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Abstract. The fair evaluation and comparison of side-channel attacks
and countermeasures has been a long standing open question, limiting
further developments in the field. Motivated by this challenge, this work
makes a step in this direction and proposes a framework for the analy-
sis of cryptographic implementations that includes a theoretical model
and an application methodology. The model is based on commonly ac-
cepted hypotheses about side-channels that computations give rise to. It
allows quantifying the effect of practically relevant leakage functions with
a combination of information theoretic and security metrics, measuring
the quality of an implementation and the strength of an adversary, re-
spectively. From a theoretical point of view, we demonstrate formal con-
nections between these metrics and discuss their intuitive meaning. From
a practical point of view, the model implies a unified methodology for
the analysis of side-channel key recovery attacks. The proposed solution
allows getting rid of most of the subjective parameters that were limit-
ing previous specialized and often ad hoc approaches in the evaluation of
physically observable devices. It typically determines the extent to which
basic (but practically essential) questions such as “How to compare two
implementations?” or “How to compare two side-channel adversaries?”
can be answered in a sound fashion.

1 Introduction

Traditionally, cryptographic algorithms provide security against an adversary
who has only black box access to cryptographic devices. However, such a model
does not always correspond to the realities of physical implementations. Dur-
ing the last decade, it has been demonstrated that targeting actual hardware
rather than abstract algorithms may lead to very serious security issues. In this
paper, we investigate the context of side-channel attacks, in which adversaries
are enhanced with the possibility to exploit physical leakages such as power con-
sumption [19] or electromagnetic radiation [2,14]. A large body of experimental
work has been created on the subject and although numerous countermeasures
are proposed in the literature, protecting implementations against such attacks
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is usually difficult and expensive. Moreover, most proposals we are aware of only
increase the difficulty of performing the attacks, but do not fundamentally pre-
vent them. Eventually, due to the device-specific nature of side-channel attacks,
the comparison of their efficiency and the evaluation of leaking implementations
are challenging issues, e.g. as mentioned in [22], page 163.

Following this state-of-the art, our work is mainly motivated by the need of
having sound tools (i.e. a middle-ware between the abstract models and the
concrete devices) to evaluate and compare different implementations and ad-
versaries. As a matter of fact, the evaluation criteria in physically observable
cryptography should be unified in the sense that they should be adequate and
have the same meaning for analyzing any type of implementation or adversary.
This is in clear contrast with the combination of ad hoc solutions relying on
specific ideas designers have in mind. For example, present techniques for the
analysis of side-channel attacks typically allow the statement of claims such as:
“An implementation X is better than an implementation Y against an adver-
sary A”. But such claims are of limited interest since an unsuccessful attack may
theoretically be due both to the quality of the target device or to the ineffec-
tiveness of the adversary. The results in this paper aim to discuss the extent to
which more meaningful (adversary independent) statements can be claimed such
as: “An implementation X is better than an implementation Y ”. Similarly, when
comparing different adversaries, present solutions for the analysis of side-channel
attacks typically allow the statement of claims such as: “An adversary A suc-
cessfully recovers one key byte of an implementation X after the observation of q
measurement queries.”. But in practice, recovering a small set of key candidates
including the correct one after a low number of measurement queries may be
more critical for the security of an actual system than recovering the key itself
after a high number of measurement queries (e.g. further isolating a key from a
list can employ classical cryptanalysis techniques exploiting black box queries).
The results in this paper aim at providing tools that help claiming more flexible
statements and can capture various adversarial strategies.

Quite naturally, the previous goals imply the need of a sound model for the
analysis of side-channel attacks. But perhaps surprisingly (and to the best of our
knowledge), there have been only a few attempts to provably address physical
security issues. A significant example is the work of Micali and Reyzin who initi-
ated an analysis of side-channels taking the modularity of physically observable
computations into account. The resulting model in [24] is very general, capturing
almost any conceivable form of physical leakage. However and as observed by
the authors themselves, this generality implies that the obtained positive results
(i.e. leading to useful constructions) are quite restricted in nature and it is not
clear how they apply to practice. This is especially true for primitives such as
modern block ciphers for which even the black box security cannot be proven.

In the present work, we consequently give up a part of this generality and con-
centrate on current attacks (i.e. key recovery) and adversaries (i.e. statistical pro-
cedures to efficiently discriminate the key), trying to keep a sound and systematic
approachaside these points. For this purpose, we first separate the implementation
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issue (i.e. “how good is my implementation?”) and the adversarial issue (i.e. “how
strong is my adversary?”) in the physically observable setting. We believe that
the methodological division of both concerns brings essential insights and avoids
previous confusions in the analysis of side-channel attacks. As a consequence, we
introduce two different types of evaluation metrics. First, an information theo-
retic metric is used to measure the amount of information that is provided by a
given implementation. Second, an actual security metric is used to measure how
this information can be turned into a successful attack. We propose candidates
for these metrics and show that they allow comparing different implementations
and adversaries. We also demonstrate important connections between them in the
practically meaningful context of Gaussian leakage distributions and discuss their
intuitivemeaning.Eventually,wemove from formal definitions to practice-oriented
definitions in order to introduce a unified evaluation methodology for side-channel
key recovery attacks. We also provide an exemplary application of the model and
discuss its limitations.

Related works include a large literature on side-channel issues, ranging from
attacks to countermeasures and including statistical analysis concerns. The side-
channel lounge [12], DPA book [22] and CHES workshops [8] provide a good list
of references, a state-of-the art view of the field and some recent developments,
respectively. Most of these previous results can be re-visited in the following
framework in order to improve their understanding. The goal of this paper is
therefore to facilitate the interface between theoretical and practical aspects in
physically observable cryptography. We mention that in parallel to our work, the
models in [3,20] consider a restricted context of noiseless leakages. They allow
deriving formal bounds on the efficiency of certain attacks but are not aimed to
analyze actual devices (that always have to deal with noise) which is our main
goal. Finally, [25] initiated a study of forward secure cryptographic constructions
with rigorous security analysis of side-channel attacks. [11,26] then proposed
similar constructions in a more general setting and standard model. These works
exploit assumptions such as bounded adversaries or leakages of which the validity
can be measured for different devices thanks to the methodology in this paper.

Finally, our analysis employs ideas from the classical communication theory
[10,28,29]. But whereas source and channel coding attempt to represent the in-
formation in an efficient format for transmission, cryptographic engineers have
the opposite goal to make their circuit’s internal configurations unintelligible to
the outside world. This analogy provides a rationale for our metrics. Note that
different measures of uncertainty have frequently been used in the cryptographic
literature to quantify the effectiveness of various attacks, e.g. in [6]. Our line of
research follows a slightly different approach in the sense that we assign specific
tasks to different metrics. Namely, we suggest to evaluate implementations with
an information theoretic metric (conditional entropy) and to evaluate attacks and
adversarieswith securitymetrics (success rates or guessing entropy).This allows us
to consider first implementations as non-adversarial information emitting objects
where keys are randomly chosen, and then adversaries which operate under cer-
tain (computational and access) restrictions on top of the implementations. This
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duality enables our model to be reflective of the situation in the real world and
therefore to be useful beyond theoretical analysis, i.e. applicable to any simulated
or actual lab data, for various cryptographic algorithms.

Note that because of place constraints, proofs and technical details have been
removed from the paper and made available in an extended version [30].

2 Intuitive Description of the Model and Terminology

In this section, we give an intuitive description of side-channel key recovery
attacks that will be formally defined and investigated in the rest of this paper.

A generic side-channel key recovery is illustrated in Figure 1 that we explain
as follows. First, the term primitive is used to denote cryptographic routines cor-
responding to the practical instantiation of some idealized functions required to
solve cryptographic problems. For example, the AES Rijndael is a cryptographic
primitive. Second, the term device is used to denote the physical realization
of a cryptographic primitive. For example, a smart card running the AES Ri-
jndael can be the target device of a side-channel attack. A side-channel is an
unintended communication channel that leaks some information from a device
through a physical media. For example, the power consumption or the electro-
magnetic radiation of a target device can be used as side-channels. The output of
a side-channel is a physical observable. Then, the leakage function is an abstrac-
tion that models all the specificities of the side-channel and the measurement
setup used to monitor the physical observables. An implementation is the combi-
nation of a cryptographic device and a leakage function. Finally, a side-channel
adversary is an algorithm (or a set of algorithms) that can query the implemen-
tation to get the leakage function results in addition to the traditional black-box
access. Its goal is to defeat a given security notion (e.g. key recovery) within
certain computational bounds and capabilities. Note that leakage functions and
cryptographic implementations (aka physical computers) are formally defined in
[24] and this paper relies on the same assumption as theirs.

Figure 1 suggests that, similarly to the classical communication theory, two
aspects have to be considered (and quantified) in physically observable cryp-
tography. First, actual implementations leak information, independently of the
adversary exploiting it. The goal of our information theoretic metric is to mea-
sure the side-channel leakages in order to give a sound answer to the question:
“how to compare different implementations?”. Second, an adversary analogous
to a specific decoder exploits these leakages. The goal of our security metrics is to
measure the extent to which this exploitation efficiently turns the information
available into a key recovery. Security metrics are the counterpart of the Bit-
Error-Rate in communication problems and aim to answer the question: “how
to compare different adversaries?”. Interestingly, the figure highlights the differ-
ence between an actual adversary (of which the goal is simply to recover some
secret data) and an evaluator (of which the goal is to analyze and understand
the physical leakages). For example, comparing different implementations with
an information theoretic metric is only of interest for an evaluator.
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In practice, side-channel attacks are usually divided in two phases. First an
(optional) preparation phase provides the adversary with a training device and
allows him to profile and characterize the leakages. Second, an exploitation phase
is directly mounted against the target device and is aimed to succeed the key
recovery. Importantly, actual adversaries do not always have the opportunity
to carry out a preparation phase (in which case profiling is done on the fly).
By contrast, it is an important phase for evaluators since it allows performing
optimized attacks and therefore leads to a better analysis of the physical leakages.
Before moving to the definitions of our metrics, we finally mention the “theory”
and “practice” arrows leading to the information theoretic metric in Figure 1.
These arrows underline the fact that one can always assume a theoretical model
for the side-channel and perform a simulated attack. If the model is meaningful,
so is the simulated attack. But such simulations always have to be followed by an
experimental attack in order to confirm the relevance of the model. Experimental
attacks exploit actual leakages obtained from a measurement setup.

3 Formal Definitions

In this section, we define the metrics that we suggest for the analysis of physically
observable devices. We first detail two possible security metrics, corresponding
to different computational strategies. Both metrics relate to the notion of side-
channel key recovery. Then, we propose an information theoretic metric driven
by two requirements: (1) being independent of the adversary and (2) having the
same meaning for any implementation or countermeasure. As a matter of fact
and following the standard approach in information theory, Shannon’s condi-
tional entropy is a good candidate for such a metric. Typically, the use of an
average criteria to compare implementations is justified by the need of adver-
sary independence. By contrast, the interactions of an adversary with a leaking
system (e.g. adaptive strategies) are quantified with the security metrics in our
model. We note that these candidate metrics will be justified by theoretical facts
in Section 5 and practical applications in Section 6. However, it is an interesting
open problem to determine if other metrics are necessary to evaluate side-channel
attacks (e.g. min entropy is briefly discussed in Section 6).

3.1 Actual Security Metrics

Success Rate of the Adversary. Let EK = {Ek(.)}k∈K be a family of crypto-
graphic abstract computers indexed by a variable key K. Let (EK , L) be the phys-
ical computers corresponding to the association of EK with a leakage function
L. As most cryptanalytic techniques, side-channel attacks are usually based on a
divide-and-conquer strategy in which different (computationally tractable) parts
of a secret key are recovered separately. In general, the attack defines a function
γ : K → S which maps each key k onto an equivalent key class1 s = γ(k), such
1 We focus on recovering key bytes for simplicity and because they are usual targets in

side-channel attacks. But any other intermediate value in an implementation could
be recovered, i.e. in general we can choose s = γ(k, x) with x the input of Ek(.).
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that |S| � |K|. We define a side-channel key recovery adversary as an algorithm
AEK ,L with time complexity τ , memory complexity m and q queries to the target
physical computer. Its goal is to guess a key class s = γ(k) with non negligible
probability, by exploiting its collected (black box and physical) information. For
this purpose, we assume that the output of the adversary AEK ,L is a guess vector
g = [g1, g2, . . . , g|S|] with the different key candidates sorted according to the
attack result: the most likely candidate being g1. A practice-oriented description
of AEK ,L with a detailed specification of its features is given in [30], Appendix A.
Finally, we define a side-channel key recovery of order o with the experiment:

Experiment Expsc-kr-o
AEK ,L

[g← AEk,L; s = γ(k); k
R←− K;]

if s ∈ [g1, . . . , go] then return 1;
else return 0;

The oth-order success rate of AEK ,L against a key class variable S is defined as:

Succsc-kr-o,S
AEK ,L

(τ, m, q) = Pr [Expsc-kr-o
AEK ,L

= 1] (1)

Intuitively, a success rate of order 1 (resp. 2, . . . ) relates to the probability
that the correct key is sorted first (resp. among the two first ones, . . . ) by the
adversary. When not specified, a first order success rate is assumed.

Computational Restrictions. Similarly to black box security, computational
restrictions have to be imposed to side-channel adversaries in order to capture
the reality of physically observable cryptographic devices. This is the reason
for the parameters τ, m, q. Namely, the attack time complexity τ and memory
complexity m (mainly dependent on the number of key classes |S|) are limited by
present computer technologies. The number of measurement queries q is limited
by the adversary’s ability to monitor the device. In practice, these quantities
are generally separated for the preparation and exploitation phases (see Section
5). But additionally to the computational cost of the side-channel attack itself,
another important parameter is the remaining workload after the attack. For
example, considering a success rate of order o implies that the adversary still
has a maximum of o key candidates to test after the attack. If this has to be
repeated for different parts of the key, it may become a non negligible task.
As a matter of fact, the previously defined success rate measures an adversary
with a fixed maximum workload after the side-channel attack. A more flexible
metric that is also convenient in our context is the guessing entropy. It measures
the average number of key candidates to test after the side-channel attack. The
guessing entropy was originally defined in [23] and has been proposed to quantify
the effectiveness of adaptive side-channel attacks in [20]. It can be related to the
notion of gain that has been used in the context of multiple linear cryptanalysis
to measure how much the complexity of an exhaustive key search is reduced
thanks to an attack [5]. We use it as an alternative to the success rate.
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Guessing Entropy. We first define a side-channel key guessing experiment:

Experiment Expsc-kg
AEK ,L

[g← AEk,L; s = γ(k); k
R←− K;]

return i such that gi = s;

The guessing entropy of AEK ,L against a key class variable S is then defined as:

GE sc-kr-S
AEK,L

(τ, m, q) = E
(
Expsc-kg

AEK,L

)
(2)

3.2 Information Theoretic Metric

Let S be the previously used target key class discrete variable of a side-channel
attack and s be a realization of this variable. Let Xq = [X1, X2, . . . , Xq] be a vec-
tor of variables containing a sequence of inputs to the target physical computer
and xq = [x1, x2, . . . , xq] be a realization of this vector. Let Lq be a random
vector denoting the side-channel observations generated with q queries to the
target physical computer and lq = [l1, l2, . . . , lq] be a realization of this random
vector, i.e. one actual output of the leakage function L corresponding to the
input vector xq. Let finally Pr[s|lq] be the conditional probability of a key class
s given a leakage lq. We define the conditional entropy matrix as:

Hq
s,s∗ = −

∑

lq

Pr[lq|s] · log2 Pr[s∗|lq], (3)

where s and s∗ respectively denote the correct key class and a candidate out of
the |S| possible ones. From 3, we derive Shannon’s conditional entropy:

H[S|Lq] = −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log2 Pr[s|lq] = E
s

(
Hq

s,s

)
(4)

It directly yields the mutual information: I(S;Lq) = H[S]− H[S|Lq]. Note that
the inputs and outputs of an abstract computer are generally given to the side-
channel adversary (but hidden in the formulas for clarity reasons). Therefore,
it is implicitly a computational type of entropy that is proposed to evaluate
the physical leakages. This is because divide-and-conquer strategies target a key
class assuming that the rest of the key is unknown. But from a purely infor-
mation theoretic point of view, the knowledge of a plaintext-ciphertext pair can
determine a key completely (e.g. for block ciphers). Hence and as detailed in the
next section, the amount of information extracted by a side-channel adversary
depends on its computational complexity. Note also that leakage functions can
be discrete or (most frequently) continuous. In the latter case, it is formally a
conditional differential entropy that is computed. Note finally that in simulated
attacks where an analytical model for a continuous leakage probability distribu-
tion is assumed, the previous sums over the leakages can be turned into integrals.
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4 Practical Limitations

One important goal of the present framework is to allow a sound evaluation of any
given implementation, if possible independently of an adversary’s algorithmic
details. For this purpose, the strategy we follow is to consider an information
theoretic metric that directly depends on the leakages probability distribution
Pr[Lq|S]. Unfortunately, there are two practical caveats in this strategy.

First, the conditional probability distribution Pr[Lq|S] is generally unknown.
It can only be approximated through physical observations. This is the reason
for the leakage function abstraction in the model of Micali and Reyzin that we
follow in this work. It informally states that the only way an adversary knows the
physical observables is through measurements. Therefore, practical attacks and
evaluations have to exploit an approximated distribution P̂r[Lq|S] rather than
the actual one Pr[Lq|S]. Second, actual leakages may have very large dimensions
since they are typically the output of a high sampling rate acquisition device like
an oscilloscope. As a consequence, the approximation of the probability distri-
bution for all the leakage samples is computationally intensive. Practical attacks
usually approximate the probability distribution of a reduced set of samples,
namely P̂r[L̃q|S]. We denote side-channel attacks that exploit the approximated
probability distribution of a reduced set of leakage samples as generic template
attacks. A straightforward consequence of the previous practical limitations is
that for any actual device, the mutual information I(S;Lq) can only be approx-
imated through statistical sampling, by using generic template attacks.

We note there are different concerns in the application of template attacks
such as: “how to limit the number of leakage samples for which the distribution
will be estimated?” or “how to limit the number of templates to build?”. The
data dimensionality reduction techniques used in [4,32] and the stochastic models
in [16,27] can be used to answer these questions in a systematic manner. But
there is no general theory allowing one to decide what is the best attack for a
given device. Hence, in the following we will essentially assume that one uses the
“best available tool” to approximate the leakage distribution. Quite naturally,
the better generic template attacks perform in practice, the better our framework
allows analyzing physical information leakages.

5 Relations between the Evaluation Metrics

In this section, we provide theoretical arguments that justify and connect the
previous information theoretic and security metrics. These connections allow us
to put forward interesting features and theoretical limitations of our model. In
particular, we will consider two important questions.

First, as mentioned in Section 4, generic template attacks require to estimate
the leakage probability distribution. Such a leakage model is generally built dur-
ing a preparation phase and then used to perform a key recovery during an
exploitation phase (as pictured in Figure 1). And as mentioned in Section 3.1,
these phases have to be performed within certain computational limits. Hence,
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to the previously defined complexity values τ, m, q of the online phase, one has
to add the complexities of the preparation phase, denoted as τp, mp, qp. The
first question we tackle is: given some bounds on (τp, mp, qp), can an adversary
build a good estimation of the leakage distribution? We show in Section 5.1
that the conditional entropy matrix of Equation (3) is a good tool to answer
this question. We also show how it relates to the asymptotic success rate of a
Bayesian adversary. Then, assuming that one can build a good approximation
for the leakage distribution, we investigate the extent to which the resulting es-
timation of the mutual information allows comparing different implementations.
Otherwise said, we analyze the dependencies between our information theoretic
and security metrics. We show that there exist practically meaningful contexts of
Gaussian side-channels for which strong dependencies can be put forward. But
we also emphasize that no general statements can be made for arbitrary dis-
tributions. Section 5.2 essentially states that the mutual information is a good
metric to compare different implementations, but it always has to be completed
with a security analysis (i.e. success rate and/or guessing entropy).

5.1 Asymptotic Meaning of the Conditional Entropy:
“Can I Approximate the Leakage Probability Distribution?”

We start with three definitions.

Definition 1. The asymptotic success rate of a side-channel adversary AEK ,L

against a key class variable S is its success rate when the number of measure-
ment queries q tends to the infinity. It is denoted as: Succsc-kr-o,S

AEK,L
(q →∞).

Definition 2. Given a leakage probability distribution Pr[Lq|S] and a num-
ber of side-channel queries stored in a leakage vector lq, a Bayesian side-channel
adversary is an adversary that selects the key as argmaxs∗ Pr[s∗|lq].
Definition 3.An approximated leakage distribution P̂r[L̃q|S] is sound if the
first-order asymptotic success rate of a Bayesian side-channel adversary exploit-
ing this leakage distribution against the key class variable S equals one.

In this section, we assume that one has built an approximated leakage dis-
tribution P̂r[L̃q|S] with some (bounded) measurement queries qp, memory mp

and time τp. We want to evaluate if this approximation is good. For theoreti-
cal purposes, we consider an adversary/evaluator who can perform unbounded
queries to the target device during the exploitation phase. We use these queries
to evaluate the entropy matrix Ĥ

q

s,s∗ defined in Section 3.2. It directly leads to
the following relation with the asymptotic success rate of a Bayesian adversary.

Theorem 1. Assuming independent leakages for the different queries in a side-
channel attack, an approximated leakage probability distribution P̂r[L̃q|S] is sound
if and only if the conditional entropy matrix evaluated in an unbounded exploitation
phase is such that argmins∗ Ĥ

q

s,s∗ = s, ∀s ∈ S.
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The proof of Theorem 1 is given in [30]. There are several important remarks:

1. Theorem 1 only makes sense for bounded preparation phases. For unbounded
preparations, an adversary would eventually access the exact distribution
Pr[Lq|S]. In this context, the soundness does only depend on the cardinality
of the different sets {s∗|Pr[Lq|s∗] = Pr[Lq|s]}, ∀s ∈ S.

2. The condition of independence for consecutive leakages is not expected to
be fully verified in practice. For example, there could exist history effects in
the side-channel observations. However, it is expected to hold to a sufficient
degree for our proof to remain meaningful in most applications.

3. In practice, the exploitation phase in a side-channel attack is bounded as the
preparation. Therefore, Theorem 1 will be relevant as long as the number
of leakages used to test the approximated leakage distribution and estimate
the conditional entropy matrix is sufficient.

4. Finally, the condition on the entropy matrix Ĥ
q

s,s∗ is stated for the number
of queries q for which the leakage distribution Pr[Lq|S] was approximated
during the preparation phase. In general, finding a sound approximation for
q implies that it should also be feasible to find sound approximations for
any q′ > q. But in practice, computational limitations can make it easier to
build a sound approximation for small q values than for larger ones.

5.2 Comparative Meaning of the Conditional Entropy:
“Does More Entropy Imply More Security?”

Let us write an exemplary conditional entropy matrix and its estimation as:

Hq
s,s∗ =

⎛

⎜
⎜
⎝

h1,1 h1,2 ... h1,|S|
h2,1 h2,2 ... h2,|S|
... ... ... ...

h|S|,1 h|S|,2 ... h|S|,|S|

⎞

⎟
⎟
⎠ Ĥ

q

s,s∗ =

⎛

⎜
⎜
⎝

ĥ1,1 ĥ1,2 ... ĥ1,|S|
ĥ2,2 ĥ2,2 ... ĥ2,|S|
... ... ... ...

ĥ|S|,1 ĥ|S|,2 ... ĥ|S|,|S|

⎞

⎟
⎟
⎠

Theorem 1 states that if the diagonal values of a (properly approximated) matrix
are minimum for all key classes s ∈ S, then these key classes can be asymptot-
ically recovered by a Bayesian adversary. As a matter of fact, it gives rise to
a binary conclusion about the approximated leakage probability distribution.
Namely, Theorem 1 answers the question: “Can one approximate the leakage
probability distribution under some computational bounds τp,mp,qp?”.

Let us now assume that the answer is positive and denote each element hs,s

as the residual entropy of a key class s. In this subsection, we are interested
in the values of these entropy matrix elements. In particular, we aim to high-
light the relation between these values and the effectiveness of a side-channel
attack, measured with the success rate. Otherwise said, we are interested in the
question: “Does less entropy systematically implies a faster convergence towards
a 100% success rate?”. Contrary to the previous section, this question makes
sense both for the ideal conditional entropy matrix that would correspond to an
exact leakage distribution and for its approximation. Since general conclusions
for arbitrary leakage distributions are not possible to obtain, our strategy is to
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first consider simple Gaussian distributions and to extrapolate the resulting con-
clusions towards more complex cases. We start with three definitions.

Definition 4. An |S|-target side-channel attack is an attack where an adversary
tries to identify one key class s out of |S| possible candidates.

Definition 5. An univariate (resp. multivariate) leakage distribution is a proba-
bility distribution predicting the behavior of one (resp. several) leakage samples.

Definition 6. A Gaussian leakage distribution is the probability distribution of
a leakage function that can be written as the sum of a deterministic part and a
normally distributed random part, with mean zero and standard deviation σ.

Finally, since we now consider the residual entropies of the different key classes
separately, we need a more specific definition of the success rate against a key
class s (i.e. a realization of the variable S), denoted as Succsc-kr-o,s

AEk,L
(τ, m, q). It

corresponds to the definition of Section 3.1 with a fixed key class.

Examples. Figure 2 illustrates several Gaussian leakage distributions. The up-
per left picture represents the univariate leakage distributions of a 2-target side-
channel attack, each Gaussian curve corresponding to one key class s. The up-
per right picture represents the bivariate leakage distributions of a 2-target side-
channel attack. Finally, the lower left and right pictures represent the univariate
and bivariate leakage distributions of an 8-target side-channel attack. Note that
in general, the internal state of an implementation does not only depend on the
keys but also on other inputs, e.g. the plaintexts in block ciphers. Hence, the dif-
ferent dimensions in a multivariate distribution can represent both the different
samples of a single leakage trace (generated with a single plaintext) or different
traces (e.g. each dimension could correspond to a different plaintext). Eventually,
it is an adversary’s choice to select the internal states for which templates will be
built. Therefore, we do not claim that these distributions always connect to prac-
tical attacks. But as will be seen in the following, even these simple theoretical
contexts hardly allow simple connections between information and security.

We now discuss formally the connections between the success rate against a key
class s and its residual entropy for idealized distributions and attacks.

Definition 7. An ideal side-channel attack is a Bayesian attack in which the
leakages are exactly predicted by the adversary’s approximated probability den-
sity function P̂r[L̃q|S] (e.g. thanks to an unbounded preparation phase).

Lemma 1. In an ideal 2-target side-channel attack exploiting a univariate Gaus-
sian leakage distribution, the residual entropy of a key class s is a monotonously
decreasing function of the single query (hence multi-queries) success rate against s.

Lemma 2. In an ideal 2-target side-channel attack exploiting a multivariate Gaus-
sian leakage distribution, with independent leakage samples having the same noise
standarddeviation, the residual entropyof a key class s is amonotonously decreasing
function of the single query (hence multi-queries) success rate against s.
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Fig. 2. Illustrative leakage probability distributions Pr[Lq|S]

These lemmas essentially state that (under certain conditions) the entropy and
success rate in a 2-target side-channel attack only depend on the distance be-
tween the target leakages mean values normalized by their variance. It implies
the direct intuition that more entropy means less success rate. Unfortunately,
when moving to the |S|-target case with |S| > 2, such a perfect dependency does
not exist anymore. One can observe in the lower right part of Figure 2 that the
entropy and success rate not only depend on the normalized distances δi/σ but
also on how the keys are distributed within the leakage space. Therefore, we now
define a more specific context in which formal statements can be proven.

Definition 8. A perfect Gaussian leakage distribution Pr[Lq|s] for a key class s
is a Gaussian leakage distribution with independent leakage samples having the
same noise standard deviation such that the Euclidean distance between each
key class candidate mean value and the correct key class candidate mean value
is equal and the residual entropy of the key class s is maximum.

Theorem 2. In an ideal side-channel attack exploiting a perfect Gaussian leak-
age distribution, the residual entropy of a key class s is a monotonously decreas-
ing function of the single query (hence multi-queries) success rate against s.

The proofs of Lemmas 1, 2 and Theorem 2 are given in [30]. They constitute
our main positive results for the use of the conditional entropy as a comparison
metric for different implementations. Unfortunately, in the most general context
of non perfect leakage distributions, those general statements do not hold. Facts
1 and 2 in [30] even demonstrate that there exist no generally true dependencies
between the conditional entropy and the success rate in a general setting.
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5.3 Intuition of the Metrics

In this section, we recall and detail a number of important intuitions that can be
extracted from the previous theory. We also discuss how they can be exploited
in practical applications and highlight their limitations.

Intuitions Related to Theorem 1

1.1 Theorem 1 tells if it is possible to approximate a given leakage function in
a bounded preparation phase. As mentioned in Section 4, such an approxi-
mation highly depends on the actual tools that are used for this purpose. In
general, the better the tools, the better the evaluation. Hence, Theorem 1
allows checking if these tools are powerful enough. If they are not...

1.2 Theorem 1 indicates some resistance of the target implementation against
side-channel attacks. If one cannot build a sound approximation of the leak-
age probability distribution, even with intensive efforts, then the 1st-order
asymptotic success rate of the Bayesian side-channel adversary does not
reach one. But this does not imply security against side-channel attacks
(e.g. think about a device where only one key could not be recovered). In
this context, it is important to evaluate the actual security metrics for dif-
ferent adversaries in order to check if high success rates can still be reached.

Intuitions Related to Theorem 2

2.1 Theorem 2 only applies to sound leakage distributions. Intuitively, it means
that comparing the conditional entropy provided by different leakage func-
tions only makes sense if the corresponding approximated leakage probability
distribution lead to asymptotically successful attacks.

2.2 Theorem 2 confirms that mutual information is a relevant tool to compare
different implementations. It shows meaningful contexts of Gaussian chan-
nels for which less residual entropy for a key class implies a more efficient
attack. It strengthens the intuitive requirements of Section 3, namely an ad-
versary independent metric with the same meaning for any implementation.

2.3 The conditional entropy is not a stand-alone metric to compare implemen-
tations and always has to be combined with a security analysis. This relates
both to theoretical limitations (since there exists no general relation between
information and security) and practical constraints. For a given amount of
information leaked by an implementation, different side-channel distinguish-
ers could be considered. Therefore, security metrics are useful to evaluate
the number of queries for these different attacks to succeed.

Note that the mutual information, success rates and guessing entropy are average
evaluation criteria. However in practice, the information leakages and security of
an implementation could be different for different keys. Therefore, it is important
to also consider these notions for the different keys separately (e.g. to evaluate



A Unified Framework for the Analysis of Side-Channel Key 457

the conditional entropy matrix rather than the mutual information). This last
remark motivates the following practice-oriented definition.

Definition 9. We say that a side-channel attack against a key class variable S
is a weak template attack if all the key classes s have the same residual entropy
hs,s and each line of the entropy matrix Hq

s,s∗ is a permutation of another line
of the matrix. We say that a side-channel attack is a strong template attack if
at least one of the previous conditions does not hold.

6 Applications of the Model

In order to confirm that (although limited by theoretical concerns) the intu-
ition of Theorem 2 applies to practice, this section provides examples of side-
channel attacks that can be reproduced by the reader. Applications to more
complex and practically meaningful contexts can be found in other publications
[21,30,31,32,33].

For this purpose, we consider a known plaintext attack against a reduced
block cipher that we formalize as follows. Let S be a 4-bit substitution box, e.g.
from the AES candidate Serpent. We target the computation of y = S(x ⊕ k),
where x is a random plaintext and k a secret key. A Bayesian adversary is pro-
vided with observations (x, L′(y) + r), where r is a gaussian noise with mean
0 and standard deviation σ. For any y value, the deterministic part of the
leakage L′(y) is given by a vector Z. The adversary’s goal is to recover the
key k. Our simulations exploit different leakage functions and assume an un-
bounded preparation phase (i.e. the adversary has knowledge of the exact leakage
distribution). We start the frequently observed Hamming weight leakages and
Z1 = [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4]. We also evaluate two other leakage
functions represented by the vectors: Z2 = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]
and Z3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4]. The conditional entropies and
single-query success rates with σ = 0 can be straightforwardly computed as:

H[K|LZ1
1 ] 	 1.97 H[K|LZ2

1 ] = 2 H[K|LZ3
1 ] 	 2.16

Succsc-kr

L
Z1
1

(q = 1) = 5
16 Succsc-kr

L
Z2
1

(q = 1) = 1
4 Succsc-kr

L
Z3
1

(q = 1) = 5
16

At first sight, it seems that these leakage functions exactly contradict Theorem
2. For example, when moving from Z2 to Z3, we see that both the conditional
entropy and the success rate are increased. However, the goal of side-channel
attacks is generally to reach high success rates that are not obtained with a
single query. Hence, it is also interesting to investigate the success rate for more
queries. In the left part of Figure 3, these success rates for increasing q values are
plotted. It clearly illustrates that while Z2 leads to a lower success rate than Z3

for q = 1, the opposite conclusion holds when increasing q. That is, the intuition
given by Theorem 2 only reveals itself for q > 2. Importantly, these conclusions
can vary when noise is inserted in the leakages, e.g. assuming σ = 1, we have:

H[K|LZ1
1 ] 	 3.50 H[K|LZ2

1 ] 	 3.42 H[K|LZ3
1 ] 	 3.22
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Fig. 3. 1st-Order success rates in function of the number of queries for the leakages
functions corresponding to Z1 (solid line), Z2 (dashed line) and Z3 (dotted line)

The right part of Figure 3 plots the success rates of these noisy leakage functions.
It again highlights a context in which Theorem 2 is eventually respected. In gen-
eral, these examples underline another important feature of our metrics. Namely,
the more challenging the side-channel attack (i.e. the more queries needed to
reach high success rates), the more significant the conditional entropy is. Oth-
erwise said: the mutual information better reveals its intuition asymptotically.
And in such contexts, the single-query success rate can be misleading.

Note that the examples in this section are more directly reflective of actual
side-channel attacks in which different plaintexts can generally be used to iden-
tify a key class than the ideal contexts investigated in Section 5.2.

A Short Note on Minimum Entropy. With respect to the relevance of
other metrics in the model, we finally mention that min entropy is equivalent to
a single-query success rate. Since side-channel attacks are essentially multiple-
query attacks, we believe that Shannon’s conditional entropy better captures
the information leakages in most practical applications. For example, Figure 3 is
typical of contexts where min entropy is misleading, i.e. where the success rate
for q = 1 is not very significant while the conditional entropy nicely quantifies the
evolution of this success rate for any larger q. But as already said, the information
theoretic analysis always has to be completed with a security analysis. Hence,
even in contexts where min entropy is the right metric, our model would detect it.

7 Evaluation Methodology

Following the previous sections, an evaluation methodology for side-channel at-
tacks intends to analyze both the quality of an implementation and the strength
of an adversary, involving the five steps illustrated in Figure 4. It again indicates
that the information theoretic metric can be used to measure an implementation
while the actual security metrics are rather useful to evaluate adversaries. Addi-
tionally to these metrics, it is often interesting to define a Signal-to-Noise Ratio
(SNR) in order to determine the amount of noise in the physical observations.
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Fig. 4. Evaluation methodology for side-channel attacks

Since noise insertion is a generic countermeasure to improve resistance against
side-channel attacks, it can be used to plot the information theoretic and security
metrics with its respect. We note finally that the definition of an implementa-
tion requires to evaluate the cost of the equipment used to monitor the leakages.
Since quantifying such costs is typically the tasks assigned the standardization
bodies, we refer to the common criteria [9] and FIPS 140-2 documents [13] (or
alternatively to the IBM taxonomy [1]) for these purposes. In general, the benefit
of the present model is not to solve these practical issues but to state the side-
channel problem in a sound framework for its analysis. Namely, it is expected
that the proposed security and information theoretic metrics can be used for
the fair analysis, evaluation and comparison of any physical implementation or
countermeasure against any type of side-channel attack.

8 Conclusions and Open Problems

A framework for the analysis of cryptographic implementations is introduced in
order to unify the theory and practice of side-channel attacks. It is aimed to
bridge the formal understanding of physically observable cryptography to the
exploitation of actual leakages in experimental key recoveries. The framework is
centered around a theoretical model in which the effect of practically relevant
leakage functions is evaluated with a combination of security and information
theoretic metrics. It allows discussing the underlying tradeoffs in physically ob-
servable cryptography in a fair manner. As an interface between an engineering
problem (how much is leaked?) and a cryptographic problem (how to exploit it?),
our framework helps putting forward properly quantified weaknesses in physi-
cally observable devices. The fair evaluations that it provides can then be used in
two directions. Either the physical weaknesses can be sent to hardware designers



460 F.-X. Standaert, T.G. Malkin, and M. Yung

in order to reduce physical leakages. Or they can be transmitted to cryptographic
designers in order to conceive schemes that can cope with physical leakages.

Open questions derive from this model in different directions. A first one re-
lates to the best exploitation of large side-channel traces, i.e. to the construction
of (ideally) optimal distinguishers. This requires investigating the best heuristics
to deal with high dimensional leakage data (our model assumes adversaries ex-
ploiting such specialized algorithms). A second one relates to the investigation of
stronger security notions than side-channel key recovery. That is, the different se-
curity notions considered in the black box model (e.g. undistinguishability from
an idealized primitive) should be considered in the physical world, as initiated in
[24] (but again in a more specialized way). A third possible direction relates to
the construction of implementations with provable (or arguable) security against
side-channel attacks, e.g. as proposed in [11,26,25]. Finally, this work could be
extended to other physical threats (e.g. fault attacks) and combined with other
approaches for modeling physical attacks such as [15,17,18].
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