 15
3 1-1.-1.1 ...-..+. ~.1..0.0 .1-.0+.. [16
4 1+....11 0.0 .0 L A+a1-10 | 14
5 0-00101+ 10.00°00 0+000000 0++0-100 | 31
6 1011110+ 01011-11 10101111 1.0100-1 | 31
7 101...40 -....0.. .1.-.... .1-.11+. | 14
8 0.+...10 +.1..0.. .—.+.... ..00+0+. | 14
9 0.+.!.1- -.0..... 0.1...0 ..-.++.. |13
10 10-0.001 -00.~000 0-.0.001 ..01.-00 | 25
11 11-10100 -1-0-111 1000011+ 00010-11 | 32
12 | 00+000-1 10-11111 1-00000+ 101-0100 | 32
13 0000++-1 0-0+++++ +1+++0-— —+++0-++ | 32
14 o + ———— 111 O+-——---—- 1-———-- 0|32
15 1111111- 1+101011 00011-.0 110-1010 | 31
16 +01-0101 0100+..0 .00011°- .011001. | 27
17 0...+ .1..0..1 1.. ...-.—.]9
18 St 0..- ...0...7 0..- 9
19 +..01 e e 10.1.7". | 9
20 0.01- ..0 - +.... +#1.0..0. |11
21 1..-. ..1.7 R I B 1.19
22 | ... =07 L.+l 0..—.... 0..... +.1 8
23 O...-1. 1oo-+0. 7o 7
24 N I I - 7
25 T 0..0.-.. ..oiill. 5
26 | Foo e 0....0.. ..0 4
27 - 1.0 oo, 1....1 ..01. 6
28 | ... Ot vt oo 1- 4
20 | e -1 2
30 | T 1-. 3
3L | e -+, 2
32 | e ...0....]0
B oL 2
ERIE | 0]
61 | o s e
62 | ...l ol Foil i
63 | ... i P
O ool ol

D.3 Differential Paths

Table D-17: Block 6 found using path in

M,y = B9 8296 CO AB 9F E5 B1 D3 53 88 2E 26 C1 F7 21

B4 18 99 D9 72 B5 A1 D5 05 OB 68 45 36 44 80 10

AF 8C 7A FF 7C E8 EA CC B9 B1 FB BD C9 29 D4 F5

D4 99 FB 81 29 24 DF 30 2C B3 C4 50 23 38 62 97
= { c09682b9;5, bleb9fabig, 2€8853d3145, 21£7c12616,
d99918b4,¢5, dbalbb72:4, 456680b0514, 1080443644,
ff7a8cafg, cceae87cig, bdfbblb9ig, £56d429c9,

81fb99d4 4, 30df2429,4, 50c4b32cg, 976238234 }

Mj, = B9 8296 CO AB 9F E5 B1 D3 53 88 2E 26 C1 F7 21

B4 18 99 D9 72 B5 A1 D5 05 OB 68 45 36 44 80 10

AF 8C 7A FF 7C E8 EA CC B9 B1 FB BD D1 29 D4 F5

D4 99 FB 81 29 24 DF 30 2C B3 C4 50 23 38 62 97
= { C()9682b9167 b1e59fab16, 268853(131(5, 21f7012616,
d99918b44¢, d5alb57214, 45680b0514, 108044364,
ff7a8caf g4, cceae87cig, bdfbblb9g, £5d429d1¢,

81fb99d4;4, 30d£242914, 50c4b32¢c1g, 9762382315 }

IHViy, = DE5S6FC8A3A0A1IFEBBESES37DB6629AC4A
= {8afch6de;s, eblf0ala;g, 7d536eberg, c49262b614}

IHV{O = DE56FC8A9A091FEB1E6ES37D16629AC4
= {8afc56de;g, eb1£099a14, 7d536ele1s, 492621614}
0IHVyg = {0,0b10,b10,0b10}
Sbyg = —25-27

82

D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D.3.7 Block 7 of 8

Table D-18: Differential Path - block 7

Using dmq; = +2%°
t] Bits Q¢: bs1 ... bo | # |
-3 10001010 11111100 01010110 11011110 | 32
-2 11000100 10011010 01100010 -0-10110 | 32
-1 01111101 01010011 01101110 -0-11110 | 32
0 11101011 00011111 000010-+ +0-11010 | 32
1 ..0..0..11.. 0-0-..01 -1-..... 13
2 110+, Ll 1+ =04++..00 =+ 15
3 11,01, L0 +=.. 1-0-.... —=+. ... 14
4 - =1, 0. .+t +1++. 0.0 +oLL L. 13
5 1-00-.00 ~-001-.0 101+0000 1+000000 | 30
6 1+11-011 ++11--01 1.+-1111 1.111111 | 30
7 11..-... 00.7—=.!" =.01.... .1°.~... |15
8 '1..+... 10!-.... -.0-.0.. ..+0+..0 | 15
9 Lob.1... L..010.. - . 4+.0.. .10017.0 | 14
10 00.!-010 00.1..10 .00+!+.0 .01+1-1- | 25
11 110.-111 11007011 01110+01 001-000+ | 31
12 .11700+1 0010+1+~ 00°1111. 1-0-0+-0 | 30
13 “1+-—--—-0 1-0+0+0- +++++++1 +——+—++0 | 32
14 --1110-+ +++++0+1 00000010 +--0---. | 31
15 1+1+1-1- 011-1+10 0000000- 011-.10. | 30
16 01...00+ 10111+1. +..1.. 100-"01. | 21
17 0.7.+.1 1.7+ L.-..1.7 .0.0..0. | 13
18 | 1 .+, .+, 1.+ 1.1..1 8
19 0....7.+ O ... | 8
20 1...0.. “..1-.. 0....7 B AP 0119
21 +...1..7 .0-0.. 1.7..... .0....70| 11
22 +... ...1.7 +oo.. .. +1 6
23 T 0 ..0-"... 1....... +.0....| 8
24 “..1 ..10.... 0..... 0. ...1 “ 1 8
D275 T I Tk S cL- 5
26 .0 .. et e O+, ..., 4
27 Ot s 1+. - 7
28 B B O - 4
29 B 0. 2
30 e e e [3
31 e e e e 1
3 0
33 o s e e 1
]344—60\ \ 0 \

Bl | o e e e

62 | e e e +ooo..

(62 +oo...

64 | . e e +oo..

D.3 Differential Paths

Table D-19: Block 7 found using path in

My, = 9396 B3 A4 6C DO FF 7F 14 26 71 1C 45 92 97 B6
5D 1C EF 66 C1 87 51 EO 94 BF 08 F3 B2 98 1C 5C
CE 52 D9 63 D5 A4 25 9A 64 55 7E 4D 1B 9E FE OD
9A 51 6D 1E 6E C8 BB 37 06 68 25 AE A6 36 16 60
= { a4b39693,5, 7£££d06c g, 1c71261416, b6979245,
66ef1c5d g, €05187clg, £308bf94,4, 5c1c98b2;g,
63d952ce s, 9a25a4d514, 4d7e5564,6, Odfe9elbig,
1e6d519a;6, 37bbc86es, ae25680615, 601636a615 }

Mj{, = 93 96B3 A4 6CDO0FF 7F 14 26 71 1C 45 92 97 B6
5D 1C EF 66 C1 87 51 EO 94 BF 08 F3 B2 98 1C 5C
CE 52 D9 63 D5 A4 25 9A 64 55 7E 4D 1B 9E FE 2D
9A 51 6D 1E 6E C8 BB 37 06 68 25 AE A6 36 16 60
= { 3.4})-39693167 7fffd06016, 1C71261416, b697924516,
669f1C5d16, 605187C116, f308bf9416, 5C1C98b216,
63d952C616, 9a25a4d515, 4(176556416, 2df6961b16,
1e6d519a,6, 37bbc86e;g, ae256806,;, 601636a615 }

IHV); = DCA82596835B2D4F2EDB818BFEEOD521
= {9625a8dc16, 4f2d5b8316, 8b81db2€16, 21d5€0f916}

ITHV], = DCA82596635B2DAFOEDB818BDEEOD521
= {9625a8dc4,4£2d5b6316, 8b81db0e;g, 21d5e0de 4}

0IHVi; = {0,60b11,6b11,6b11}
51)11 = -2

84

D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D.3.8 Block 8 of 8

Table D-20: Differential Path - block 8

Using dmq; = +2%7
t] Bits Q¢: bs1 ... bo | # |
-3 10010110 00100101 10101000 11011100 | 32
-2 00100001 11010101 11100000 11-11110 | 32
-1 10001011 10000001 11011011 00-01110 | 32
0 01001111 00101101 01011011 -++00011 | 32
1 FS 0. ..+ O—+..... 7
2 .00.. ..0"- L1+ 1-+..... 10
3 1.+0..1 ..0-+ L1+ O-... .. 11
4 L10+..0 -1-. .+ -—+..... 10
5 AL +1-. .1...... -1 110
6 1.0-..0. 1... .0.1.!'.1 .10.00.. | 13
7 1+..01 0.0. '+..... 0 ..0.+1.1 13
8 1..0..-1 [-—+.0 |11
9 1.0..0+ 0. .+1-...+1-.- |12
10 | 1+ .1....1. .100...+ 0.0.0-.- |13
11 .1...11+ .00101-1 '1+0.1.+ 0.101-10 | 24
12 00°0000- .-101111 .0-000.1 +~-10001 | 29
13 0+-00-+1 ~0--++-- "—1+1-.- ++++——- | 31
14 +110+--- ——- +0+—— ————- 100 .1110100 | 31
15 101-1-11 101010.0 1+1001.1 11110-0-| 30
16 10010010 +00-.1"1 00101+.0 - 123
17 01.-.0.. ...0...+ .0..0..1 ~.1 11
18 1+.-.. S+ L0070 - L..0...0 |11
19 +0.1.. 0L L 7
20 .-.0..0 ..0.01- ..0....7 A+ [10
21 P | P 1.7 ...+.0.. 9
22 .0. +. ..., =07 ..+, 0..-... 8
23 P AP 0o -1 oL 1..-.+. 7
24 | ..., - 1...+. T -..1.+. 7
25 | . T 0..0.- 5
26 L0 S 0.... 4
27 ..01. L 1....1 6
28 -l Ll O.. v, o 4
29 B 2
30 Ll-l s T 3
31 B 2
32 0 e 1
33 B T 2
]34760\ \ 0 \

Bl | o e e e

62 | e e e R U

63 | o e e R

7 A

D.3 Differential Paths

85

M12

!
Mi,

ITHV1o

IHV/,

0IHViq

Table D-21: Block 8 found using path in

= 2B D7 D1 16 25 A0 6A 90 73 9B 4D OA 06 EA 87 2A
3A FO EB A1 26 29 BE D6 79 40 56 1B D9 37 4A 89
D6 OF OD 72 2C 9F EB 68 33 EC 53 FO BO FD 76 A2
04 7B 66 C9 OF CE B1 D2 E2 2C CO 99 B9 A4 B9 3E
= { 16d1d72b16, 906&&02516, 0a4d9b7316, 2&876&0616,
alebf93a;4, d6be29261;, 1b56407915, 894a37d91g,
720d0£d616, 68eb9f2cy6, £053ec3316, a276£db0yg,
c9667b04;5, d2blce0fg, 99c02ce2;s, 3eb9adb9is }

= 2B D7 D1 16 25 A0 6A 90 73 9B 4D OA 06 EA 87 2A
3A FO EB Al 26 29 BE D6 79 40 56 1B D9 37 4A 89
D6 OF OD 72 2C 9F EB 68 33 EC 63 FO BO FD 76 AA
04 7B 66 C9 OF CE B1 D2 E2 2C CO 99 B9 A4 B9 3E
= { 16d1d72b16, 906&&02516, 0a4d9b7316, 2a87ea0616,
alebf93a;g, d6be292615, 1b5640791¢, 894a37d9,
720d0fd616, 68eb9f2(:16, f053ec3316, aa76fdb016,
c9667b0414, d2b1ce0f 5, 99c02ce2;5, 3eb9adb9is }

= b505D9746FABOOB328018DBC34A87DF11
= {46975d5016, 320bb0fa16, C3db188016, 11df874a16}

= b505D9746FABO0B328018DBC34A87DF11
= {46975d5014,320bb0fa;6, c3db188015, 11d£874a;4}

= {0,0,0,0}

86

D CHOSEN-PREFIX COLLISION EXAMPLE - COLLIDING CERTIFICATES

D.4 RSA Moduli

SbHSc

SpllSe

Table D-22: Upper Partial RSA Modulus 1

XY\ Z|| Ms || M | M| Ms || Mo || Mol M1z [| M1z

1A09B4CB 40C7267A AFO17F9B A4742581 8DC8AFS6 736E9072 28BBES77 0203858D
8CF1837A FFBEE6C22 13036AF3 DO5C77E9 C2237D60 8CC4A9FB 97307BBF 9828612F
1599E261 5BCCDEDA 5930532F B3DD1172 78E49440 1433630 7461C1DC 9B801B2E
552015A5 13FF7AE7 973EF44B 8352E4E0 4979B31E B600654D 51F4A481 CEBE3FOB
D099D130 D1456FAB EO4A3E9S 85C8CAFB 297B86B5 7752CD64 19809FE3 7TE6286F0
7732D1EO 69A5B4ES 6670BSBB BAESC211 7424131D 05711CF1 FE22AF93 3F1EEF22
4762E3AA DAC17C40 E448CA41 AST9A03D 3CF665F2 39CTF3FE 82B384ES 35E7CIES
BDEE30C2 68421212 84789DF4 2F44906F 19B79026 464436E1 DAGAFAOC 53A377FA
0D2B012B 7DDC2855 DAESB551 51E28034 11212085 E79ECSF2 6A9F69DA 85D74EF6
A97AOB11 64EFA25F B1AE26BA 451CCDA7 A2E78433 9C447D56 2549A60B FO676294
BF580C91 9EC45702 5D3C7860 BI8296CO ABIFESB1 D353882E 26C1F721 B41899DI
72B5A1D5 050B6845 36448010 AFSCTAFF 7CESEACC B9B1FBBD C929D4F5 DA99FBS1
2924DF30 2CB3C450 23386297 9396B3A4 6CDOFF7F 1426711C 459297B6 5D1CEF66
C18751E0 94BFOSF3 B2981C5C CE52D963 D5A4259A 64557E4D 1BIEFEOD 9A516D1E
6ECSBB37 066825AE A6361660 2BD7D116 25A06A90 739B4D0OA 0GEAS72A 3AFOEBAL
2629BED6 7940561B D9374A89 DEOFOD72 2COFEB68 33EC53F0 BOFD76A2 047B66C9
OFCEB1D2 E22CC099 BOA4BI3E

Table D-23: Upper Partial RSA Modulus 2

X [¥7]|2 || M| MG | M3 | MG | M| M | M7 A
EE73E7D6 B3B34FBA A1393D02 A4742581 8DC84F86 736E9072 28BBE877 0203858D
8CF1837A FF5E6C22 13036AF3 DO95C77E9 C2237D60 8CC4A9FB 97308BBF 9828612F
1599E261 5BCCDEDA 5930532F B3DD1172 78E49440 1433630E 7461C1DC 9B801B2E
552015A5 13FF7AE7 973EF44B 8352E4E0 4979B31E B600654D 51F4A381 CEBE3FOB
D099D130 D1456FAB E04A3E98 85C8C4FB 297B86B5 7752CD64 19809FE3 7E6286F0
7732D1EO 69A5B4ES5 6670B8BB BAES5C211 742A131D 05711CF1 FE32AF93 3F1EEF22
4762E3AA DAC17C40 E448CA41 A879A03D 3CF665F2 39C7F3FE 82B384E8 35E7COE8
BDEE30C2 68A21212 84789DF4 2F44906F 19B79026 464436E1 DA65FAQOC 53A377FA
0D2B012B 7DDC2855 DAES5B551 51E28034 112120B5 E79EC5F2 6A9F69DA 85D74EF6
A9T7AOB11 64EFA25F B1AE26BA 451CCDA7 A2E78433 9C447D56 0549A60B F0676294
BF580C91 9EC45702 5D3C7860 B98296C0O ABOFE5B1 D353882E 26C1F721 B41899D9
72B5A1D5 050B6845 36448010 AF8C7AFF 7CESEACC BO9B1FBBD D129D4F5 D499FB81
2924DF30 2CB3C450 23386297 9396B3A4 6CDOFFT7F 1426711C 459297B6 5D1CEF66
C18751E0 94BF08F3 B2981C5C CE52D963 D5A4259A 64557E4D 1BOEFE2D 9A516D1E
6EC8BB37 066825AE A6361660 2BD7D116 25A06A90 739B4D0A O6EA872A 3AF9EBA1
2629BED6 7940561B D9374A89 D60FOD72 2C9FEB68 33EC53F0 BOFD76AA 047B66C9
OFCEB1D2 E22CC099 B9A4B93E

D.4 RSA Moduli

Table D-24: Lower Partial RSA Modulus S,,,

Sm = 0000000F 54A89517 6E4C295A 405FAF54 CEE82D04 3A45CE40 B155BE34 EBDE7847
85A25B7F 894D424F A127B157 A8A120F9 9FE53102 C81FA9OE 0B9BDA1B A775DF75
D9152A80 257A1ED3 52DD49E5 7TEO68FF3 FO2CABD4 AC97DBBC 3FA0205A 74302F65
C7F49A41 9E08FD54 BFAFC14D 78ABAAB3 ODDB3FC8 48E3DF02 C5A40EDA 248C9FF4
7482850C FDFBDD9B C55547B7 404F5803 C1BB8163 2173127E 1A93B24A FBEE7A80
450865DB 374676D5 76BA5296 CCC6C130 82D1AB36 521F1A8A D945466B 9EFO6AF4
3A02D70B 7FB8B7DC 6D268C3D BA6898F6 552FA3FB B33DCBFA DA7B33FA 75D93AFE
262BD37A FF75995F DOE9774B A5A26A7C 443FF34E 461502A2 CB777E98 2D007375
14B88ED2 8D61F428 E88387DF 2BF02230 AD17A9D4 4FF36485 0A07DB42 A7826AC2
EE3899CA C3EC2747 21D476D9 6658F537 16676587 F8FF14DB 8DE6741A FA2206DB
A3B11828 BA87C6E1 E88A022F 1AA8DDDO 37EAB049 B5C7D305 3D0A63D7 861DEAO7
B3D8B720 DEO68CF4 7TE657BB4 4450B85D 52F749D5 9572DFOC OE3433B4 7COAA19A
856F1DC3 CDADBAFB 143035C8 5A53AF57 22038F76 5C0D621B 66B69FFF FDO91D4A
661A453B F1DAED1A 3A2341B3 7D7F623B 158F6ECO 2B49A253 64430FCB 5861483E
1E9543ED 2EE7ES54A 4C108A6E 64194098 OEE60D14 AEES59AF 30037E75 B2309CEO
21FFE310 9BF20538 92ABOAE4 03516E2A B58067F7

Table D-25: RSA Moduli

ni = SpllScllSm = p1-@
ny = SylSllSm = p2-qo
Where
p1 = FF6E89C1 C29EC1B6 DCAC6227 EAD2226C E7E07D35 3F2296F7 940E6154 17A8363C

482171DE ECC75091 E5934F7E 7C1D6EAC 90B3A8D7 AD7C39CD A6364D79 CES8D9063
906933C9 64EAACF5 003B5D3A 1DF30C83 74C3CE80 4E54B4A8 DBEAEF33 166E282F
8425B5A9 9E640BCO F87C3507 C888119E 2479DCF4 4E88538B CEOE7BC3 A7D7A454
T7T8F69937 9FA845DB 43636513 FB3C2468 D32AB56F FD4A49C4 D73EB135 6C6FFEAA
921B8A27 6DF4CA34 512835C4 CCC3E6B2 77A689F5 73009A2B 90E985FD E63CETF3
59D30AC1 92A2C97F 05CODCEC 46B17355 0F926164 9F4613E8 B349B5C4 CB090692
8278DBFF 534B02E8 5A305B93 069BA793 5893BE68 FOC197

p2 = F134344B 72A468C3 EATASB2F 97CDFE2F DB9194CE 47B03C85 9A4E8AOF BE2B1B1B
55CE1E96 5409BB5F OFO7F2CF B67C3FE3 27853D37 8D0038A6 94A16AAD 84038E18
D69746A4 C1126D21 D5839065 FO885C60 BB174114 B76BOO3F 368AB2EF 6FF46A59
34DBCBE1 1517FDOE 6F418A06 FAF3BEGA ABB77B2F 999B4FE9 76C8096E C0133761
AFD0149B 4816EAC9 2CO6E1AF 60CO5F19 FDA2A23A B4A5CA4A 05403033 EB65FB3C
648B0536 09C5C43A 4EE308CA BABE639C EB7C297D 56A398DD C35E42B7 31AFCICO
22414B8F 6A94A280 E4DOEF28 F995553B 3FA3E308 19911F98 43276163 91336C18
85EC8062 A1D2CA68 990C0174 561DAE3F 6B3C7378 2D53BD

	Acknowledgements
	Contents
	1 Introduction
	1.1 Cryptographic hash functions
	1.2 Collisions for MD5
	1.3 Our Contributions
	1.4 Overview

	2 Preliminaries
	3 Definition of MD5
	3.1 MD5 Message Preprocessing
	3.2 MD5 compression function

	4 MD5 Collisions by Wang et al.
	4.1 Differential analysis
	4.2 Two Message Block Collision
	4.3 Differential paths
	4.4 Sufficient conditions
	4.5 Collision Finding

	5 Collision Finding Improvements
	5.1 Sufficient Conditions to control rotations
	5.1.1 Conditions on Qt for block 1
	5.1.2 Conditions on Qt for block 2
	5.1.3 Deriving Qt conditions

	5.2 Conditions on the Initial Value for the attack
	5.3 Additional Differential Paths
	5.4 Tunnels
	5.4.1 Example: Q9-tunnel
	5.4.2 Notation for tunnels

	5.5 Collision Finding Algorithm

	6 Differential Path Construction Method
	6.1 Bitconditions
	6.2 Differential path construction overview
	6.3 Extending partial differential paths
	6.3.1 Carry propagation
	6.3.2 Boolean function
	6.3.3 Bitwise rotation

	6.4 Extending backward
	6.5 Constructing full differential paths

	7 Chosen-Prefix Collisions
	7.1 Near-collisions
	7.2 Birthday Attack
	7.3 Iteratively Reducing IHV-differences
	7.4 Improved Birthday Search
	7.5 Colliding Certificates with Different Identities
	7.5.1 To-be-signed parts
	7.5.2 Chosen-Prefix Collision Construction
	7.5.3 Attack Scenarios

	7.6 Other Applications
	7.6.1 Colliding Documents
	7.6.2 Misleading Integrity Checking
	7.6.3 Nostradamus Attack

	7.7 Remarks on Complexity

	8 Project HashClash using the BOINC framework
	9 Conclusion
	References
	A MD5 Constants and Message Block Expansion
	B Differential Paths for Two Block Collisions
	B.1 Wang et al.'s Differential Paths
	B.2 Modified Sufficient Conditions for Wang's Differential Paths
	B.3 New First Block Differential Path
	B.4 New Second Block Differential Paths
	B.4.1 New Second Block Differential Path nr. 1
	B.4.2 New Second Block Differential Path nr. 2
	B.4.3 New Second Block Differential Path nr. 3
	B.4.4 New Second Block Differential Path nr. 4

	C Boolean Function Bitconditions
	C.1 Bitconditions applied to boolean function F
	C.2 Bitconditions applied to boolean function G
	C.3 Bitconditions applied to boolean function H
	C.4 Bitconditions applied to boolean function I

	D Chosen-Prefix Collision Example - Colliding Certificates
	D.1 Chosen Prefixes
	D.2 Birthday attack
	D.3 Differential Paths
	D.3.1 Block 1 of 8
	D.3.2 Block 2 of 8
	D.3.3 Block 3 of 8
	D.3.4 Block 4 of 8
	D.3.5 Block 5 of 8
	D.3.6 Block 6 of 8
	D.3.7 Block 7 of 8
	D.3.8 Block 8 of 8

	D.4 RSA Moduli

