
Refinement-Based Program Analysis Tools

Manu Sridharan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-125

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-125.html

October 23, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Refinement-Based Program Analysis Tools

by

Manu Sridharan

B.S. (Massachusetts Institute of Technology) 2001
M.Eng. (Massachusetts Institute of Technology) 2002

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Rastislav Bodík, Chair
Professor George Necula
Professor Leo Harrington

Fall 2007

The dissertation of Manu Sridharan is approved:

Professor Rastislav Bodík, Chair Date

Professor George Necula Date

Professor Leo Harrington Date

University of California, Berkeley

Fall 2007

Refinement-Based Program Analysis Tools

Copyright © 2007

by

Manu Sridharan

Abstract

Refinement-Based Program Analysis Tools

by

Manu Sridharan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Rastislav Bodík, Chair

Program analysis tools are starting to change how software is developed. Verifiers

can now eliminate certain complex bugs in large code bases, and automatic refactor-

ing tools can greatly simplify code cleanup. Nevertheless, writing robust large-scale

software remains a challenge, as greater use of component frameworks complicates de-

bugging and program understanding. Developers need more powerful programming

tools to combat this complexity and produce reliable code.

This dissertation presents two techniques for more powerful debugging and pro-

gram understanding tools based on refinement. In general, refinement-based tech-

niques aim to discover interesting properties of a large program by only reasoning

about the most important parts of the program (typically a small amount of code)

precisely, abstracting away the behavior of much of the program. Our key contribu-

tion is the first framework for effective refinement-based handling of object-oriented

data structures; pervasive use of such data structures thwarts the effectiveness of most

existing analyses and tools.

Our two refinement-based techniques significantly advance the state-of-the-art in

program analyses and tools for object-oriented languages. The first technique is a

refinement-based points-to analysis that can compute precise answers in interactive

1

time. This analysis enables precise reasoning about data structure behavior in clients

that require interactive performance, e.g., just-in-time compilers and interactive de-

velopment environment (IDE) tools. Our second technique is thin slicing, which gives

usable answers to code relevance questions—e.g., "What code might have caused this

crash?"—addressing a long-standing challenge for analysis tools. In this dissertation,

we describe the design and implementation of these techniques and present experi-

mental evaluations that validate their key properties.

Professor Rastislav Bodík, Chair Date

2

Contents

List of Figures vi

List of Tables xi

1 Introduction 1

1.1 Our Approach: Refinement . 5

1.2 Refinement-Based Points-To Analysis 8

1.2.1 Motivation . 8

1.2.2 A Brief History of Points-to Analysis 10

1.2.3 Our Approach . 14

1.3 Thin Slicing . 17

1.3.1 Motivation . 18

1.3.2 Our Approach . 19

1.4 Dissertation Overview . 24

2 Points-To Analysis Background 26

2.1 Points-To Analysis Definition . 26

2.2 Points-To Analysis Precision . 27

2.2.1 Assignments . 28

2.2.2 Field accesses . 29

i

2.2.3 Call Graph . 30

2.2.4 Method Calls . 32

2.2.5 Heap Abstraction . 36

2.2.6 Control Flow . 39

3 Points-To Analysis Formulations 42

3.1 Context-Free Language Reachability 43

3.2 Context-Insensitive Formulation . 46

3.2.1 Graph Representation . 46

3.2.2 Analysis Grammar . 48

3.2.3 Other Java Language Features 52

3.3 Context-Sensitive Formulation . 53

3.4 On-The-Fly Call Graph Formulation 59

3.4.1 Intuition . 60

3.4.2 Graph Representation . 62

3.4.3 The LOTF Language . 64

3.4.4 Adding Context Sensitivity . 70

3.4.5 Discussion . 72

4 Context-Insensitive Points-To Analysis 76

4.1 Algorithm Overview . 77

4.1.1 Demand-Driven Points-To Analysis 77

4.1.2 Client-Driven Refinement . 79

4.1.3 Simplified Formulation . 80

4.1.4 Refinement Algorithm . 81

4.1.5 Proofs of Termination and Soundness 89

4.2 Regular Approximation . 94

4.2.1 Regular Reachability . 95

ii

4.2.2 RegularPT . 97

4.2.3 Improving Precision with Types 98

4.3 Refinement . 99

4.3.1 Refining through match edge removal 100

4.3.2 RefinedRegularPT . 101

4.4 Evaluation . 106

4.4.1 Experimental Configuration 107

4.4.2 Experimental Results . 112

4.5 Java vs. C . 123

4.6 FullFS Details . 125

4.7 Adaptation of Tabulation Algorithm 130

4.7.1 Tabulation Algorithm for Points-To Analysis 130

4.7.2 Discussion . 136

5 Context-Sensitive Points-To Analysis 139

5.1 Algorithm Overview . 140

5.1.1 Simplified Formulation . 140

5.1.2 Context-Sensitive Refinement Algorithm 142

5.1.3 Refinement on Java programs 143

5.2 Decidable Formulation . 149

5.2.1 Context-Sensitive Analysis in CFL-Reachability 149

5.2.2 Handling Recursion . 151

5.3 Refinement Algorithm . 153

5.3.1 Refinement for LRF-reachability 153

5.3.2 Pseudocode . 157

5.3.2.1 Refinement Loop . 158

5.3.2.2 Computing Points-To Sets 159

iii

5.3.2.3 Refinement Policy 166

5.4 Evaluation . 166

5.4.1 Experimental Configuration 167

5.4.2 Experimental Results . 171

6 Thin Slicing 177

6.1 Defining Thin Slices . 178

6.2 Thin Slices as Dependences . 180

6.3 Expanding Thin Slices . 182

6.3.1 Question 1: Explaining Aliasing 183

6.3.2 Question 2: Control Dependence 186

6.4 Computing Thin Slices . 187

6.4.1 Graph Construction . 188

6.4.2 Context-Insensitive Thin Slicing 189

6.4.3 Context-Sensitive Thin Slicing 189

6.5 Evaluation . 190

6.5.1 Configuration and Methodology 192

6.5.2 Experiment: Locating Bugs 196

6.5.3 Experiment: Understanding Tough Casts 200

7 Related Work 204

7.1 Pointer Analysis Related Work . 204

7.1.1 Context-insensitive points-to analysis 205

7.1.2 Context-sensitive points-to analysis 206

7.1.3 Refinement-based points-to analysis 208

7.1.4 Demand-driven points-to analysis 208

7.1.5 CFL-reachability . 209

7.1.6 Incremental points-to analysis 210

iv

7.1.7 Cast verification . 210

7.2 Thin Slicing Related Work . 211

8 Conclusions and Future Work 215

Bibliography 218

v

List of Figures

1.1 Graphs showing the number of public methods for the Eclipse plat-

form [Ecl] and the Java standard library [J2S] in successive releases.

The size of Eclipse has increased by a factor of 3 since its initial release,

while the Java library size has increased by a factor of 3.8. 2

1.2 Code examples to informally illustrate the effects of our refinement

technique. 6

1.3 Example showing the advantages of thin slicing. The six statements

with underlined expressions are in the thin slice seeded with line 24,

while the traditional slice for line 24 contains all displayed code. The

bodies of functions with inessential behavior (e.g., print()) have been

elided for clarity. 20

2.1 A simple example to illustrate different treatments of assignments. . . 28

2.2 A simple code example to illustrate virtual calls. 30

2.3 An example illustrating the precision benefit of context-sensitive points-

to analysis. 34

2.4 A simple example to illustrate the benefits of a context-sensitive heap

abstraction. 37

2.5 A simple example to illustrate the benefits of flow-sensitive points-to

analysis. 39

vi

2.6 A simple example to illustrate the benefits of path-sensitive points-to

analysis. 41

3.1 A small code example and its graph representation for CFL-reachability-

based points-to analysis. Line numbers from (a) are given on corre-

sponding edges in (b). Dashed edges in (b) indicate the existence of a

flowsTo-path from the source to the sink. 48

3.2 A context-free grammar for LF. 51

3.3 A context-free grammar for LC that only includes strings corresponding

to realizable paths, adapted from previous work [Rep98, FRD99, KA04]. 55

3.4 A small example program and graph to illustrate context-sensitive

analysis. 56

3.5 A small example to illustrate handling of globals in our context-sensitive

formulation. The code is given in (a), and (b) shows a (LF ∩ LC)-path

from o11 to y in the corresponding graph. The dashed return[12] self

edge on A.f added to ensure sound handling of the global. 57

3.6 An abstracted view of a path in our graph for computing virtual call

targets on-the-fly (some edge parameters have been removed). The

path is for some virtual call “r.m(x),” and it connects actual parameter

x to formal parameter pA.m by going through oi and back, as indicated

by the dotted edge. Dashed edges indicate sub-paths, and the gray

edge is filtered out by our context-free language. 61

3.7 A small example illustrating our graph representation for on-the-fly

call graph construction. The graph in (b) contains a relevant subset of

the edges for representing the program in (a). 65

vii

3.8 A context-free grammar for LOTF, an extension of LF that includes

on-the-fly call graph construction. The rules for flowsTo, flowsTo,

pointsTo, and alias are unchanged from those in Figure 3.2. 68

3.9 A grammar for LC′ , a modification of LC that works on the representa-

tion of Table 3.2. The productions for csStart, unbalExits, unbalEntries,

and balanced are unmodified from those for LC in Figure 3.3. 71

3.10 A small example to illustrate possible reduced precision with demand-

driven analysis and on-the-fly call graph handling. 74

4.1 Paths to illustrate the behavior of our refinement algorithm. 84

4.2 An example showing why our algorithm requires well-structured graphs. 85

4.3 Pseudocode for a single pass of our refinement algorithm, as applied to

the single-path problem. 87

4.4 Outer loop of our refinement algorithm for the single-path problem. . 88

4.5 A graph illustrating match edges. 96

4.6 Pseudocode for the RegularPT algorithm. 98

4.7 Pseudocode for the RefinedRegularPT algorithm. 102

4.8 A typical example where RegularPT succeeds, but FullFS does too much

work, derived from code in the jedit benchmark. 114

4.9 RegularPT and RefinedRegularPT performed very well under early ter-

mination. We give cumulative distribution of percentage of feasible

queries positively answered vs. node traversal budget for the virtcall

client on jedit, for all three algorithms. The top graph shows the

distribution from 0 to 2000 nodes traversed, while the bottom graph

focuses on 0 to 100 nodes traversed. The distributions for other bench-

marks look very similar. 115

viii

4.10 Complete time/precision comparison of several demand algorithm con-

figurations and exhaustive algorithms on virtcall queries. The x axis

is analysis time in seconds, and the y axis is the percentage of feasi-

ble queries that were positively answered. For RegularPT and FullFS

the data points left to right are for traversal budgets of 50 nodes, 100

nodes, 200 nodes, and 500 nodes. Times are also give for ExhaustiveFB

and ExhaustiveFS (described in Table 4.1). From top to bottom, the

graphs show virtual calls in hot methods in javac, all virtual calls in

javac application code, and all virtual calls in jedit application code. 120

4.11 Inference rules for FullFS. 127

4.12 Example code and partial derivation for FullFS. 128

4.13 Pseudocode for the FullFS algorithm. 129

4.14 Tabulation algorithm of Reps et al. [RHSR94, RHS95], adapted for

Java points-to analysis. 134

5.1 Paths to illustrate the behavior of our context-sensitive refinement al-

gorithm. 142

5.2 Example code for illustrating our points-to analysis algorithm. 144

5.3 Analysis result at different stages of approximation for proving safety

of the cast at line 27 of Figure 5.2. 145

5.4 State transitions in the FSM for language RC. 149

5.5 Relevant portion of graph for code in Figure 5.2. Solid edges represent

program statements, with single edges for intraprocedural statements

and double edges for call entry and exit statements. Variables are

subscripted with the name of the enclosing method, and line numbers

in labels refer to call sites or allocation sites. The dashed edges are

match edges. For space, getfield and putfield are abbreviated gf and pf. 154

ix

5.6 Pseudocode for the refinement loop of our points-to analysis. 158

5.7 Pseudocode for a single iteration of our context-sensitive refinement

algorithm. See Figure 5.8 for the HandleCopy and HandleOTF

procedures. 160

5.8 Pseudocode for HandleCopy and HandleOTF, helper functions for

the pseudocode in Figure 5.7. 161

5.9 Example illustrating the need to properly track states at virtual call

sites. 165

6.1 A small program to illustrate thin slicing. Directly-used locations (see

§6.1) in the thin slice for line 7 are underlined. 179

6.2 A dependence graph for the program of Figure 6.1. Thick edges in-

dicate non-base-pointer flow dependences, used for thin slicing. Tra-

ditional slicing also uses base pointer flow dependences (the dashed

edges) and control dependences (the dotted edge). 181

6.3 An example for showing expansion of thin slices, similar to an example

we saw in our evaluation. The bug is an exception thrown at line 11,

and understanding the bug requires an explanation of aliasing (§6.3.1)

and following a control dependence (§6.3.2). We use single underlines

to highlight relevant expressions in the initial thin slice, and double

underlines for expressions in explainer statements for aliasing. 184

6.4 An example illustrating a tough cast. Expressions in the thin slice used

to understand the safety of the cast are underlined. 200

x

List of Tables

1.1 A summary of selected work in points-to analysis, categorized by what

language was analyzed (C or Java) and whether the analysis was con-

text sensitive. A key attribute of each analysis is briefly described. . . 10

1.2 A summary of the relative precision and scalability of our points-to

analysis, in both its context insensitive (CI) and context sensitive (CS)

configuration. We give the state-of-the-art analysis used as a baseline,

and the relative precision, time, and memory for a representative ex-

periment. 17

3.1 Canonical statements for Java points-to analysis, and the edge(s) for

each statement in our graph representation. 47

3.2 The changes in graph representation required for on-the-fly call graph

construction. Remaining assignments are modeled as in Table 3.1. . . 62

4.1 Descriptions of points-to analysis algorithms used in our experiments. 108

4.2 Information about our benchmarks. 109

4.3 Number of virtual calls unresolvable by types in each benchmark (the

Virt column), and the number of such calls resolvable by field-sensitive

Andersen’s (the FeasVirt column). 111

xi

4.4 Information on virtcall and localalias queries in hot methods. Hot gives

the number of hot methods. Virt gives the number of virtual calls in

hot methods, and FeasVirt gives the number of those calls that can be

resolved by field-sensitive Andersen’s (the number of feasible queries).

Alias and FeasAlias are analogous, but for localalias queries. We did

not collect hot method information for the other three benchmarks

because our experimental infrastructure did not support it. 112

4.5 RegularPT and RefinedRegularPT have nearly the precision of field-

sensitive Andersen’s. The table gives the percentage of virtcall queries

positively answered by an intraprocedural field-based analysis (the In-

tra column), RegularPT (the Reg column), and RefinedRegularPT with

a 5 second time limit per query (the RefReg column), as a percentage

of those answered positively by field-sensitive Andersen’s. The paren-

thesized Live numbers indicate the result if limited to queries in code

that cannot be proven dead by the points-to analysis. 113

4.6 Precision of the demand-driven algorithms with traversal budgets of

50 nodes and 1250 nodes. The columns give the percentage of feasible

virtcall queries positively answered by RegularPT (the Reg column),

RefinedRegularPT (the RefReg column), and FullFS (the FullFS column).117

4.7 Results for virtcall queries in hot methods, showing that RegularPT

positively answers the same number of queries as field-sensitive An-

dersen’s. The FeasVirt column gives the number of feasible queries

(repeated from Table 4.4), the Reg column the number resolved by

RegularPT with a 250 node traversal budget, and the FullFS column

the number resolved by FullFS with a 500 node traversal budget. . . . 118

xii

4.8 Results for localalias queries in hot methods, showing RegularPT match-

ing field-sensitive Andersen’s. FeasAlias gives the number of queries

resolved by field-sensitive Andersen’s (repeated from Table 4.4). Reg

gives the number resolved by RegularPT, and FullFS the number re-

solved by FullFS, with the same traversal budgets used for Table 4.7. . 118

5.1 Information about our benchmarks. We include the SPECjvm98 suite,

soot-c and sablecc-j from the Ashes suite [Ash], several benchmarks

from the DaCapo suite version beta050224 [DaC], and the Polyglot

Java front-end [NCM03]. The “Statements” column gives the number of

edges in the graph representation. The numbers include the reachable

portions of the Java library, determining using a call graph constructed

on the fly with Andersen’s analysis [And94] by Spark [LH03]. 170

5.2 Results for the cast safety client. The “Casts” column gives the number

of downcasts that context-insensitive analysis cannot prove safe; these

numbers differ from those in Lhotak’s work because we exclude casts

of non-pointers (e.g.,float to int), as they cannot cause a runtime ex-

ception. The three rightmost columns respectively give the percentage

of these casts proved safe by our refinement algorithm (“DemRef”), our

demand-driven algorithm configured to treat all code precisely (“Full”),

and the object-sensitive analysis of Lhotak’s work [LH06] (“1H”). The

“DemRef Time” column gives the running time for the refinement al-

gorithm in seconds. 172

xiii

5.3 Results for the factory method client. The “# Factory” column gives

the number of detected factory methods, and the “Dist” column gives

the percentage of those factory methods for which the analysis could

distinguish the contents of the allocated objects. The “Time” column

gives the running time in seconds. 173

5.4 Results for querying all application variables for which the 1H algo-

rithm of Lhotak’s work [LH06] yielded a more precise result than a

context-insensitive analysis. The “# Queries” column gives the num-

ber of such variables, the “Av. Query” column gives the average query

time in seconds, and the “Time” column gives the total time in seconds.

Results for chart are not shown, as we could not run the 1H algorithm

on it in available memory. 174

6.1 Benchmark characteristics, derived from methods discovered during

on-the-fly call graph construction, including Java library methods. The

number of call graph nodes exceeds the number of distinct methods due

to limited cloning-based context-sensitivity in the points-to analysis.

SDG Statements reports the number of scalar statements, but excludes

parameter passing statements introduced to model the heap. 192

xiv

6.2 Evaluation of thin slicing for debugging. For each bug, we show the

number of statements that must be inspected in the thin slice (the

“Thin” column) and the traditional slice (the “Trad” column) to dis-

cover the bug using BFS traversal (see §6.5.1). We also give the ra-

tio of traditional statements to thin slice statements, and the num-

ber of control dependences that must be exposed to find the bug; the

numbers for thin and traditional slices include these control depen-

dences. Finally, we give the number of inspected statements for thin

and traditional slicing when context-insensitive points-to analysis is

used, without object-sensitive handling for containers (the “ThinCIPA”

and “TradCIPA” columns). Slicing of any kind was not useful for five

bugs in xml-security and one bug in ant; these bugs do not appear in

the table. 198

6.3 Evaluation of thin slicing for understanding tough casts. The types of

data in the table columns are described with Table 6.2. 202

7.1 A comparison of key properties of previous analyses. Algorithms are

named by first author unless they have been referred to differently

in this paper; note that Steensgaard (CS) [Ste] is different than his

original analysis [Ste96]. The “Eq/Sub” column indicates whether as-

signments are modeled with equality or subset constraints, and the

“CS CG” and “CS Heap” columns respectively indicate the use of

a context-sensitive call graph and heap abstraction (see §2.2.4 and

§2.2.5 for definitions). Finally, the “Shown to Scale” column indicates

whether the algorithm has been shown to scale to large Java bench-

marks; “1.1 lib” means the smaller Java 1.1 libraries were analyzed,

and k-limiting [Shi88] is indicated where used. 206

xv

Acknowledgements

I owe deep thanks to my advisor Ras Bodík, who has been an outstanding mentor

and collaborator. I cannot hope to list all the ways that Ras has helped me improve

as a researcher, but perhaps the most important thing he taught me was how to

recognize and communicate the broader importance of my research to others. His

tireless feedback on ideas, paper drafts, and talks vastly increased the quality of my

work and its impact. I am certain that his influence and example will continue to

inspire me in my future pursuits.

Much of the work in this thesis benefited enormously from other collaborators.

Denis Gopan did some initial work on points-to analysis via CFL-reachability and

continued to give essential feedback after I took over the project. Lexin Shan helped

greatly with the experimental evaluation of the context-insensitive points-to analysis.

Mooly Sagiv contributed significantly to the formalization of the context-sensitive

points-to analysis and participated in many other fun brainstorming sessions. Finally,

Stephen Fink helped come up with the idea of thin slicing and implemented both the

traditional and thin slicers for our experimental evaluation, a heroic effort in the

weeks before the PLDI deadline that made the paper possible.

I have received excellent advice from other mentors that helped me greatly at

many stages of graduate school. Daniel Jackson has continued to provide valuable

guidance in spite of my traitorous decision to leave MIT for Berkeley, for which

I’m very grateful. Zhe Yang was my mentor during a summer internship at Microsoft

Research, an exciting experience that helped inspire ideas in my other work. Manuvir

Das provided much good advice to me, both during that internship and afterward.

George Necula and Leo Harrington graciously agreed to be on my thesis committee

and provided valuable feedback during my qualifying exam. Susan Graham also gave

xvi

useful feedback during my qualifying exam, including the suggestion of the name ’thin

slicing’. I’d also like to thank Robert O’Callahan and Jim Larus for their occasional

advice and support.

Graduate school would not have been nearly as enjoyable without my fantastic of-

ficemates and friends. Brian Fields, Dave Mandelin, AJ Shankar, and Bill McCloskey

made 517 Soda a really fun place to be. Though having such interesting people in

the office didn’t always improve my research productivity, I definitely learned a lot

and enjoyed school a lot more because of them. David Ratajczak was a brilliant

research collaborator and a good friend during his time at Berkeley. Naveen Sastry

helped me stay in shape and gave lots of useful advice, research-related and otherwise.

Nick Eriksson helped smooth my transition to Berkeley and cooked up many a tasty

dessert in our apartment. Anand Sarwate was a fellow Indian tenor EECS graduate

student from MIT who always had insightful things to say about research, music, or

just about any other topic.

My parents and my brother Vishnu have always provided me with tireless love

and support. From letting me play with our VIC-20 when I was six to tolerating my

hours tying up the phone line with the modem in high school, my family constantly

nurtured my technical interests. They have always encouraged me to work hard and

persevere, and they have been incredibly supportive anytime I needed help. This

dissertation would not have been possible without them.

Finally, I thank my wonderful wife Padma, who has given me tremendous support

and encouragement. She both kept me sane during the weeks of craziness before paper

deadlines and kept me motivated when I was feeling unproductive and frustrated. I

am very lucky to be leaving Berkeley with such an amazing life companion.

xvii

Chapter 1

Introduction

Nearly 40 years since the popularization of the term “software engineering” [NR69],

building robust, large-scale software remains an enormous engineering challenge. Sto-

ries abound of failed software projects with disastrous consequences, from the well-

known Therac-25 incident [LT93] to more recent troubles at the IRS [McC06].1 A

recent NIST study estimates the costs of failed software projects to be in the billions

of dollars per year [oST]. Hence, techniques for reducing the cost and difficulty of

building software could have enormous economic and societal impact.

Software components, long heralded as a possible solution to software complexity,

have significantly eased the process of developing large-scale software. As documented

by Lampson [Lam04], large “platform” components like operating systems, databases,

and web browsers have greatly reduced the effort required to develop many applica-

tions. At a smaller scale, platforms based on the Java language like J2SE [J2S],

J2EE [J2E], and Eclipse [Ecl] have proved to be enormously popular with developers.

As of July 2007, 904 Eclipse plugins are available at one popular repository [EcP],
1In the IRS case, an attempt to build and deploy new fraud detection software failed. By the

time it was known that the new system would not work, it was too late to re-start the old system,
leading to an estimated $200 million in fraudulent refunds.

1

Chapter 1. Introduction

Size of Eclipse Platform

0

20

40

60

80

100

120

1.0

(11/01)

2.0

(6/02)

2.1

(3/03)

3.0

(6/04)

3.1

(6/05)

3.2

(6/06)

Version / Release Date

T
h

o
u

s
a

n
d

s
 o

f
M

e
th

o
d

s
Size of Java Library

0

10

20

30

40

50

60

70

80

90

1.2

(12/98)

1.3

(5/00)

1.4

(2/02)

1.5

(9/04)

1.6

(12/06)

Version / Release Date

T
h

o
u

s
a
n

d
s
 o

f
M

e
th

o
d

s

Figure 1.1: Graphs showing the number of public methods for the Eclipse platform [Ecl]
and the Java standard library [J2S] in successive releases. The size of Eclipse has increased
by a factor of 3 since its initial release, while the Java library size has increased by a factor
of 3.8.

reflecting the platform’s popularity and extensibility.

Though they have eased software development to some degree, components have

not solved software complexity, and in some ways they have exacerbated the problem.

Component platforms are often a key source of software complexity due to their

enormous size, ballooning with each release as new features are added. For example,

Figure 1.1 shows the dramatic size increase of J2SE [J2S] and Eclipse [Ecl] over their

last few releases. Increasing platform size often translates to greater complexity,

as discovering how to use the few platform features needed for a particular task

can be non-trivial. Good documentation can partially alleviate this problem, but in

practice, documentation is often incomplete and, when it exists, difficult to locate.

The complexity of platforms can turn even the simplest tasks into a challenge: work

on the Prospector system [MXBK05] describes how it took hours for experienced

programmers to learn the three lines of code needed to re-use Eclipse’s Java parser.

How can the challenge of programming to large platforms be eased? We believe

that better development tools are the most promising approach for attacking this

2

Chapter 1. Introduction

problem, as they can provide significant benefits for both existing and future software

projects. Recent tools like ESP [DLS02] and xgcc [HCXE02] are able to find many

serious bugs in large code bases, with no effort beyond running the tool required from

the user. Similarly, automatic refactoring tools [Fow99] can be used in an “off-the-

shelf” fashion to improve maintainability of existing code. Due to their usefulness

and ease of adoption, such tools are already having a significant impact on large-

scale software projects, e.g., Microsoft Windows [HDWY06]. While some problems

addressed by tools could also be solved by other techniques (e.g., new programming

language constructs), the integration of tools into an existing development process is

often much easier, and hence preferable.

Unfortunately, many current development tools are too resource intensive to pro-

vide immediate feedback to developers as they write and debug their code. Many

questions that arise during development can be answered by existing static analy-

ses, e.g., “What methods can be invoked by this virtual call?” or “What code writes

into this object field?” However, applying these analyses to large component-based

software can require up to hours of time and gigabytes of memory. Hence, today

these questions are usually answered by hand—an error-prone process that can re-

quire digging through many layers of component abstractions. Also, the output of

bug-finding tools would be even more useful if it was provided immediately after a

developer introduces a bug, since at that point her understanding of the code is still

fresh.

Just as large-scale software can overwhelm current tools, the voluminous output

of those tools can sometimes overwhelm developers, greatly lessening the tools’ use-

fulness. When presenting some program behavior to the user, a standard approach

in tools is to show all code that is possibly relevant to that behavior. This approach

is highly problematic with large, component-based software for two reasons:

3

Chapter 1. Introduction

1. The amount of possibly relevant code can be enormous, often a significant frac-

tion of the whole program.

2. Code from libraries is often relevant, but developers are typically insulated from

details of library implementations.

As understandable results are key to the usefulness of development tools, existing

tools sometimes suppress reports of difficult-to-explain behavior. For example, bugs

involving aliased pointers are not reported by ESP since the tool has no mechanism

for properly explaining the aliasing [MSA+04]. This choice is unfortunate for tool

users, as such suppressed results often correspond to issues that are also very difficult

to understand without tool support, e.g., aliasing bugs.

The problem statement of this thesis is to develop techniques that address the scal-

ability and understandability drawbacks of current development tools. In this work,

we focus specifically on treatment of pointers and heap-allocated data structures,

since understanding heap behavior is critical to understanding most other behav-

iors of large object-oriented software (further discussion in §1.2.1 and §1.3.1). First,

we aim to develop a pointer analysis that can both match or exceed the precision

of existing analyses while providing results in interactive time, enabling immediate

tool feedback for developers. Second, we pursue a technique for explaining heap

behaviors to users in a more concise and useful manner than simply showing all pos-

sibly relevant program statements. Together, these techniques could enable a new

class of development tools that significantly ease the debugging and understanding of

component-based software.

4

Chapter 1. Introduction

1.1 Our Approach: Refinement

This dissertation presents techniques based on refinement that address drawbacks of

current development tools. A refinement-based technique assumes that in practice,

precise reasoning about a small amount of important code is sufficient for under-

standing many interesting program properties. Refinement is the iterative process by

which an analysis tries to discover this important code. Our use of refinement enables

our techniques to overcome the aforementioned drawbacks of current tools: perfor-

mance is dramatically improved since only important code is analyzed precisely, and

understandability is improved since programmer attention is focused on important

code.

A key open problem addressed by our work is how to use refinement effectively

for reasoning about heap behavior in large object-oriented programs. Refinement

has previously been employed with great success in other program analysis domains

(e.g., model checking [BR01]). However, previous refinement techniques for heap

behavior [PC94, GL03] proved ineffective at identifying a small amount of important

code in large Java programs, and hence were insufficient for our needs.

Our refinement framework rests on our identification of hierarchical structure in

heap-based value flow for Java-like languages. Questions about value flow concern

how some object o flows to some variable x,2 i.e., what statements cause the flow to

occur. In Java, an object flows through a heap memory location through field writes

and reads, respectively of the form w.f = z and x = y.f. When an object is written

and read from the heap through such field accesses, a secondary question may arise:

how do the field accesses come to operate on the same object, i.e., what causes base

pointers w and y to be pointer aliases? Explaining this condition requires recursively

tracing the flow of some object o′ to both w and y. The object o′ may itself flow
2When discussing the flow of an object to a variable, we mean the flow of a pointer to the object,

consistent with Java semantics.

5

Chapter 1. Introduction

1 ...; z = p.g;

2 x = q.g;

3 w = new Obj();

4 z.f = w;

5 y = x.f;

(a) Initial exam-
ple.

1 w = new Obj();

2 o1.f = w;

3 y = o1.f;

(b) No important
field accesses.

1 ...; z = o2.g;

2 x = o2.g;

3 w = new Obj();

4 z.f = w;

5 y = x.f;

(c) Treating the f

accesses as impor-
tant.

Figure 1.2: Code examples to informally illustrate the effects of our refinement technique.

through the heap, yielding the aforementioned hierarchy in heap-based flow.

We exploit hierarchical heap accesses in our refinement technique by only investi-

gating aliasing of base pointers for a small number of field accesses. In practice, many

interesting program properties can be discovered without considering the statements

that cause base pointers of field accesses to be aliased, instead simply assuming that

such statements exist. This treatment of field accesses can dramatically decrease

the amount of code considered by the enclosing analysis or the user, increasing both

scalability and understandability. For some field accesses, considering the statements

causing base pointer aliasing is important, e.g., because further inspection may prove

that no aliasing is possible. Our refinement technique succeeds by enabling fast iden-

tification of these important field accesses.

Figure 1.2 informally illustrates the effects of our refinement technique with a

small example. Say that for Figure 1.2(a), one is interested in how objects flow to y.

Ignoring aliasing explanations for all field accesses essentially abstracts the program

to that of Figure 1.2(b). The base pointers x and z from Figure 1.2(a) have been

replaced with a new variable o1, reflecting the assumption that some object flows to

both base pointers.3 Note that attention is now focused on the value flow from w to
3Note that this use of new scalar variables is intended only to provide the intuition behind our

refinement technique; in general, it may not be possible to model our treatment of the heap with

6

Chapter 1. Introduction

y, as code related to base pointers x and z can be elided.

Figure 1.2(c) illustrates what happens when refinement exposes the statements

causing base pointer aliasing for the accesses of field f (line 4 and line 5). Here, the

base pointers x and z from Figure 1.2(a) return, but the base pointers for the g accesses

at line 1 and line 2 have been abstracted. Our refinement technique heuristically

chooses where to inspect statements causing base pointer aliasing, aiming to focus

effort on those statements most relevant to the property of interest for the user.

We have instantiated our refinement framework in two different ways. The first

instantiation is a refinement-based points-to analysis, the first to compute precise

answers in “interactive time.” This analysis dramatically improves on the scalability

of previous approaches, enabling precise reasoning about heap behavior in interactive

development tools. §1.2 discusses the importance of points-to analysis and further

details how our analysis advances the state-of-the-art.

Thin slicing, our second technique, uses refinement to give usable answers to code

relevance questions, e.g., "What code might have caused this crash?" Providing such

answers has been a long-standing challenge for analysis tools. To improve on program

slicing [Wei79], the state-of-the-art technique, we devised a definition of code relevance

whose key novelty is its exclusion of statements only relevant to base pointer aliasing.

In practice, this notion of relevance captures nearly exactly the desired statements

for many programmer tasks. In cases when more statements are needed, the user

can refine by selectively exposing statements relevant to base pointer aliasing—again

exploiting the hierarchy of Java heap accesses. §1.3 describes why classical program

slicing is often not useful in practice and further details the new notion of relevance

used by thin slicing.

such a translation.

7

Chapter 1. Introduction

1.2 Refinement-Based Points-To Analysis

Here we give an overview of our refinement-based points-to analysis technique. Via

refinement, our analysis is able to match or exceed the precision of state-of-the-art

analyses while requiring orders-of-magnitude less memory and providing “interactive”

running times. We first detail the increasing need for scalable and precise points-to

analysis in §1.2.1. Then, we give a brief introduction to points-to analyses of the last

15 years to place our work in context (§1.2.2). Finally, we describe in more detail the

key contributions of our points-to analysis (§1.2.3).

1.2.1 Motivation

Effective analysis of pointer variables in programs is becoming increasingly critical,

as more software is being written in object-oriented programming languages that

encourage pervasive use of heap-allocated data. For the widely-adopted Java and C#

languages, data must be stored on the heap to make effective use of many language

features and library classes. Increasingly popular scripting languages like Python,

Javascript, and Ruby have essentially pure object models, in which all values are

objects, making programs even more heap intensive. Finally, use of platforms like

Eclipse [Ecl] often requires greater use of the heap; for example, data in the often-

used XML format are typically represented with a tree of objects.

To aid reasoning about pointer behavior in large object-oriented programs, we

have developed a scalable and precise points-to analysis (first defined in [EGH94]).

A points-to analysis typically computes a points-to relation that conservatively maps

each pointer variable to the heap objects it can point to at runtime. This points-to

relation is often represented with a points-to set for each variable, with each points-to

set containing abstract locations from some finite model of all possible runtime heaps

(further discussion in §2.1).

8

Chapter 1. Introduction

The results of a points-to analysis have many uses in program analysis. One

common use of points-to sets is in reasoning about pointer aliasing, which can greatly

complicate reasoning about a program’s behavior (breaking Hoare’s elegant axiomatic

treatment of assignments [Hoa69]). A precise points-to analysis can alleviate the

problem of reasoning about pointer aliases by showing that most pointer variable pairs

cannot be aliased, i.e., they can never point to the same object. The points-to set of

a single variable is also useful to other analyses, for example to refine the variable’s

declared type. If variable x of declared type Object can only point to objects of type

A, other analyses can use the more precise type A for x when performing optimization

or verification.

An increasing number of state-of-the-art Java development tools are limited by

the need for a context-sensitive points-to analysis. Intuitively, a context-sensitive

analysis treats a program as if all method calls were inlined, thereby gaining preci-

sion by computing results separately for each invocation of a method (see § 2.2.4 for

a more detailed definition). Studies have shown the importance of context sensitivity

in precisely analyzing Java pointer behavior [LPH02, LH06]. Also, context-sensitive

points-to analysis is critical to the usefulness of recent tools like the static race detector

of of Naik et al. [NAW06] and the type-state verifier of Fink et al. [FYD+06].4 Un-

fortunately, existing context-sensitive points-to analyses do not scale well: although

the aforementioned tools are effective on medium-sized programs, points-to analysis

remains a scalability bottleneck for handling even larger programs.

Beyond context sensitivity, important modern clients of program analysis also

require interactive performance, i.e., time and space overheads suitable for an in-

teractive application. Just-in-time (JIT) compilers require interactive performance
4Regarding context-sensitivity in the points-to analysis, [FYD+06] states: “We ran many of the

analyses with a context-insensitive Andersen-style pointer analysis [...] Many of the benchmarks
timed out on several rules; we conclude that adequate precision in the preceding pointer analysis is
vital.”

9

Chapter 1. Introduction

XXXXXXXXXXLanguage
CI/CS Context Insensitive Context Sensitive

C

subset based [And94],
equality based [Ste96], partial summaries [WL95],

mix of eq and subset [Das00], equality based [OJ97, LLA07],
optimized subsets BDD based [ZC04]

[FFSA98, SFA00, HT01b]

Java
adapted from C equality based [O’C00],

[RMR01, WL02, LH03], BDD based [WL04],
BDD based [BLQ+03] object sensitive [MRR05]

Table 1.1: A summary of selected work in points-to analysis, categorized by what language
was analyzed (C or Java) and whether the analysis was context sensitive. A key attribute
of each analysis is briefly described.

from analyses, since analysis time and space add directly to the requirements of the

executing application. Interactive performance is also required for tools running in

interactive development environments (IDEs), since they run as the developer edits

code. Note that running a points-to analysis once up-front and re-using its result is not

sufficient for interactive performance since the input program can change over time,

due to dynamic class loading for a JIT compiler or code editing in an IDE. Before our

work, no points-to analysis could provide context-sensitive results for large programs

in interactive time. As shown in Table 1.2, a state-of-the-art context-sensitive points-

to analysis took 90 minutes and 2GB of memory to analyze a large Java program in

our experiments, clearly not acceptable for IDE usage.

1.2.2 A Brief History of Points-to Analysis

Hind’s 2001 discussion of pointer analysis [Hin01] begins:

During the past twenty-one years, over seventy-five papers and nine Ph.D.

theses have been published on pointer analysis. Given the tomes of work

on this topic, one may wonder, “Haven’t we solved this problem yet?”

10

Chapter 1. Introduction

Hind then continued to show that the points-to analysis problem had not been solved,

and today the topic remains an active research area. Here we provide a very brief

overview of points-to analyses for both C and Java developed over the last 15 years,

with the aim of emphasizing two key points:

1. Context sensitive precision is more important for Java points-to analysis than

for C; therefore, the large body of work on C points-to analysis does not imme-

diately yield an effective Java analysis.

2. No previous analysis was able to provide scalable context-sensitive results for

Java with the interactive performance needed for development tools.

Table 1.1 briefly summarizes the analyses discussed here. For a more detailed technical

discussion of related points-to analyses, see §7.1.

Points-To Analysis for C Scalable, precise points-to analysis for C was a long-

standing open problem in program analysis. Steensgaard’s equality-based analy-

sis [Ste96] ran in almost linear time, but lost precision due to its imprecise handling

of the semantics of assignments. Andersen’s subset-based analysis [And94] handled

assignments precisely, but required a worst-case cubic time algorithm and initially

did not scale to large programs. Andersen’s analysis was first made scalable through

optimizations devised by Aiken and collaborators [SFA00, FFSA98], and further scal-

ability improvements were obtained by Heintze and Tardieu [HT01b]. Also, Das’s

one-level flow algorithm [Das00] found a “sweet spot” in the precision / scalability

spectrum for C points-to analysis, obtaining nearly the precision of Andersen’s anal-

ysis with a very scalable, worst-case quadratic algorithm.

While several context-sensitive points-to analyses for C have been developed, the

precision gain from context sensitivity is typically not worth the added computa-

tional expense. In C, many functions with pointer parameters do not mutate pointer

values, instead only mutating primitive values like integers reached through pointer

11

Chapter 1. Introduction

dereferences (this phenomenon often arises when passing values by reference). Since

such functions do not change what pointers point to, a context-sensitive treatment

of the functions would not yield much benefit for a points-to analysis. In the most

comprehensive study of the topic [FFA00], Foster et al. show that context sensitivity

adds significant precision to the results of an equality-based analysis, but has little

effect on the precision of a subset-based analysis. Similarly, an evaluation by Das

et al. [DLFR01] showed that context sensitivity adds little precision to the one-level

flow algorithm [Das00].

Nevertheless, some of the work on context-sensitive points-to analysis for C was

influential on later work for Java. O’Callahan and Jackson’s Lackwit system [OJ97]

performs a context-sensitive equality-based analysis based on polymorphic type in-

ference. Wilson and Lam [WL95] developed a summary-based flow- and context-

sensitive analysis which worked well for C programs with up to 20,000 lines of code;

however, further research has been unable to make this algorithm scale to larger pro-

grams. Recently, Lattner and Adve have successfully used a context-sensitive points-

to analysis [LLA07] for improving performance through automatic pool allocation of

heap-allocated data structures [LA05].

Points-To Analysis for Java Early work on Java points-to analysis focused

on adapting existing work like Andersen’s analysis to handle Java’s language con-

structs [RMR01, WL02, LH03], and today, these early analyses scale well to large

Java programs. However, it was soon discovered that unlike C, context sensitivity

could provide a large precision benefit for Java points-to analysis [O’C00, LPH02].

Java pointers are often used to manipulate data structures provided by the standard

library, e.g., java.util.Vector. Since the methods associated with these data struc-

tures (e.g., Vector.add()) are called many times on many different objects, context

sensitivity is needed separately reason about distinct instances of these data struc-

tures.

12

Chapter 1. Introduction

The key challenge of context-sensitive points-to analysis of large Java programs

is handling the exponentially larger analysis result stemming from keeping the result

for each call to a method separately (see § 2.2.4 for more discussion). Recent analyses

that are relatively scalable and precise rely on two key recent insights. The first is that

the computed points-to relation often has a lot of redundancy (i.e., many variables

have mostly identical points-to sets), and hence can be represented compactly by

binary decision diagrams (BDDs), as shown by Berndl et al. [BLQ+03] and Zhu and

Calman [ZC04]. Whaley and Lam used BDDs for context-sensitive points-to anal-

ysis [WL04], yielding large scalability gains over previous work. The second insight

is that sufficiently precise results can often be obtained by only analyzing methods

once per receiver object instead of once per call, termed an object-sensitive analysis

by Milanova et al. [MRR05]. For example, an object-sensitive analysis would analyze

the Vector.add() method only once per Vector abstract location. The benefits of ob-

ject sensitivity as compared to standard context sensitivity were shown in the work

of Lhoták and Hendren [LH06].

In spite of many impressive advances, no points-to analysis could provide scal-

able context sensitivity with interactive performance before our work. BDD-based

analyses are only able to analyze large programs through various approximations to

full context sensitivity (discussed in detail in §2.2), causing some precision loss. Even

with this approximation, such analyses can require several minutes of time and more

than a gigabyte of memory to run on large Java programs, and they have not success-

fully scaled to huge frameworks like Eclipse. Finally, time and memory requirements

make existing context-sensitive analyses unsuitable when interactive performance is

required.

13

Chapter 1. Introduction

1.2.3 Our Approach

The main contribution of our work is a novel points-to analysis technique that si-

multaneously (1) scales to large programs, (2) yields more precise results than most

existing analyses, and (3) can provide interactive performance for demanding clients

like JIT compilers and IDEs. Our analysis currently provides the most precise in-

formation about heap behavior in large Java programs. Obtaining significantly more

precise information (e.g., with shape analysis [SRW02]) drastically reduces scalabil-

ity; hence, our analysis sits in a sweet spot in the performance-precision space of

static heap analyses for Java. We achieve this precision and scalability through a

fundamentally different approach than other state-of-the-art Java points-to analy-

ses: rather than finding clever ways to represent a the exponentially large result of

a context-sensitive analysis, we use refinement to only apply precise analysis when

needed, greatly increasing scalability while maintaining sufficiently precise results.

Our refinement technique leverages the needs of the analysis client (a client-driven

approach) to limit analysis effort. The client of a points-to analysis is the enclosing

program analysis (a verifier, optimizer, etc.) that requires points-to information.

Typically, a client uses points-to analysis to prove some other property P about the

program, e.g., that some variable only points to objects of a specific type. Given a

variable x and a property P , our technique first computes a result for x using less

precise but cheaper techniques. If this result is sufficient for proving P , the loop

terminates, as the analysis client will be satisfied with the result. If not, a new

result for x is recomputed with certain parts of the program analyzed with greater

precision. This loop continues until either (1) P can be proved, (2) no more refinement

is possible, or (3) some time budget for the query is exceeded.

Integrating client needs into our refinement technique yields scalability benefits

over previous work. Unlike work by Plevyak and Chien [PC94] and Guyer and

14

Chapter 1. Introduction

Lin [GL03], which performs all refinement that could possibly improve the result,

our technique only refines for certain key parts of the program, using P to gauge

when refinement is sufficient. This difference has a large impact on scalability, since

we have observed that in practice a fully refined result cannot be tractably computed

for many variables.

To further aid scalability, our analysis is demand driven, only computing results

for variables relevant to the client. Clients typically interact with a points-to analysis

by issuing queries for points-to information for specific variables. Most points-to

analyses are exhaustive, doing most of the analysis work up front and then answering

queries with a constant-time lookup operation. A demand-driven analysis takes the

opposite approach: after minimal up-front parsing of the program, the analysis only

computes required points-to information once a variable is queried. The demand-

driven approach allows for time savings when only a small percentage of variables in

the program are queried, the behavior of most analysis clients. Furthermore, demand-

driven analysis is critical for effective refinement, as detailed analysis state can easily

be maintained to help determine where to refine; maintaining such state efficiently in

an exhaustive analysis would be difficult.

Note that demand-driven analysis alone (e.g., the work of Heintze and Tardieu

[HT01a]) does not yield a scalable and precise analysis for Java. While demand-driven

analysis only does the work necessary to compute results for queried variables, its

worst-case behavior is identical to that of an exhaustive analysis, and we have observed

this behavior in practice. The key to scalable and precise analysis is to combine

demand-driven analysis with the right approximation and refinement strategy.

Our initial work on refinement-based points-to analysis focused on devising an

analysis suitable for JIT compilers [SGSB05]. We began by formulating Andersen’s

analysis [And94] for Java, a flow-insensitive, context-insensitive points-to analysis,

as a context-free-language reachability (CFL-reachability) problem [Rep98]. In con-

15

Chapter 1. Introduction

trast, existing work on Java points-to analysis had primarily used the set constraints

formalism. Our CFL-reachability formulation showed that Andersen’s analysis for

Java is a balanced-parentheses problem, an insight that enabled our new techniques.

We exploited the balanced parentheses structure to approximate Andersen’s analy-

sis by regularizing the CFL-reachability problem, yielding an asymptotically cheaper

algorithm. We also showed how refinement could regain most of the precision lost

through regularization. Our evaluation showed that our regularization and refinement

approach achieves nearly the precision of field-sensitive Andersen’s analysis in time

budgets as small as 2 ms per query. Our technique yielded speedups of up to 16-fold

over computing Andersen’s analysis exhaustively for some clients, with little to no

precision loss.

We next developed a scalable and precise context-sensitive points-to analysis

[SB06] based on a novel refinement strategy. The analysis has three types of con-

text sensitivity: (1) filtering out of unrealizable paths, (2) a context-sensitive heap

abstraction, and (3) a context-sensitive call graph (detailed definitions in Chapter 2.

Previous work [LH06] has shown that all three properties are important for precisely

analyzing large programs, e.g., to show safety of downcasts. Existing analyses typi-

cally give up one or more of the properties for scalability. The key insight behind the

analysis is that to maintain all three types of context sensitivity, handling of method

calls and heap accesses should be refined simultaneously. This technique allows the

analysis to precisely analyze important code while entirely skipping irrelevant code.

In our experimental evaluation, our analysis proved the safety of 61% more casts than

one of the most precise existing analyses [LH06] across a suite of large benchmarks.

The analysis checked the casts in under 13 minutes per benchmark (taking less than

1 second per cast) and required only 35MB of memory, compared to 1GB or more for

previous approaches [Ste, LH06].

Table 1.2 summarizes the results of our two points-to analysis configurations.

16

Chapter 1. Introduction

CI/CS Baseline Relative Prec. Relative Time Relative Mem.

CI Andersen for 90% of 0.46s (2ms/var) 50KB vs.
Java [LH03] virtual calls vs. 16s 30MB

CS 1-ObjSens [LH06] 60% more 13min (1s/var) 35MB vs.
casts vs. 90min 2GB

Table 1.2: A summary of the relative precision and scalability of our points-to analysis,
in both its context insensitive (CI) and context sensitive (CS) configuration. We give the
state-of-the-art analysis used as a baseline, and the relative precision, time, and memory
for a representative experiment.

In both cases, the precision of a state-of-the-art baseline analysis was matched or

improved upon, memory usage was reduced by orders-of-magnitude, and interactive

performance was provided for the first time.

1.3 Thin Slicing

Ideas from our work on refinement-based points-to analysis led us to develop thin

slicing, a refinement-based technique for answering code relevance questions (i.e.,

questions of the form “What code affects the behavior of this statement?”). A key

result of our points-to analysis work is that, through refinement, sufficiently precise

results can be computed while completely ignoring much of the code that a traditional

algorithm would analyze. With thin slicing, we applied this same refinement technique

to make code more understandable to humans: our hope was that if the points-

to analysis could produce good results while ignoring some code, a human could

probably also ignore the code when trying to understand the program. This section

first describes why better program understanding tools are needed §1.3.1. Then in

§1.3.2, we explain how we use a new notion of relevance and refinement to improve

significantly on the state of the art.

17

Chapter 1. Introduction

1.3.1 Motivation

As discussed at the beginning of the chapter, large-scale object-oriented programs

can be very hard to understand and debug. Pervasive use of heap-allocated data and

complex data structures in these programs cause much of this difficulty. Specifically,

multiple levels of pointer indirection in common data structures can make manually

tracing the flow of data through the heap prohibitively difficult. When using frame-

works like Eclipse or J2EE, the details of such data structures are often unfamiliar to

the programmer, making debugging even more difficult for the programmer. In these

situations, programmers could benefit from a tool that abstracts away details of heap

behavior irrelevant to code inspection and debugging.

Program slicing is a well-known technique that identifies a program subset con-

taining all code that is possibly relevant to a statement or value of interest, called a

seed5. Slicing applies to a variety of program understanding tasks, ranging from test-

ing and debugging to reverse engineering [Tip95]. Weiser [Wei79] originally defined a

slice as an executable program subset in which the seed statement performs the same

computation as in the original program. Weiser’s definition is elegant and intuitive,

but imposes a rather broad definition of relevance: any statement t that could pos-

sibly affect the computation at the seed statement s must appear in the slice. This

definition pollutes slices with many statements that indirectly affect a seed but are

not pertinent to typical program understanding tasks.

Data structures are a key source of slice pollution. Slices often include internal

implementation details of these data structures, which are almost always irrelevant

to programmer tasks. Consider a value stored in a deeply nested data structure, e.g.,

a hash table which holds trees with lists at each tree node. A backwards slice for

a statement reading from one such list must include the statements that construct
5The seed is often termed the slicing criterion in the literature [Tip95]; we use ‘seed’ for brevity.

18

Chapter 1. Introduction

and manipulate all levels of this complex data structure, since they affect the read.

For many program understanding tasks, however, the programmer needs information

about the values stored in the list, but does not care about other details of nested

data structures containing the value. Furthermore, modern programs typically rely

heavily on well-tested data structures provided by standard libraries, whose internal

details rarely concern the end-user programmer. For these common cases, an ideal

slicing tool would abstract away internal data structure details in results presented

to the user.

1.3.2 Our Approach

Thin slicing is a program understanding technique that redefines relevance in a man-

ner aimed at only including statements useful for developer tasks. For thin slicing,

statements that compute or copy a value to the seed are relevant; we call such state-

ments producers. Statements that explain why producers affect the seed are excluded

from a thin slice. In practice, producer statements alone are sufficient for many

debugging and program understanding tasks.

We demonstrate the relevance notion used by‘ thin slicing on the Java program

fragment of Figure 1.3, which manipulates Strings stored in a container. Given a

stream of full names as input, the example extracts the first names and stores them

in a Vector (the readNames() function), and then later prints out the first names

(the printNames() function). The main() method illustrates a use of the code in a

web application, storing and retrieving the names from a SessionState object. The

example contains a bug: when the program receives as input full name “John Doe”,

line 24 erroneously prints “FIRST NAME: Joh”.

Traditional slicing does not help in diagnosing this bug, as a slice seeded with

line 24 includes all the code in the example. The entire example is included because

19

Chapter 1. Introduction

1 class Vector {
2 Object[] elems; int count;
3 Vector() { elems = new Object[10]; }
4 void add(Object p) {
5 this.elems[count++] = p;
6 }
7 Object get(int ind) {
8 return this.elems[ind];
9 } ...

10 }
11 Vector readNames(InputStream input) {
12 Vector firstNames = new Vector();
13 while (!eof(input)) {
14 String fullName = readFullName(input);
15 int spaceInd = fullName.indexOf(’ ’);
16 String firstName =

fullName.substring(0,spaceInd-1);

17 names.add(firstName);
18 }
19 return firstNames;
20 }
21 void printNames(Vector firstNames) {
22 for (int i = 0; i < firstNames.size(); i++) {
23 String firstName = (String)firstNames.get(i);

24 print(“FIRST NAME: “ + firstName);
25 }
26 }
27 void main(String[] args) {
28 Vector firstNames =

readNames(new InputStream(args[0]));
29 SessionState s = getState();
30 s.setNames(firstNames);
31 ...;
32 SessionState t = getState();
33 printNames(t.getNames());
34 }

Figure 1.3: Example showing the advantages of thin slicing. The six statements with
underlined expressions are in the thin slice seeded with line 24, while the traditional slice
for line 24 contains all displayed code. The bodies of functions with inessential behavior
(e.g., print()) have been elided for clarity.

20

Chapter 1. Introduction

the slice must include all the code to construct and populate the Vector passed to

printNames() and the code in main() retrieving the Vector from the SessionState

object (all of which affects line 24). As in this example, slices for Java programs

typically include most of the program.

What lines of code would be shown by an ideal debugging tool for this example?

The bug lies at line 16, which incorrectly passes spaceInd-1 (rather than spaceInd)

to String.substring(). Seeing how this erroneous String flows to where it is printed

would almost immediately lead the user to the problematic line. In this case, the flow

traverses a Vector: line 17 adds the String, and line 23 retrieves it.

A thin slice only includes producer statements for the seed. We say statement s

is a producer for statement t if s is part of a chain of assignments that computes and

copies a value to t. In terms of our refinement technique (see §1.1), only including

producers in a thin slice abstracts away the question of why base pointers are aliased

for all field accesses. In Figure 1.3, the producer statements for the seed, highlighted

with underlining, are a superset of the statements most relevant to the bug in question.

We are interested in the pointer value in firstName at line 24, and the thin slice allows

us to easily trace its flow (relevant expressions are underlined):

• Line 23 copies the value returned by Vector.get().

• Vector.get() obtains the value from an array read (line 8).

• The value is copied into the array in Vector.add() (line 5).

• Vector.add() gets the value from the actual parameter at line 17.

• Line 17 passes the value returned at line 16, the buggy statement.

Unlike a traditional slice, the thin slice does not provide an executable program;

for example, statements initializing the Vector containing the erroneous String are

excluded. However, the thin slice more directly leads the user to the bug.

21

Chapter 1. Introduction

Advantages of Thin Slicing One reason that thin slicing works well is that it

ignores value flow into base pointers of heap accesses, focusing just on the value read

from or written to the heap. For example, line 8 reads this.elems[ind]. A thin

slicer ignores the values of the two dereferenced base pointers (this and this.elems),

focusing solely on statements that can write into the array (i.e., the statement

this.elems[count++] = p; at line 5). In contrast, a traditional slicer includes state-

ments that influence both the base pointers this and this.elems, contributing to the

blowup in slice size. For many program understanding tasks, base pointer manipula-

tion matters less than actual copying of the value through the heap.

In addition to being better focused on statements of interest for programmer tasks,

thin slices have an intuitive semantic definition that makes them understandable in

isolation. Simply stated, a thin slice contains all statements flowing values to the seed,

ignoring uses of base pointers. These well-defined semantics allow a user to reason

about thin slices in a self-contained manner, since she knows that all producer state-

ments are included in a thin slice. If slices were shrunk using some ad-hoc method,

such as setting a constant limit on slice size, the user could not easily characterize

what is in the presented slice subset and what is missing.

In cases where a thin slice alone is insufficient for some programmer task, it can

be refined through expansion with additional thin slices to ease the understanding

of other relevant statements. One case in which statements outside the thin slice

may be needed is to explain the cause of base pointer aliasing for heap accesses, as

previously discussed in §1.1. Given a field read x := y.f and a field write w.f := z

in a thin slice, a user may ask how aliasing between y and w arises, causing heap-

based flow from z to x. This question can be answered via two more thin slices,

respectively showing how some object o flows to both y and w. Note that is observation

is simply an instantiation of our general refinement technique (see §1.1): the requested

base pointer aliasing is explained, while the behavior of other field accesses remains

22

Chapter 1. Introduction

abstracted. This refinement of the thin slice can be repeated recursively for further

aliasing questions, exploiting the hierarchical nature of Java heap accesses as was

done with our pointer analysis.

A similar refinement technique applies to explaining why statements in the thin

slice can execute. Explaining why a statement can execute requires showing its control

dependences. Since traditional slices include all possibly relevant statements, they

must include all transitive control dependences. Unfortunately, Java’s semantics make

many statements a type of conditional branch, often yielding a huge number of control

dependences. For example, if a statement might throw an exception, many statements

will be control dependent on its successful execution. Similarly, each virtual call x.m()

is a conditional expression because it branches on the runtime type of x.

In practice, we found that when control dependences are relevant, they usually

appear lexically near a thin slice statement, and hence can usually be identified from

browsing the surrounding source code. Thin slices seeded with these conditionals

can be computed to further understand their behavior. In the limit, hierarchically

expanding a thin slice to show control and aliasing explanations yields a traditional

slice; hence, any possibly relevant statement can eventually be discovered.

Of course, thin slicing does not provide a panacea: in certain cases, thin slices

with expansion grow too large to effectively identify statements of interest. In our

experiments, thin slicing was useful for 13 of 19 debugging tasks and 22 of 29 program

understanding tasks, an encouraging result. Furthermore, of those tasks where thin

slicing was useful, the thin slice alone was sufficient for half of them, and for the

others typically one or two additional statements were needed. Hence, we believe

thin slicing holds great promise as a basis for a practical program understanding tool.

Our work focuses on static thin slicing for Java, but the technique is more broadly

applicable. Thin slicing itself relies on standard data dependence concepts [HPR89]

and hence should apply to many programming languages. Our hierarchical expansion

23

Chapter 1. Introduction

technique relies on properties of Java pointer accesses, however, and may not work

as effectively for languages like C (see §6.3). Also note that dynamic thin slices can

be defined in a straightforward manner using dynamic data dependences.

Our initial evaluation of thin slicing yielded highly promising results. Our experi-

ments compared thin slicing and traditional slicing for several debugging and program

understanding tasks, using a methodology that simulates realistic use of a slicing tool

(details in §6.5). Our results showed that thin slicing had the following properties:

• Thin slices usually included the desired statements for the tasks (e.g., the buggy

statement for a debugging task).

• Thin slices revealed desired statements after inspecting 3.3 times fewer state-

ments than traditional slicing for debugging tasks and 9.4 times fewer state-

ments for program understanding tasks.

• Our thin slicing algorithm (a simple modification of well-known techniques

[HRB88, RHSR94]) scales to relatively large Java benchmarks.

1.4 Dissertation Overview

The bulk of this dissertation is devoted to describing our work on refinement-based

points-to analysis. Chapter 2 gives definitions and explanations of various termi-

nology relevant to points-to analysis and context-free-language reachability (CFL-

reachability). Then, Chapter 3 presents formulations of several points-to analysis

variants in CFL-reachability, highlighting the structure exposed by the formalism.

Chapter 4 discusses our refinement-based context-insensitive points-to analysis, and

finally, Chapter 5 presents our refinement-based context-sensitive points-to analysis.

Both techniques provide high precision and dramatic scalability improvements, as

summarized in Table 1.2.

24

Chapter 1. Introduction

Chapter 6 describes thin slicing in detail, including its new notion of relevance,

algorithms for computing thin slices, and results from our experimental evaluation.

Related work for both our refinement-based points-to analysis and thin slicing is

discussed in Chapter 7. Finally, Chapter 8 has concluding thoughts and possible

directions for future work.

25

Chapter 2

Points-To Analysis Background

This chapter provides a brief introduction to points-to analysis terminology. Our

aim is to provide sufficient background to make the presentation of our points-to

analysis understandable, but not to give a complete, formal treatment of all discussed

terminology; we provide references to formalizations in the literature where possible.

We begin in §2.1 by defining what program properties are computed by a points-to

analysis. Then, in §2.2 we discuss terminology related to points-to analysis precision.

2.1 Points-To Analysis Definition

A points-to analysis computes an over-approximation of the possible objects that each

pointer variable may point to during any execution of a program. Runtime objects are

represented with a finite set of abstract locations. Abstract locations are necessary

because non-terminating programs may allocate an unbounded number of objects

(impossible to represent directly), and distinguishing such programs from those that

do terminate is undecidable. The granularity with which a points-to analysis models

dynamic objects using abstract locations is termed its heap abstraction. We discuss

heap abstractions in greater detail in §2.2.5.

26

Chapter 2. Points-To Analysis Background

Traditionally, points-to analysis results are represented with points-to sets ; we

write pt(x) for the points-to set of variable x. If o 6∈ pt(x) for abstract location o and

variable x from program P , then x can never point to an object represented by o in

any execution of P . If o ∈ pt(x), then x may point to some object represented by

o in some execution of P ; since points-to sets are over-approximations, it is possible

that x never points to such an object.

We illustrate the input and output of a points-to analysis with a simple example.

Consider a program containing a statement “x = new Obj();” and no other state-

ments defining the variable x. The heap abstraction used by Andersen’s points-to

analysis [And94] and many others (details in §2.2.5) represents the objects allocated

by all executions of this statement with a single abstract location o. This heap ab-

straction leads to the analysis result pt(x) = {o}.

2.2 Points-To Analysis Precision

Points-to analyses use various approximations of the language semantics to balance

precision of the analysis results with performance of the analysis (both in time and

space). In this section, we will describe the types of precision that can be used

to model various language features, introducing relevant terminology along the way.

We will also indicate how the points-to analyses in our work handle these language

features.

In §2.2.1 through §2.2.5, discussions of precision assume that the points-to analysis

is flow insensitive. In brief, a flow-insensitive analysis treats each intraprocedural

control-flow graph as if it has all possible edges, preventing reasoning about the

order in which statements execute or how many times they execute. For scalability

reasons, most points-to analyses in the literature, including ours, are flow insensitive.

We discuss flow sensitivity in detail in §2.2.6.

27

Chapter 2. Points-To Analysis Background

1 y = new Obj();

2 z = new Obj();

3 x = y;

4 x = z;

Figure 2.1: A simple example to illustrate different treatments of assignments.

Before we begin, a quick note on heap abstractions: unless stated otherwise, in

the rest of this dissertation we assume a heap abstraction with one abstract location

per allocation site (a new expression for Java) when giving examples of points-to sets.

(We discuss other possible heap abstractions in §2.2.5.) Furthermore, by convention

we name an abstract location ok when the corresponding allocation site occurs on line

k of an example program.

2.2.1 Assignments

A points-to analysis can model assignment statements in either a precise subset-based

manner or in an approximate equality-based manner. A subset-based analysis handles

an assignment x = y by ensuring that pt(y) ⊆ pt(x) in the analysis result. This

constraint precisely models the assignment, since it updates x to point to whatever

value y points to. In contrast, an equality-based analysis ensures pt(y) = pt(x) given

the same assignment, an approximation since the statement does not cause a flow of

values from x to y. (In essence, an equality-based analysis effectively adds the inverse

assignment y = x to the analyzed program.) While algorithms exist for equality-

based analysis that are nearly linear in the size of the program [Ste96], subset-based

analysis requires worst-case cubic time. Some analyses use a mix of equality- and

subset-based techniques to find a sweet spot in scalability and precision, e.g., Das’s

one-level flow analysis [Das00].

To see how modeling of assignments affects the analysis result, consider the simple

28

Chapter 2. Points-To Analysis Background

example in Figure 2.1. A subset-based analysis models line 3 with the constraint

pt(y) ⊆ pt(x) and line 4 with the constraint pt(z) ⊆ pt(x). Solving these constraints

yields the precise result pt(y) = {o1}, pt(z) = {o2}, pt(x) = {o1, o2}. On the other

hand, an equality-based analysis models line 3 with the constraint pt(x) = pt(y) and

line 4 with pt(x) = pt(z). Solving these constraints yields identical points-to sets

for all the variables, i.e., pt(x) = pt(y) = pt(z) = {o1, o2}. Our refinement-based

points-to analysis always treats assignments in a subset-based manner.

2.2.2 Field accesses

Points-to analyses use various techniques to model the semantics of reads and writes

to fields of structures or objects. Handling of fields in a points-to analysis boils down

to answering the following question: Given some field write statement w.f = z and

some field read statement x = y.f, can executing the statements cause values to flow

from z to x? A precise answer to this question requires checking the following two

conditions:1

1. Base pointer equality In order to cause heap-based flow, the field read and

write statements must be accessing the same object / structure. For the above

statements, this condition corresponds to checking that the base pointers w and

y may be aliased, i.e., pt(w) ∩ pt(y) 6= ∅.

2. Offset equality The field accesses must also be reading and writing the same

offset in the object in order to cause a flow. Strongly-typed languages like Java

guarantee that distinct object fields cannot name the same memory location,

in which case this condition reduces to ensuring the statements access the same

object field. For languages like C that allow unchecked casting and pointer
1Again, this discussion assumes that the points-to analysis is flow insensitive (details in §2.2.6).

29

Chapter 2. Points-To Analysis Background

1 class A {

2 A foo() {

3 return new A();

4 }

5 }

6 class B extends A {

7 A foo() {

8 return new B();

9 }

10 }

11 main() {

12 A x = new A();

13 A y = new B();

14 A z = y.foo();

15 }

Figure 2.2: A simple code example to illustrate virtual calls.

arithmetic, more complex checking may be necessary (see [YHR99] for a detailed

discussion).

There are three well-known treatments of fields in the points-to analysis literature.

A field-sensitive analysis checks both of the above conditions. A field-insensitive

analysis (also known as field independent [HT01b]) only checks the first condition,

while a field-based analysis only checks the second condition. Chapter 4 presents a

configuration of our analysis in which refinement adds targeted field sensitivity to an

initial field-based analysis pass.

2.2.3 Call Graph

For languages with any form of indirect function calls (e.g., calls through function

pointers in C, virtual calls in Java, higher-order functions in Scheme, etc.), performing

a points-to analysis and computing a call graph for a program are mutually dependent:

points-to information is needed to determine possible targets of indirect function

30

Chapter 2. Points-To Analysis Background

calls, and the possible targets of those calls must be known to compute points-to

information for variables involved in the call (e.g., return values). Consider the code

example in Figure 2.2. In order to determine pt(z), a points-to analysis must consult

a call graph to determine the possible targets of the virtual call y.foo() at line 14,

as z is assigned the return value of the call. Computing the possible targets of this

virtual call requires determining the possible runtime types of its receiver argument

y. But, finding y’s possible runtime types requires computing what it can point to,

illustrating the circular dependence between call graph construction and points-to

analysis.

Call graphs for points-to analysis are either constructed ahead of time or on the

fly. With ahead-of-time call graph construction, first some less expensive analysis,

e.g., rapid type analysis (RTA) [BS96], is used to construct a conservative call graph.

This pre-computed call graph is used to find virtual call targets during points-to anal-

ysis. With on-the-fly call graph construction, the points-to analysis uses its current

points-to information to determine call graph information, iterating between points-

to analysis and call graph construction until a fixed point is reached. On-the-fly

call graph construction is the most precise technique for points-to analysis, since all

virtual call targets are determined using the results of the points-to analysis itself.

Building a call graph ahead of time may yield less precise points-to analysis results

than building it on the fly. Consider again the example of Figure 2.2. The y.foo()

call at line 14 invokes B.foo(), since y points to a B object. However, a call graph

constructed ahead of time with rapid type analysis will conclude imprecisely that the

call could invoke either A.foo() or B.foo().2 This imprecise call graph will then lead

the points-to analysis to conclude that z can either point to o3 or o8. In contrast, a

points-to analysis with on-the-fly call graph construction would find only the B.foo()

2The creation of an A object at line 12 of Figure 2.2 causes this imprecise result, as RTA inspects
which classes have been instantiated when determining call targets.

31

Chapter 2. Points-To Analysis Background

target for the virtual call, thereby concluding that z can only point to o8.

Though it may decrease precision, in some cases ahead-of-time call graph con-

struction performs better than on-the-fly call graph building. Consider the case

where ahead-of-time and on-the-fly techniques yield similarly sized call graphs for

a particular program. In this case, ahead-of-time call graph construction often yields

a faster running time, since on-the-fly call graph construction increases the number

of iterations required for the points-to analysis to reach a fixed point. However, an

on-the-fly call graph may include many fewer methods and call graph edges than an

ahead-of-time call graph, since it is constructed more precisely. In this case, the time

required to analyze the additional methods in the ahead-of-time call graph may dwarf

the extra iterations required for on-the-fly call graph construction.

Our points-to analyses can refine an ahead-of-time call graph on-demand. This

refinement technique yields the precision benefits of on-the-fly call graph construction

at lesser cost, since many unimportant call sites will not have their targets refined.

Our call graph handling is discussed more in §3.4 and §5.3.2.2.

2.2.4 Method Calls

Points-to analyses vary in how precisely they model the semantics of method calls and

returns. A context-insensitive analysis does not precisely model the target address

of return statements, instead treating calls as goto instructions. A return from a

call to some method f is conservatively treated as if it could branch to the point

after any call to f, not just the actual caller. Hence, context-insensitive analyses

include results from impossible control-flow paths with mismatched calls and returns,

termed unrealizable paths [RHS95]. A context-sensitive analysis does not have this

imprecision; method call semantics are precisely modeled, and only realizable paths

32

Chapter 2. Points-To Analysis Background

affect analysis results.3

Let us define context-sensitive points-to analysis more formally. For the moment,

we assume that the program P to be analyzed is recursion-free; we will discuss re-

laxing this assumption shortly. We also temporarily assume a the existence of a

pre-computed call graph CG for P , for simplicity. Let P ′ be the program constructed

by inlining all method calls in P , according to CG. The context-sensitive points-to

analysis problem is defined as computing the result of a context-insensitive points-to

analysis on the (call-free) program P ′. Note that the actual algorithm need not work

over P ′; it must only compute the same points-to relation.

With this definition, a context-sensitive points-to analysis computes a separate

points-to set for each inlined copy of a variable. We denote a (local) variable in P ′ as

〈v, c〉, where v is the corresponding variable in P and c is the complete sequence of

call sites (or call string) that was inlined to create the copied variable, from the root

of the call graph CG for P to the method declaring v. The (copied) allocation sites

of P ′ have analogously named abstract locations. Thus, pt′ maps “context-refined”

variables to “context-refined” abstract locations: 〈o, c′〉 ∈ pt′(〈x, c〉). For reasoning

about variables in the original program P , the context-sensitive result is projected

back in the natural manner:

pt(x) ≡ { o | ∃ c, c′ . 〈o, c′〉 ∈ pt′(〈x, c〉)}

We illustrate the potential precision benefits of context-sensitive analysis with the

example of Figure 2.3. A context-insensitive points-to analysis would treat the two

calls to id in the example as if they could return their result to either call site, yielding

the imprecise result pt(c) = pt(d) = {o2, o3}. In contrast, a context-sensitive analysis
3Note that in type-inference-based formulations of points-to analysis, context-insensitive and

context-sensitive analyses are respectively referred to as monomorphic and polymorphic analy-
ses [OJ97, FFA00, O’C00, RF01, KA07], standard type inference terminology.

33

Chapter 2. Points-To Analysis Background

1 Obj id(Obj p) { return p; }

2 a = new Obj();

3 b = new Obj();

4 c = id(a);

5 d = id(b);

Figure 2.3: An example illustrating the precision benefit of context-sensitive points-to
analysis.

keeps the effects of the two calls separate, yielding the projected result pt(c) = {o2}

and pt(d) = {o3}.

A second precision benefit of context-sensitive analysis stems from direct use of the

context-sensitive points-to relation. For the example of Figure 2.3, pt(p) = {o2, o3},

since both o2 and o3 are passed as a parameter to id. However, the context-sensitive

points-to relation pt′ maintains two different points-to sets for p, one for each call:

pt′(p, [4]) = o2 and pt′(p, [5]) = o3. (Here and in the rest of the dissertation, we

name call sites in example programs by their line number.) Certain tools can benefit

from directly querying the context-sensitive points-to relation, for example static race

detection [NAW06].

Context-sensitive analysis combined with on-the-fly call graph construction yields

a context-sensitive call graph.4 Such an analysis can be defined as performing inlin-

ing on-the-fly: starting from the entry methods of a recursion-free program P (e.g.,

main()), a context-insensitive points-to analysis is performed, but as call targets are

discovered on-the-fly, the callees are inlined and the analysis continues.

A context-sensitive call graph yields additional precision by computing virtual

call targets separately for each calling context. For example, consider the call to

Object.equals() inside the Vector.contains() method in the Java standard library,
4While it is theoretically possible for an ahead-of-time call graph to be context sensitive, this

configuration makes little practical sense due to the high cost of computing a context-sensitive call
graph. Hence, we assume that any context-sensitive call graph is computed on-the-fly.

34

Chapter 2. Points-To Analysis Background

used to check if the Vector contains some object. Say the program has a call

“v.contains(a)”, where v only contains A objects. A context-sensitive call graph

has a distinct call site for the equals() call within this contains() call, and hence

can prove that it invokes A.equals(). In contrast, a context-insensitive call graph

has only one copy of contains(), and therefore one copy of its nested equals() call

site. With this representation, the call graph will indicate that the nested equals()

call could invoke the equals() method of objects stored in any Vector.

Handling recursive calls in a context-sensitive points-to analysis requires approx-

imation, due to interactions with handling of fields. Reps proved that context-

sensitive, field-sensitive analysis is undecidable [Rep00]. Therefore, either fields or

method calls must be modeled approximately by a points-to analysis to ensure termi-

nation. Our refinement-based points-to analysis approximates handling of recursive

method calls for decidability, as discussed in §5.2.

Even with state-of-the-art algorithms, full context sensitivity (approximated for

decidability) is still intractable for large programs. The exhaustive inlining approach

to context sensitivity suggested by our analysis definition can cause a worst-case

exponential blowup in the size of the program, as there are a worst-case exponential

number of paths in a program’s call graph. In practice, exhaustive inlining has been

shown to create up to 1023 copies of a method for large Java programs [WL04]. To

this date, no technique for context-sensitive points-to analysis has been devised that

has better worst-case complexity than the exhaustive inlining technique. Hence, fully

context-sensitive points-to analysis for large programs remains intractable.

To overcome the intractability of context-sensitive points-to analysis, numerous

approximations have been devised. One of the earliest approximation techniques was

k-limiting [Shi88], which limits the modeling of the call stack to depth k. Typi-

cally, points-to analyses have only scaled to large programs with k ≤ 3. Cartesian

product analysis [Age95] and its variants analyze each method once for each set of

35

Chapter 2. Points-To Analysis Background

concrete argument types, rather than once per call. A similar recent approximation

is object sensitivity [MRR05], which analyzes methods separately for each (abstract)

receiver object rather than for each call site. Recent work [LH06, NAW06] has shown

that a k-limited object-sensitive analysis is empirically more scalable and precise

than the comparable k-limited context-sensitive analysis. Finally, another approxi-

mation of full context sensitivity is to use a context-insensitive heap abstraction (e.g.,

in [WL04]), discussed further in the next section.

2.2.5 Heap Abstraction

As discussed in §2.1, a key parameter of a points-to analysis is its heap abstraction, i.e.,

its finite model of a program’s possible runtime objects. Here, we first describe some

typical heap abstractions used with context-insensitive analyses. Then, we discuss

the interaction between context sensitivity and the heap abstraction, showing why a

context-sensitive heap abstraction can yield greatly improved precision.

Context-insensitive heap abstractions can vary widely in coarseness, depending on

the desired trade-off between scalability and precision. Analyses using equality-based

techniques [Ste96, Das00] unify abstract locations deemed equivalent during analysis,

sometimes resulting in a single abstract location representing a large portion of the

heap. While this representation may be coarse, such analyses scale very well to

large programs. Other analyses utilize a more precise type-based heap abstraction,

where all objects of a particular type are represented with a single abstract location.

This abstraction is useful for tasks like performing type inference for object-oriented

programs, but can be too imprecise for more demanding tasks like disambiguating

aliases [DMM98]. Andersen’s analysis [And94] and its variants use an even more

precise heap abstraction, representing the objects created by each allocating statement

(malloc in C, new in Java) with a separate abstract location. This heap abstraction is

36

Chapter 2. Points-To Analysis Background

1 Obj[] makeArr() { return new Obj[10]; }

2 Obj[] a = makeArr();

3 Obj[] b = makeArr();

4 a[0] = new Obj();

5 b[0] = new Obj();

6 Obj x = a[0];

7 Obj y = b[0];

Figure 2.4: A simple example to illustrate the benefits of a context-sensitive heap abstrac-
tion.

the most difficult to scale, though modern BDD-based techniques can represent the

resulting points-to sets quite compactly [BLQ+03, ZC04].

Some context-sensitive points-to analyses also use a context-sensitive heap ab-

straction, which especially improves treatment of heap-based data structures. As

defined in §2.2.4, a context-sensitive analysis has a separate abstract location for

each inlined copy of an allocation site. In practice, the key benefit of this heap

abstraction is the ability to distinguish the contents of different data structure in-

stances [LH06, LLA07]. Internal objects of such data structures are often allocated

in standard methods (e.g., the constructor in Java), and a context-insensitive heap

abstraction uses a single abstract location to represent all objects allocated in such

methods, causing merging of the contents of all data structure instances in the analy-

sis results. In contrast, a context-sensitive heap abstraction can represent the internal

objects of each data structure separately, allowing for separate reasoning about the

contents of each data structure instance [LLA07].

Figure 2.4 provides an example illustrating how a context-sensitive heap abstrac-

tion can better distinguish the contents of arrays, a simple heap-based data structure.

The heap abstraction of Andersen’s analysis [And94]—using one abstract location per

new expression—models the arrays created in all calls to makeArr() with a single ab-

stract location o1. This coarse model would lead a points-to analysis to conclude

37

Chapter 2. Points-To Analysis Background

that a and b point to the same array, and therefore that line 4 through line 7 all

access the same array. The points-to analysis would then conclude, for example,

that pt(x) = {o4, o5}, an imprecise result. A context-sensitive heap abstraction uses

distinct abstract locations for the arrays allocated by the two calls to makeArr(),

removing this imprecision. Standard data structures like Java’s Vector benefit from

a context-sensitive heap in a similar way, as the internal array implementing each

Vector is allocated inside its constructor method (shown in greater detail in §5.1.3).

Our refinement-based points-to analysis is the first to provide a context-sensitive

heap abstraction sufficient for distinguishing data structure contents while scaling

to large programs. The BDD-based points-to analysis of Whaley and Lam [WL04]

uses a context-insensitive heap abstraction, which aids scalability but dramatically

decreases precision for demanding clients [LH06]. Equality-based analyses with a fully

context-sensitive heap abstraction have been developed, but in our experience do not

scale to large Java programs (discussed in more detail in §5.4). Subset-based analyses

have scaled with a k-limited context-sensitive heap abstraction [LH06, NAW06], but

k-limiting decreases precision for some clients. Our analysis is able to both provide

a context-sensitive heap and scale because it is able to refine the heap abstraction

during analysis, thereby only utilizing the context-sensitive heap where needed; see

§5.2.1 for further discussion.

Shape analyses (e.g., [SRW02]) can provide precision beyond that available with

a context-sensitive heap abstraction. A context-sensitive heap abstraction is often

insufficiently precise to prove interesting properties about recursive data structures

(e.g., that a linked list is acyclic). The objects comprising such data structures are

often allocated in a loop, and hence even a context-sensitive heap abstraction will

represent the objects with a single abstract location. In contrast, shape analyses are

often able to reason separately about objects allocated and manipulated in distinct

loop iterations (at great cost in scalability). The more precise heap abstraction pro-

38

Chapter 2. Points-To Analysis Background

1 x = new Obj();

2 x.f = new Obj();

3 y = x.f;

4 x.f = new Obj();

5 z = x.f;

6 y = z;

Figure 2.5: A simple example to illustrate the benefits of flow-sensitive points-to analysis.

vided by shape analysis often only makes sense if the analysis is sensitive to control

flow, as discussed in the next section.

2.2.6 Control Flow

More precise modeling of a program’s control flow can lead to various precision ben-

efits for points-to analysis. Most points-to analyses are flow insensitive, i.e., they

assume that statements within a procedure may execute (1) in any order and (2) any

number of times. A flow-sensitive analysis aims to reduce imprecision by eliminating

consideration of impossible statement execution orderings (much like context-sensitive

analysis eliminates consideration of unrealizable paths).5 Our points-to analyses are

not flow sensitive to remain scalable. Here, for completeness, we discuss some of the

potential benefits of flow sensitivity.

Strong Updates Flow-sensitive analyses can benefit from performing strong updates

of memory locations. An analysis performs a strong update when in reasoning about

a write to some memory location l, it models the fact that the old value in l is

overwritten. In the example of Figure 2.5, consider computing the points-to set of

z. The value in z is copied from x.f, which is assigned different values at line 2

and line 4. A flow-insensitive analysis assumes that those assignments can execute
5In this work, flow sensitivity has its typical meaning of precise modeling of control flow. In other

work (for example [O’C00]), flow sensitivity is used to refer to data-flow sensitivity, i.e., subset-based
modeling of assignments (see §2.2.1).

39

Chapter 2. Points-To Analysis Background

in any order, and hence concludes that pt(z) = {o2, o4}. In contrast, a flow-sensitive

analysis knows that line 4 must execute after line 2. Hence, the analysis can use a

strong update to treat the statement at line 4 as overwriting the o2 value in x.f with

o4, yielding the more precise result pt(z) = {o4}.

The key challenge of strong updates is in identifying the single heap location

updated by a statement. Strong updates on local variables can be performed trans-

parently by first converting the input program into static single assignment (SSA)

form [CFR+91].6 Doing a strong update for a write to a heap location is more dif-

ficult because the analysis must identify a single runtime object being updated by

the write. A strong update cannot be performed if a statement updates an abstract

location that can represent multiple runtime objects. For Figure 2.5, say that line 1

were replaced by the following:

while (...) {

...; x = new Obj();

}

Most points-to analyses would model the allocation in the loop with a single abstract

location ol, representing the objects allocated in all loop iterations. However, at

runtime line 2 and line 4 only update the f field of one of those dynamic objects.

So, performing a strong update on ol.f for those statements (representing the objects

pointed to by the f field of all the loop-allocated objects) would be unsound. Doing

strong updates for cases like this one typically requires a very precise heap model, e.g.,

that used in shape analysis [SRW02], though in certain cases less expensive analysis

can be used [DADY04, FYD+06].

Separate Result per Program Point Flow-sensitive analysis may also enable

greater precision by computing a distinct result for each program point separate. In
6In fact, SSA can be used to make otherwise flow-insensitive points-to analyses like ours partially

flow sensitive.

40

Chapter 2. Points-To Analysis Background

1 if (...)

2 a = y;

3 else
4 b = y;

Figure 2.6: A simple example to illustrate the benefits of path-sensitive points-to analysis.

Figure 2.5, y is assigned at both line 3 and line 6. A flow-insensitive analysis can only

provide one points-to set for y that includes the effects of both of these assignments.

However, a flow-sensitive analysis can give more precise answers when asked about

a points-to set at a specific program point. In this case, the flow-sensitive analysis

would compute a separate points-to set for y for each assignment, {o2} after line 3

and {o4} after line 6. Note that conversion to SSA form provides much of this benefit,

since in SSA form each local variable is assigned exactly once.

Path Sensitivity Further precision gains may be possible through path sensitivity,

i.e., reasoning separately about different control-flow paths rather than merging their

effects. In Figure 2.6, a path-insensitive analysis would imprecisely conclude that a

and b may be aliased at the end of the example, as it would merge the effects of line 2

and line 4, essentially treating the statements as if they could both execute in one

run of the program. A path-sensitive analysis would keep the effects of the ‘then’

and ‘else’ branches of the conditional separate, and hence could prove that a and b

cannot be aliased. A path-sensitive analysis may also use conditional expressions to

prove that certain sequences of branch outcomes are infeasible. Recent work has made

impressive progress on building a scalable a points-to analysis with intraprocedural

path sensitivity [HA06], but scalable interprocedural path sensitivity for points-to

analysis is still an open problem.

41

Chapter 3

Points-To Analysis Formulations

Chapter 2 introduced the terminology of points-to analysis. Here, we build on that

background to formally specify Java points-to analysis using the context-free language

reachability (CFL-reachability) framework. Our formulations will show how balanced

parentheses can be used to model a variety of Java language features. Apart from the

standard use of balanced parentheses in modeling method calls and returns [RHSR94,

RHS95], we also use them to handle heap accesses and virtual calls precisely. In

Chapter 4 and Chapter 5, we give refinement-based points-to analysis algorithms

that exploit this balanced parentheses structure.

We define our analysis problem as computing the best possible (i.e., most precise)

flow-insensitive points-to information for a program in a slightly restricted subset of

Java. (In terms of the precision axes introduced in §2.2, our formulation employs the

most precise handling for assignments, fields, method calls, virtual calls, and heap

allocation, but it is flow insensitive.) The analysis is precise for programs that (1) have

no arrays and (2) do not make use of native methods or reflection; our approximate

handling of these program features is discussed in §3.2.3. Furthermore, not that our

analysis algorithm (described in Chapter 5) does not compute the fully precise result

42

Chapter 3. Points-To Analysis Formulations

formulated here, as recursive method call semantics are approximated for decidability

(see §5.2).

We present a series of increasingly precise points-to analysis formulations, cul-

minating in the aforementioned best possible flow-insensitive points-to analysis. We

first present some background on CFL-reachability in §3.1. Then, §3.2 presents a

points-to analysis that is context insensitive (defined in §2.2.4) and uses ahead-of-

time call graph construction (defined in §2.2.3). In §3.3, we show how to add context

sensitivity (defined in §2.2.4) to this formulation. Finally, §3.4 shows how to enhance

the formulation with on-the-fly call graph construction (defined in §2.2.3).

3.1 Context-Free Language Reachability

Our points-to analysis work differs from most previous work in its use of context-free

language reachability (CFL-reachability) as an underlying formalism. Our formula-

tion of Java points-to analysis as a CFL-reachability problem (based on a previous

formulation for C [Rep98]) exposed structure that enabled many of the key insights

behind our analysis algorithms. In this section, we briefly define CFL-reachability

and discuss some of its key properties; see the excellent overview by Reps [Rep98] for

a more detailed discussion.

CFL-reachability is an extension of traditional graph reachability that allows for

filtering of uninteresting paths. The input for a CFL-reachability program is a di-

rected graph G with edge labels taken from some alphabet Σ. Each path p in G has

a corresponding string s(p) in Σ∗, constructed by concatenating in order the labels of

edges in p. Let L be a context-free language over Σ. We say p is an L-path iff s(p) ∈ L.

The (all-pairs) CFL-reachability problem requires determining for all nodes s and t

whether G contains an L-path from s to t. The language L characterizes interesting

paths for CFL-reachability, as non-L-paths are filtered from consideration. (For pro-

43

Chapter 3. Points-To Analysis Formulations

gram analysis, uninteresting paths are typically those that correspond to infeasible

executions of the analyzed program.) When an L-path exists from s to t, we say t is

L-reachable from s, or simply, s L t; we similarly refer to S-paths and use notation

s S t for any non-terminal S in L’s grammar. Finally, the notation s S t T u means

that there is an S-path from s to t and a T -path from t to u.

As an example, let Σ be the letters ‘(’ and ‘)’, and L be the set of strings with

balanced parentheses generated by the grammar S → SS | (S) | ε. Consider the

following input graph (adapted from an example in [Rep98]):

(()

) ε

s tu

There is exactly one L-path p from s to t, with s(p) = “(())”, so t is L-reachable

from s. However, there is no L-path from u to t.

For points-to analysis, G represents the program: its nodes model variables and

abstract locations, and its edges model different types of assignments. L describes

paths in G corresponding to program executions that might cause a variable to point

to some abstract location; other paths are guaranteed not to affect the points-to

relation. In Chapter 3, We define L such that if x may point to o (i.e., o ∈ pt(x)),

then o L x. Perhaps counter-intuitively, the L-path goes from o to x rather than

from x to o, since our edges are oriented in the direction of value flow, i.e., from the

right-hand side of an assignment to the left-hand side (see §3.2.1 for details). Hence,

computing the points-to set of a variable x is a single-target L-path problem [Rep98],

requiring backwards reachability.

In most existing CFL-reachability formulations of program analyses, the filter lan-

guage is a balanced parentheses language (also known as a Dyck language [Har78]).

44

Chapter 3. Points-To Analysis Formulations

The best-known work on using CFL-reachability for program analysis [RHSR94,

RHS95] uses a balanced parentheses language for context sensitivity, i.e., precise

handling of method call semantics (discussed further in §3.3). In addition to using

balanced parentheses to achieve context sensitivity, our work contributes two novel

uses of balanced parentheses, modeling both Java heap accesses (see §3.2) and on-

the-fly determination of virtual call targets (see §3.4) with the technique. Note that

not all analyses formulated in CFL-reachability use a balanced parentheses language,

for example the formulation of Andersen’s analysis for C in [Rep98].1

Determining CFL-reachability is in general computationally more expensive than

standard graph reachability. For many years, the best known algorithm for CFL-

reachability required worst-case O(Γ3N3) time [Rep98], where N is the number of

nodes in G and Γ is the size of a normalized grammar for L. Recently, Chaudhuri has

recently devised an more efficient algorithm which runs in worst-case O(N3/log N)

time [Cha06] (this bound assumes that Γ is a constant). However, standard transitive

closure can be solved more efficiently in worst-case O(NE) time.2

Note that for our points-to analysis, we do not use the generic CYK-based CFL-

reachability algorithm [Rep98] due to space overhead. The CYK-based algorithm

requires saturating the graph with closure edges corresponding to each non-terminal

in a normalized version of the language grammar [Rep98]. In our experience, these

closure edges add an enormous space overhead for points-to analysis, without yielding

commensurate time savings. Hence, we develop our own algorithms for reachability

specific to the context-free languages we formulate for points-to analysis. We are not

aware of a scalable program analysis based on the generic CFL-reachability algorithm.

In certain cases, the structure of a CFL-reachability problem can be exploited
1Note that Zheng and Rugina [ZR07] have recently presented an alternate formulation of alias

analysis for C with balanced parentheses.
2The greater efficiency assumes a sparse graph, with the number of edges E being O(N). In

practice, the graphs we construct to model programs are always sparse.

45

Chapter 3. Points-To Analysis Formulations

to yield better worst-case complexity bounds. When L is a regular language, L-

reachability can be solved in O(SNE) time, where S is the number of states in a

deterministic finite automaton for L [Yan90]. Also, for context-sensitive dataflow

analysis and slicing, algorithms with better worst-case complexity for real-world pro-

grams have been devised [RHSR94, RHS95], exploiting the typical structure of proce-

dure calls. §4.7 shows that a similar algorithm for context-insensitive Java points-to

analysis has better worst-case complexity than existing algorithms.

3.2 Context-Insensitive Formulation

Our first Java points-to analysis formulation is for context-insensitive points-to anal-

ysis with ahead-of-time call graph construction. The key distinguishing feature of

this formulation is its use of balanced parentheses to model the semantics of Java

heap accesses, i.e., reads and writes of object fields. We first describe how, given

a program P , a graph G representing pointer behavior in P is constructed (§3.2.1).

We then formulate points-to analysis for P as a CFL-reachability problem over G

(§3.2.2). Finally, we discuss our handling of Java arrays and reflection in §3.2.3.

3.2.1 Graph Representation

Our graph-reachability formulation rests on representing the pointer-manipulating

statements in a program P with a graph G. Nodes in G represent variables and

abstract locations, with one abstract location node per new statement in the program.3

Within a procedure, edges represent four canonical assignment forms: (1) allocation

statements x = new T(), (2) copy statements x = y, (3) heap reads x = y.f, and (4)
3Note that in spite of representing each new statement with one abstract location node, we are

still able to formulate an analysis with a context-sensitive heap abstraction over this graph; see §3.3
for details.

46

Chapter 3. Points-To Analysis Formulations

Statement Graph Edge(s)
s: x = new T() os

new−−→ x

x = y
y

assignglobal−−−−−−→ x if x or y is a global;
y

assign−−−→ x otherwise

x = y.f y
getfield[f]−−−−−→ x

x.f = y y
putfield[f]−−−−−→ x

s: x = m(a1, a2, . . . , ak)
ai

param[s]−−−−→ fm,i for i ∈ [1..k]

retm
return[s]−−−−→ x

Table 3.1: Canonical statements for Java points-to analysis, and the edge(s) for each
statement in our graph representation.

heap writes x.f = y. Table 3.1 shows the edges and edge labels used to represent these

statement types; more complex statements can be modeled by suitable introduction

of temporary variables.

For intraprocedural statements, the edges in our graph represent the value flow

from the right-hand side to the left-hand side of the assignment. Hence, all edges in

Table 3.1 are oriented in the direction of value flow. We use the assignglobal label

for copy assignments where either x or y is a global variable (i.e., a static field), and

the assign label otherwise; distinguishing such assignments is important for context-

sensitive analysis (see §3.3). The source of a new edge is the corresponding abstract

location node. For getfield[f] and putfield[f] edges, the field name f is part of the

edge label. These field access terminals will serve as the parentheses in the points-to

analysis formulation of §3.2.2. Figure 3.1(b) gives G for the program of Figure 3.1(a).

We model method calls in our graph with specially labeled assignment edges, as

shown by the final entry in Table 3.1. For each method m, G has nodes fm,i for

m’s formal parameters and a special retm node for m’s return statements. At call

site s of m, we add param[s] edges from each actual parameter to the corresponding

formal parameter and a return[s] edge from the retm node to the appropriate caller’s

47

Chapter 3. Points-To Analysis Formulations

1 x = new Obj(); // o1

2 z = new Obj(); // o2

3 w = x;

4 y = x;

5 y.f = z;

6 v = w.f;

(a) Code example
ge t

f i e
l d [

f] (
6)

a s s
i g n

 (3
)

x
new (1)

pu tfield[f] (5)

a ssig n (4)

y

new (2)
v z

w

o2

o1

(b) Graph representation

Figure 3.1: A small code example and its graph representation for CFL-reachability-based
points-to analysis. Line numbers from (a) are given on corresponding edges in (b). Dashed
edges in (b) indicate the existence of a flowsTo-path from the source to the sink.

variable, as shown in Table 3.1. This is a standard technique for modeling method

call semantics for points-to analyses. Note that in code examples, our convention

is to identify call sites by their line number, so a call at line j will have param[j]

and return[j] edges. For this section, we assume the existence of some pre-computed

conservative call graph to determine possible targets of virtual calls. §3.4 shows how

on-the-fly call graph construction can be formulated in CFL-reachability.

3.2.2 Analysis Grammar

We now define the language LF used to compute context-insensitive points-to analysis

with CFL-reachability. Recall from §3.1 that we want to define LF such that x is LF-

reachable from o iff o ∈ pt(x), i.e., the address of o may flow to x. We first consider

programs without field accesses, corresponding to graphs restricted to new and assign

48

Chapter 3. Points-To Analysis Formulations

edges. For such graphs, LF is defined by the regular expression below (flowsTo is the

start non-terminal):

flowsTo→ new (assign)∗

Informally, an object can flow from an allocation site to a variable only through a

new edge followed by a (possibly empty) sequence of assign statements. For example,

in Figure 3.1(b), the path o1
new−−→ x

assign−−−→ w is a flowsTo-path witnessing o1 ∈ pt(w).

We now extend LF to track value flow through the heap via putfield[f] and

getfield[f] statements. We seek a precise handling of field accesses, defined as a

field-sensitive handling in §2.2.2. Recall from §2.2.2 that field sensitivity requires

that given a heap read r and write w, the analysis must check that that (1) r and w

access the same field and (2) the base pointers of r and w are may aliased to establish

a heap-based flow from w to r. To achieve this precision, we extend the flowsTo

production:

flowsTo→ new (assign | putfield[f] alias getfield[f])∗

This flowsTo production assumes the existence of an alias language (to be defined

shortly) that captures may-aliasing, i.e., the condition when two variables may point

to the same object: x alias y ⇔ pt(x) ∩ pt(y) 6= ∅. The alias path connects the base

variables of the field accesses, as desired by rule (2) of the field sensitivity definition.

Our remaining task is to define the alias language. Observe that we can check for

aliasing of x and y by means of flowsTo-paths: x and y are may-aliased iff there is an

object o such that o flowsTo x and o flowsTo y, i.e., o ∈ pt(x)∩ pt(y). Unfortunately,

reasoning about may-aliasing in terms of two flowsTo-paths is unsuitable for CFL-

reachability, which can only check language membership of a single path connecting

49

Chapter 3. Points-To Analysis Formulations

x and y. The two aforementioned flowsTo-paths cannot be concatenated to form a

single path from x to y, since x and y are both sinks of the paths. Hence, we must

extend our graph representation to allow for inverse paths, as in Melski’s formulation

of Andersen’s analysis for C [Rep98].

Inverse paths enable alias paths by introducing reversed flowsTo paths (from vari-

ables to abstract locations), thereby allowing for a single path connecting two may-

aliased variables. More concretely, the desired (x alias y)-path can be constructed

by concatenating the inverse of the (o flowsTo x)-path with the (o flowsTo y)-path.

We invert the flowsTo-path using inverse edges : for each edge x→ y in G labeled t,

we add an inverse edge y → x in G labeled with t, following the notation of [Rep98].

Given a path p, the inverse path p is then constructed using inverse edges in the obvi-

ous way. So, an (x alias y)-path can be now defined as a path x flowsTo o flowsTo y,

for some node o. The alias language is defined by the following grammar:

alias → flowsTo flowsTo

flowsTo → (assign | getfield[f] alias putfield[f])∗ new

Note the absence of the alias non-terminal symbol; we use alias instead because

the two generate the same language: alias → flowsTo flowsTo = flowsTo flowsTo =

flowsTo flowsTo = alias.

Figure 3.2 gives the complete context-free grammar for LF. Each flowsTo produc-

tion reverses the preceding flowsTo production and inverts its edges. The ciAssign

and ciAssign non-terminals treat edges corresponding to assignments to globals, pa-

rameter passing, and return values as if they were assignments between locals. This

treatment yields a sound but context-insensitive analysis, as no filtering of unrealiz-

able paths (defined in §2.2.4) is performed. (§3.3 gives a context-sensitive formulation

that uses param[i] and return[i] edges to filter unrealizable paths.)

50

Chapter 3. Points-To Analysis Formulations

flowsTo → new

flowsTo → new

flowsTo → flowsTo ciAssign

flowsTo → ciAssign flowsTo
flowsTo → flowsTo putfield[f] alias getfield[f]

flowsTo → getfield[f] alias putfield[f] flowsTo

alias → flowsTo flowsTo

ciAssign → assign | assignglobal | param[i] | return[i]

ciAssign → assign | assignglobal | param[i] | return[i]

pointsTo → flowsTo

Figure 3.2: A context-free grammar for LF.

As discussed in §3.1, determining a points-to set for a variable x requires solving

a backwards LF-reachability problem from x, i.e., finding those abstract locations

that can flow to x. Figure 3.2 gives a production pointsTo → flowsTo that makes

this backwards-reachability correspondence explicit: o ∈ pt(x) iff x pointsTo o, i.e.,

x flowsTo o. In the remainder of this thesis, we sometimes refer to pointsTo-paths

rather than flowsTo-paths to make the discussion more intuitive.

The balanced-parentheses structure of LF will be exploited by our points-to anal-

ysis algorithms. Note that because of inverse edges, we have two pairs of matched

parentheses for each field f , (putfield[f], getfield[f]) and (getfield[f], putfield[f]). We

will use these parentheses to guide our approximation and refinement, as discussed

in Chapter 4 and Chapter 5.

Example Let us derive a flowsTo-path from o2 to v in Figure 3.1(b). First, we

51

Chapter 3. Points-To Analysis Formulations

derive y alias w using statements 1, 3, and 4.

y assign x new o1 new x assign w

→ y ciAssign x new o1 new x ciAssign w

→ y flowsTo o1 flowsTo w

→ y alias w

With this alias path, we can derive o2 flowsTo v using statements 2, 5 and 6:

o2 new z putfield[f] y alias w getfield[f] v

→ o2 flowsTo v

In contrast, there is no flowsTo-path from o2 to y, and hence o2 6∈ pt(y).

3.2.3 Other Java Language Features

Here, we briefly detail our handling of Java language constructs relevant to points-to

analysis that were not discussed in §3.2.1.

Arrays Loads and stores to array elements are modeled by collapsing all array

elements into a single element, modeled with a field arr. For example, x.a[i]=y is

translated to tmp=x.a; tmp.arr=y;. For the programs and points-to analysis clients

we have tested, a more faithful modeling of array indices would not significantly

improve precision. However, the ability to refine handling of array indices may be

useful for more demanding clients, especially if combined with greater flow sensitivity

(in handling of both array indices and array contents). More precise modeling of

arrays is a topic for future work.

Reflection and Native Methods Our formulation does not include handling

52

Chapter 3. Points-To Analysis Formulations

of reflection or native code, and hence it is unsound for programs using those con-

structs. Our implementation makes a best effort to conservatively model the most

commonly used reflective constructs and native methods in the standard library, as in

other work using Java points-to analysis [O’C00, LH03, FYD+06, NAW06]. Common

techniques that we employ include modeling of native methods in the library and

manual annotation where possible of which classes can be loaded reflectively at run-

time. Nevertheless, the implementation can return unsound results if native methods

or certain other reflective constructs are used in the application, like nearly all other

Java points-to analyses.4

3.3 Context-Sensitive Formulation

Our second use of balanced parentheses in CFL-reachability will be for context sen-

sitivity, defined in §2.2.4. In this section, we show how to add context sensitivity to

the context-insensitive points-to analysis formulated in §3.2 as LF-reachability. The

key idea is to formulate a language LC that filters unrealizable paths [Rep98], but

does not precisely model other language features like fields. Then, a field-sensitive

and context-sensitive points-to analysis can be formulated as reachability over the

intersection of LF and LC. This specification strategy simplifies LC greatly, as it need

not model any program semantics beyond method calls and returns.

Note that computing (LF∩LC)-reachability has been proved undecidable [Rep00],

a result we discuss in greater detail later in the section. Since fully field- and context-

sensitive points-to analysis is undecidable, our algorithm computes an approximation

of (LF ∩ LC)-reachability, as described in §5.2.

The formulation in this section both filters unrealizable paths and yields a context-
4The points-to analysis of Hirzel et al. [HDDH07] is the only sound Java points-to analysis we

know of; it achieves soundness for a particular execution of a program by analyzing the behavior of
reflection and native code at runtime.

53

Chapter 3. Points-To Analysis Formulations

sensitive heap abstraction (see §2.2.5). However, as in §3.2, the formulation in this sec-

tion assumes an ahead-of-time call graph (see §2.2.3). In §3.4, we show how to adapt

this formulation for on-the-fly call graph construction, thereby yielding a context-

sensitive call graph (defined in §2.2.4).

Specifying LC The language LC only contains strings where letters representing

entries and exits of method calls are appropriately balanced. Because of inverse paths

(needed to specify may-aliasing; see §3.2.2), defining which terminals correspond to

call entries and exits is slightly tricky. In the absence of inverse paths, a realizable

flowsTo-path traverses a method in the direction of value flow, entering through

a param[i] edge and exiting through a matching return[i] edge. However, when a

realizable flowsTo-path p contains inverse flowsTo sub-paths, p might enter a method

through a return[i] edge and/or exit through a param[i] edge. Hence, we define call

entries and exits through the following non-terminals callEntry[i] and callExit[i]:

callEntry[i] → param[i] | return[i]

callExit[i] → return[i] | param[i]

Unlike LF, LC includes some strings with partially balanced parentheses. In the

context of interprocedural dataflow analysis, Reps defined realizable paths to include

paths ending with unmatched call entry parentheses, as those paths correspond to

control-flow paths where some method calls have not yet returned [Rep98]. For points-

to analysis, call parentheses may be partially balanced on valid paths in our graph

since, for example, values may flow from callee to caller or vice versa.5 Consider the

following simple example:

1 Foo makeFoo() { return new Foo(); }

2 ...

5In general, values may flow from ancestor methods in the call graph to descendant methods or
vice versa.

54

Chapter 3. Points-To Analysis Formulations

csStart → unbalExits unbalEntries
unbalExits → balanced unbalExits | callExit[i] unbalExits | ε

unbalEntries → balanced unbalEntries | callEntry[i] unbalEntries | ε

balanced → callEntry[i] balanced callExit[i]
| balanced balanced | nonCallTerm | ε

callEntry[i] → param[i] | return[i]

callExit[i] → return[i] | param[i]

nonCallTerm → new | new | assign | assign | assignglobal | assignglobal
| getfield[f] | getfield[f] | putfield[f] | putfield[f]

Figure 3.3: A context-free grammar for LC that only includes strings corresponding to
realizable paths, adapted from previous work [Rep98, FRD99, KA04].

3 x = makeFoo();

Here, an object allocated in makeFoo() can flow to x. The path in our graph from

the abstract location to x is labeled “new return[1]”, and hence is a valid flow path

with an unmatched call exit edge. Similarly, a flowsTo-path whose sink is a formal

parameter will end with an unmatched call entry edge. To avoid filtering out valid

flows, LC allows a prefix of unmatched call exit edges and a suffix of unmatched call

entry edges, as in previous work [Rep98, FRD99, KA04].6

Figure 3.3 gives a complete grammar for LC, adopted from previous work on

context-sensitive analysis [Rep98, FRD99, KA04]. The unbalExits and unbalEntries

non-terminals respectively allow for unmatched call exit and call entry edges, while

the balanced non-terminal only allows balanced parentheses. Notice that since the

nonCallTerm non-terminal reduces to any terminal not related to calls, those non-

call terminals can appear anywhere in a LC string, i.e., they are essentially ignored.

Hence, LC solely filters out unrealizable paths, yielding context sensitivity as desired.
6As originally defined, realizable paths do not allow a prefix of unmatched call exit edges, though

slice paths do allow such a prefix [Rep98]. In this work, we use the term “realizable paths” to refer
to paths that may include both the unmatched prefix and the unmatched suffix.

55

Chapter 3. Points-To Analysis Formulations

1 static Object id(Object o) {

2 return o;

3 }

4 main() {

5 x = new Object();

6 y = new Object();

7 a = id(x);

8 b = id(y);

9 }

(a) Code example

assign

y

x o5

pidretid

o6b

a
new

new

p a r
a m [

7]

param[8]

return[7]

r e t u
r n [8

]

(b) Graph representation

Figure 3.4: A small example program and graph to illustrate context-sensitive analysis.

Computing a context- and field-sensitive points-to analysis requires reachability over

the language LCF = LF ∩ LC.

Example Here we give an example illustrating how LC-reachability—and hence

(LF ∩ LC)-reachability—filters out unrealizable paths. Figure 3.4 presents an exam-

ple program that makes two calls to the identity function id, along with its graph

representation. The graph contains a LC-path from o5 to a:

o5 new x param[7] pid assign retid return[7] a

→ o5 nonCallTerm x callEntry[7] pid nonCallTerm retid callExit[7] a

→ o5 balanced x balanced a

→ o5 balanced a

Since this path is also an LF-path, a is LCF-reachable from o5, i.e., o5 ∈ pt(a). On

the other hand, there is no LC-path from o5 to b, since the x
param[7]−−−−→ pid edge is

not matched by the retid
return[8]−−−−→ b edge, so o5 6∈ pt(b). Hence, LCF-reachability

successfully keeps the effects of the two calls to id separate by filtering out unrealizable

paths.

56

Chapter 3. Points-To Analysis Formulations

1 class A {

2 static Obj f;

3 }

4 Obj rf() {

5 return A.f;

6 }

7 void wf(Obj p) {

8 A.f = p;

9 }

10 main() {

11 Obj x = new Obj();

12 wf(x);

13 Obj y = rf();

14 }

(a) Code example

o11 new
// x

param[12]
// pwf

assignglobal
// A.f

assignglobal
//

return[12]

��
�
?r

ret rf
return[13]

// y

(b) Graph representation

Figure 3.5: A small example to illustrate handling of globals in our context-sensitive
formulation. The code is given in (a), and (b) shows a (LF ∩ LC)-path from o11 to y in
the corresponding graph. The dashed return[12] self edge on A.f added to ensure sound
handling of the global.

Heap Abstraction By treating new and new edges identically to other intraproce-

dural edges, LC-reachability yields a context-sensitive heap abstraction. We defined a

context-sensitive heap abstraction in §2.2.5 as using a separate abstract location for

each inlined copy of an allocation site, assuming that context sensitivity is achieved

via exhaustive inlining. LC-reachability tracks the unmatched callEntry[i] edges on

paths through abstract location nodes, just as it does for local variables. This tracking

is equivalent to creating a copy of the abstract location particular to that sequence

of call entries, yielding a context-sensitive heap abstraction.

57

Chapter 3. Points-To Analysis Formulations

Handling Globals Global variables (i.e., Java static fields) require additional atten-

tion for context-sensitive analysis, since the graph edges representing global accesses

can connect locals in different methods. As discussed in §3.2.1, we model accesses to

globals in our graph with direct edges to a node representing the global, labeling the

edges assignglobal and assignglobal. These edges allow paths to connect local variables

in distinct methods without including the call entry and exit edges showing how those

methods were invoked. For example, consider the path in Figure 3.5(b) (temporarily

ignoring the dashed edge) taken from the graph for the code in Figure 3.5(a). The

path connects the p parameter of wf() to the return value of rf() with assignglobal

edges to and from A.f, skipping edges that reflect the call exit from wf() and call

entry to rf() necessary for the global accesses to execute.

Without modifying our graph representation, LC-reachability would unsoundly

filter some paths with assignglobal edges. Such unsound filtering can occur when a

call entry edge entering method m precedes assignglobal edges on a path, but those

assignglobal edges lead to a local in a distinct method m′. For example, consider again

the path in Figure 3.5(b), ignoring the dashed edge. The x
param[12]−−−−−→ pwf edge enters

wf(), while the subsequent assignglobal edges lead to method rf(). The param[12]

edge should not be used for filtering after the assignglobal edges, as the path has exited

the wf() method. However, as written LC will unsoundly filter the path, treating the

param[12] edge and the later return[12] edge as mismatched.

A simple technique to restore the soundness of LC-reachability is to add self-edges

on all global variable nodes labeled with all possible callExit[i] edges [KA04]. These

edges will balance any callEntry[i] edges on paths leading to the global, essentially

“consuming” the calling context accumulated on incoming paths. In Figure 3.5(b), the

dashed A.f
return[12]−−−−−→ A.f self-edge matches the previous param[12] edge, and hence

LC will not filter the path that includes the dashed edge, as desired. Our analysis

implementation does not explicitly add these self edges to the graph, but its handling

58

Chapter 3. Points-To Analysis Formulations

of globals is equivalent, as described in Chapter 5.

Undecidability LCF is not a context-free language, and hence LCF-reachability is

in fact not a CFL-reachability problem. In general, context-free languages are not

closed under intersection. LCF is not context free since the parentheses of LF and LC

need not be properly nested on a valid graph path (unlike the parentheses of LF and

LOTF, as discussed in §3.4.5=). As an example, consider a call y = x.getFoo(), where

getFoo() is a “getter” method for a field foo. There is a valid partial LCF-path from

x to y labeled param[i] getfield[foo] return[i]. On this path, the param[i] parenthesis

is balanced before the later getfield[foo] parenthesis, showing non-nesting of call and

field parentheses.

Reps proved that LCF-reachability is in fact undecidable through a reduction of

Post’s correspondence problem [Rep00]. Hence, any terminating algorithm aiming

to compute LCF-reachability must approximate in some way. Our algorithm achieves

decidability by using a regular language approximation of LC, presented fully in Chap-

ter 5.

3.4 On-The-Fly Call Graph Formulation

The analysis formulations in both §3.2 and §3.3 assumed that virtual call targets were

determined via a pre-computed (i.e., “ahead-of-time”) call graph. Here, we formulate

an analysis that computes virtual call targets on-the-fly, i.e., by computing points-to

sets for receivers of virtual calls during the analysis (previously discussed in §2.2.3).

First, we formulate a context-insensitive version of the analysis as LOTF-reachability

over a modified graph representation of the program; LOTF captures both field access

semantics (like LF of §3.2.2) and on-the-fly discovery of virtual call targets. Then,

similar to §3.3, we formulate a context-sensitive variant of the analysis as reachability

over the language LOTF∩LC′ , where LC′ is a slightly modified version of LC from §3.3.

59

Chapter 3. Points-To Analysis Formulations

The section is organized as follows. First, §3.4.1 provides the intuition behind

our formulation by relating LOTF sub-paths for discovering virtual call targets to the

dynamic semantics of virtual calls. Then, §3.4.2 presents the necessary modifications

to our graph representation for on-the-fly call graph reasoning. §3.4.3 describes the

context-free grammar of LOTF, and §3.4.4 shows how context sensitivity can be added

through language intersection. Finally, §3.4.5 further discusses some aspects of our

formulation and how it relates to other formulations in the literature.

3.4.1 Intuition

Our CFL-reachability formulation of on-the-fly call graph construction is best under-

stood as an abstraction of the dynamic semantics of virtual calls. Executing a virtual

call “r.m(x)” requires the following three key steps:

1. Determining the object o that r points to.

2. Determining the concrete type T of o.

3. Determining the method C.m() that should be invoked when the receiver object

is of type T, based on the class hierarchy.

Our formulation determines possible value flow at virtual calls by abstractly com-

puting the above steps through CFL-reachability: step 1 is computed by finding

pointsTo-paths from the receiver, and steps 2 and 3 are computed by encoding con-

crete types and virtual method dispatch tables in our graph representation.

Our on-the-fly call graph formulation replaces direct param[i] and return[i] edges at

virtual call sites with virtParam[i] and virtReturn[i] paths, whose discovery requires

on-the-fly computation of virtual call targets. With an ahead-of-time call graph

CG, parameters and return values at virtual call sites are connected with direct

param[i] and return[i] edges added according to CG (see §3.2.1). For on-the-fly call

60

Chapter 3. Points-To Analysis Formulations

x r

receiver

oi

pointsTo

concType[A]
flowsToreceiver

pB.m

pA.m
paramForType[A]

p a r a m
F o r T y p

e [B]

Figure 3.6: An abstracted view of a path in our graph for computing virtual call targets
on-the-fly (some edge parameters have been removed). The path is for some virtual call
“r.m(x),” and it connects actual parameter x to formal parameter pA.m by going through
oi and back, as indicated by the dotted edge. Dashed edges indicate sub-paths, and the
gray edge is filtered out by our context-free language.

graph construction, an x
param[i]−−−−→ pA.m edge for a virtual call r.m(x) is replaced by a

virtParam[i] path, shown abstractly in Figure 3.6. This virtParam[i] path has several

sub-paths (virtReturn[i] paths are similarly constructed):

• First, a receiver edge connects x to the receiver r of the virtual call.

• Then, a pointsTo-path connects r to some abstract location oi it may point

to. This pointsTo-path corresponds to abstractly computing step 1 of virtual

call execution, i.e., determining what the receiver points to. Computing this

information using the points-to analysis itself indicates on-the-fly call graph

construction.

• Next, a concType[A] edge indicates that oi has concrete type A, corresponding to

step 2 of virtual call execution (determining the concrete type of the receiver).

• A flowsTo-path and a receiver edge connect the path back to the actual param-

eter x.

• Finally, a paramForType[A] edge connects x to pA.m, indicating that when the

receiver of the call is of type A, x is copied to pA.m, the formal parameter of

61

Chapter 3. Points-To Analysis Formulations

Statement Graph Edge(s)

s: x = new T()
os

new−−→ x

os
concType[T]−−−−−−→ os

s: x = a1.m(a2, a3, . . . , ak)

ai
receiver[i][s]−−−−−−→ a1 for i ∈ [1..k]

x
receiver[ret][s]−−−−−−−→ a1

for each possible concrete type T of a1,
and for each instance method C.m() of T:

ai
paramForType[T][s]−−−−−−−−−−→ fC.m,i

retC.m
returnForType[T][s]−−−−−−−−−−→ x

Table 3.2: The changes in graph representation required for on-the-fly call graph con-
struction. Remaining assignments are modeled as in Table 3.1.

A.m(). Note that the A type in the paramForType[A] and concType[A] edge

labels must be matched. This final edge corresponds to step 3 of virtual call

execution (determining which method is invoked for the concrete receiver type).

The paramForType[B] edge from x to pA.m in Figure 3.6 is filtered from consideration,

as there is no matching concType[B] edge indicating the receiver can point to a B

object. This filtering shows the potentially increased precision from on-the-fly call

graph construction, as a less precise ahead-of-time call graph may have caused the

inclusion of param[i] edges from x to both pA.m and pB.m.

Several details were abstracted from the edge labels in Figure 3.6: further edge

label parameters and matching are required to handle multi-parameter functions and

multiple calls to the same function precisely. We flesh out these remaining details in

§3.4.2 and §3.4.3.

3.4.2 Graph Representation

To facilitate on-the-fly call graph construction, we add two new types of edges to our

graph representation:

62

Chapter 3. Points-To Analysis Formulations

• A receiver[i][s] edge connects the ith actual parameter at virtual call site s to the

receiver argument at the call site. Similarly, a receiver[ret][s] edge connects the

caller variable holding the return value to the receiver. The i or ret argument

is used to ensure that the receiver edge source and the receiver edge sink on

a virtParam[s] path (see Figure 3.6) are the same actual parameter or return

value. The call site s is used to keep targets for distinct virtual calls separate,

described in more detail in §3.4.3.

• A concType[T] edge connects an abstract location of concrete type T to itself.

This concrete type information for abstract locations is needed to determine

virtual call targets, as discussed in §3.4.1.

In addition, we modify the param[s] and return[s] edges previously used to connect

caller and callee at virtual calls (see §3.2.1) to be paramForType[T][s] and

returnForType[T][s] edges. A paramForType[T][s] edge connects an actual parame-

ter at call site s to the corresponding formal parameter in method C.m(), such that

C.m() is the method invoked at s when the receiver has concrete type T . (The

meaning of returnForType[T][s] edges is similar.) As discussed in §3.4.1, the type

T on a paramForType[T][s] or returnForType[T][s] edge is matched with a previous

concType[T] edge on a virtParam[s] path to ensure feasibility of the corresponding

virtual call targets. As with param[s] and return[s] edges, the call site s is used

to facilitate context sensitivity, discussed further in §3.4.4. Note that param[s] and

return[s] edges are still used in the graph for non-virtual calls, i.e., calls to static

methods, constructors, and private methods. Table 3.2 gives a complete description

of the changes to our graph representation for on-the-fly call graph construction.

Since we aim to compute a program’s call graph on-the-fly, it is not immedi-

ately clear how paramForType[T][s] and returnForType[T][s] edges can be added to the

representation, since their addition requires some knowledge of possible targets for

63

Chapter 3. Points-To Analysis Formulations

virtual calls. For our demand-driven analyses, we add these edges using a separate,

pre-computed call graph. We discuss this choice further in §3.4.5.

Figure 3.7 gives a small code example and a relevant subset of our modified graph

representation for the code. The graph in Figure 3.7(b) changes the param edges of

§3.2.1 to paramForType edges, additionally parametrized with either A or B depending

on the containing method of the sink node. The receiver and concType edges are also

added, with appropriate parameters. In §3.4.3, we give a grammar that shows how

the edge label parameters are matched against each other on valid LOTF paths.

3.4.3 The LOTF Language

Here we present the full LOTF language for on-the-fly call graph construction via

CFL-reachability. First, we present the production for virtParam[s] paths in detail,

fleshing out the abstract example given in Figure 3.6. Once virtParam[s] paths are

understood, reasoning about the rest of the LOTF grammar becomes more straight-

forward. We then discuss the meaning of different edge label matchings that must

occur on virtParam[s] paths, analogous to the matching of fields on getfield[f] and

putfield[f] edges for LF (see §3.2) or of call sites on param[i] and return[i] edges for LC

(see §3.3). Finally, we present the full grammar for LOTF.

The virtParam[s] production Following the example of Figure 3.6, one could

write the following production for virtParam[s]:

virtParam[s]→ receiver[i][s] pointsTo concType[T] flowsTo

receiver[i][s] paramForType[T][s]

| param[s]

The param[s] case of the production handles non-virtual calls, which are still rep-

64

Chapter 3. Points-To Analysis Formulations

1 class A {

2 void m(Object p) { ... }

3 }

4 class B extends A {

5 void m(Object p) { ... }

6 }

7 main() {

8 A a = new A();

9 A b = new B();

10 Object x = new Object();

11 Object y = new Object();

12 a.m(x);

13 b.m(y);

14 }

(a) Code example

receiver[2][13]
o10 o11x y

new new
a

receiver[2][12]
b

o8 o9

pB.mpA.m

ne
w

ne
w

p a r
a m

F o r
Ty p

e [B
][1

3]

concType[B]

p ar amFor Typ e[A] [12]

concType[A]

paramForType [B][12]

p a r
a m F

o r T
y p e

[A] [
1 3]

(b) Graph representation

Figure 3.7: A small example illustrating our graph representation for on-the-fly call graph
construction. The graph in (b) contains a relevant subset of the edges for representing
the program in (a).

65

Chapter 3. Points-To Analysis Formulations

resented with param[s] and return[s] edges. The other case corresponds directly to

the abstract virtParam[s] path shown in Figure 3.6, except that the extra edge label

parameters introduced in §3.4.2 have been added.

To simplify the virtParam[s] production, we introduce a dispatch[i][s] non-terminal

and re-write the production as follows:

virtParam[s]→ receiver[i][s] pointsTo dispatch[i][s] | param[s]

dispatch[i][s]→ concType[T] flowsTo receiver[i][s] paramForType[T][s]

A dispatch[i][s] path includes the sub-path of the virtParam[s] path from the abstract

location o that the receiver may point to to the path’s end at some formal parameter f .

A dispatch path models the value flow that occurs at a virtual call site when dispatched

for a particular receiver object. More precisely, a dispatch[i][s] path indicates which

method’s formal parameter f gets the value of the actual parameter in position i at

call site s when o is the receiver object at s.

Meaning of matchings Several edge label parameters must be matched on a

virtParam[s] path, ensuring precise modeling of corresponding aspects of the program

semantics. Here, we discuss the meaning of each of the necessary matchings in turn.

Given the virtParam[s] production,

virtParam[s]→ receiver[i][s] pointsTo dispatch[i][s]

there are two edge label parameters that must be matched:

• The i in receiver[i][s] and dispatch[i][s]: This matching ensures that flows

between distinct method parameters are kept separate. Without the matching,

given a virtual call “r.m(x,y)” and target “A.m(p,q)”, a virtParam[s] path could

connect x to q or y to p, a clear violation of program semantics.

66

Chapter 3. Points-To Analysis Formulations

• The s in receiver[i][s] and dispatch[i][s]: This matching filters out unrealiz-

able paths between two invocations of the same virtual method. Without the

matching, given call site s1 “q.m(x)” and site s2 “r.m(y)”, a virtParam[s1] path

may begin at actual parameter y from site s2, indicating that that y may be

passed at s1, an unrealizable result.

Within the dispatch[i][s] production,

dispatch[i][s]→ concType[T] flowsTo receiver[i][s] paramForType[T][s]

we have two more required matchings in the edge labels:

• The T in concType[T] and paramForType[T][s]: As discussed in §3.4.1, this

matching filters out virtual call targets that do not correspond to some abstract

location in the receiver’s points-to set.

• The s in receiver[i][s] and paramForType[T][s]: This matching ensures that

virtual call targets are computed separately in the case where two different

virtual calls pass the same parameter. Consider the following example program

(assume classes A and B are as in Figure 3.7(a)):

x = new A(); // o1

z = new B(); // o2

x.m(y); // s1

z.m(y); // s2

Note that y is passed at both call sites s1 and s2. Without this matching, the

following dispatch[2][s2] path could arise:

o1 concType[A] o1 flowsTo x receiver[2][s1] y paramForType[A][s2] pA.m

67

Chapter 3. Points-To Analysis Formulations

flowsTo → new

flowsTo → new

flowsTo → flowsTo ciAssign

flowsTo → ciAssign flowsTo
flowsTo → flowsTo putfield[f] alias getfield[f]

flowsTo → getfield[f] alias putfield[f] flowsTo

alias → flowsTo flowsTo

ciAssign → assign | assignglobal | virtParam[s] | virtReturn[s]

ciAssign → assign | assignglobal | virtParam[s] | virtReturn[s]

pointsTo → flowsTo

virtParam[s] → receiver[i][s] pointsTo dispatch[i][s] | param[s]

virtParam[s] → dispatch[i][s] flowsTo receiver[i][s] | param[s]

virtReturn[s] → dispatch[ret][s] flowsTo receiver[ret][s] | return[s]

virtReturn[s] → receiver[ret][s] pointsTo dispatch[ret][s] | return[s]

dispatch[i][s] → concType[T] flowsTo receiver[i][s] paramForType[T][s]

dispatch[i][s] → paramForType[T][s] receiver[i][s] pointsTo concType[T]

dispatch[ret][s] → returnForType[T][s] receiver[ret][s] pointsTo concType[T]

dispatch[ret][s] → concType[T] flowsTo receiver[ret][s] returnForType[T][s]

Figure 3.8: A context-free grammar for LOTF, an extension of LF that includes on-the-fly
call graph construction. The rules for flowsTo, flowsTo, pointsTo, and alias are unchanged
from those in Figure 3.2.

Through o1 flows to the receiver at call site s1, the path ends with the

paramForType[A][s2] edge, imprecisely indicating that “A.m()” can be invoked

at call site s2.

In addition to the matchings enforced on virtParam[s] paths, the call site parame-

ters on paramForType[T][s] and returnForType[T][s] edges can be matched for context

sensitivity, as we shall discuss in §3.4.4.

68

Chapter 3. Points-To Analysis Formulations

The LOTF grammar Figure 3.8 presents a context-free grammar for LOTF. Much

of the grammar is identical to that of LF (see Figure 3.2), as LOTF includes pre-

cise handling of field accesses. The key difference with LF is that the param[s] and

return[s] cases of the ciAssign production have been replaced with virtParam[s] and

virtReturn[s] (and similarly for the barred equivalents).

The new productions in the LOTF grammar include the already-discussed

virtParam[s] production and similar productions for virtReturn[s], virtParam[s], and

virtReturn[s]. The construction of the latter paths and the reasoning behind their

matchings can be understood analogously to virtParam[s] paths.

Example Here we show a derivation of a flowsTo path in LOTF for the example of

Figure 3.7 and illustrate some of the filtering done by the language. In particular,

we will show how there is an o10 flowsTo pA.m path in Figure 3.7(a), but there is no

o10 flowsTo pB.m path, showing how LOTF-reachability can filter out consideration of

virtual call targets inconsistent with the receiver points-to set.

The graph in Figure 3.7(b) contains a virtParam[12] path from x to pA.m, showing

that A.m() is a feasible target of the virtual call at line 12 of Figure 3.7(a) according

to the on-the-fly call graph. To derive this path, we first derive a dispatch[2][12] path

from o8 to pA.m:

o8 concType[A] o8 new a receiver[2][12] x paramForType[A][12] pA.m

→ o8 concType[A] o8 flowsTo a receiver[2][12] x paramForType[A][12] pA.m

→ o8 dispatch[2][12] pA.m

This dispatch[2][12] path shows that the receiver a can point to o8, an object of type

A, in which case pA.m will get the value of x at the call. Given this path, deriving the

69

Chapter 3. Points-To Analysis Formulations

virtParam[12] path is straightforward:

x receiver[2][12] a new o8 dispatch[2][12] pA.m

→ x receiver[2][12] a pointsTo o8 dispatch[2][12] pA.m

→ x virtParam[12] pA.m

Once we have the virtParam[12] path, we can easily derive the desired flowsTo-path

from o10 to pA.m:

o10 new x virtParam[12] pA.m

→ o10 flowsTo x ciAssign pA.m

→ o10 flowsTo pA.m

Note that we cannot derive a o10 flowsTo pB.m path (i.e., o10 6∈ pt(pB.m)), since

on-the-fly call graph construction shows that B.m() cannot be called at line 12 of

Figure 3.7(a). With LOTF-reachability, deriving an o8 dispatch[2][12] pB.m path fails,

as the o8
concType[A]−−−−−−→ o8 and x

paramForType[B][12]−−−−−−−−−−−→ pB.m edge labels are mismatched. Since

the receiver a can only point to o8, there is no way to derive an x virtParam[12] pB.m

path, i.e., B.m() cannot be a target of the virtual call at line 12.

3.4.4 Adding Context Sensitivity

Here, we show how to combine context sensitivity with on-the-fly call graph dis-

covery, yielding a context-sensitive call graph (defined in §2.2.4). Formulating this

combination requires minor modifications to the LC language of §3.3.

We formulate field-sensitive, context-sensitive points-to analysis with on-the-fly

call graph construction as (LOTF ∩ LC′)-reachability, with the grammar for LC′ ap-

70

Chapter 3. Points-To Analysis Formulations

csStart → unbalExits unbalEntries

unbalExits → balanced unbalExits | callExit[i] unbalExits | ε

unbalEntries → balanced unbalEntries | callEntry[i] unbalEntries | ε

balanced → callEntry[i] balanced callExit[i]
| balanced balanced | nonCallTerm | ε

callEntry[i] → param[i] | paramForType[T][i] | return[i] | returnForType[T][i]

callExit[i] → return[i] | returnForType[T][i] | param[i] | paramForType[T][i]

nonCallTerm → new | new | assign | assign | assignglobal | assignglobal

| getfield[f] | getfield[f] | putfield[f] | putfield[f]
| receiver[i][s] | receiver[ret][s]
| receiver[i][s] | receiver[ret][s] | concType[T]

Figure 3.9: A grammar for LC′ , a modification of LC that works on the representation
of Table 3.2. The productions for csStart, unbalExits, unbalEntries, and balanced are
unmodified from those for LC in Figure 3.3.

pearing in Figure 3.9. Compared to LC, LC′ has two key changes:

• The callEntry[i] and callExit[i] productions have been extended to include

paramForType[T][i] and returnForType[T][i] edges (and their barred equivalents).

This extension handles the interprocedural edges for virtual calls introduced in

§3.4.2 by treating them like param[i] and return[i] edges, i.e., using their call

site annotations to filter out unrealizable paths. Note that the type T anno-

tations on paramForType[T][i] and returnForType[T][i] edges are ignored, as LC′

only filters unrealizable paths and does not reason about virtual call targets.

• The nonCallTerm production now includes all receiver and receiver labels and

concType[T] labels. As these edges are intraprocedural, they should be ignored

like any other intraprocedural edge by LC′ .

As in the case with context- and field-sensitive analysis with ahead-of-time call graphs

(see §3.3), (LOTF ∩ LC′)-reachability is undecidable, requiring approximation in the

71

Chapter 3. Points-To Analysis Formulations

implementation (described in Chapter 5).

3.4.5 Discussion

Here, we discuss two more aspects of our formulation of on-the-fly call graph construc-

tion. We first show that LOTF-reachability is in fact a type of balanced parentheses

problem. Then, we discuss issues related to how our graph representation is con-

structed.

Balanced parentheses LOTF-reachability can be viewed as a type of balanced

parentheses problem, just like LF-reachability (§3.2) and LC-reachability (§3.3). The

“parentheses” in LOTF would be receiver[i][s] edges and dispatch[i][s] paths (and their

barred equivalents), which must be fully balanced on virtParam[s] and virtReturn[s]

paths as shown in Figure 3.8. Having paths serve as parentheses makes LOTF-

reachability slightly different from the other formulations, where only terminal edges

served as parentheses. However, this difference is not fundamental: a pre-processing

step could discover all dispatch[i][s] paths in a graph and mark them with dispatch[i][s]

edges, after which any technique applicable to balanced-parentheses problems could

also be applied to LOTF-reachability.

Interestingly, the receiver[i][s] and dispatch[i][s] parentheses of LOTF can be viewed

as reads and writes of fields in an object’s dispatch table. Suppose that Java supported

function pointers invoked with a C-like syntax, i.e., “(*func_ptr)(...).” Given a

class A with an implementation of virtual method m(), one could translate the code

“x = new A(); ...; x.m();” into the following equivalent code with function point-

ers:7

x = new A(); x.m_func = A.m; ...; (*x.m_func)();

7Standard implementations of virtual calls are similar to this translation except that a single
dispatch table per class is used, with a pointer in each object to the appropriate dispatch table.

72

Chapter 3. Points-To Analysis Formulations

This translation shows how receiver[i][s] and dispatch[i][s] parentheses correspond to

field accesses: the receiver[i][s] parenthesis corresponds to reading the appropriate

function field from the receiver, and the dispatch[i][s] parenthesis corresponds to the

initial write of the field to point to the appropriate method.

This analogy between virtual method calls and field accesses provides the intuition

behind the fact that field access and virtual call parentheses are properly nested in

LOTF. By properly nested, we mean that unmatched field access parentheses cannot

appear between balanced virtual call parentheses and vice versa. For example, a

path with labels ‘getfield[f] receiver[ret][s] putfield[f]’ cannot be part of a flowsTo-

path, since the field access parenthesis cannot be matched before the virtual call

parenthesis. This proper nesting is sensible since the virtual call parentheses can be

viewed as field accesses, and hence they should of course be nested with other field

accesses. Proper nesting of these parentheses allows for performing field-sensitive

analysis with on-the-fly call graph construction via reachability over a single context-

free language LOTF. In contrast, method call parentheses for context sensitivity are

not always properly nested with field access parentheses, making simultaneous precise

treatment of method calls and field accesses undecidable, as discussed in §3.3.

Graph construction In §3.4.2, we briefly raised the issue of how paramForType[T][s]

and returnForType[T][s] edges should be added to the graph representation, given that

we aim to compute a call graph for the program on-the-fly. There are two possible

ways to add these edges to the graph:

• Using a pre-computed call graph: One solution is to use some pre-computed

call graph to add the edges. LOTF-reachability will ignore edges from the pre-

computed call graph if the on-the-fly call graph shows the edges to be infeasible.

• Simultaneous reachability computation: The second solution is to com-

pute what code is reachable during on-the-fly call graph construction, adding

73

Chapter 3. Points-To Analysis Formulations

1 static void doSomething(Object o) { ... }

2 class A {

3 void foo() { // reachable

4 doSomething(new Integer());

5 }

6 }

7 class B {

8 void foo() { // unreachable

9 doSomething(new String());

10 }

11 }

Figure 3.10: A small example to illustrate possible reduced precision with demand-driven
analysis and on-the-fly call graph handling.

relevant edges for reachable code as it is discovered. This technique begins by

analyzing only the entrypoints of a program (typically main(), the static initial-

izer for the main class, and other known entrypoints in the standard library).

Then, whenever the analysis discovers a method m() to be reachable (e.g., if

it is called from main()), edges for m() and calls to m() are added, and then

analysis continues.

There are several advantages to using simultaneous reachability computation to

add graph edges instead of a pre-computed call graph. The on-the-fly call graph

is likely to have fewer methods than the pre-computed call graph, i.e., less code is

treated as reachable. Apart from the obvious space and time benefits of analyzing

fewer methods, treating less code as reachable can possibly improve the precision of

analysis results.8 The reason for this benefit is that the behavior of unreachable code

may affect points-to results for reachable code, and hence completely ignoring the

unreachable code can improve precision.

As an example of the potential negative effects of unreachable code on points-to
8We thank Barbara Ryder for discussions that led to this insight.

74

Chapter 3. Points-To Analysis Formulations

analysis precision, consider the example in Figure 3.10. Say that a pre-computed call

graph determines that both A.foo() and B.foo() are reachable, but that simultane-

ous reachability computation with on-the-fly call graph construction determines that

B.foo() is not reachable. If the points-to analysis graph representation is constructed

with the pre-computed call graph, the analysis will conclude that pt(o) = {o4, o9},

since both A.foo() and B.foo() are assumed to be reachable. In contrast, simultane-

ous reachability computation will yield the result pt(o) = {o4}, since the behavior of

code in the unreachable method B.foo() is never considered. The precision improve-

ment with simultaneous reachability computation has been seen in other analyses,

e.g., sparse conditional constant propagation [WZ91].

Though our demand-driven points-to analysis uses a pre-computed call graph

to construct its graph representation, we have not observed the above precision for

the benchmarks and clients we tested. The choice between using a pre-computed

call graph and simultaneous reachability computation applies independent of how

a points-to analysis is formulated, and hence it arises for previous analyses based

on set constraints or other formalisms. All exhaustive Java points-to analyses with

on-the-fly call graph construction we are aware of [RMR01, LH03, WL04, LH04]

use simultaneous reachability computation. We use a pre-computed call graph with

our demand-driven analysis since simultaneous reachability computation could dra-

matically increase the time required to compute a result for a single variable (the

reachability of all analyzed methods and their transitive callers would have to be

determined) and we have not observed a precision decrease in our experiments.

75

Chapter 4

Context-Insensitive Points-To

Analysis

In this chapter, we present a context-insensitive demand-driven points-to analysis for

Java, suitable for use in environments with extreme resource constraints like just-

in-time (JIT) compilers. Just-in-time compiler optimizations could benefit greatly

from precise points-to information, for example through more inlining of virtual calls

or more aggressive optimization in the presence of aliasing. Our refinement-based

analysis is able to achieve nearly the precision of field-sensitive Andersen’s analysis

with up to a 16-fold speedup over a state-of-the-art algorithm for the analysis, and is

hence the first points-to analysis with performance suitable for a JIT compiler.

The chapter is organized as follows. We begin in §4.1 by giving a high-level

overview of our refinement algorithm, illustrated on a simplified version of the points-

to analysis problem. Then, in §4.2, we describe our approximation technique, which

regularizes the original CFL-reachability problem to obtain asymptotic speedups. We

show a refinement algorithm in §4.3 that can, when needed, recover most of the preci-

sion lost by this initial approximation. In §4.4, we present an experimental evaluation

76

Chapter 4. Context-Insensitive Points-To Analysis

of our approximation and refinement algorithms. §4.5 discusses language issues that

make our refinement-based technique for suitable for Java points-to analysis than

C. Finally, §4.6 gives a formulation of the Heintze and Tardieu demand-driven algo-

rithm [HT01a] adapted to Java, used as a baseline in our evaluation.

4.1 Algorithm Overview

This section provides an overview of our refinement-based algorithm. First, we intro-

duce the ideas of demand-driven points-to analysis (§4.1.1) and client-driven refine-

ment (§4.1.2). Then, we present a simplified formulation of the context-insensitive

points-to analysis problem in §4.1.3, focusing attention on its balanced-parentheses

nature. We present our refinement algorithm in §4.1.4 formulated for an even further

simplified problem, aiming to make the key properties of the algorithm clear. Finally,

§4.1.5 proves termination and soundness for the algorithm presented in §4.1.4.

4.1.1 Demand-Driven Points-To Analysis

Points-to analyses differ in how eagerly they compute points-to sets for the client

(the user or enclosing analysis). Here, we discuss the potential benefits of comput-

ing points-to information in a lazy, demand-driven manner (the strategy used by

our points-to analysis), rather than using the typical exhaustive strategy of eagerly

computing all results.

Before discussing the performance trade-offs of demand-driven vs. exhaustive

points-to analysis, we must first describe how a points-to analysis is typically invoked.

The results of a points-to analysis are often consumed by some enclosing analysis that

essentially invokes the points-to analysis as a subroutine. For example, a program

optimizer may use points-to analysis results to prove that two pointers cannot be

77

Chapter 4. Context-Insensitive Points-To Analysis

aliased, enabling more powerful optimization. We term the enclosing analysis making

use of a points-to analysis the client analysis. Each request for a variable’s points-to

set from the client is called a query.

If a client raises only a small number of points-to analysis queries, computing

points-to information lazily can yield improved performance. Typically, points-to

analyses are exhaustive, i.e., they compute and store points-to sets for all variables

before answering any client queries. With the exhaustive strategy, queries can be

answered in constant time, since all points-to sets have already been computed. In

contrast, a demand-driven analysis [Rep94] only computes the points-to information

necessary to answer client queries.1 Many points-to analysis clients only query a small

number of program variables. For example, an optimizer may only care about aliasing

of variables in frequently executed methods, often a small subset of all variables in

the program. For such clients, a demand-driven points-to analysis may provide better

performance than an exhaustive analysis.

Program analyses formulated in CFL-reachability can naturally be made demand

driven, a particularly useful feature for our points-to analysis work. A demand-driven

version of a CFL-reachability problem corresponds to solving the single-source L-path

problem, i.e., only determining which nodes are L-reachable from some specific source

node. Also, an all-pairs CFL-reachability algorithm can be employed to solve a single-

source L-path problem by performing the magic-sets transformation on the grammar

for L, a technique from deductive databases [Rep94].

In practice, demand-driven points-to analysis alone often does not provide a per-

formance improvement over exhaustive analysis. In the worst case, answering a single

query with demand-driven analysis can require as much computation as an exhaus-
1Note that some points-to analyses do a mix of pre-processing work and on-demand computa-

tion [SFA00, Das00]. In this work, we consider an analysis to be demand driven if it only examines
statements that may change the analysis result (as in the work of Duesterwald et al. [DGS97]), and
hence we do not consider these “mixed” points-to analyses to be truly demand driven.

78

Chapter 4. Context-Insensitive Points-To Analysis

tive analysis [HRS95]. Though previous work has shown significant performance gains

with demand-driven points-to analysis for C [HT01a], we have found that for Java

points-to analysis, behavior close to the worst case occurs often (see §5.4.2). The key

to the success of our points-to analyses is our combination of demand-driven analysis

and refinement, which together lead to much improved precision and performance.

4.1.2 Client-Driven Refinement

As described previously in §1.2.3, we aim to develop an analysis based on client-driven

refinement. A client of a points-to analysis typically aims to perform some transforma-

tion or verification of a program that relies on some pointer-related program property.

We say that a points-to query is positively answered when the points-to information

computed by the analysis is sufficiently precise for the client to prove its property of

interest. The refinement loop of our algorithm iterates until the given query is (i)

positively answered, (ii) no further refinement is possible, or (iii) some time budget

for the query is exceeded.

For example, consider a points-to analysis client that tries to resolve virtual calls

for the purpose of inlining. Given a virtual call x.foo(), this client tries to use points-

to information for x to show that only one implementation of foo() can be invoked

by this call at runtime, allowing for inlining of that implementation at the call site.

The client issues a query for the receiver x of the call to foo, and considers the query

positively answered when the points-to information for x shows that the call to foo

has only one possible target.

We refer to the use of a time budget to prematurely end long-running queries as

early termination. When early termination is employed, a sound result must still be

returned to the client. For points-to analysis, an early-terminated query could simply

return a result stating that the queried variable can point to any abstract location.

79

Chapter 4. Context-Insensitive Points-To Analysis

Note that early termination does not necessarily imply a precision loss for the

client. Consider the case where even when run to completion, a points-to analysis

cannot positively answer a query. (This can be caused by analysis imprecision or

by feasible program behaviors.) In this case, early termination of the query makes

no difference to the client: with our without early termination, the query is not

positively answered. If early termination is employed primarily in cases where the

points-to analysis cannot provide a positive answer, performance is improved without

negative effects on precision for the client. In §4.4, we show that early termination

has precisely this effect for our points-to analysis.

4.1.3 Simplified Formulation

In this section, we present a simplified CFL-reachability formulation of context-

insensitive, flow-insensitive, field-sensitive Java points-to analysis (previously formu-

lated in §3.2). This simplified formulation retains the essential properties of the sound

formulation while allowing us to more clearly explain the key properties of our re-

finement algorithm. The present formulation simplifies the full formulation of §3.2

in two (unsound) ways: (1) it ignores simple copy assignments (e.g., x = y), and (2)

it does not include the inverse edges required to soundly handle paths between field

parentheses (cf. §3.2.2).

Our simplifications yield a formulation of points-to analysis a straightforward

balanced-parentheses problem. Let ΣP be the alphabet of open and close brackets,

respectively representing heap writes and reads:

ΣP =
{
[f ,]f | f is a field

}
We formulate our analysis as CFL-reachability with language Lsf (s for simplified)

80

Chapter 4. Context-Insensitive Points-To Analysis

over ΣP :

Lsf : F → [f F]f | [g F]g | . . . | F F | ε

Lsf captures the key balanced parentheses property of LF (see §3.2.2).

4.1.4 Refinement Algorithm

Here we present our refinement-based algorithm for solving the single-path prob-

lem, a further simplification of the Lsf-reachability problem presented in §4.1.3. We

focus on techniques for showing that a node x is not Lsf-reachable from a node o; our

refinement algorithm is designed to quickly prove such unreachability properties. The

key idea of the algorithm is to focus effort on parts of the graph likely to have unbal-

anced parentheses in practice, handling the rest of the graph approximately (in fact

by skipping over it entirely). Refinement allows for checking more and more of the

graph for balanced parentheses, in the limit yielding the same answer as computing

full Lsf-reachability.

Through our refinement algorithm does not provide any asymptotic improvement

over computing CFL-reachability directly, in practice we have found its benefits to

be dramatic. For the context-insensitive analysis of this chapter, even our initial

approximation (with no refinement) often yields positive answers for queries from

the tested clients. Though it provides some benefit here, refinement becomes more

critical for the context-sensitive analysis of Chapter 5.

Single-Path Problem To focus on the key ideas of our technique, we consider the

following additional simplification of the single-source/single-target Lsf-reachability

problem. We constrain the input graph to contain a single acyclic path p from some

81

Chapter 4. Context-Insensitive Points-To Analysis

node o to some node x, with edge labels chosen from ΣP (defined in §4.1.3). The

analysis problem is then to determine if p is a Lsf-path, i.e., of o Lsf x.

To model how refinement improves performance, we add the following optimality

constraint to the problem: if p is not an Lsf-path, the algorithm should determine

this fact while minimizing the total number of edges inspected (we consider an edge

inspected if it is processed by the algorithm in any way, e.g., to check its label). As

a trivial example, if the first edge e of p is a closed parenthesis, the algorithm should

conclude that p is not an Lsf-path by inspecting only e. Note that our algorithm does

not necessarily visit the minimal number of edges. However, we will show that for

certain inputs, the refinement algorithm inspects fewer edges than if Lsf-reachability

were directly computed by traversing p.

Our refinement technique as applied to the single-path problem generalizes to

points-to analysis for arbitrary programs. In the general reachability problem, we are

given a variable x, and then must find all o such that o Lsf x. Furthermore, for each

o, we must consider all paths from o to x, not just one. For an acyclic graph, both

of these generalizations can be viewed as solving multiple instances of the single-

path problem (though of course our generalized algorithm aggregates information

from different paths for efficiency). We discuss cyclic graphs when presenting the full

refinement algorithm in §4.3.

Also note that while refinement may seem unnecessary for the single-path problem,

its empirical benefit becomes significant when computing full Java points-to analysis.

Since Lsf-reachability for a single path can be computed in linear time, refinement may

not be necessary to obtain good performance for such cases. However, as discussed

in §3.1, full CFL-reachability is more expensive, requiring O(N3/log N) time in the

worst case. While refinement does not improve on this worst-case behavior, it yields

significantly improved performance in practice for Java points-to analysis, as shown

in §4.4.

82

Chapter 4. Context-Insensitive Points-To Analysis

Figure 4.1(a) gives an example input path for our simplified problem (the dashed

edges will be explained shortly). The path is not an Lsf-path, as the [g and]j paren-

theses are mismatched. We will illustrate how our analysis can discover this fact

without inspecting the entire path.

Key Ideas Our technique heuristically improves performance through approxi-

mation and refinement. For the simplified problem, an approximate analysis must

answer correctly when p is an Lsf-path, but can answer incorrectly when it is not.

Refinement gradually removes the imprecision of this analysis, eventually yielding the

same answer as directly computing Lsf-reachability.

Our analysis approximates by only checking selected parts of p for balanced paren-

theses, entirely skipping inspection of other edges on p. Proving the existence of just

one unbalanced parenthesis on p (i.e., an open parenthesis without a balancing close

parenthesis or vice versa) is sufficient to show that p is not an Lsf-path. Hence, if

our analysis chooses the right parts of p to check for balanced parentheses, it may

be able to show p is unbalanced without inspecting the entire path. For example, let

α be any string from Lsf (i.e., a string with balanced parentheses). Then, the string

s = [a [b α]c]a cannot be balanced, since the [b and]c parentheses are mismatched.

Our refinement algorithm is able to only check the beginning and end of a path with

label s for balanced parentheses, discovering the mismatched [b and]c parentheses

while skipping inspection of α.

For correctness, our algorithm cannot skip inspection of arbitrary sub-paths of

p. In particular, the algorithm must avoid the case where skipped parentheses can

possibly balance inspected parentheses. Consider again the string s = [a [b α]c]a,

which must be unbalanced if α is balanced. If α need not be balanced, then skipping

inspection of α and concluding that [b and]c are mismatched may be incorrect—it is

possible that α =]b [c, making s = [a [b]b [c]c]a balanced. To maintain correctness,

our algorithm only skips sub-paths beginning and ending with matched parentheses

83

Chapter 4. Context-Insensitive Points-To Analysis

o
[f

// ''n l j h f c a _] [Y V T R P
t0

[g
// t1

[h

// ���
y

_ E
:

t2
]h

// t3
]j

// t4
]f

// x

(a) Initial path with match edges.

o ((k g c _ [W S
x

(b) Path examined by
first pass of algorithm.

o
[f

// t0
[g

// t1
!!y _ E

t3
]j

// t4

(c) Path seen by second pass
of algorithm.

Figure 4.1: Paths to illustrate the behavior of our refinement algorithm.

(i.e., parentheses of the form [f and]f) and performs additional checking in the case of

multiple open and close parentheses for a single field. We describe the implementation

of this policy and its correctness in more detail below.

match edges Our algorithm skips sub-paths of p by way of additional match edges.

A match edge connects the source of some [f edge to the sink of any matching]f edge.

In Figure 4.1, match edges are shown as dashed edges. We use match edges in two

key ways in our refinement algorithm:

1. Our algorithm only skips sub-paths whose source and sink are connected by

a match edge. This choice is key for algorithm correctness, discussed in more

detail below
[
fix?

]
.

2. Our algorithm refines its precision by removing match edges from the graph,

which removes sub-path skipping opportunities and forces the algorithm to in-

spect more of p’s edges.

Our analysis approximates Lsf-reachability by computing reachability over a lan-

guage Lsfr (r for refinement) that includes match edges:

Lsfr : T → [f T]f | [g T]g | . . . | match | T T | ε

84

Chapter 4. Context-Insensitive Points-To Analysis

o
[f

// ((l h c _ [V R
t0

[f

// t1
]f

// t2
]f

// x

(a) A graph for which our al-
gorithm returns an incorrect
result.

o
[f

// ((l h c _ [V R ##v s
l f _ X R

K H
t0

[f

// t1
]f

// t2
]f

// x

(b) The graph of (a) fixed to
be well-structured.

Figure 4.2: An example showing why our algorithm requires well-structured graphs.

Lsfr is identical to Lsf except for the additional match production. Thus, Lsfr is a

superset of Lsf, and computing Lsfr-reachability approximates Lsf-reachability.

Computing Lsfr-reachability Each pass of our refinement algorithm computes

Lsfr-reachability by using match edges to skip sub-paths of p whenever possible. If

a node x on p is encountered with a single outgoing match edge x
match−−−→ v, our

algorithm only follows the match edge, saving time by avoiding inspection of all edges

on p between x and v. Figure 4.1(b) shows the Lsfr-path discovered by a pass of our

analysis when given Figure 4.1(a) as input. The analysis skips the entire original path

using the o
match−−−→ x edge and concludes that x is Lsfr-reachable from o. Note that

x is not Lsf-reachable from o, showing how Lsfr-reachability can over-approximate

Lsf-reachability; this over-approximation can be removed through refinement.

Note that as described, the algorithm above does not correctly compute Lsfr-

reachability when certain key match edges are missing. In particular, the algorithm

fails when given path p with some edge x
[f−→ y, the following conditions hold:

1. There are multiple edges on p with the matching label]f .

2. x has at least one outgoing match edge.

3. The match edge connecting x to the balancing]f parenthesis is missing.

For example, consider the graph in Figure 4.2(a). We have an initial edge o
[f−→ t0 and

two subsequent edges with the matching]f label (condition 1). The graph includes

85

Chapter 4. Context-Insensitive Points-To Analysis

an outgoing match edge from o (condition 2), but is missing the o
match−−−→ x edge

corresponding to the balancing t2
]f−→ x edge (condition 3). Our algorithm only follows

the o
match−−−→ t2 edge from o and ignores other edges between o and t2. Therefore, it

encounters the t2
]f−→ x without having observed a matching [f edge and incorrectly

concludes that x is not Lsfr-reachable from o (incorrect since the original path has

balanced parentheses and hence is an Lsfr path).

To avoid this incorrectness, we require that each pass of our refinement algorithm

work on a well-structured graph:

Definition 1. A graph including a path p and corresponding match edges is well

structured iff each node x on p either (1) has no outgoing match edges or (2) has all

possible outgoing match edges.

The graph in Figure 4.2(a) is not well-structured, since only some possible match

edges from o are present. In contrast, the graph of Figure 4.2(b) is well-structured.

When a node has multiple outgoing match edges, our algorithm checks if any of the

match edges is on an Lsfr-path from the source to sink of p, ensuring that an Lsfr-path

is found if it exists.

Figure 4.3 presents pseudocode for computing Lsfr-reachability in each refinement

pass. The input to the CheckPath procedure is a well-structured graph G that

includes a path p with edges labels from ΣP (see §4.1.3), starting at node src and

ending at sink . CheckPath returns true iff sink is Lsfr-reachable from src in

G. Note that if CheckPath returns false, then p cannot be a Lsf-path, since Lsfr-

reachability over-approximates Lsf-reachability. CheckPath is computed recursively

via the CheckPathHelper procedure, which maintains a set V of visited nodes and

a stack S of thus-far unmatched open parentheses.

For the most part, the CheckPathHelper procedure performs straightforward

checking for balanced parentheses using the stack S. Two aspects of its pseudocode

86

Chapter 4. Context-Insensitive Points-To Analysis

CheckPath(src)
1 return CheckPathHelper(src, ∅, 〈〉)

CheckPathHelper(x, V, S)

1 if edge x
[f−→ y exists for some f

2 then if x has outgoing match edges
3 then for each edge x

match−−−→ z
4 do if CheckIfUnvisited(z, V, S)
5 then return true
6 return false � no success on any match edge
7 else return CheckIfUnvisited(z, V, S.f)

8 elseif edge x
]f−→ y exists for some f

9 then if S = T.f for some (possibly empty) T
10 then return CheckIfUnvisited(z, V, T)
11 else return false � mismatched parentheses
12 else return S = 〈〉 � end of path, so stack must be empty

CheckIfUnvisited(x, V, S)
1 if x ∈ V
2 then return false
3 else return CheckPathHelper(x, V ∪ {x}, S)

Figure 4.3: Pseudocode for a single pass of our refinement algorithm, as applied to the
single-path problem.

merit particular mention. The first is the handling of match edges (line 2 through

line 6). When outgoing match edges are present, the algorithm checks all the match

edges to see if any are on a path with balanced parentheses. The algorithm returns

false at line 6 iff none of the match edges are on a path with balanced parentheses.

The second interesting aspect of CheckPathHelper is the use of the CheckI-

fUnvisited procedure to ensure nodes are not visited twice. This check is necessary

because some match edges may connect nodes to predecessors on the original path,

87

Chapter 4. Context-Insensitive Points-To Analysis

CheckPathRefine(src)
1 while true
2 do if ¬CheckPath(src)
3 then return false
4 else if there exists node x with outgoing match edges
5 then remove all outgoing match edges from x
6 else return true

Figure 4.4: Outer loop of our refinement algorithm for the single-path problem.

creating cycles in the graph. For example, consider the following input path:

t
[f−→ x

]f−→ y
[f−→ z

Since y is both the source of an edge labeled [f and the sink of an edge labeled]f , the

input graph will include a y
match−−−→ y edge. Without checking for previously visited

nodes, this input would lead to non-termination in the algorithm.

Refinement Refinement in our algorithm is accomplished by removing match edges

from the graph, forcing checking of more parentheses on the original path. Given edge

e = t
[f−→ u, if outgoing match edges from t are removed, our algorithm can no longer

“skip” over e. Instead, the algorithm must check for a sub-path labeled [f T]f from

t (T being the start symbol for Lsfr), and in the process it may discover unbalanced

parentheses that were skipped when match edges from t were present. Figure 4.1(c)

shows the sub-path of Figure 4.1(a) explored by our algorithm after removing the

o
match−−−→ x edge. This removal exposes the unbalanced parentheses [g and]j, leading the

analysis to conclude that p is not an Lsf-path. Note that the unbalanced parentheses

are still discovered without analyzing the whole path (the t1 ; t3 sub-path was

skipped), indicating the possible performance benefits of removing the “right” match

edges from the graph.

Figure 4.4 gives pseudocode for the outer refinement loop of our algorithm. The

88

Chapter 4. Context-Insensitive Points-To Analysis

algorithm assumes a well-structured input graph G that includes all possible match

edges. The CheckPathRefine procedure returns true iff p is an Lsf-path, since it

continues refinement until all match edges are removed.

In each iteration, the algorithm of Figure 4.4 first computes Lsfr-reachability using

CheckPath (line 2). If CheckPath returns false, then the algorithm immediately

returns false (line 3), as the path cannot have balanced parentheses. If CheckPath

returns true, refinement is performed by removing all outgoing match edges from

some node x on the path (line 5). The removal of all outgoing match edges from the

node ensures that the graph remains well-structured, key to correctness. If no match

edges can be removed, the algorithm returns true (line 6), since at that point no

more refinement is possible.

Note that the pseudocode in Figure 4.4 leaves out certain details irrelevant to

correctness. For example, it does not specify which outgoing match edges are removed

in each pass, though this choice is important for efficiency in practice. Also, the

pseudocode continues refinement until all match edges are removed, while in practice,

some budget would be used to terminate the algorithm earlier for some queries.

4.1.5 Proofs of Termination and Soundness

Here, we present proofs of termination and soundness for the refinement algorithm

shown in Figure 4.4 in §4.1.4.

Termination The termination argument for our refinement algorithm is straight-

forward. First, the outer loop in Figure 4.4 can only run for a finite number of iter-

ations. Each iteration must either terminate the loop immediately or remove some

match edges from the graph; when no match edges remain, the loop is terminated.

Since the input graph has a finite number of match edges, the loop can only run for

a finite number of iterations.

89

Chapter 4. Context-Insensitive Points-To Analysis

The call to CheckPath in each loop iteration of Figure 4.4 must also terminate.

As seen in Figure 4.3, CheckPathHelper can visits each node on the path at most

once, due to the check in CheckIfUnvisited. Since the path has a finite number

of nodes, each call of CheckPath clearly terminates.

Soundness Proving soundness requires showing that our algorithm never claims

that a path has unbalanced parentheses when in fact they are balanced. This result

would be unsound since it filters a possibly valid flow from consideration, while points-

to analysis clients rely on points-to sets over-approximating all valid flows. More

formally, we prove the following soundness theorem:

Theorem 1. If CheckPathRefine (defined in Figure 4.4) returns false, indi-

cating that the input path p has unbalanced parentheses, then p cannot have balanced

parentheses.

To prove Theorem 1, we show that (1) assuming the input graph is well-structured

(see Definition 1 in §4.1.4), the CheckPath procedure (from Figure 4.3) always re-

turns a sound result, and that (2) the outermost CheckPathRefine procedure

always invokes CheckPath with a well-structured graph. We state these two condi-

tions conditions for proving Theorem 1 as lemmas:

Lemma 1. If CheckPath (defined in Figure 4.3) returns false for a well-

structured graph, then the original input path cannot have balanced parentheses.

Lemma 2. At line 2 of CheckPathRefine (Figure 4.4), the graph containing the

node src is always well structured.

Lemma 2 clearly holds: we assume the graph contains all possible match edges

initially (and hence is well structured), and line 5 in Figure 4.4 only removes all

outgoing match edges from a node, maintaining well-structuredness. Hence, we have

90

Chapter 4. Context-Insensitive Points-To Analysis

reduced the problem of proving Theorem 1 to that of proving the soundness of each

individual refinement pass, i.e., Lemma 1.

We first argue that the CheckPath procedure is sound for graphs with no match

edges, i.e., that the following lemma holds:

Lemma 3. For input graphs consisting of a single path without match edges, Check-

Path returns false iff the path has unbalanced parentheses.

For inputs with no match edges, CheckPathHelper from Figure 4.3 essentially sim-

ulates a push-down automaton checking for a balanced parentheses string. We elide

the straightforward soundness proof for Lemma 3, focusing on the more interesting

case of inputs with match edges.

We shall prove Lemma 1 by contradiction, making an inductive argument that

CheckPath cannot return false for a well-structured graph in which the input path

has balanced parentheses. An inductive proof requires a way to relate the behavior

of our algorithm on longer input paths to its behavior on shorter paths. We do so by

proving that in certain cases, pruning the path skipped by a match edge has no effect

on the result of the CheckPath procedure. We first define the pruning operation:

Definition 2. Given an input path p with node x and subsequent node y, pruning the

sub-path from x to y yields a graph with the following properties:

1. All nodes between x and y on p are removed, and all incoming and outgoing

edges to those nodes (including match edges) are removed.

2. Nodes x and y are merged into a single node z, such that incoming edges to x

go to z and outgoing edges from y start from z.

Given this definition, we can now state and prove our pruning lemma:

91

Chapter 4. Context-Insensitive Points-To Analysis

Lemma 4. Consider a graph G containing input path p and corresponding match

edges. Let x be the first node on p with outgoing match edges, and let x
match−−−→ y be

some outgoing match edge from x. Consider the graph G′ with path p′ obtained by

pruning the sub-path of p from x to y. If CheckPath returns true for p′ in G′,

then it must return true for p in G.

Proof. First, we have that for the CheckPathHelper calls for x on p and for z

(the merged version of x and y) on p′, the V and S arguments are identical. This

holds because x was the first node on p with outgoing match edges, and hence both

x and z are reached by the algorithm before any match edges are traversed, and

the sub-path preceding x on p and z on p′ are identical. Second, when handling

the x
match−−−→ y edge in G, CheckPathHelper is invoked for y (through a call to

CheckIfUnvisited) with the V and S arguments unchanged from those passed in

for x (line 4 in Figure 4.3). Hence, the successors of y on p and the successors of z

on p′ are reached with identical V and S arguments in CheckPathHelper calls.

So, we know that the sub-path of p after y and the sub-path of p′ after z are

both checked in the same algorithm state. If the graphs examined in both these cases

are identical, then the lemma clearly holds. One graph difference is possible: p′ may

be missing backward match edges from nodes following y to nodes between x and

y on p, since the target nodes were pruned. However, we are only concerned with

cases in which CheckPath returns true for p′. The loop handling match edges in

CheckPathHelper (line 3 through line 5 in Figure 4.3) returns true if a balanced

path is found with any match edge: additional backward match edges would not affect

this result. So, we have that in all cases, if CheckPath returns true for p′, it also

returns true for p, as desired.

We are finally ready to prove the soundness of CheckPath (Lemma 1):

Proof of Lemma 1. Our proof is by induction on the length of the original input path

92

Chapter 4. Context-Insensitive Points-To Analysis

p.

Base Case: In the base case, p has 0 edges and consists of a single node. In

this case, CheckPathHelper simply returns true at line 12. Since the premise of

Lemma 1 requires CheckPath to return false, Lemma 1 is vacuously true in the

base case.

Inductive Case: Here, we assume that CheckPath is sound for all paths up

to length n, and prove that it is sound for paths of length n + 1. For the purposes

of contradiction, assume that Lemma 1 holds for paths up to length n but does not

hold for all paths of length n + 1. Let p be some path of length n + 1 with balanced

parentheses for which CheckPath unsoundly returns false. We shall show that in

fact, CheckPath must return true for p. Note that we assume the well-structured

graph containing p has some match edges; if not, we get an immediate contradiction

by Lemma 3.

We first claim that for the first node x on p with outgoing match edges,

CheckPathHelper(x, V, S) must return false. To see why, assume (for con-

tradiction) that CheckPathHelper(x, V, S) returns true. Then, in order for

CheckPath to return false for p, CheckPathHelper must return false for some

node preceding x on p. However, from Lemma 3 we know that CheckPath is sound

for paths with no match edges. Hence, since we assumed p has balanced parentheses,

and there are no nodes with outgoing match edges before x, CheckPathHelper

must return true for nodes preceding x, and we have a contradiction. So, we have

shown that CheckPathHelper returns false for the first node x on p with outgo-

ing match edges.

Given x, the assumption that p is balanced, and the assumption that the graph

containing p is well structured (see Definition 1), there must be an edge x
match−−−→ v such

that the corresponding open and close parenthesis edges for the match edge balance

each other on p. Consider the path p′ obtained from pruning the sub-path from x

93

Chapter 4. Context-Insensitive Points-To Analysis

to v from p. We have two cases, corresponding to whether p′ does or does not have

balanced parentheses. We shall show that each case leads to a contradiction.

In the first case, assume that p′ has balanced parentheses. Since p′ must have

length less than or equal to n, we know that CheckPath returns true for p′ by the

inductive hypothesis. But, by Lemma 4, CheckPath must also return true for p.

We have a contradiction, eliminating this case from consideration.

We are left with the case in which p has balanced parentheses and p′ has unbal-

anced parentheses. Let the x
match−−−→ v correspond to [f and]f edges for some field

f , and let the concatenated labels of the edges between x and v on p be α. Since

p is balanced and p′ is not, it must be the case that parentheses in α balance other

parentheses appearing before x and/or after v, i.e., we have a balanced parentheses

string of the form [g [f α]f]j for some fields g and j (without loss of generality).

However, recall our stipulation that the x
match−−−→ v edge correspond to the [f and]f

edges that balance each other on p. Hence, due to proper nesting of parentheses, the

[g [f α]f]j string cannot possibly be balanced. The [g parenthesis cannot be balanced

within α since then we have an unbalanced string of the form [g [f]g]f ; a similar

argument holds for the]j parenthesis. Hence, we have another contradiction.

Since all cases lead to a contradiction, we have proved that Lemma 1 holds for

paths of length n + 1, completing the inductive proof of Lemma 1.

4.2 Regular Approximation

In this section, we present an algorithm that computes only the initial approximation

of our refinement algorithm, i.e., reachability over a graph with all possible match

edges. We show that this approximation requires reachability over a regular language

RF, and hence is asymptotically less expensive than CFL-reachability. We give a sim-

ple and efficient demand-driven algorithm RegularPT, essentially depth-first search,

94

Chapter 4. Context-Insensitive Points-To Analysis

for finding points-to information based on RF-reachability. §4.4 will show that Regu-

larPT achieves most of the precision of LF-reachability within a time budget of only

1 second per query.

4.2.1 Regular Reachability

Here, we formulate a regular approximation of LF-reachability (the field-sensitive,

context-insensitive analysis formulated in §3.2.2) via match edges. Recall our defini-

tion of a flowsTo-path for LF:2

flowsTo→ new (assign | putfield[f] alias getfield[f])∗

The context-free aspect of LF-reachability is checking putfield[f] and getfield[f] edges,

the balanced parentheses of LF, for the field-sensitivity conditions specified in §2.2.2.

The most expensive part of field-sensitivity is checking for an alias-path between the

base variables of putfield[f] and getfield[f] edges, since the path may be complex and

must itself have balanced parentheses.

We approximate the search for alias-paths between matched parentheses by con-

servatively assuming that such a path always exists, using match edges. As in

§4.1, match edges connect matched parenthesis edges, going from the source of each

putfield[f] edge to the target of each getfield[f] edge on the same field f . Figure 4.5

shows an example graph with all match edges included. Given a graph with all pos-

sible match edges, we can over-approximate LF-reachability with regular reachability

using language RF, defined as follows:

flowsToReg→ new (assign | match)∗

2Note that since this chapter is concerned only with context-insensitive analysis, we assume here
that assignglobal, param[i], and return[i] edges are labeled assign in all input graphs.

95

Chapter 4. Context-Insensitive Points-To Analysis

g e t
f i e
l d [

f] put fi e l d[f]assign match
x y z

v wmatch

o1

new

g e t
f ie

l d [
g] putf ie ld[g]

p q

o2

new

o3

new
o4

new

Figure 4.5: A graph illustrating match edges.

Given graph G, let GR be G with match edges added from the source of each

putfield[f] edge to the target of each getfield[f] edge for all fields f . To show that

RF-reachability over-approximates LF-reachability and thus is sound, we must show

that if x is LF-reachable from o in G, then x is RF-reachable from o in GR. Note

that the flowsToReg production differs from the flowsTo production only in that

“putfield[f] alias getfield[f]” has been replaced by match. So, the soundness proof

reduces to showing that whenever nodes x and y in G are connected by a path

labeled putfield[f] alias getfield[f], GR includes a match edge from x to y. This clearly

holds by construction, since we add match edges between putfield[f] and getfield[f]

edges in GR regardless of whether their base variables are connected by an alias-path.

Since RF-reachability over-approximates LF-reachability, node x may be RF-

reachable from node o in GR but not LF-reachable from o. For example, in Fig-

ure 4.5, v is RF-reachable from o2 but not LF-reachable, since there is no alias-path

from q to p. In general, precision is lost in cases where an RF-path includes an invalid

match edge m, where the base variables of the field accesses corresponding to m are

not connected by an alias-path. In §4.3, we show how refinement can be used to

recover most of the precision lost by using match edges.

Note that a points-to analysis technique that, like RF-reachability, handles field

96

Chapter 4. Context-Insensitive Points-To Analysis

accesses by checking only for matching fields is in fact a field-based analysis (cf.

§2.2.2). This technique has been shown to have precision relatively close to that of

a field-sensitive analysis in previous work [LPH01, LH03], a result reproduced in our

experiments.

Since RF is regular, answering the single-source RF-problem is asymptotically

cheaper than the single-source LF-problem (O(NE) for regular reachability vs.

O(N3/log N) for CFL-reachability, as discussed in §3.1). Note the simplicity of this

regular expression for flowsToReg, relative to the grammar of Figure 3.2. One conse-

quence of our use of match edges is that we no longer need to consider both standard

and barred edges when determining RF-reachability; this leads to both conceptual

simplicity and a much simpler reachability algorithm (depth-first search) than what

is required for LF-reachability.

4.2.2 RegularPT

Figure 4.6 gives pseudocode for an algorithm RegularPT that determines points-

to information on demand using RF-reachability. The RegularPT procedure takes

a node x and returns the set of all nodes o such that x is RF-reachable from o.

This returned set is a points-to set for x, since RF-reachability over-approximates the

flows-to relation. The RegularPT procedure is a standard worklist-based depth-

first search, traversing incoming assign and match edges to find reachable new edges

and their abstract locations.

The worst-case complexity of RegularPT is O(E + M), where E is the number

of edges in G and M is the number of match edges in GR. The derivation of this

bound is straightforward, as GR has E +M edges and RegularPT essentially performs

depth-first search on GR. In real-world Java programs, E is typically O(N) (where

N is the number of nodes in G), since variables are typically assigned very few times.

97

Chapter 4. Context-Insensitive Points-To Analysis

RegularPT(x)
1 pointsTo ← ∅
2 marked ← ∅
3 worklist ← []
4 Propagate(x ,marked ,worklist)
5 while worklist 6= []
6 do w ← Pop(worklist)
7 for each edge w

new←−− o
8 do AddTo(pointsTo, o)

9 for each edge w
assign←−−− y

10 do Propagate(y ,marked ,worklist)
11 for each edge w

match←−−− y
12 do Propagate(y ,marked ,worklist)
13 return pointsTo

Propagate(x,marked ,worklist)
1 if x 6∈ marked
2 then AddTo(marked , x)
3 Push(worklist , x)

Figure 4.6: Pseudocode for the RegularPT algorithm.

While M can be O(N2) in the worst-case, a space blowup can be avoided with an

implicit representation of match edges in which each field is mapped to corresponding

read and write edges.

4.2.3 Improving Precision with Types

The Java type system can be used to improve the precision of RegularPT, similar to

previous work [LH03]. We say types A and B are incompatible if A is not a subtype

of B and B is not a subtype of A.3 If variable x has declared type A, and variable y

has incompatible declared type B, then any flowsToReg-path ending at x that passes

through y can safely be ignored, since the type system (both at compile time and
3If A is an interface, we must check that all classes implementing A are incompatible.

98

Chapter 4. Context-Insensitive Points-To Analysis

through runtime downcast checks) prohibits a flow of objects from y to x. Such

flowsToReg-paths can exist in the graph because of downcasts. For example, given

statements Object o = a; b = (B)o, we have a flowsToReg b, even if a and b have

incompatible declared types.4 When answering a query for variable x with declared

type A, RegularPT does not add nodes whose declared types are incompatible with A

to the worklist.

We can also decrease the number of added match edges using types. It is possible

for the base variables of a getfield[f] edge and putfield[f] edge (e.g. nodes v and w

in Figure 4.5) to have incompatible types, even though the f field is accessed on

both variables. For example, if we have class A with field f , class B extends A, and

class C extends A, then B and C are incompatible in spite of both having field f .

When the base variables of a getfield[f] edge v → y and a putfield[f] edge z → w

have incompatible types, we can safely avoid adding a match edge from z to y, since

there will never be an alias-path between v and w. Empirically, these type-based

tests considerably improved precision on our benchmarks, which was consistent with

results in past work on Java points-to analysis that used similar techniques [LH03].

4.3 Refinement

Here we show how the refinement technique described in §4.1 allows us to recover

most of the precision lost by approximating LF-reachability with RF-reachability. Our

evaluation shows the precision of RF-reachability to be relatively close to that of LF-

reachability for the clients we tested (see §4.4). However, in cases where the precision

of RF-reachability is insufficient and time constraints are tight, our experiments show

that our refinement technique is more precise than computing fully field-sensitive
4Opportunities for type filtering stem primarily from context- and flow-insensitivity in the points-

to analysis.

99

Chapter 4. Context-Insensitive Points-To Analysis

LF-reachability.

In this section, we first formulate the reachability problem that allows for re-

finement by removing match edges. We then give an algorithm RefinedRegularPT

that solves this reachability problem through iterative refinement. In each iteration,

RefinedRegularPT adds precision by removing more match edges, terminating when

either the points-to analysis client is satisfied or all inspected match edges have been

removed. When all relevant match edges are removed, RefinedRegularPT can provide

nearly the same precision as LF-reachability.

Note that Chapter 5 describes a different refinement algorithm that could also be

applied to the context-insensitive analysis considered in this chapter. The algorithm

improves on RefinedRegularPT in some ways but makes different performance trade-

offs (see §5.3.2 for more discussion). We present RefinedRegularPT since it may be

the best algorithm for certain clients and it was used for the experimental evaluation

of §4.4.

4.3.1 Refining through match edge removal

When match edges introduce imprecision relative to computing LF-reachability, re-

finement can recover the lost precision. Recall that the soundness of RF-reachability

relies on the fact that whenever there is a “putfield[f] alias getfield[f]”-path from x to

y in the original graph G, there is a match edge from x to y in GR. Our technique re-

fines by removing some match edge m and checking for the existence of an alias-path

between the base variables of the corresponding putfield[f] and getfield[f] edges.

RF-reachability is used to approximate the search for an alias-path during re-

finement, making use of the remaining match edges. The alias production flowsTo

flowsTo, given in Figure 3.2, requires possibly long-running LF-reachability computa-

tions, as an alias-path does not contain match edges. Instead of searching for alias-

100

Chapter 4. Context-Insensitive Points-To Analysis

paths, we refine a match edge by looking for aliasReg-paths, defined with a simple

extension of the RF grammar (see §4.2.1):

aliasReg→ flowsToReg flowsToReg

flowsToReg→ (assign | match)∗ new

Finding aliasReg-paths instead of alias-paths during refinement is clearly sound, by

an argument similar to the soundness argument for RF-reachability.

An aliasReg-path may itself contain match edges, and could therefore connect two

nodes that are not connected by an alias-path. However, we can once again regain

precision using refinement, this time refining the match edges on the aliasReg-path.

Our iterative refinement algorithm is based on repeatedly discovering aliasReg-paths

while refining match edges, and then refining the match edges on those aliasReg-paths.

As an example, let us consider refining by removing the match edge z → y in

Figure 4.5. To do so, we search for an aliasReg-path from w to v, and we find one via

o2 labeled new new match. This path includes the match edge w → v, which we can in

turn refine by searching for an aliasReg-path from q to p. No such path exists, so the

match edge w → v can be safely removed from the graph. This removal eliminates

the only aliasReg-path from w to v, meaning the match edge z → y can also be safely

removed.

4.3.2 RefinedRegularPT

Figure 4.7 gives pseudocode for the RefinedRegularPT algorithm, an extension of

the RegularPT algorithm that performs iterative refinement based on the needs of the

points-to analysis client (previously described in §4.1.2). The RefinedRegularPT

procedure takes as input a node x and returns true if the query has been positively

101

Chapter 4. Context-Insensitive Points-To Analysis

getfieldsToRefine : Set of getfield[f] edges
getfieldsSeen : Set of getfield[f] edges

DoTraversal(x)
1 pointsTo ← ∅
2 marked ← ∅
3 worklist ← []
4 Propagate(x ,marked ,worklist)
5 while worklist 6= []
6 do w ← Pop(worklist)
7 for each edge w

new←−− o
8 do AddTo(pointsTo, o)

9 for each edge w
assign←−−− y

10 do Propagate(y ,marked ,worklist)

11 for each edge w
getfield[f]←−−−−−− p

12 do if e 6∈ getfieldsToRefine
13 then AddTo(getfieldsSeen, e)

14 for each edge q
putfield[f]−−−−−−→ y

15 do Propagate(y,marked ,worklist)
16 else RemoveFrom(getfieldsToRefine, e)
17 ptOfP ← DoTraversal(p)

18 for each edge q
putfield[f]←−−−−−− y

19 do ptOfQ ← DoTraversal(q)
20 if ptOfP ∩ ptOfQ 6= ∅
21 then Propagate(y,marked ,worklist)
22 AddTo(getfieldsToRefine, e)
23 return pointsTo

RefinedRegularPT(x)
1 getfieldsToRefine ← ∅
2 while true
3 do getfieldsSeen ← ∅
4 pointsTo ← DoTraversal(x)
5 if PositivelyAnswered(pointsTo)
6 then return true
7 else if getfieldsSeen ⊆ getfieldsToRefine
8 then return false
9 else getfieldsToRefine ← getfieldsToRefine ∪ getfieldsSeen

Figure 4.7: Pseudocode for the RefinedRegularPT algorithm.

102

Chapter 4. Context-Insensitive Points-To Analysis

answered, and false otherwise.5 The DoTraversal procedure is similar in function

to the RegularPT procedure of RegularPT (seen in Figure 4.6), computing a points-

to set for x through a depth-first traversal of the graph; each call to DoTraversal

computes a new points-to set. The Propagate procedure is identical to that of

Figure 4.6. The definitions of Pop, AddTo, and RemoveFrom are straightforward

and we elide them for clarity.

Note that match edges are not explicitly represented in the pseudocode of Fig-

ure 4.7. Instead, an implicit representation is used, with the assumption data struc-

tures exist for finding reads and writes to any field in constant time (our implementa-

tion builds such data structures). Line 14 and line 15 in Figure 4.7 do the equivalent

of traversing all incoming match edges for a node, by finding all putfield[f] edges

matching an incoming getfield[f] edge and propagating their sinks.

Refinement Lines 16-22 of Figure 4.7 perform refinement of match edges. The pseu-

docode checks for an aliasReg-path between a p
getfield[f]−−−−−→ w edge and a y

putfield[f]−−−−−→ q

edge by finding points-to sets pt(p) and pt(q) (lines 17 and 19), and then check-

ing if pt(p) ∩ pt(q) 6= ∅. The points-to sets include nodes that are reachable along

flowsToReg-paths from p and q. Therefore, for any o ∈ pt(p)∩pt(q), an aliasReg-path

from p to q through o can be constructed. For a given getfield[f] edge p → w, there

may be many putfield[f] edges on the same field, and therefore many incoming match

edges to w. Instead of refining each such match edge individually, RefinedRegularPT

refines them together, thereby avoiding redundant computation of pt(p) for each edge.

We have found an alternate strategy for refining match edges to be empirically

more efficient in certain cases. The alternate strategy first finds pt(p), but then finds

the set of nodes Q that are reachable along flowsToReg-paths from nodes in pt(p);

if q ∈ Q, an aliasReg-path from p to q clearly exists. We observed that in practice
5For positively answered queries, our implementation also makes the computed points-to set

available to the client.

103

Chapter 4. Context-Insensitive Points-To Analysis

this alternate strategy traverses fewer nodes when there are more than two matching

putfield[f] edges for a getfield[f] edge, since it does not compute a points-to set for the

target of each putfield[f] edge. Our implementation employs the appropriate strategy

based on the number of matching putfield[f] edges.

Choosing match edges to refine RefinedRegularPT focuses analysis effort on match

edges that have already been observed to possibly reflect imprecise flow. RefinedReg-

ularPT first tries to answer a query on some variable x without any refinement, just

using RF-reachability. Consider the case where the points-to set for x found using

RF-reachability cannot positively answer the query. Let K be the set of match edges

on any RF-path from some abstract location o to x. If using RF-reachability to find

x’s points-to set is less precise than LF-reachability, then K must contain at least one

invalid match edge (i.e., a match edge with no corresponding alias-path). In its next

pass, RefinedRegularPT only refines match edges in K, aiming to positively answer the

query with this (typically) small amount of refinement; we have found this amount

of refinement to often be sufficient in practice. Proving that some match edge in K

is invalid may however require refinement of match edges outside of K, leading to an

iterative refinement process.

In the pseudocode of Figure 4.7, we maintain a set getfieldsToRefine, contain-

ing the getfield[f] edges whose corresponding match edges should be refined, and a

set getfieldsSeen, containing getfield[f] edges whose match edges were traversed but

not refined in the current iteration of the algorithm. getfieldsToRefine is maintained

across refinement iterations for a single query, while getfieldsSeen is cleared on each

refinement iteration (line 3 of RefinedRegularPT). If the points-to result com-

puted by an iteration of the algorithm is sufficient for a positively answered query,

we terminate and return true (lines 5-6); the PositivelyAnswered procedure is

provided by the client. Otherwise, we add the getfield[f] edges in getfieldsSeen to

getfieldsToRefine (line 9), and begin a new iteration. When we cannot add any new

104

Chapter 4. Context-Insensitive Points-To Analysis

getfield[f] edges to getfieldsToRefine, we give up on positively answering the query

and return false (lines 7-8).

While refining match edges corresponding to a getfield[f] edge e, we remove e

from getfieldsToRefine (lines 23 and 31 of Figure 4.7). To see why, consider refining

a match edge m for a getfield[next] edge e = x → x, corresponding to the statement

x = x.next. The recursive call to DoTraversal at line 24 will pass x as its argu-

ment, and if e remained in getfieldsToRefine, RefinedRegularPT would again try to

refine m, leading to an infinite loop.

Removing a getfield[f] edge from getfieldsToRefine during refinement of a corre-

sponding match edge m can lead to imprecision. With the getfield[f] edge removed,

RefinedRegularPT may find aliasReg-paths during refinement of m that include m it-

self, as m will not be refined again when encountered. If all aliasReg-paths discovered

during refinement of m include m, then m is still invalid, as m cannot be used to

justify its own existence. However, in such cases RefinedRegularPT is unable to show

that m is invalid, losing precision relative to a fully field-sensitive analysis. In gen-

eral, if RefinedRegularPT refines all match edges, it may compute a less precise result

than LF-reachability in cases where GR contains cyclic paths that include field deref-

erences, e.g., the cyclic getfield[next] edge x→ x for x = x.next. We have not found

the precision loss due to this aspect of our algorithm to be significant in practice.

In the worst-case, a single iteration of RefinedRegularPT may require O(MME)

time, with E and M defined as in §4.2.2. This worst case occurs when all match edges

are being refined, and refining one match edge requires refining M − 1 other match

edges, each of which requires refining M − 2 match edges, and so on. We have not

encountered this worst-case behavior in practice, and since we envision clients using

strict time budgets and early termination with our algorithms (see §4.1.2), it is not a

practical concern.

105

Chapter 4. Context-Insensitive Points-To Analysis

4.4 Evaluation

We evaluate the behavior of RegularPT and RefinedRegularPT with two clients and

several benchmarks. Our evaluation validates the following experimental hypotheses

about the algorithms:

The algorithms are precise We show that RegularPT has precision close to that of

field-sensitive Andersen’s analysis. It resolves more than 89% of the virtual calls

that field-sensitive Andersen’s analysis can across our benchmarks, and more

than 96% of those virtual calls that are not in dead code. RefinedRegularPT

provides more precision than RegularPT, resolving nearly all of the virtual calls

in live code that field-sensitive Andersen’s can. We also show that an intrapro-

cedural version of RegularPT resolves far fewer calls, indicating that our results

cannot be obtained with purely intraprocedural analysis.

Precision retained under early termination We show that RegularPT and Re-

finedRegularPT retain almost all their precision when run with small time bud-

gets and early termination. For nearly all benchmarks, the two algorithms can

resolve 90% of the virtual calls that field-sensitive Andersen’s can within a 50

node traversal limit (2ms / query). We show that an adaptation of a previously

presented demand-driven algorithm [HT01a] that uses full field-sensitivity does

not perform nearly as well within a small budget. RegularPT and RefinedReg-

ularPT also answer all virtual call and aliasing queries in hot methods of the

SPEC benchmarks as precisely as field-sensitive Andersen’s analysis, requiring

less than 108 nodes of traversal per query.

The algorithms meet our performance goals Since our algorithms perform well

with small time budgets, timeouts can be used to ensure good performance while

maintaining precise results. For example, we can answer all virtual call queries

106

Chapter 4. Context-Insensitive Points-To Analysis

in hot methods of the javac benchmark 16x faster than exhaustive field-based

Andersen’s analysis and 34x faster than exhaustive field-sensitive Andersen’s

analysis. The memory consumption of RegularPT and RefinedRegularPT is also

much less than that of an exhaustive algorithm.

4.4.1 Experimental Configuration

Implementation We implemented our analyses using the Soot 2.2.1 [VRHS+99]

and SPARK [LH03] frameworks. We re-used the pointer assignment graph built by

SPARK, thereby leveraging their existing analyses for determining reachable code. To

handle method calls, we configured SPARK to build a conservative call graph using

a class-hierarchy analysis [DGC95, BS96]. We used assign edges rather than param[i],

return[i], and assignglobal edges of §3.2.1 to model parameter and return value flow

and assignments to globals, as our analysis is context-insensitive. A best effort was

made to handle reflective constructs and native methods, as discussed previously in

§3.2.3.

To compare against the state-of-the-art, we also implemented a demand-driven

algorithm FullFS that uses the same techniques as the algorithm in [HT01a], but works

for Java pointer constructs. The basic idea of the algorithm is to find points-to sets for

only the variables necessary to answer a top-level points-to query. The points-to sets

are found by iterating over relevant statements, applying inference rules to introduce

new points-to queries for relevant variables and to propagate abstract locations to

queried variables. The algorithm is similar to exhaustive propagation algorithms for

Java [LH03, WL04], except that it only propagates the abstract locations relevant

to the query. We chose to make FullFS treat fields with full field-sensitivity, thereby

computing LF-reachability. The C algorithm in [HT01a] is field-sensitive for the

unnamed field accessed by the C * operator, but is field-based for structure fields.

107

Chapter 4. Context-Insensitive Points-To Analysis

Algorithm Description
RegularPT See §4.2.2

RefinedRegularPT See §4.3.2
FullFS Adaptation of algorithm in [HT01a];

See §4.6
ExhaustiveFB Exhaustive field-based

Andersen’s from SPARK [LH03]
ExhaustiveFS Exhaustive field-sensitive

Andersen’s from SPARK [LH03]

Table 4.1: Descriptions of points-to analysis algorithms used in our experiments.

Since the * operator is so frequently used in C programs, full field-sensitivity seemed

to be the analogous handling of Java fields. Details of FullFS appear in §4.6.

Table 4.1 lists all points-to analysis algorithms used in our experiments. Exhaus-

tiveFB and ExhaustiveFS are efficient implementations of exhaustive field-based and

field-sensitive Andersen’s analysis respectively, as provided by SPARK [LH03]; to the

best of our knowledge, their speed is competitive with any published implementation

of Andersen’s analysis for Java.

All experiments were run on a machine with a Pentium 4 Xeon 2.4GHz proces-

sor and 2GB RAM, running Redhat Linux 9. We used the Java 1.4.2 JVM as the

underlying VM for our experiments, but we analyzed the 1.3.1_01 libraries, to be

consistent with [LH03] and because Soot provides models for the native methods in

those libraries.

Benchmarks and Clients The characteristics of our benchmarks are presented

in Table 4.2. We used the SPEC JVM98 benchmark suite, two benchmarks from

the Ashes suite [Ash], soot and sablecc, and jedit [jEd], an open-source text edi-

tor. Subsets of these benchmarks were also utilized in previous Java pointer analysis

studies [LPH01, RMR01, WL02, LH03, WL04].

The “# Methods” column reports the number of methods found reachable by

108

Chapter 4. Context-Insensitive Points-To Analysis

Benchmark # Methods # Vars # Stmts
soot 6089 51853 146292

compress 12244 95463 269289
jess 12878 101332 289514

raytrace 12378 96873 271980
db 12249 95665 270571

javac 13385 107753 318411
mpeg 12456 98458 276062
jack 12502 98579 278965

sablecc 14065 110292 352338
jedit 17510 144062 412835

Table 4.2: Information about our benchmarks.

SPARK’s class-hierarchy analysis (these numbers differ from those in [LH03] due to

improvements in the handling of reflection in Soot 2.2.1). “# Vars” is the number

of variables (locals or static fields) in the program, and “# Stmts” is the number of

assignment statements (the number includes the temporary variables and assignments

introduced to make each assignment one of our simple forms). Our largest benchmark

jedit is comparable in size with the largest benchmarks used in other pointer analysis

studies [BLQ+03, WL04].

We evaluated our analyses using two clients, virtcall and localalias . virtcall at-

tempts to resolve virtual calls to a single target by finding the points-to set of the

call’s receiver. We only consider calls where cheaper type-based techniques cannot

resolve the call. localalias attempts to disambiguate pairs of local variables in meth-

ods that are potentially involve in conflicting field reads / writes. For variables x and

y and field f, we will query x and y if we see writes to both x.f and y.f or a write

(read) of x.f and a read (write) of y.f. This information can be useful for a variety

of optimizations, including eliminating redundant loads and dead stores [FKS00].

For the SPEC benchmarks, we checked virtcall and localalias queries for the hot

methods of each benchmark, those methods that execute frequently at runtime. We

109

Chapter 4. Context-Insensitive Points-To Analysis

found the hot methods by running the benchmarks through Jikes RVM [AAB+00],

and observing which methods get recompiled with the optimizing compiler (at any

optimization level) in its adaptive optimization system. This experiment reflects the

queries likely to be raised by an optimizing JIT compiler. To simulate how inlin-

ing may affect our analysis results, we modified our graph to inline all getter (e.g.

Obj getFoo() { return this.foo; }) and setter methods. This transformation es-

sentially adds context-sensitivity for getter and setter methods, and possibly makes

analysis more difficult for RegularPT, since there are more putfield and getfield state-

ments and potentially more invalid match edges. We also ran the virtcall client for all

virtual calls in the program (including the Java libraries) with no inlining, to reflect

an IDE client where a developer wishes to navigate to the invoked method for some

virtual call.

For the virtcall client, a query is positively answered (see §4.1.2) when the points-

to analysis shows that the call has 0 or 1 targets. A virtual call can have 0 targets if

it resides in a method that is included in the initial call graph but that the points-to

analysis can prove is dead. The localalias client actually raises two points-to queries,

as it is checking if two variables can point to some common object. Together, these

queries are positively answered if they show that the queried variables cannot be

aliased. Handling the paired queries of localalias in RefinedRegularPT required minor,

straightforward modifications to its refinement loop.

When measuring the precision of our algorithms, we used field-sensitive Ander-

sen’s analysis as a “gold standard,” i.e., we measured how much of the precision

of computing field-sensitive Andersen’s could be obtained quickly by our demand-

driven algorithms. In the rest of this section, we refer to the set of queries positively

answered by field-sensitive Andersen’s as the feasible queries, since these are the

only queries that our demand algorithms can hope to positively answer. Table 4.3

shows the total number of virtual calls in our benchmark (excluding those resolvable

110

Chapter 4. Context-Insensitive Points-To Analysis

Benchmark Virt FeasVirt
soot 2812 1051

compress 5428 1801
jess 5540 1861

raytrace 5438 1803
db 5450 1819

javac 6334 1952
mpeg 5451 1800
jack 6022 2370

sablecc 6101 1898
jedit 7480 2612

Table 4.3: Number of virtual calls unresolvable by types in each benchmark (the Virt
column), and the number of such calls resolvable by field-sensitive Andersen’s (the FeasVirt
column).

with types alone), and the number of those that are feasible queries (virtual calls

that field-sensitive Andersen’s resolved). The exclusion of calls resolvable with types

alone makes the field-sensitive Andersen’s analysis look less precise than in previous

work [LH03], since we exclude many easy queries. Also note that some of the calls

unresolved by field-sensitive Andersen’s actually have multiple targets at runtime;

these calls are unresolvable by any analysis without more precision (e.g., context

sensitivity).

Table 4.4 gives data on our queries in hot methods. Although the number of

queries raised is small, their importance is potentially very high since they all occur

in hot methods. For example, if an alias query is positively answered, it may allow for

a load to be eliminated in frequently executing code, which could have a significant

impact on performance.

111

Chapter 4. Context-Insensitive Points-To Analysis

Benchmark Hot Virt FeasVirt Alias FeasAlias
compress 7 0 0 0 0

jess 28 9 3 5 0
raytrace 23 4 0 6 4

db 4 5 5 9 0
javac 95 115 30 68 10
mpeg 45 2 0 1 0
jack 22 12 9 3 0

Table 4.4: Information on virtcall and localalias queries in hot methods. Hot gives the
number of hot methods. Virt gives the number of virtual calls in hot methods, and
FeasVirt gives the number of those calls that can be resolved by field-sensitive Andersen’s
(the number of feasible queries). Alias and FeasAlias are analogous, but for localalias
queries. We did not collect hot method information for the other three benchmarks
because our experimental infrastructure did not support it.

4.4.2 Experimental Results

Precision Table 4.5 shows the results of measuring the precision of our algorithms

for the virtcall client. The table shows the percentage of feasible virtcall queries

that an intraprocedural field-based analysis, RegularPT (a field-based analysis), and

RefinedRegularPT also positively answered. RefinedRegularPT can take very long time

to answer some queries, so we timed each query out at 5 seconds, well above the

tolerable time budgets of our target clients. RegularPT positively answered more than

89% of feasible queries in all cases, and more than 96% if restricted to code that could

not be proven dead by the analysis (since it contains a virtual call with 0 targets).

These results are consistent with previous work studying field-based analysis [LPH01,

LH03]. RefinedRegularPT could answer nearly all feasible queries. We show below

that nearly all of the precision of RegularPT and RefinedRegularPT is preserved under

early termination of queries. The purely intraprocedural field-based analysis did much

worse than RegularPT, showing that virtual calls that cannot be resolved with the

type system usually cannot be resolved with a purely local analysis.

112

Chapter 4. Context-Insensitive Points-To Analysis

Benchmark Intra (Live) Reg (Live) RefReg (Live)
soot 18.4 (16.0) 94.1 (98.5) 96.9 (99.8)

compress 26.0 (23.1) 89.1 (96.4) 93.7 (98.9)
jess 25.4 (22.5) 89.4 (96.6) 93.9 (99.0)

raytrace 26.1 (23.1) 89.1 (96.4) 93.7 (98.9)
db 25.7 (22.7) 89.3 (96.5) 93.7 (98.9)

javac 25.3 (22.3) 89.9 (96.7) 94.1 (98.8)
mpeg 26.0 (23.1) 89.1 (96.4) 94.4 (98.9)
jack 27.0 (25.1) 91.8 (97.5) 95.2 (99.2)

sablecc 23.9 (20.6) 89.7 (96.3) 93.9 (98.8)
jedit 21.7 (19.0) 92.7 (99.1) 97.2 (99.9)

Table 4.5: RegularPT and RefinedRegularPT have nearly the precision of field-sensitive
Andersen’s. The table gives the percentage of virtcall queries positively answered by
an intraprocedural field-based analysis (the Intra column), RegularPT (the Reg column),
and RefinedRegularPT with a 5 second time limit per query (the RefReg column), as a
percentage of those answered positively by field-sensitive Andersen’s. The parenthesized
Live numbers indicate the result if limited to queries in code that cannot be proven dead
by the points-to analysis.

Figure 4.8 shows some code adapted from the jedit benchmark that illustrates

why RegularPT had nearly the precision of field-sensitive Andersen’s. Consider a

query to resolve the call to remove() on the propTable variable in setProperty();

possible targets are in Hashtable or one of its subclasses. RegularPT handles the

query by immediately traversing across the incoming match edge from the source of

the putfield[properties] edge corresponding to the field write in the Buffer constructor.

It then finds a new edge from a Hashtable abstract location and resolves the call to

the implementation of remove() in the Hashtable class.

This pattern of a field being written only once in a constructor or other initial-

ization method occurs frequently in Java programs, and RegularPT handles it well,

as it immediately traverses to the write upon encountering any read of the field.

In general, the precision of RegularPT for resolving virtual calls is less than that of

a field-sensitive algorithm only when the algorithm encounters a field read x = y.f

113

Chapter 4. Context-Insensitive Points-To Analysis

class Buffer {
private Hashtable properties;

public Buffer() {
this.properties = new Hashtable();

}

public void setProperty(String name,
Object val) {

Hashtable propTable = this.properties;
propTable.remove(name);
...
propTable.put(name,val);

}
}

Figure 4.8: A typical example where RegularPT succeeds, but FullFS does too much work,
derived from code in the jedit benchmark.

such that objects of multiple types are written into the f field (and such types lead

to multiple targets for the call), and not all such objects can be written into y’s f

field. Such polymorphic uses of fields occur relatively rarely, and hence the precision

of RegularPT for resolving virtual calls is close to that of field-sensitive Andersen’s.

Precision under early termination We evaluated the precision of RegularPT,

RefinedRegularPT, and FullFS under early termination with varying time budgets, to

simulate the strict time constraints of IDEs and JIT compilers. Recall from §4.1.2

that under early termination, if a points-to analysis exceeds some time budget for

answering a query for variable x, the analysis is terminated and the client is told

that x can point to any location. To simplify implementation, instead of using actual

timeouts to enforce budgets, we limit the number of nodes that can be traversed by

a particular query. Note that we count a node as traversed each time it is removed

from the worklists seen in Figure 4.6 and Figure 4.7; RefinedRegularPT can visit a

node multiple times, and each visit is counted against the traversal budget.

To study behavior under early termination, we computed the cumulative distribu-

114

Chapter 4. Context-Insensitive Points-To Analysis

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

%
 o

f
fe

a
s
ib

le
 r

e
s
o

lv
e

d

node traversal budget

RefinedRegularPT
RegularPT

FullFS

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f
fe

a
s
ib

le
 r

e
s
o

lv
e

d

node traversal budget

50 nodes, 90%

RefinedRegularPT
RegularPT

FullFS

Figure 4.9: RegularPT and RefinedRegularPT performed very well under early termination.
We give cumulative distribution of percentage of feasible queries positively answered vs.
node traversal budget for the virtcall client on jedit, for all three algorithms. The top
graph shows the distribution from 0 to 2000 nodes traversed, while the bottom graph
focuses on 0 to 100 nodes traversed. The distributions for other benchmarks look very
similar.

tion of positively answered queries vs. node traversal budget for each of our clients,

benchmarks, and algorithms. Figure 4.9 shows the cumulative distributions for jedit,

using the virtcall client to query all virtual calls in the program and library; the distri-

butions for other benchmarks look very similar. The vertical axis is the percentage of

feasible queries that were positively answered, and the horizontal axis is the amount

of allowed traversal. Recall from Table 4.5 that the maximum possible percentage

that RegularPT can reach is 92.7%, and 97.2% for RefinedRegularPT. FullFS should

reach 100% if allowed enough traversal.

115

Chapter 4. Context-Insensitive Points-To Analysis

RegularPT and RefinedRegularPT both performed very well under early termina-

tion, retaining most of their precision even under tight time budgets. Figure 4.9

shows that even with a 50 node traversal limit (where queries take 2ms or less), both

algorithms positively answered more than 90% of feasible queries. RegularPT and

RefinedRegularPT behaved similarly since the first iteration of RefinedRegularPT is

exactly RegularPT, and it therefore positively answered all queries that RegularPT

did with the same amount of traversal. RegularPT reached its maximum percentage

of 92.7% with 182 nodes of traversal; for jedit, traversing more than this amount

is pointless for RegularPT. A similar result was seen across benchmarks, with the

largest amount of traversal required to get all positive answers with RegularPT be-

ing 259 nodes for javac. Traversing 250 nodes takes under 5ms with our untuned

implementation.

RefinedRegularPT resolved many of the queries that RegularPT cannot as the

traversal limits grow, reaching 96.5% of feasible queries with a traversal budget of

1250 nodes. Traversing 1250 nodes took 20ms or less with our implementation. Ex-

haustiveFS (described in Table 4.1) took almost 30 seconds to analyze jedit, in which

time RefinedRegularPT could answer 1500 queries with a 1250 node budget. There-

fore, RefinedRegularPT could be very useful in an application that required more

precision than RegularPT and only needed pointer information for a subset of the

program, perhaps constructing a call graph for part of the libraries to aid in program

understanding.

FullFS did not perform well under early termination. The plateau for FullFS was

reached at a 522 node limit, and at this point it only positively answered 47.2% of

feasible queries. The algorithm required more than 30000 nodes to positively answer

any more queries, and many queries required several hundred thousand nodes of

traversal, taking more than 10 seconds of analysis time (sometimes longer than the

time required to run ExhaustiveFS).

116

Chapter 4. Context-Insensitive Points-To Analysis

Budget Benchmark Reg RefReg FullFS

50
nodes

soot 93.7 93.7 46.6
compress 88.7 89.7 41.6

jess 89.1 89.9 41.0
raytrace 88.8 89.6 41.8

db 88.9 89.7 42.3
javac 88.9 89.3 42.5
mpeg 88.8 89.0 41.7
jack 91.5 92.2 44.2

sablecc 89.4 89.6 41.0
jedit 91.4 91.6 42.1

1250
nodes

soot 94.1 95.9 55.7
compress 89.1 92.9 50.3

jess 89.4 93.2 49.3
raytrace 89.1 93.0 50.5

db 89.3 93.0 50.9
javac 89.9 93.3 51.9
mpeg 89.1 92.9 50.3
jack 91.8 94.6 59.3

sablecc 89.7 92.1 49.9
jedit 92.7 96.4 47.2

Table 4.6: Precision of the demand-driven algorithms with traversal budgets of 50 nodes
and 1250 nodes. The columns give the percentage of feasible virtcall queries positively
answered by RegularPT (the Reg column), RefinedRegularPT (the RefReg column), and
FullFS (the FullFS column).

117

Chapter 4. Context-Insensitive Points-To Analysis

Benchmark FeasVirt Reg FullFS
jess 3 3 2
db 5 5 5

javac 30 30 15
jack 9 9 9

Table 4.7: Results for virtcall queries in hot methods, showing that RegularPT positively
answers the same number of queries as field-sensitive Andersen’s. The FeasVirt column
gives the number of feasible queries (repeated from Table 4.4), the Reg column the
number resolved by RegularPT with a 250 node traversal budget, and the FullFS column
the number resolved by FullFS with a 500 node traversal budget.

Benchmark FeasAlias Reg FullFS
raytrace 4 4 4
javac 10 10 1

Table 4.8: Results for localalias queries in hot methods, showing RegularPT matching
field-sensitive Andersen’s. FeasAlias gives the number of queries resolved by field-sensitive
Andersen’s (repeated from Table 4.4). Reg gives the number resolved by RegularPT, and
FullFS the number resolved by FullFS, with the same traversal budgets used for Table 4.7.

Table 4.6 shows the precision of RegularPT, RefinedRegularPT, and FullFS for the

virtcall client on all our benchmarks, with traversal budgets of 50 nodes (2ms per

query) and 1250 nodes (20ms per query). With a 50 node traversal budget, the

precision of RegularPT and RefinedRegularPT was almost identical, 88.8-93.7% of field-

sensitive Andersen’s. A traversal budget of 1250 nodes allowed RefinedRegularPT to

positively answer 1.8-3.8% more queries than RegularPT, relative to field-sensitive

Andersen’s. FullFS could not answer more than 59.3% of feasible queries with a 1250

node traversal budget, and as with jedit, a much larger traversal budget (30000 nodes

or more) was required on all benchmarks to substantially improve this precision, well

beyond the constraints of our target environments.

Table 4.7 and Table 4.8 give results for virtcall and localalias queries in hot meth-

ods; benchmarks with 0 queries are not listed. For this experiment, we ran RegularPT

118

Chapter 4. Context-Insensitive Points-To Analysis

with a traversal budget of 250 nodes, and FullFS with a traversal budget of 500 nodes.

We gave FullFS a larger budget since in our implementation it seemed to process nodes

faster, and with these budgets the time allowed for each query is roughly even for

the two algorithms (about 5ms per query). RegularPT positively answered all feasible

queries in the hot methods; there is no need to show RefinedRegularPT since its results

were exactly the same. FullFS did well on some benchmarks, but even with the larger

traversal budget, it could not positively answer many queries in javac, the largest of

the benchmarks and the one with the most queries. RegularPT traversed 108 nodes

or less for all positively answered queries, and therefore could have been run with a

smaller traversal budget with no precision penalty.

Our results lead to the slightly counter-intuitive conclusion that within tight time

budgets, greater precision can be obtained with an overall less precise algorithm.

Consider again the example of Figure 4.8. Answering the virtcall query on the

propTable.remove() call with full field-sensitivity, as FullFS does, leads to extra work,

since the object written to the properties field in the constructor of Buffer will cer-

tainly flow to any read of the field, and hence all match edges involving properties

cannot be removed by refinement. Furthermore, this extra work can increase costs

substantially, as RegularPT only requires traversing 3 nodes to answer this query. The

example reflects a common case, and illustrates that the greater precision of our algo-

rithms is due to both the relatively small difference in precision between field-based

and field-sensitive analysis and to the fact that RegularPT often requires very little

traversal to answer a query.

We inspected several of the feasible virtual call queries that RefinedRegularPT

could not quickly answer by hand, and found that the reasons for their difficulty

were independent of field-sensitivity. Some queries involved a parameter of a func-

tion nested deeply in the libraries that gets called from many places; avoiding long

traversals in these cases would be difficult, and the likelihood of resolving such calls

119

Chapter 4. Context-Insensitive Points-To Analysis

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 o

f
fe

a
s
ib

le
 r

e
s
o

lv
e

d

Time (s)

javac hot virt. calls, 115 queries

ExhaustiveFS
ExhaustiveFB

RegularPT
FullFS

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 o

f
fe

a
s
ib

le
 r

e
s
o

lv
e

d

Time (s)

javac app. virt. calls, 908 queries

ExhaustiveFS
ExhaustiveFB

RegularPT
FullFS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

%
 o

f
fe

a
s
ib

le
 r

e
s
o

lv
e

d

Time (s)

jedit app. virt. calls, 1210 queries

ExhaustiveFS
ExhaustiveFB

RegularPT
FullFS

Figure 4.10: Complete time/precision comparison of several demand algorithm configura-
tions and exhaustive algorithms on virtcall queries. The x axis is analysis time in seconds,
and the y axis is the percentage of feasible queries that were positively answered. For
RegularPT and FullFS the data points left to right are for traversal budgets of 50 nodes,
100 nodes, 200 nodes, and 500 nodes. Times are also give for ExhaustiveFB and Exhaus-
tiveFS (described in Table 4.1). From top to bottom, the graphs show virtual calls in hot
methods in javac, all virtual calls in javac application code, and all virtual calls in jedit

application code.

120

Chapter 4. Context-Insensitive Points-To Analysis

to a single target is lower. In other cases, imprecision in the conservative call graph

lead to traversals of excess methods; refining this call graph on-the-fly is possible

(and is done by the algorithm described in Chapter 5), but it is unclear if the extra

work involved would be worthwhile with strict time constraints. Context-insensitivity

also caused excessive traversal; when the traversal enters a call to ArrayList.get(),

for example, it exited at all of the many call sites of the method. Context-sensitive

analysis could be used to avoid this issue, but again, this requires extra work that

may not be beneficial with very tight time budgets.

Performance Since we run our demand algorithms with early termination, time

performance can be adjusted depending on how much precision is necessary for the

client. Figure 4.10 shows that high precision and performance can be obtained with

RegularPT through aggressive early termination. We ran experiments where we mea-

sured the total time required for RegularPT and FullFS to process all virtcall queries

in hot methods and all virtcall queries in application code (i.e., excluding the Java

libraries). The latter experiment simulated some potential program understanding

functionality in an IDE where a call graph is built for the application. We compared

these total running times to the time required to run ExhaustiveFB and ExhaustiveFS,

described in Table 4.1. We show graphs of running time vs. percentage of feasible

queries resolved for three representative benchmarks and clients: calls in hot methods

in javac, calls in application code in javac, and calls in application code in jedit.

In all cases, the precision of a field-based analysis was nearly exactly that of a field-

sensitive analysis, so we excluded RefinedRegularPT from the graphs (its performance

is almost identical to that of RegularPT).

RegularPT gave significant speedups over ExhaustiveFB in all cases without sacri-

ficing precision. For javac virtual calls in hot methods, RegularPT had the same

precision as a field-sensitive analysis with a running time of .46 seconds, a 34x

speedup over the 16 seconds for ExhaustiveFS and a 16x speedup over the 7.4 sec-

121

Chapter 4. Context-Insensitive Points-To Analysis

onds for ExhaustiveFB. For virtual calls in application code, speedups over Exhaus-

tiveFS (ExhaustiveFB) ranged from 3.62x (1.68x) for javac (the smallest speedup in

our benchmarks) to 20.4x (8.8x) for jedit. FullFS failed to provide nearly the same

precision within the same time budgets given to RegularPT.

The memory consumption of our algorithms was quite reasonable. Given a budget

of 250 nodes of traversal, neither RegularPT nor RefinedRegularPT allocated more

than 50 kilobytes of memory across our benchmarks, and our implementation could

be more memory efficient. In contrast, even with an efficient BDD representation,

exhaustive field-sensitive Andersen’s analysis takes 23 MB for javac and 28 MB for

jedit [BLQ+03], since all points-to sets need to be represented.

Other Factors We have evaluated our algorithms in a static environment, where

all of the benchmark code is available and the graph representation of pointer assign-

ments is built up-front. In a JIT compiler or IDE, such representations may not be

readily available. Since our graph representation essentially matches the assignment

statements in the program, it can be constructed efficiently. In an IDE, the repre-

sentation for a method can simply be rebuilt from scratch after its code changes; no

complex incremental update is required. Such rebuilding can occur in the background

while the user continues working. In a JIT compiler, the graph can be constructed

immediately from an intermediate representation. If a method has no intermediate

representation because it has only been interpreted, its graph can be constructed at

query time, and the cost of building the graph can be factored into early termination

heuristics.

Because new code may become available after analysis on our environments (via

editing in an IDE or dynamic class loading in a JIT compiler), analysis results may

become invalid. If any analysis results are cached in an IDE, they can simply be

flushed and the corresponding queries re-run. A JIT compiler presents a greater

challenge, since some (possibly running) code may have already been optimized based

122

Chapter 4. Context-Insensitive Points-To Analysis

on previous analysis results. There are three ways in which dynamic loading of class

C can invalidate the results of some query q:

1. C provides a new target for some method invocation that was traversed in

answering q. This could affect analysis results by returning some new value

that was not previously possible, for example.

2. C calls some existing method m whose parameters were traversed in answering

q (since new values could now be passed into m).

3. C has a putfield to a field f , and a getfield on f was encountered when answering

q. This new putfield could lead to new match edges that must be considered.

Since our algorithms traverse a representation close to the statements of the pro-

gram, they could potentially keep track of which statements could be affected by

dynamic class loading, and then add appropriate guards to such statements. If a

guard later failed due to dynamic class loading, the optimized code could be invali-

dated, using on-stack replacement [CU91, FQ03] if necessary. See [HDDH07] for an

enumeration of the issues related to running pointer analysis in a JIT compiler.

4.5 Java vs. C

Given the effectiveness of our refinement technique for Java points-to analysis, an

interesting question is whether the same technique could be used to improve C points-

to analysis. Unfortunately, due to C’s less restricted constructs for pointer accesses,

a straightforward use of our refinement algorithm for C pointer analysis is unlikely

to yield good results, since the natural initial approximation would match any head

read and write. Here we discuss the reasons why our refinement technique cannot

easily be applied to C; an effective adaptation is future work.

123

Chapter 4. Context-Insensitive Points-To Analysis

As formulated previously by Melski and Reps [Rep98], Andersen’s analysis for

C does not seem to be a balanced parentheses problem.6 Recall that our refinement

technique uses the balanced parentheses of heap reads and writes in Java to construct

an initial approximation to be refined as needed (i.e., the graph representation with

all possible match edges). For C, the statements most closely related to Java field

reads and writes are pointer reads and writes through the * operator, respectively of

the form x = *y and *x = y. However, due to the address-of operator &, these reads

and writes can create a points-to relation without being balanced, for example in the

following program:

z = &p;

y = &z;

x = *y;

With this program, we have the points-to sets pt(z) = p, pt(y) = z, and pt(x) = p.

Hence, in contrast to Java, a points-to relationship (pt(x) = p) was caused by the

heap read x = *y without a balancing heap write.

Though recent work presents an alternate balanced-parentheses formulation of C

points-to analysis, our initial match edge approximation would likely be too coarse

to use as an effective basis for refinement. The lack of balanced parentheses in the

Melski-Reps formulation of Andersen’s analysis is not a fundamental problem; re-

cently, Zheng and Rugina have presented an alternate formulation of C alias analysis

with balanced parentheses [ZR07]. However, in this formulation a write to the heap

could potentially be balanced by any read from the heap. So, in the initial graph rep-

resentation for refinement, the source of each *z = w statement would be connected

by a match edge to the sink of each x = *y statement. The * operator is often used

to access many disparate data structures in a C program, in which case this initial
6Our discussion ignores pointer arithmetic, as does most previous work on flow-insensitive C

points-to analysis.

124

Chapter 4. Context-Insensitive Points-To Analysis

approximation would likely be too coarse to yield good results. In Java, field names

can be used to initially match a much smaller set of heap read and write pairs, since

the type system ensures that different object fields are not memory aliases. In order

to apply our refinement-based technique to C points-to analysis, an initial approx-

imation of aliasing better than what can be found syntactically would be needed;

further investigation of this issue is future work.

4.6 FullFS Details

Here we give the details of FullFS, an algorithm employing the techniques used by the

demand-driven points-to analysis algorithm of Heintze et al. [HT01a]. We present

inference rules for FullFS in Figure 4.11, showing which points-to queries must be

raised, given an initial set of queries and the statements in a particular program. The

left column presents the statement types relevant to Java points-to analysis, and the

right column gives the inference rules that can be instantiated when the corresponding

statement is present. We adopt the notation of [HT01a], where x ↪→ . means that a

query has been raised to find what x points to. So, rule (1) states that if there is a

points-to query for p and a statement p = new T(), then add p ↪→ oa to the points-to

relation (a is some label for the statement). Rule (3) states that given statement

p = r and a query p ↪→ ., we must add the query r ↪→ . to see what r points to. Once

we discover r ↪→ o1, rule (4) will add p ↪→ o1.

Handling getfield and putfield statements is more complex. Given a getfield state-

ment p = r.f and a query p ↪→ ., we must find the values written into the f field of

abstract locations that r can point to. Rule (6) introduces the query r ↪→ . to find

what r points to. Given that r ↪→ o1, introduces the pointed-to-by query . ↪→ o1(fw)

to find what variables point to o1. In [HT01a], there are queries of the form . ↪→ x for

variables x, since there can be pointers to variables in C through the & operator. In

125

Chapter 4. Context-Insensitive Points-To Analysis

Java, we only have such pointed-to-by queries for allocation sites. The parenthesized

fw gives the reason for this query; the form is a field name f with subscript w for

write and r for read. Here, we are looking for writes to field f , or fw, since the

getfield statement reads from field f . We keep these reasons to avoid unnecessary

work (see below). Rule (8) says that once the analysis has discovered that r ↪→ o1

and o1.f ↪→ o2, we can add the fact p ↪→ o2.

Putfield statements p.f = r are handled as follows. If we have p ↪→ o1 and

. ↪→ o1(fw), the statement is relevant since we must discover what is written into the

f field of o1. In such a case, rule (10) introduces the query r ↪→ ., and once we find

r ↪→ o2, rule (11) adds o1.f ↪→ o2. This latest points-to fact allows rule (8) to trigger

for the appropriate getfield statements, flowing o2 across the field. Notice that if we

did not have the reason fw and just had pointed-to-by queries of the form . ↪→ o1,

then when we encounter a statement p.g = r, we would still introduce r ↪→ . to be

sound, since a read from the g field may have been encountered. Keeping the reason

ensures we only do work for relevant field writes.

Rules (2), (5), (9), (12), and (13) concern properly handling the pointed-to-by

queries. Rule (2) says that if there is a pointed-to-by query . ↪→ oa(any) (where (any)

means for any reason), we must add p ↪→ oa; rule (5) similarly handles assignments.

Rules (9), (12), and (13) handle the case when we have . ↪→ o2(any) and o2 is written

into a field. For statement p.f = r, rule (12) adds the query p ↪→ ., since we must

which abstract locations have o2 written into their f field. When we find such an

abstract location o1, rule (13) adds the fact o1.f ↪→ o2, and introduces the pointed-

to-by query . ↪→ o1(fr) since we are looking for reads of f . Rule (9) handles the case

when we find a statement p = r.f that reads f from o1, adding the fact p ↪→ o2.

Figure 4.12 gives some sample code and partial derivation of the fact x ↪→ o6,

assuming x ↪→ . is the initial query. Uses of inference rules are labeled with the

corresponding statement. Notice that all leaves of the derivation will be x ↪→ ., as

126

Chapter 4. Context-Insensitive Points-To Analysis

statement FullFS inference rules

a: p = new T
p ↪→ .

p ↪→ oa

(1)

. ↪→ oa(any)
p ↪→ oa

(2)

p = r
p ↪→ .

r ↪→ .
(3)

p ↪→ . r ↪→ o1

p ↪→ o1

(4)

r ↪→ o1 . ↪→ o1(any)
p ↪→ o1

(5)

p = r.f
p ↪→ .

r ↪→ .
(6)

p ↪→ . r ↪→ o1

. ↪→ o1(fw)
(7)

p ↪→ . r ↪→ o1

o1.f ↪→ o2

p ↪→ o2

(8)

r ↪→ o1 . ↪→ o1(fr)
o1.f ↪→ o2 . ↪→ o2(any)

p ↪→ o2

(9)

p.f = r
p ↪→ o1 . ↪→ o1(fw)

r ↪→ .
(10)

p ↪→ o1 . ↪→ o1(fw)
r ↪→ o2

o1.f ↪→ o2

(11)

r ↪→ o2 . ↪→ o2(any)
p ↪→ .

(12)

r ↪→ o2 . ↪→ o2(any)
p ↪→ o1

o1.f ↪→ o2 . ↪→ o1(fr)
(13)

Figure 4.11: Inference rules for FullFS.

127

Chapter 4. Context-Insensitive Points-To Analysis

1 x = y.f;

2 w = new T();

3 y = w;

4 z = w;

5 z.f = p;

6 p = new T(); 1
x ↪→ .

3

1
x ↪→ .

y ↪→ .

x ↪→ .

y ↪→ .
1

w ↪→ .
3

w ↪→ o2

2

y ↪→ o2

x ↪→ .
···

o2.f ↪→ o6

x ↪→ o6

Figure 4.12: Example code and partial derivation for FullFS.

expected.

Pseudocode for FullFS appears in Figure 4.13. This algorithm is Heintze and

Tardieu’s two-set algorithm [HT01a] adapted for field-sensitive Java points-to analy-

sis. We adopt their notation for points-to sets [HT01a]: X represents the points-to set

of variable x, and X ′ represents its “tracked set,” defined as {o : o ∈ X∧ . ↪→ o(any)}.

Similarly, we denote the points-to set and tracked set of each abstract location field

o.f as O.f and O.f ′ respectively. The algorithm iterates over graph edges, storing

the results of points-to and pointed-to-by queries in point-to sets and tracked sets

respectively, following the inference rules of Figure 4.11.

Certain basic optimizations must be implemented to obtain a scalable imple-

mentation of FullFS. First, worklists should be used to iterate only over necessary

graph edges, a standard technique for such analyses. The points-to set data structure

should have efficient methods for iteration and adding all elements from another set;

we re-used SPARK’s hybrid points-to set representation [LH03]. Finally, incremen-

talization (i.e., only propagating newly added abstract locations in each iteration)

can also greatly improve performance, as seen in other work [LH03, WL04].

Due to excessive caching, FullFS is not an ideal basis for a context-insensitive

refinement algorithm. FullFS could easily be adapted for the purposes of refinement

by adding appropriate handling of match edges. However, FullFS caches points-to

128

Chapter 4. Context-Insensitive Points-To Analysis

FullFS(v)
1 Add query vs ↪→ .
2 repeat
3 for each edge x

new←−− o
4 do if x ↪→ . then add o to X
5 if . ↪→ o(any) then add o to X ′

6 for each edge x
assign←−−− y

7 do if x ↪→ .
8 then add y ↪→ .
9 add all of Y to X

10 if Y ′ 6= ∅ then add all of Y ′ to X ′

11 for each edge x
getfield[f]←−−−−−− y

12 do if x ↪→ .
13 then add y ↪→ .
14 for each o ∈ Y
15 do add . ↪→ o(fw)
16 add all of O.f to X
17 for each o ∈ Y ′

18 do if . ↪→ o(fr) then add all of O.f ′ to X ′

19 for each edge x
putfield[f]←−−−−−− y

20 do for each o ∈ X ′

21 do if . ↪→ o(fw)
22 then add y ↪→ .
23 add all of Y to O.f
24 if Y ′ 6= ∅
25 then add x ↪→ .
26 for each o ∈ X
27 do add all of Y ′ to O.f ′

28 add . ↪→ o(fr)
29 until no change
30 return V

Figure 4.13: Pseudocode for the FullFS algorithm.

sets for all queried variables. We found that for our context-insensitive refinement

technique, this caching imposes and memory overhead without improved running

times. RegularPT and RefinedRegularPT do not cache intermediate results and provide

better performance. For context-sensitive refinement, caching of intermediate results

becomes much more important, and hence our context-sensitive refinement algorithm

129

Chapter 4. Context-Insensitive Points-To Analysis

is based on FullFS, as discussed in Chapter 5.

4.7 Adaptation of Tabulation Algorithm

While arbitrary CFL-reachability problems can be solved in worse-cast O(N3/log N)

time [Cha06], the tabulation algorithm of Reps et al. [RHSR94, RHS95] can run

asymptotically faster for reachability over a balanced parentheses language. Given our

formulation of field-sensitive Andersen’s analysis for Java as a balanced-parentheses

problem, a natural question arises: can the tabulation algorithm be adapted to cre-

ate a fast Java points-to analysis? Here, we show that the answer to the question

is mixed. In §4.7.1, we give an adapted version of the tabulation algorithm for solv-

ing LF-reachability and show that it has worst-case O(NE) complexity for realistic

Java programs, asymptotically faster than the standard O(N3) worst-case bound for

Andersen’s analysis. Then, in §4.7.2, we discuss the reasons why existing propagation-

based implementations of Andersen’s analysis are likely to be faster than the tabula-

tion algorithm in practice.

4.7.1 Tabulation Algorithm for Points-To Analysis

Here we present an adaptation of the Reps-Horwitz-Sagiv tabulation algorithm

[RHSR94, RHS95] for computing all-pairs LF-reachability, i.e., field-sensitive An-

dersen’s analysis for Java. We first describe the key idea of the algorithm, namely

the efficient addition of vmatch edges to the graph. In contrast to match edges,

vmatch edges are only present in the graph when an alias-path exists between the

base pointers of the corresponding field accesses. On a graph with vmatch edges,

LF-reachability can be computed more cheaply through reachability over a regular

language. We then give pseudocode for the adapted tabulation algorithm, and finally

130

Chapter 4. Context-Insensitive Points-To Analysis

discuss its worst-case complexity.

Algorithm Idea The key idea of the tabulation algorithm is to add a summary edge

between each parenthesis source and sink connected by a path with balanced paren-

theses [RHS95]. Balanced-parentheses reachability problems over the input graph

can be posed as regular reachability problems over a graph with summary edges.

The same results are obtained since whenever a balanced path exists from an open

to close parenthesis in the input graph, a summary edge is present in the modified

graph. Say that the balanced parentheses production in the context-free language is

S → (i S)i and that the summary edge is labeled s. In essence, after the summary

edges are added, the grammar production can be modified to be S → s. The modified

reachability problem is regular since the parentheses have been eliminated from the

grammar.

For points-to analysis, recall again the definition of a flowsTo-path in LF:

flowsTo→ new (assign | putfield[f] alias getfield[f])∗

For LF, we are interested in adding summary edges from putfield[f] edge sources and

getfield[f] edge sinks, the same nodes connected by match edges for our refinement

algorithm. However, while match edges are added for each pair of accesses of the same

field, summary edges are only added when those accesses are connected by an alias-

path, as in the above grammar. We call these summary edges vmatch edges, since

they can be thought of as match edges for which we have verified the existence of a

connecting alias path. More formally, we have putfield[f] alias getfield[f] ⇔ vmatch,

while match edges had a weaker guarantee, putfield[f] alias getfield[f]⇒ match.

Given a graph with all possible vmatch edges, LF-reachability can be computed

via reachability over a regular language. The key invariant of vmatch edges is that

there is an edge x
vmatch−−−−→ y in the graph iff there is a path from x to y labeled

131

Chapter 4. Context-Insensitive Points-To Analysis

putfield[f] alias getfield[f]. Given this invariant, we can construct a regular language

RVF such that x is RVF-reachable from o iff x is LF-reachable from o. The grammar

for RVF is quite similar to that of RF from §4.2.1:

flowsToVReg→ new (assign | vmatch)∗

While RF-reachability over-approximated LF-reachability, RVF-reachability is equiva-

lent to LF-reachability because of the use of vmatch edges. We shall show shortly that

both the addition of vmatch edges and the computation of all-pairs RVF-reachability

can be done in O(NE) time, yielding an O(NE) algorithm for Andersen’s analysis

for Java.

Algorithm Idea Given a graph with all vmatch edges, all-pairs RVF-reachability

can be computed in O(NE) time since RVF is a regular language (as discussed in

§3.1). Here, we show how vmatch edges can be added to the graph by the tabula-

tion algorithm in O(NE) time in practice, yielding an overall efficient algorithm for

Andersen’s analysis.

At a high-level, the algorithm inserts a vmatch edge whenever it finds an alias-path

from a sink v of a putfield[f] edge and a source w of a matching getfield[f] edge. The

algorithm looks for such paths with purely regular searches starting from each such

node v. The label of each explored path must meet the following regular expression

Rexp:

Rexp = (assign|vmatch)∗ new new (assign|vmatch)∗

We obtain Rexp by first substituting vmatch into the flowsTo production based on the

132

Chapter 4. Context-Insensitive Points-To Analysis

invariant putfield[f] alias getfield[f]⇔ vmatch:

flowsTo → new (assign | putfield[f] alias getfield[f])∗

→ new (assign | vmatch)∗

Then, given the production alias → flowsTo flowsTo, we substitute for flowsTo and

flowsTo appropriately, yielding Rexp. Once all vmatch edges are present in the graph,

all nodes connected by an alias-path will also be connected by a path matching Rexp,

i.e., alias⇔ Rexp.

Initially, no vmatch edges are present, so the algorithm only finds paths whose

labels meet the regular expression R1:

assign
∗

new new assign∗

As vmatch edges are added, the algorithm includes those edges in its searches, even-

tually discovering and adding all vmatch edges as desired.

Pseudocode Figure 4.14 gives pseudocode for our adapted version of the tabu-

lation algorithm. The algorithm of Figure 4.14 discovers paths meeting the above

regular expression Rexp using worklists and path-edge sets. Path edges record the

graph exploration already performed by the algorithm, allowing for avoiding repeated

work. The path-edge sets maintain the following invariant: when backPathEdges

(forwPathEdges) contains an edge x → y, then an Rb-labeled (Rf -labeled) path has

been found from x to y, where

Rb = (assign|vmatch)∗ (new|ε)

Rf = (assign|vmatch)∗ new (new|ε) (assign|vmatch)∗

Essentially, the backPathEdges set records the exploration of partial Rexp-paths that

133

Chapter 4. Context-Insensitive Points-To Analysis

forwPathEdges, backPathEdges: Set of Edge
forwWorklist , backWorklist : Set of Edge

AddVMatches()
1 for each w that is the sink of a putfield[f] edge
2 do add w → w to backWorklist
3 add w → w to backPathEdges
4 while backWorklist 6= ∅ ∨ forwWorklist 6= ∅
5 do while backWorklist 6= ∅
6 do remove v → w from backWorklist

7 for each edge w
assign←−−− x and w

vmatch←−−−− x
8 do Propagate(v → x, backPathEdges, backWorklist)
9 for each edge w

new←−− o
10 do Propagate(v → o, forwPathEdges, forwWorklist)
11 while forwWorklist 6= ∅
12 do remove v → w from forwWorklist

13 for each edge w
new−−→ x, w

assign−−−→ x and w
vmatch−−−−→ x

14 do Propagate(v → x, forwPathEdges, forwWorklist)
15 AddVMatchesForNodes(v, w)

AddVMatchesForNodes(v, w)

1 for each edge x
putfield[f]−−−−−−→ v

2 do for each edge w
getfield[f]−−−−−−→ y

3 do add edge x
vmatch−−−−→ y if needed

4 for each a→ y ∈ backPathEdges
5 do Propagate(a→ x, backPathEdges, backWorklist)
6 for each b→ x ∈ forwPathEdges
7 do Propagate(b→ y, forwPathEdges, forwWorklist)

Propagate(e, pathEdges,worklist)
1 if e 6∈ pathEdges
2 then add e to pathEdges
3 add e to worklist

Figure 4.14: Tabulation algorithm of Reps et al. [RHSR94, RHS95], adapted for Java
points-to analysis.

only include barred edges, while the forwPathEdges set records explored partial (or

full) Rexp-paths with both barred and non-barred edges. The check at line 1 in

134

Chapter 4. Context-Insensitive Points-To Analysis

Propagate ensures that the algorithm only attempts to complete such partial paths

once. The worklists maintain path edges for which further exploration from the sink

node is required.

As the algorithm adds vmatch edges to the graph, traversals previously blocked

may be able to continue using the new edges. To “restart” such traversals, when-

ever a vmatch edge is added, we check for traversals that reached either side of

the newly added edge, and appropriately update the worklists (line 5 and line 7

in AddVMatchesForNodes in Figure 4.14).

Complexity To determine the complexity of this algorithm, we observe the key

invariant: the number of visits to each edge (whether present in the original graph

or inserted later as a vmatch edge) is bounded by the number of nodes inserted into

the worklist in line 2 of AddVMatches in Figure 4.14 (these are the sink nodes

of putfield[f] edges). The bound is obvious once we realize that each node w can

be the sink of a patch edge in the worklist at most as many times as the number of

getfield sink nodes. Note that vmatch edges, once inserted, are treated exactly like the

originally present edges. Also, we are assuming suitable data structures that require

a constant amount of work for each edge traversed.

So, for each putfield[f] sink node, we perform O(S + V) work, where S is the

number of assignment statements in the program and V is the number of vmatch edges

added. In the worst case, there is a vmatch edge between every matched getfield[f]

and putfield[f] edge. Hence, V is bounded above by W =
∑

f G(f)P (f), where G(f)

is the number of getfield[f] edges and P (f) is the number of putfield[f] edges.

Since there are at most N getfield sink nodes, where N is the number of nodes

in the input graph or variables in the program, the addition of vmatch edges has

overall worst-case time complexity O(N(S+W)). As previously discussed, computing

all-pairs RVF-reachability on the resulting graph requires O(NE) time. Since RVF-

reachability is computed on a graph with vmatch edges, we have E = S + W in the

135

Chapter 4. Context-Insensitive Points-To Analysis

worst-case. Therefore, we have a worst-case O(N(S+W)) algorithm for field-sensitive

Andersen’s analysis for Java.

Let us discuss the typical complexity for Java programs. In practice, S = O(N).

Similarly, we have observed in practice that while W can get large, typically V =

O(N). An intuitive reason for V not growing quadratically is the prevalence of getter

and setter methods in Java programs, i.e., methods that respectively wrap reads and

writes of fields. When a field f is accessed through a getter and setter, there is a single

getfield[f] and putfield[f] edge for f , and hence only one possible corresponding vmatch

edge. If all fields in a program are accessed solely through getter and setter methods

(and most are in typical Java programs), then the maximum number of vmatch edges

will equal the number of fields, which will be O(N) for any realistic Java program.

Since V = O(N) and S = O(N) in practice, the tabulation-based points-to analysis

runs in O(N2) time, asymptotically better than the worst-case cubic bound of the

standard closure algorithm.

4.7.2 Discussion

The tightest worst-case bound proved for the most efficient existing Java points-

to analysis algorithms [LH03, BLQ+03, WL04] is still O(N3) (to the best of our

knowledge),7 allowing for the tabulation algorithm to be more efficient. Nevertheless,

in practice we have found that existing algorithms tend to outperform the tabulation

algorithm. Here we discuss how the existing efficient algorithms work, why their

worst-case cubic behavior tends not to arise in practice, and why they tend to run

faster than the tabulation algorithm.

Efficient existing algorithms for Java points-to analysis are based on propaga-

tion of points-to sets, like the FullFS algorithm of §4.6. Like the FullFS pseudocode
7The aforementioned O(N3/logN) algorithm [Cha06] has not yet been implemented and shown

to scale well in practice.

136

Chapter 4. Context-Insensitive Points-To Analysis

shown in Figure 4.13, these algorithms maintain points-to sets for each variable and

abstract-location field in the program, and then process each assignment statement by

propagating abstract locations between the corresponding points-to sets. Efficiency

is gained through type filters (i.e., only allowing abstract locations of the appro-

priate static type into a points-to set), smart iteration ordering over the statements

(i.e., processing statements in topological order), and incrementalization, described in

more detail in [LH03]. Nevertheless, no worst-case bound better than O(N3) has been

proved for these algorithms as far as we know, so in theory the tabulation algorithm

could be more efficient.

Though the tabulation algorithm has better asymptotic complexity than prop-

agation, realistic Java programs do not expose the worst-case cubic behavior of

propagation-based algorithms, lessening the opportunity for tabulation to yield a per-

formance advantage. Cubic behavior for a propagation-based algorithm could arise

in the following situation. Say a program has N abstract locations (allocation sites)

of a class with N different fields, such that each field of each abstract location can

point to all N other abstract locations. Then, each of the N abstract locations ap-

pears in N2 points-to sets, which could require O(N3) work to compute. However, no

realistic program would cause this behavior. In particular, Java’s type system often

limits the set of abstract locations in a points-to set to a small subset of all abstract

locations, and points-to analyses can use type filters to keep these sets small. Hence,

propagation-based points-to analyses tend not to exhibit cubic behavior in practice.8

The Master’s thesis of Lhotak [Lho02] shows an empirical comparison between

a standard propagation-based algorithm and an “alias edge” algorithm quite similar

to the tabulation algorithm. The alias edge algorithm in [Lho02] computes aliasing

relationships between base pointers of field accesses rather than keeping points-to sets
8It would be an interested theoretical result to prove a tighter worst-case bound for propagation

algorithms on realistic Java programs.

137

Chapter 4. Context-Insensitive Points-To Analysis

for object fields, just like the tabulation algorithm. It differs in using points-to sets

for variables rather than path edges to record existing analysis work, a choice that we

believe does not make performance worse in practice.9 The performance comparison

in Chapter 5 of [Lho02] confirms the trade-offs discussed above. With type filters

enabled, the standard propagation algorithm tends to be slightly faster than the alias

edge algorithm. However, without type filters, the size of object-field points-to sets

increases dramatically, making the propagation algorithm run out of memory while

the alias edge algorithm still terminates. In practice, type filters will always be used

with a propagation-based algorithm for Java, meaning that the tabulation algorithm

is unlikely to give any performance gain.

9In fact, due to the structure of graphs arising from real Java programs, recording points-to sets
rather than path edges is likely to be a performance win.

138

Chapter 5

Context-Sensitive Points-To

Analysis

This chapter describes a context-sensitive refinement-based points-to analysis for

Java. Our analysis has three types of context sensitivity: (1) filtering out of un-

realizable paths (see §2.2.4), (2) a context-sensitive heap abstraction (see §2.2.5), and

(3) a context-sensitive call graph (see §2.2.3 and §2.2.4). Previous work [LH06] has

shown that all three properties are important for precisely analyzing large programs,

e.g., to show safety of downcasts. Existing context-sensitive analyses typically give up

one or more of the properties for scalability, as discussed in §1.2.2 and §2.2. Through

refinement, our analysis retains all three properties while using orders-of-magnitude

less memory than less precise existing analyses. Thus, our refinement-based analysis

is the most precise heap analysis available for realistic Java programs.

The rest of this chapter is organized as follows. First, §5.1 gives a high-level

overview of our context-sensitive refinement algorithm, similar to the overview of

our context-insensitive algorithm in §4.1. Then, §5.2 formulates the context-sensitive

result of our algorithm, a decidable approximation of the formulation given in §3.4.4.

139

Chapter 5. Context-Sensitive Points-To Analysis

§5.3 presents our refinement-based points-to analysis algorithm in detail. Finally, §5.4

gives results from our experimental evaluation of our algorithm.

5.1 Algorithm Overview

This section provides an overview of our context-sensitive refinement-based algorithm

in a manner similar to the overview of our context-insensitive algorithm in §4.1. First,

we present a simplified version of our analysis formulation in §5.1.1. This simplified

formulation shows the essence of the analysis problem, namely reachability over the

intersection of two balanced-parentheses languages. Then, we present our context-

sensitive refinement algorithm in §5.1.2, an extension that adds context sensitivity to

the refinement algorithm of §4.1.4. Finally, §5.1.3 illustrates how the analysis works

on a Java code example. We show that in typical programs our refinement explores

nested data structures in a hierarchical progression, visiting only a small part of the

program to obtain sufficient precision for the client.

5.1.1 Simplified Formulation

Here, we present a simplified formulation of the context- and field-sensitive points-

to analysis problem, approximated for decidability. Recall that fully context- and

field-sensitive points-to analysis is undecidable (see §3.3). In this section, we skirt

the undecidability issue by assuming that all analyzed programs have no recursive

method calls. Under this assumption, checking for balanced method call parenthe-

ses can be formulated as a regular reachability problem, since the number of open

call parentheses on any path is bounded. Hence, the problem of checking for both

balanced field and method call parentheses requires reachability over the intersection

140

Chapter 5. Context-Sensitive Points-To Analysis

of a context-free language and a regular language, guaranteed to remain context-free

and decidable. We discuss our approximate handling of programs with recursion in

§5.2.

The present formulation adds context sensitivity to the simplified formulation of

§4.1.3. In addition to the simplifications introduced in §4.1.3, the formulation simpli-

fies context sensitivity by (unsoundly) disallowing partially balanced call parentheses

(sound formulations appear in §3.3 and §5.2). Also, we assume the presence of an

ahead-of-time call graph, again to make the key aspects of our algorithm clear.

We formulate our analysis as reachability over the intersection of a slightly modi-

fied version of Lsf (from §4.1.3) and a language for context sensitivity. Let ΣP be the

alphabet of open and close brackets, respectively representing heap writes and reads,

and open and close parentheses, representing method call entries and exits:

ΣP =
{
[f ,]f | f is a field

}
∪

{
(i ,)i | i is a call site

}
Our simplified points-to analysis requires CFL-reachability with language Lscf = Lsf∩

Rsc over ΣP , with Lsf and Rsc respectively representing key properties of LF and LC

(defined in Chapter 3):

Lsf : F → [f F]f | [g F]g | . . . | F F | (i |)i | . . . | ε

Rsc : C → (i C)i | (j C)j | . . . | C C | [f |]f | . . . | ε

Lsf is modified from §4.1.3 to allow call parentheses to be mixed anywhere in its

strings, and Rsc similarly ignores field parentheses. Note that although it has a

balanced-parentheses grammar, Rsc is regular, since we assume recursion-free pro-

grams and hence the number of open call parentheses in a string is bounded.

141

Chapter 5. Context-Sensitive Points-To Analysis

o
(1 // t0

[f

// ''n l j h e c a _] [Y V T R P
t1

)1 // t2
[h

// ���
y

_ E
:

t3
]h

// t4
(2 // t5

]f

// t6
)3 // x

(a) Initial path with match edges.

o
(1 // t0

$$n _ P
t6

)3 // x

(b) Path examined by first
pass of algorithm.

o
(1 // t0

[f

// t1
)1 // t2

!!y _ E

t4
(2 // t5

]f

// t6
)3 // x

(c) Path examined by second pass of algorithm.

Figure 5.1: Paths to illustrate the behavior of our context-sensitive refinement algorithm.

5.1.2 Context-Sensitive Refinement Algorithm

Here we extend the refinement-based algorithm of §4.1.4 with context sensitivity,

again illustrating the algorithm on a simplified single path problem. Here, the single

path problem requires determining if a path p is a Lscf-path, where Lscf = Lsf ∩ Rsc.

As in §4.1.4, the algorithm selectively skips checking sub-paths of p using match

edges, which connect matched field parentheses. We refer the reader to §4.1.4 for an

explanation of the basic features of this algorithm; here we focus on extending the

algorithm to handle method call parentheses.

Figure 5.1(a) gives an example input path for our simplified problem, along with

all possible match edges. The path is not an Rsc-path, as the (2 and)3 call parentheses

are mismatched. We will illustrate how our analysis can discover this fact without

inspecting the entire path.

Since a match edge can skip over an arbitrary sequence of method call edges,

our algorithm only checks for balanced call parentheses on sub-paths free of match

edges. Consider the path of Figure 5.1(b), which skips much of the original path of

Figure 5.1(a) using the t0
match−−−→ t6. While it may be tempting to conclude that (1 and

)3 are mismatched on this path, (1 is in fact balanced on the path of Figure 5.1(a). To

142

Chapter 5. Context-Sensitive Points-To Analysis

avoid unsoundly concluding that a path has unbalanced call parentheses, our analysis

handles match edges by assuming that any possible sequence of call parentheses may

appear on the skipped sub-path. For Figure 5.1(b), the analysis assumes that)1(3

may have been skipped by the match edge, and hence approximately answers that p

may be an Lscf-path.

Removal of match edges allows for simultaneous refinement of method call and field

parentheses handling, as it exposes more of both of them for checking. In the example

of Figure 4.1 in §4.1.3, we showed how removing a match edge exposed mismatched

field parentheses. For Figure 5.1, say that after inspecting the path of Figure 5.1(b),

the analysis refined by removing the t0
match−−−→ t6. In the subsequent iteration, the

analysis would traverse the path of Figure 5.1(c). Here, the match edge removal

exposes the mismatched (2 and)3 parentheses, allowing the analysis to conclude that

x is not Lscf-reachable from o. This ability to refine both types of parentheses through

the single mechanism of match edge refinement is key to the efficacy of our algorithm,

as we will illustrate further in §5.1.3. Again, the path of Figure 5.1(a) was shown to be

unbalanced without inspecting all of its edges, illustrating the performance benefits

of refinement.

5.1.3 Refinement on Java programs

In §5.1.2, we showed how our algorithm is able to save work by skipping inspection

of certain sub-paths and refine to obtain a precise answer. Here, we show what the

skipped paths correspond to in typical programs (i.e., we show what code is typically

analyzed at a particular approximation level) and what code is not visited at all. In

particular, the analysis typically only applies full sensitivity for classes whose object

contents must be distinguished to precisely answer a query, e.g., to find the contents

143

Chapter 5. Context-Sensitive Points-To Analysis

1 class Vector {
2 Object[] elems; int count;
3 Vector() { t = new Object[10];
4 this.elems = t; }
5 void add(Object p) {
6 t = this.elems;
7 t[count++] = p; // writes t.arr
8 }
9 Object get(int ind) {

10 t = this.elems;
11 return t[ind]; // reads t.arr
12 } ...
13 }
14 class AddrBook {
15 private Vector names;
16 AddrBook() { t = new Vector();
17 this.names = t; }
18 void addEntry(String n, ...) {
19 t = this.names; ...;
20 t.add(n);
21 }
22 void update() {
23 t = this.names;
24 for (int i = 0; i < t.size(); i++) {
25 Object name = t.get(i);
26 // is this cast safe?
27 String nameStr = (String)name;
28 ...
29 }
30 }
31 }
32 void useVec() {
33 Vector v = new Vector();
34 Integer i1 = new Integer();
35 v.add(i1);
36 Integer i2 = (Integer)v.get(0);
37 }

Figure 5.2: Example code for illustrating our points-to analysis algorithm.

of a particular Vector object. We will show that both field and context sensitivity are

necessary for sufficiently precise results, and that encapsulation allows us to analyze

only a small amount of code precisely.

We use the example in Figure 5.2, a partial implementation of an AddrBook class

144

Chapter 5. Context-Sensitive Points-To Analysis

(a) Initial analysis result.

(b) Result after distinguishing Object[] contents.

(c) Result after also distinguishing Vector contents.

Figure 5.3: Analysis result at different stages of approximation for proving safety of the
cast at line 27 of Figure 5.2.

with a Vector of names, to illustrate the effects of refinement. We consider an anal-

ysis client that aims to statically prove that downcasts cannot fail, in particular the

downcast to String at line 27. To prove this cast safe with points-to analysis, it

suffices to show that the name local variable in update() can only point to String

objects.

Figure 5.3(a) through Figure 5.3(c) give an abstract view of the analysis result at

each refinement stage while computing pt(name). Each graph shows how the analysis

145

Chapter 5. Context-Sensitive Points-To Analysis

computes points-to sets of the object fields that are read to obtain the value assigned

to name: AddrBook.names at line 23, Vector.elems at line 10, and finally arr (a pseudo-

field for modeling array accesses) at line 11. Ovals in the graphs enclose points-to

sets; pt(name) is shown on the right. A dashed arrow indicates a pointer from some

class not shown in Figure 5.2. Figure 5.3(c) shows that after two passes of refinement,

the analysis proves that pt(name) contains only String objects, shown as diamonds.

The effects of match edges The initial analysis result, shown in Figure 5.3(a), is

imprecise due to match edges, which cause the analysis to merge the contents of the

corresponding fields across objects. match edges cause merging since the analysis uses

them to jump from a field read to all writes of the field, ignoring which object’s field is

being accessed. (This is a field-based treatment of fields, as defined in §2.2.2.) Initially,

all possible match edges are present in the graph representation of the program, and

hence the analysis initially merges the contents of any object field f across all objects.

In the graphs of Figure 5.3, a dashed box indicates that field contents for objects

inside the box have been merged due to match edges. Figure 5.3(a) indicates that

the arr fields for arrays from Vector.elems as well as those from some other data

structure have been merged; fields elems and names are similarly collapsed. When

computing pt(name), the analysis finds that name gets its value from a read of the arr

field at line 11 of Figure 5.2. Through match edges, the analysis then concludes that

any object written into arr can flow to name, essentially merging the contents of all

arrays.

While imprecise, the initial analysis skips inspection of field accesses deeper than

those of arr, thereby finishing quickly and allowing time for more precise analysis.

The gray shading in the graphs of Figure 5.3 indicates which of the shown field

dereferences are inspected by that pass of the analysis. In Figure 5.3(a), only accesses

of the arr field are inspected, while fields elems and names are skipped. This occurs

because when the analysis reaches the array read at line 11 of Figure 5.2, it can jump

146

Chapter 5. Context-Sensitive Points-To Analysis

immediately to the array write at line 7 using a match edge, and to all other array

writes (not shown) using other match edges. Through this skipping, the analysis saves

times by avoiding analysis of other code in Vector and AddrBook and code that uses

AddrBook objects.

Refining through match edge removal Our analysis refines by removing all match

edges for all fields of some class T, with the goal of distinguishing the contents of dif-

ferent instances of T. In the case of our running example, our analysis removes match

edges for accesses to arr after its first pass, yielding the result in Figure 5.3(b). The

dashed box around Object arrays has disappeared, and the analysis now distinguishes

the arr field of arrays stored in Vector.elems (i.e., the internal arrays of Vectors),

from other arrays in the program. The elems field is still merged across Vectors

because of match edges; hence, the analysis concludes that name can point to any

object stored in the internal array of any Vector, still too imprecise a result for the

cast-checking client. However, the match edges on elems allow the analysis to skip

inspection of accesses to names and code that uses AddrBooks, again saving time and

allowing for more refinement.

In its third pass, our analysis succeeds in showing safety of the downcast by re-

moving match edges on elems, exposing calls to Vector methods for context-sensitive

handling. With match edges on elems present, the analysis would exit Vector’s meth-

ods on a match edge (e.g., from the read of elems at line 10 in get() to the write at

line 4 in Vector()), skipping an unknown sequence of calls and returns and hence forc-

ing approximation of context sensitivity. Context sensitivity for calls to these methods

is required to distinguish contents of different Vector instances (see §5.3 for details).

After removing match edges on elems, the analysis yields the result in Figure 5.3(c),

showing that name only gets its value from a Vector stored in AddrBook.names; since

such Vectors only contain Strings, this is sufficient to show the downcast at line 27

cannot fail, and the analysis terminates.

147

Chapter 5. Context-Sensitive Points-To Analysis

Computing a precise result for the example of Figure 5.2 requires unrealizable-

path filtering, a context-sensitive heap abstraction, and a context-sensitive call graph.

If the analysis did not filter out unrealizable paths, the parameters and return values

of the calls to Vector.get() at line 25 and line 36 of Figure 5.2 would be conflated,

preventing the analysis from proving that the two calls can return distinct objects.

The context-sensitive heap abstraction is required to distinguish the internal arrays

of the two Vectors, both allocated at line 3. A context-insensitive heap abstraction

represents both of these arrays with a single abstract object, and hence merges the

contents of the Vector objects. A context-sensitive call graph is needed to avoid

approximation due to spurious recursion, which appears in a context-insensitive call

graph when the full java.util.Vector class is used; this phenomenon is discussed

further in §5.2.2.

Our refinement technique exploits encapsulation in object-oriented code for better

performance. In Figure 5.2, the names field is encapsulated, i.e., the field and the

Vector it points to cannot be directly accessed outside the AddrBook class. Similarly,

Vector encapsulates its elems field. When fields are encapsulated, match edges for

those fields can only connect accesses in the same class, limiting the scope of our

analysis. For example, with match edges present for elems in Figure 5.3(b), the

analysis processed code in Vector, but not code in AddrBook that uses a Vector.

Furthermore, encapsulated fields allow the refinement to explore data structures in

a hierarchical progression: in the example, we explore the array, then the Vector

pointing to the array, and finally the AddrBook pointing to the Vector. Note that our

analysis exploits encapsulation without any code annotations, instead discovering

encapsulation automatically. When fields are not encapsulated, our analysis can still

provide precise results, but it may run slower, as more code needs to be analyzed

with full precision.

148

Chapter 5. Context-Sensitive Points-To Analysis

S
callEntry[i]−−−−−−−→ S.i S

assignglobal−−−−−−−→ ε

ε
callExit[i]−−−−−−→ ε S

assignglobal−−−−−−−→ ε

S.i
callExit[i]−−−−−−→ S S

match−−−→ ε

S.j
callExit[i]−−−−−−→ error (i 6= j) S

match−−−→ ε

Figure 5.4: State transitions in the FSM for language RC.

5.2 Decidable Formulation

This section gives a decidable formulation of context- and field-sensitive Java points-

to analysis, approximating the precise but undecidable analysis formulated in §3.3.

First, §5.2.1 presents the regular language RC for computing context-sensitive analy-

sis on recursion-free programs; decidable context- and field-sensitive analysis requires

computing (LF ∩ RC)-reachability. Then, §5.2.2 discusses how our analysis approxi-

mates for programs with recursion.

5.2.1 Context-Sensitive Analysis in CFL-Reachability

Here we describe a regular language RC for computing a context-sensitive points-to

analysis on recursion-free programs. We will show how to answer both a projected

query “is o ∈ pt(x)?” and a context-sensitive query “is 〈o, c′〉 ∈ pt′(〈x, c〉)?”. Rather

than explicitly constructing an inlined program P ′, context sensitivity is achieved by

filtering out paths in our graph representation that correspond to unrealizable paths,

as in the precise (but undecidable) formulation of §3.3.

Figure 5.4 defines the transitions in the finite-state machine for RC. In understand-

ing this FSM, it may be useful to refer back to our original formulation of context-

sensitive points-to analysis in §3.3, which defines the callEntry[i] and callExit[i] non-

terminals and provides more intuition on the formulation. Each state in the FSM

149

Chapter 5. Context-Sensitive Points-To Analysis

represents a finite stack of callEntry[i] edges, the open parentheses for method calls.

Though it checks for balanced parentheses, RC is a regular language because we as-

sume the input program is recursion-free, and hence there are a finite number of

possible stack configurations. Transitions in the FSM manipulate the stack in the

usual way. The initial state is an empty stack configuration. All states except the er-

ror state are accept states, and all transitions not shown are self-transitions (i.e., the

state machine ignores edges that match the nonCallTerm non-terminal of Figure 3.9).

Note that RC allows partially balanced parentheses, just like LC in §3.3. An RC-

path p is allowed to contain a prefix with unbalanced closed parentheses, due to

the ε
callExit[i]−−−−−→ ε transition, and a suffix with unbalanced open parentheses, as only

mismatched callExit[i] edges cause a transition to error.

The transitions in Figure 5.4 for match and assignglobal edges (and their barred

equivalents) show that no checking for balanced call parentheses is done across such

edges. Reads and writes to global variables are represented by assignglobal and

assignglobal edges, which “skip” the sequence of calls and returns between the ac-

cesses (discussed previously in §3.3). Hence, the FSM for RC transitions from any

state to ε at such edges, “forgetting” any stored call stack information.1 We transi-

tion to ε since RC accepts any callExit[i] symbol in that state. The same transition is

used for match and match edges, since as discussed in §5.1.2, call parentheses cannot

soundly be checked across such edges.

RC provides a context-sensitive heap abstraction by treating abstract location

nodes identically to variable nodes. Since new and new are not mentioned in Fig-

ure 5.4, RC has self-transitions from all states on both symbols. Hence, the RC stack

is maintained at abstract location nodes, yielding a context-sensitive heap abstraction

in an elegant manner.
1With such a transition, the self-edges on globals described in §3.3 are no longer necessary for

soundness.

150

Chapter 5. Context-Sensitive Points-To Analysis

Given RC, a context-sensitive points-to analysis algorithm can be stated concisely.

The answer to a projected query “is o ∈ pt(x)?” for program P , represented by graph

G, is found by checking for the existence of a flowsTo-path p from o to x in G such

that p is also an RC-path. In other words, we compute CFL-reachability on G with

language LRF = LF ∩ RC, where LF was developed in Section 3.2. The answer to the

context-sensitive query “is 〈o, c′〉 ∈ pt(〈x, c〉)?” is obtained by modifying RC: we set

the initial state of the state machine for RC to c and make c′ the only accepting state,

thereby mapping the nodes o and x to the appropriate inlined copies 〈o, c〉 and 〈x, c′〉.

Note that while the call strings of §2.2.4 must start at the root of the call graph, our

analysis allows queries with partial calling contexts, since they are valid RC states.

Since RC only filters paths with mismatched call entries and exits, computing points-

to information for program P using LRF-reachability is equivalent to the projected

result of computing LF-reachability for fully inlined program P ′, as desired.

LRF-reachability can be computed by tracking the state of RC for each explored

path while computing LF-reachability; paths which cause RC to reach its error state

are excluded. This technique essentially explodes the input graph for RC [RHS95],

creating a node (x, s) when node x is reached with state s of RC. As |RC| is exponential

in the size of the program (due to the exponential number of paths in the call graph),

this algorithm has worst-case exponential time complexity. In practice the algorithm

does not scale, motivating our refinement approach.

5.2.2 Handling Recursion

Up to this point in the chapter, we have assumed that the input programs for our

analysis are recursion-free; here, we discuss how we handle recursive programs. We

leverage our demand-driven approach to only approximate recursive calls in the pro-

gram subset relevant to a query, reducing the number of calls that must be handled

151

Chapter 5. Context-Sensitive Points-To Analysis

imprecisely.

As context-sensitive and field-sensitive analysis for programs with recursion has

been shown undecidable [Rep00], any analysis with both properties must approxi-

mate to guarantee termination. One approximation approach is to use k-limiting,

i.e., tracking at most k levels of calling context [Shi88]; however, this approach ap-

proximates more than what is necessary to achieve decidability. A less drastic ap-

proximation is to treat calls within strongly-connected components (SCCs) of the

call graph as gotos [WL04, LLA07]. This approach essentially re-labels param[i] and

return[i] edges within an SCC with assign, collapsing the SCC into a single method

and making the program recursion-free, yielding decidability.

With a context-insensitive call graph, the SCC-collapsing approximation leads to

a large precision loss. As shown in [LH06], for large programs a context-insensitive

call graph typically has an SCC with more than 1000 methods, including methods

whose handling is critical to analysis precision, e.g., those of Vector. A more precise

call graph is necessary to avoid approximate handling of all calls within this large

SCC.

Our analysis only approximates handling of method calls that are recursive in

a call graph computed during the demand-driven analysis. As our analysis only

touches edges in the graph representation relevant to the current query, the recursive

cycles it encounters are a subset of all the recursive cycles in the call graph. Con-

sider a query for the objects possibly returned by a call to this simplified version of

Vector.elementAt() from the Java standard library:

Object elementAt(int index) {

if (index >= numElements) {

throw new OutOfBoundsException(index + " too big"));

}

return elems[index];

152

Chapter 5. Context-Sensitive Points-To Analysis

}

Our analysis considers only the array access and the read of the elems field in the

return statement, ignoring the calls to the OutOfBoundsException constructor and

String and StringBuffer methods from the string concatenation. In a context-

insensitive call graph that considers all control flow, these ignored calls lead to

elementAt() being included in the aforementioned large SCC. Our analysis approx-

imates less due to recursion since it constructs a context-sensitive call graph in the

program subset relevant to each query, ignoring many potentially recursive calls.

5.3 Refinement Algorithm

In this section, we give a detailed description of our refinement-based points-to anal-

ysis algorithm. In §5.1, we presented our refinement algorithm for the problem of

checking a single path’s string for membership in a simplified version of our reacha-

bility languages. In §5.3.1, we show how the refinement algorithm of §5.1.2 extends

to the full LRF language, using a detailed example. Then, §5.3.2 presents pseudocode

for our algorithm as applied to arbitrary graphs.

5.3.1 Refinement for LRF-reachability

Here we explain our refinement-based algorithm for full LRF-reachability using a de-

tailed example. We use the AddrBook example of Figure 5.2 to illustrate the algorithm,

again considering a client trying to prove safety of the cast of name to String at line 27,

which requires computing pt(name). Figure 5.5 shows the relevant part of the graph

representation for the code in Figure 5.2. To prove the cast safe, the analysis must

discover that there is no (LF∩RC)-path from o34, an Integer object, to the nameupdate

node. The columns in Figure 5.5 indicate how the analysis explores the graph during

153

Chapter 5. Context-Sensitive Points-To Analysis

nameupdate thisget
gf[elems]

vvmmmmmmmmmmmm

retget

return[25]

KS

tget
gf[arr]oo tupdate

param[25]

KS

thisupdate
gf[names]oo

o16

new
��

tAddrBook

param[16]
��

��

<
8

4
/
+
'

�

�
�

�

�
�

XX

�
�

�

*
0

pf[names] // thisAddrBook

tVector
pf[elems]

//

��

�

�

�
�

#

&

*

OO�
�
�
�
�
�
�
�
�

thisVector

o34

new
��

o3

new

OO

vuseVec

param[33]

KS

param[35]

��

i1useVec

param[35]
��

o33

new

OO

padd
pf[arr]

//

EE

2

0

-

*

'

%

"

�
�

�

�

�

�

�

�

tadd taddEntry

param[20]
��

thisaddEntry
gf[names]

oo

naddEntry

param[20]

KS

thisadd
gf[elems]

hhQQQQQQQQQQQQ

Figure 5.5: Relevant portion of graph for code in Figure 5.2. Solid edges represent
program statements, with single edges for intraprocedural statements and double edges
for call entry and exit statements. Variables are subscripted with the name of the enclosing
method, and line numbers in labels refer to call sites or allocation sites. The dashed edges
are match edges. For space, getfield and putfield are abbreviated gf and pf.

refinement. The initial pass of the algorithm visits the left-most column, and each

subsequent pass additionally visits the next column to the right, until the safety of

the cast is proved.

Approximation As discussed previously (e.g., in §4.1.4), we use match and match

edges between corresponding field accesses to enable approximation. LF (defined in

§3.2) has two types of matched parentheses pairs, (putfield[f],getfield[f]) and

(getfield[f],putfield[f]); we add match edges for the former type (shown as dashed

edges in Figure 5.5, and match edges for the latter type. The match edges define the

154

Chapter 5. Context-Sensitive Points-To Analysis

columns of Figure 5.5, as the analysis uses match edges to limit its scope in each pass.

This correspondence was shown previously in Figure 5.3, where in each analysis pass,

the gray shading (indicating analyzed code) stops at the first field whose accesses still

have match edges.

Our language for computing reachability with match edges is LFR (R for refine-

ment), with start symbol flowsToR:

flowsToR → new (assign | putfield[f] aliasR getfield[f]

| match)∗

aliasR → flowsToR flowsToR

flowsToR is exactly the language used for context-insensitive refinement (cf. §4.3).

Our algorithm uses match edges whenever possible to skip the (potentially expensive)

check for an aliasR path. For Figure 5.5, the algorithm skips from retget to padd using a

match edge in its first pass, never leaving the first column of the graph. However, this

leads the analysis to conclude that o34 is in the points-to set, necessitating refinement.

Note that the analysis cannot filter out the param[35] edge in this pass, as it reaches

add() through a match edge and hence cannot rule out flow from call site 35.

Refinement Selective refinement is accomplished by removing match edges from

the graph, as in §5.1. Removal of match edges forces the analysis to search for more

aliasR-paths, as it can no longer skip between the corresponding field accesses; this

search can yield a more precise analysis result. In the example, the second pass of our

analysis refines by removing the retget
match←−−− padd in Figure 5.5. This removal forces

the analysis to handle the read and write of arr by checking for an aliasR-path from

tget to tadd. Since match edges in the second column remain, the analysis only explores

the first two columns of the graph. In this case, an aliasR-path is found by connecting

flowsToR-path tget
match−−−→ tVector

new−−→ o3 with flowsToR-path o3
new−−→ tVector

match−−−→ tadd.

155

Chapter 5. Context-Sensitive Points-To Analysis

Again, the analysis cannot filter the path using the param[35] edge, as add() is reached

through a match edge. So, further refinement is needed.

Context Sensitivity As described in §5.1, a match edge can skip over an arbitrary

sequence of method calls and returns, requiring approximation of context sensitivity.

As shown in Figure 5.4, RC “forgets” calling context information when “traversing”

match edges using the transition S
match−−−→ ε and treats match analogously. Each

pass of our analysis algorithm computes (LFR ∩ RC)-reachability, using RC to filter

unrealizable flowsToR-paths as much as possible, i.e., by checking that sub-paths

between match edges are RC-paths. As previously noted, the first two passes of the

analysis of the example were unable to disregard the param[35] edge, as RC state was

cleared across a match edge before reaching add().

Removal of match edges can lead to filtering of paths because it exposes more call

entry and exit edges for analysis. After the second pass, our analysis further refines

field-sensitivity by removing match edges on the elems field, i.e., the tVector
match−−−→ tget

and tVector
match−−−→ tadd edges in the second column of Figure 5.5. So, in the third pass

the analysis must find aliasR-paths from thisget to thisVector and from thisVector to

thisadd. Clearly, the this parameters of the Vector methods can be aliased; hence,

the key to precision will be to use the state of RC tracked along the aliasR-paths

between the this parameters to do filtering.

The tracking of RC state in the third pass of our analysis yields a result precise

enough for proving the downcast safe in the example. When searching for an aliasR-

path from thisget to thisVector, the analysis starts with RC call stack 〈25〉, a call site

for Vector.get() in Figure 5.2. The aliasR-path to thisVector combines the flowsToR-

path thisget
param[25]−−−−−→ tupdate

match−−−→ tAddrBook
new−−→ o16 and the flowsToR-path o16

new−−→

tAddrBook
param[16]−−−−−→ thisVector. Tracking RC state along this aliasR-path yields call stack

〈16〉 at thisVector; essentially, the analysis has concluded that the get() call at line 25

of Figure 5.2 must be on a Vector allocated at line 16, i.e., a Vector used by an

156

Chapter 5. Context-Sensitive Points-To Analysis

AddrBook.

Similarly, after finding an aliasR-path from thisVector to thisadd, the analysis

reaches thisadd with RC call stack 〈20〉, concluding that add() must be entered from

the call site at line 20. The analysis can then filter out the add() call at line 35, thereby

filtering o34 from pt(name) and yielding the desired result, i.e., that nameupdate is not

(LF∩RC)-reachable from o34. Notice that the result is computed without touching the

fourth column of Figure 5.5, illustrating how our technique can compute a sufficiently

precise result while limiting analysis scope.

5.3.2 Pseudocode

Here we present pseudocode for our refinement-based context-sensitive points-to anal-

ysis. We first discuss the outer refinement loop of the analysis (§5.3.2.1), which re-

moves match edges from the graph until a sufficiently precise answer is computed for

the analysis client. Then, in §5.3.2.2 we present in detail the algorithm for computing

points-to information in each refinement pass, a modification of the FullFS algorithm

from §4.6. Finally, §5.3.2.3 presents our refinement policy for removing match edges.

Interface to Clients The presented algorithm computes (LOTF ∩ R)-reachability

for LOTF as defined in Figure 3.8 and any regular language R.2 For context-sensitive

analysis, the RC language of Figure 5.4 would be used.3 The algorithm takes as

inputs some variable v and some state s from an automaton describing R, notated vs.

It also requires a function ClientSatisfied that returns true when a computed

points-to set for vs satisfies the client. As an example, a client wishing to use context-

sensitive points-to analysis to prove that a cast y = (A)x can never fail would query

xε (where ε represents the empty call stack of RC) with a ClientSatisfied function
2There are minor restrictions on the regular language for the presented pseudocode, for simplicity.

The restrictions are described along with the corresponding pseudocode.
3Other regular languages may be useful, for example to detect sensitive sinks in tainting analy-

sis [LL05]; developing such languages is future work.

157

Chapter 5. Context-Sensitive Points-To Analysis

CSRefinePTo(vs)
1 while true
2 do pto ← RefinePass(vs)
3 if ClientSatisfied(pto)
4 then return true
5 else if ¬UpdateRefinementPolicy() then return false

Figure 5.6: Pseudocode for the refinement loop of our points-to analysis.

that returns true iff the types of all abstract locations in the computed points-to set

are subtypes of A. The algorithm then computes increasingly precise points-to sets

using refinement until (1) the client is satisfied, (2) no more refinement is possible, or

(3) some time budget has been exhausted.

5.3.2.1 Refinement Loop

Figure 5.6 gives pseudocode for the outermost refinement loop of our algorithm. Each

loop iteration first computes an points-to set for the input variable and state vs at

line 2, approximated based on which match edges are refined. (RefinePass, which

actually computes the points-to set, is defined in Figure 5.7 and will be discussed

shortly.) If the computed points-to set satisfies the client, the loop terminates (line 3

and line 4). Otherwise, the refinement policy for match edges is updated (line 5).

If UpdateRefinementPolicy returns false, then no more match edges can be

refined—i.e., the algorithm has computed the most precise points-to set possible given

its abstraction—and the algorithm terminates. Otherwise, a more precise points-to

set is computed in the next iteration.

Our implementation adds two features not present in the pseudocode of Figure 5.6.

First, in the case where the client is satisfied with a computed points-to set, the set

itself is made available to the client for further processing. Second, the implementation

allocates a resource budget for each query, such that if the budget is exceeded in

158

Chapter 5. Context-Sensitive Points-To Analysis

computing points-to sets, the query is terminated early. We discuss budgets more in

§5.4.1.

5.3.2.2 Computing Points-To Sets

Pseudocode for RefinePass, which computes a points-to set in each pass of the

refinement algorithm, is presented in Figure 5.7, with helper functions in Figure 5.8.

The algorithm is an extended version of the FullFS algorithm of Figure 4.13. We chose

to extend FullFS for the context-sensitive algorithm since caching of intermediate

results is essential for good performance (unlike the context-insensitive case), and

FullFS integrates such caching nicely. Our extensions to FullFS are:

• Handling of the regular language R to be intersected with LOTF, which requires

computing state transitions and checking for the error state in several places.

• Handling of match edges.

• On-the-fly call graph refinement, which requires the graph representation of Ta-

ble 3.2 (including concType[T], receiver[i][s], paramForType[T][s], and

returnForType[T][s] edges). The algorithm computes (LOTF ∩ R)-reachability,

where LOTF was defined in Figure 3.8.

We will explain each of these extensions in turn. The discussion assumes an under-

standing of the pseudocode in Figure 4.13, and the reader may benefit from reviewing

that figure again before proceeding.

Handling the Regular Language Our algorithm computes (LOTF∩R)-reachability

by exploding the input graph G for R. The exploded graph G#
R is constructed such

that computing standard graph reachability on G#
R is equivalent to computing R-

reachability on G [RHS95]. The nodes and edges of G#
R incorporate the states and

transitions of some FSM F for R:

159

Chapter 5. Context-Sensitive Points-To Analysis

RefinePass(vs)
1 Add query vs ↪→ .
2 repeat
3 for each edge x

new←−− o and state s
4 do if xs ↪→ .
5 then s′ ← Trans(s, new)
6 if s′ 6= error then add os′ to Xs

7 if . ↪→ os(any)
8 then s′ ← Trans(s, new)
9 if s′ 6= error then add os to X ′

s′

10 for each edge x
assign←−−− y and state s

11 do HandleCopy(x, y, assign, s)

12 for each edge x
assignglobal←−−−−−−− y and state s

13 do HandleCopy(x, y, assignglobal, s)

14 for each edge x
param[i]←−−−−− y and state s

15 do HandleCopy(x, y, param[i], s)

16 for each edge x
return[i]←−−−−− y and state s

17 do HandleCopy(x, y, return[i], s)

18 for each edge x
getfield[f]←−−−−−− y and state s

19 do if UseMatchEdges(f)
20 then for each edge x

match←−−− p
21 do HandleCopy(x, p, match, s)
22 else if xs ↪→ .
23 then add ys ↪→ .
24 for each os′ ∈ Ys

25 do add . ↪→ os′(fw)
26 add all of Os′ .f to Xs

27 for each edge x
putfield[f]←−−−−−− y and state s

28 do for each os′ ∈ X ′
s

29 do if . ↪→ os′(fw)
30 then add ys ↪→ .
31 add all of Ys to Os′ .f
32 if Y ′

s 6= ∅
33 then add xs ↪→ .
34 for each os′ ∈ Xs

35 do add all of Y ′
s to Os′ .f ′

36 add . ↪→ os′(fr)
37 HandleOTF()
38 until no change
39 return Vs

Figure 5.7: Pseudocode for a single iteration of our context-sensitive refinement algorithm.
See Figure 5.8 for the HandleCopy and HandleOTF procedures.

160

Chapter 5. Context-Sensitive Points-To Analysis

HandleCopy(x, y, label , s)

� Handle a copy edge x
label←−−− y,

� considering the cases of either x or y in state s
1 if xs ↪→ .

2 then s′ ← Trans(s, label)
3 if s′ 6= error
4 then add ys′ ↪→ .
5 add all of Ys′ to Xs

6 if Y ′
s 6= ∅

7 then s′ ← Trans(s, label)
8 if s′ 6= error then add all of Y ′

s to X ′
s′

HandleOTF()
� Partial pseudocode; other cases are similar

1 for each edge f
paramForType[T][i]←−−−−−−−−−−− a and state s

2 do if fs ↪→ .

3 then s′ ← Trans(s, paramForType[T][i])
4 if s′ = error then continue

5 add rs′ ↪→ ., where a
receiver[j][i]−−−−−−−→ r exists

6 for each os′′ ∈ Rs′

7 do if no edge o
concType[T]−−−−−−−→ o then continue

8 add . ↪→ os′′(call)
9 for each state {sc : os′′ ∈ R′

sc
}

10 do add asc ↪→ .
11 add all of Asc to Fs

Figure 5.8: Pseudocode for HandleCopy and HandleOTF, helper functions for the
pseudocode in Figure 5.7.

• Each node ns in G#
R corresponds to some node n in G and some state s in F .

• An edge ns
f−→ n′

s′ exists in G#
R iff (1) G has an edge n

f−→ n′ and (2) F has a

transition from s to s′ on f.

Determining whether n′ is (LOTF∩R)-reachable from n in G is equivalent to checking

if n′
a is LOTF-reachable from ni in G#

R , where i and a are respectively initial and accept

states for F .

161

Chapter 5. Context-Sensitive Points-To Analysis

As seen in Figure 5.7, our algorithm modifies FullFS to operate on nodes in the

exploded graph. States from the FSM for R are associated with both variable nodes

(e.g., the initial query vs ↪→ . at line 1) and abstract location nodes (e.g., os′ at line 6).

Points-to sets and tracked sets are also maintained for exploded graph nodes, e.g.,

Xs at line 6 and X ′
s′ at line 9.

For scalability, our algorithm lazily explodes the input graph during query com-

putation. Constructing a fully exploded graph for R is both unnecessary, since many

node-state combinations do not arise during a query, and intractable for large lan-

guages (e.g., RC, whose FSM has an exponential number of states). Lazy explosion

requires computing state transitions in the FSM for R while traversing the original

graph G. This computation is performed by calls to the Trans procedure, e.g., at

line 2 of HandleCopy in Figure 5.8. Given edge n
f−→ n′ and node ns from G#

R , the

corresponding successor in G#
R is computed to be n′

Trans(s,f). Note that it is possible

that Trans(s, f) = error , indicating that the FSM has no transition from s on f.

In such a case, R has filtered out the current path, at which point the pseudocode

aborts exploration of the path.

The HandleCopy helper procedure in Figure 5.8 performs this generic handling

of state transitions across different types of edges. As an example, consider the call

to HandleCopy with a param[i] edge at line 15, assuming the regular language is

RC for context sensitivity. In this case, x and y in HandleCopy are respectively

the formal and actual parameter associated with the edge. If xs has been queried

(line 1 in HandleCopy), then s′ is computed for the param[i] according to the rules

of Figure 5.4 (line 2). This transition will result in an error state if the top of the call

stack represented by s is not i. Otherwise, propagation across the edge is handled as

in FullFS (line 4 and line 5). Tracked sets are handled in a similar manner in line 6

through line 8.

162

Chapter 5. Context-Sensitive Points-To Analysis

Handling match edges The only change required for handling match edges ap-

pears in line 19 through line 21. The UseMatchEdges procedure, provided by the

refinement policy, returns true if match edges are present in the graph for accesses of

field f . (We discuss our refinement policy further in §5.3.2.3.) We have found that

in practice, removing or keeping all match edges for particular fields (instead of par-

ticular field accesses) is sufficient for devising an effective refinement policy. If match

edges are present for some field, they are handled through a call to HandleCopy at

line 21.

On-the-fly Call Graph Recall from §2.2.3 that on-the-fly call graph refinement

requires determining virtual call targets directly in the points-to analysis, by com-

puting points-to information for receiver arguments. We formulated this problem in

Chapter 3 as adding edges reflecting virtual call dispatch semantics to our graph rep-

resentation and finding paths to compute call targets. Since here we aim to perform

context-sensitive refinement of the pre-computed call graph, our algorithm searches

for virtParam[i] and virtReturn[i] paths (and their inverses) from the LOTF language,

as defined in Figure 3.8.4

The HandleOTF procedure in Figure 5.8 has pseudocode for finding

virtParam[s] paths (finding virtParam[s], virtReturn[s], and virtReturn[s] paths re-

quires similar logic), according to the following productions from Figure 3.8:

virtParam[s] → dispatch[i][s] flowsTo receiver[i][s]

dispatch[i][s] → paramForType[T][s] receiver[i][s] pointsTo concType[T]

Recall that i represents the parameter position, while s identifies the call site. Line 3

in HandleOTF (Figure 5.8) tracks the state along the paramForType[T][i] edge to

actual parameter a, and line 5 follows the receiver[j][i] edge to the receiver argument
4Note that an implementation can use a separate refinement policy to select a subset of virtual

call sites to refine; for simplicity, our pseudocode refines all virtual call sites.

163

Chapter 5. Context-Sensitive Points-To Analysis

r.5 Line 5 also introduces a points-to query for r, thereby finding pointsTo-paths

from r to abstract locations. For each such abstract location o, line 7 checks for the

existence of the requisite o
concType[T]−−−−−−→ o edge. Finally, line 8 finds a flowsTo-path from

o back to r, and line 10 continues points-to computations at a, since from line 5 it is

known that a r
receiver[j][i]−−−−−−→ a must exist, completing the virtParam[i] path.

Line 8 and line 9 in HandleOTF, which follow a flowsTo-path from o to r,

are necessary to compute the proper regular language state at the virtual call site.

The pointed-to-by query . ↪→ os′′(call) uses a new reason call to avoid unnecessary

processing at field accesses. At first glance, this traversal of the flowsTo-path may

seem unnecessary, since its existence has already been proved by the discovery of a

pointsTo-path from r to o (line 5 and line 6). However, the algorithm must traverse

the pointsTo flowsTo path to determine the correct regular language state at r,

which may differ from the s′ state of line 3. As a simple example, if we have the path

r
param[j]−−−−→ o

param[j]−−−−→ r, where the regular language is RC for context sensitivity and

the initial state is ε, the state at the end of the path will change to 〈j〉 (due to the

admittance of partially balanced parentheses by RC).

How does this additional tracking of regular language states affect analysis pre-

cision? Consider the example of Figure 5.9. Say there is a query for the points-to

set of pB.foo, i.e., the p parameter of B.foo(). The virtual call at line 8 may invoke

B.foo(), and hence value flow from pcallFoo must be considered. However, only the

callFoo() call at line 16 should be considered for this query, as the previous call at

line 15 does not lead to B.foo() being invoked at line 8 (since for that call acallFoo

has concrete type A). Without the tracking of regular language states at line 8 and

line 9 of HandleOTF, flow from both callFoo() call sites would be considered in

this example, leading to the result pt(pB.foo) = {o13, o14} instead of the more precise
5Note that for simplicity, we do not allow state machine transitions on receiver or concType edges.

Adding support for such transitions would be straightforward, but such support is unnecessary for
context-sensitive analysis.

164

Chapter 5. Context-Sensitive Points-To Analysis

1 class A {
2 void foo(Object p) { ... }
3 }
4 class B extends A {
5 void foo(Object p) { ... }
6 }
7 void callFoo(A a, Object p) {
8 a.foo(p);
9 }

10 main() {
11 A a = new A();
12 B b = new B();
13 Object p1 = new Object();
14 Object p2 = new Object();
15 callFoo(a, p1);
16 callFoo(b, p2);
17 }

Figure 5.9: Example illustrating the need to properly track states at virtual call sites.

answer pt(pB.foo) = {o14}.

Recursion Detection In our implementation, we detect recursive calls during

computation of points-to information, as discussed in §5.2.2. When a cycle in the

input graph corresponding to recursive method calls is detected, all call sites in the

cycle are marked as recursive. Once marked as recursive, call sites are never again

pushed on a call stack in our state machine code, in effect collapsing the recursive

cycles. A question arises of how to handle existing call stacks (stored as states in

exploded graph nodes) which contain call sites that were later detected as recursive.

One solution is to remove recursive call sites from existing call stacks whenever they

are inspected by the algorithm. Since we have found in practice that recursive cycles

rarely arise for the clients we tested, we instead use a simpler solution and just re-start

a query computation after each recursive cycle is detected.

Performance Considerations As with FullFS, certain implementation details are

important for good performance. Worklists are used to only process necessary graph

edges (as opposed to iterating over the entire graph). Rather than iterating over all

165

Chapter 5. Context-Sensitive Points-To Analysis

states as in the loops of Figure 5.7, the implementation only considers those states in

which a node has been queried. Finally, an efficient bit-vector set implementation is

used for points-to sets and tracked sets, to ensure that set unions can be computed

quickly.

5.3.2.3 Refinement Policy

We have yet to specify how we choose match edges to remove after each analysis

pass. We remove match edges with the goal of distinguishing the field contents of

different objects of some class T; as shown in Figure 5.3, match edges for accesses of

field f cause merging of the contents of f across objects. Our method for choosing

T is straightforward, but empirically effective: we choose the enclosing class for the

field corresponding to the first match edge encountered in the previous analysis pass,

and then remove match edges on all fields of this class.6 In the example of Figure 5.5,

we encounter a match edge on arr in the first pass and elems in the second pass,

leading to removal of match edges on those fields. Removing these match edges allows

the analysis to distinguish the contents of the internal Object array of a particular

Vector, as desired.

5.4 Evaluation

Our experiments validated the following three experimental hypotheses:

Some clients need context sensitivity. We confirmed (as shown previously

[LH06]) that context-insensitive analysis does not have enough precision for

the cast-checking client, as it could only prove 7.8% of the downcasts in our

benchmarks safe.
6We also remove match edges for fields in superclasses and inner classes of T, as they also tend

to be relevant.

166

Chapter 5. Context-Sensitive Points-To Analysis

Our refinement approach is precise. Our refinement algorithm proved 61% more

casts safe on average than one of the most precise existing algorithms [LH06],

and refinement was critical for this precision gain. Also, our algorithm proved

a disjointness property of objects allocated in some factory methods, requiring

precision beyond that of the existing algorithm.

Our refinement approach is scalable. With the analysis budget we chose, our

algorithm checked all application downcasts in under 13 minutes on all bench-

marks. Furthermore, our algorithm required no more than 35MB of memory for

any of the benchmarks, an order of magnitude less than the memory require-

ments for existing comparable analyses.

5.4.1 Experimental Configuration

Implementation We implemented our analysis using the Soot 2.2.1 [VRHS+99]

and Spark [LH03] frameworks. For our graph representation, we augment the pointer

assignment graph built by Spark with param[i] and return[i] edges for context sensi-

tivity. We analyzed the Sun JDK 1.3.1_01 libraries, as Soot provides models of this

version’s native methods. All experiments were performed on a machine with a Xeon

2.4GHz processor and 2GB RAM, running Fedora Core 1 Linux.

Our Soot-based implementation differs from the pseudocode of Figure 5.7 code in

some minor ways. First, the implementation uses recursive calls rather than worklists

to traverse the graph for a query. We found the behavior of the recursive implementa-

tion easier to reason about during algorithm design, and the performance impact was

small. Also, the implementation sometimes uses an alternate strategy for discovering

aliasing between base pointers of field accesses. Given base pointer p of a field read

and q of a field write, the algorithm of Figure 5.7 searches for a flowsTo-path from

any abstract location in pt(p) to q. The alternate strategy computes pt(p) and pt(q)

167

Chapter 5. Context-Sensitive Points-To Analysis

and then checks if pt(p) ∩ pt(q) 6= ∅, tracking RC state appropriately. This alternate

strategy sometimes requires far less graph traversal, and the implementation uses it

when the default strategy fails.

We give experimental results for the following analyses:

DemRef: our demand-driven, refinement-based algorithm.

Full: our demand-driven algorithm configured to treat all code with full precision,

rather than refining.

1H: a 1-limited object-sensitive analysis [MRR05] (i.e., limited to 1 level of object

sensitivity) with a (1-limited) context-sensitive heap abstraction and call graph,

provided as part of the Paddle framework for BDD-based analysis [Lho06].

The 1H algorithm was chosen because in recent work [LH06], it was shown to be

the most precise of a set that included the Zhu and Calman and Whaley and Lam

algorithms [ZC04, WL04] and a call string approach [Shi88]. We were unable to run

the 1H algorithm on the chart benchmark within 2GB of RAM; the result for chart

in Table 5.2 is taken from [LH06], as its results for other benchmarks exactly matched

our observations.

To compare with an analysis that handles assignments with equality constraints,

we also implemented data structure analysis [LLA07], a context-sensitive analysis

for C that we adapted to Java. We implemented the analysis both with and without

on-the-fly context-sensitive call graph construction. We found that without a context-

sensitive call graph, the analysis was much too imprecise for our clients; e.g., it could

not prove any casts safe in most benchmarks. This imprecision stemmed from the

collapsing of call graph SCCs by the analysis (see §5.2.2), which are large in a context-

insensitive call graph [LH06]. We were unable to sufficiently scale the algorithm

variant with context-sensitive call graph construction to analyze our benchmarks; the

most similar published analysis for Java [O’C00] had similar scalability issues.

168

Chapter 5. Context-Sensitive Points-To Analysis

Configuration We configure our analysis to refine the precision of context-

insensitive field-sensitive Andersen’s analysis with an on-the-fly call graph, as im-

plemented in Spark [LH03]. We use the context-insensitive analysis to answer queries

that require less precision, and to rule out certain paths in our analysis. For exam-

ple, if we are trying to prove a cast of x to type T safe, we do not traverse to nodes

y where the context-insensitive analysis shows that all locations in pt(y) are sub-

types of T. The analysis is scalable, analyzing all benchmarks in under 3.5 minutes,

including the time required to construct the graph representation. We include the

context-insensitive analysis time in all presented running times for our analysis.

Our refinement analysis is best run with a budget : after some fixed amount of

time for each query, the analysis terminates and returns a conservative result to the

client [SGSB05]. This budget prevents the analysis from running excessively long

on queries it cannot hope to answer precisely, e.g., those that require flow-sensitive

precision. For our experiments, we configured our analysis to traverse at most 75000

nodes per query, divided evenly among a maximum of 10 refinement iterations, a

sweet spot for the tested clients; doubling the budget yielded a negligible precision

gain.

Benchmarks Our benchmark suite is described in Table 5.1. We use the same

suite as that of [LH06], to compare with its object-sensitive analysis. The size of

the benchmarks are comparable to those used in other recent Java points-to analysis

studies [LH03, WL04].

Clients We evaluated our analysis using three clients. The first was a client that

checked the safety of downcasts in application code; as in [LH06], library casts were

excluded to make benchmark differences clear, but the library was still analyzed

when necessary for application casts. As illustrated in §5.1.3, downcast checking is

an exacting test of points-to analysis precision, especially of the ability to distinguish

the contents of different data structures; an analysis that fares poorly at proving

169

Chapter 5. Context-Sensitive Points-To Analysis

Benchmark Methods Statements
compress 2722 36690

db 2741 37243
jack 2996 42729
javac 3916 77619
jess 3354 47645

mpegaudio 2927 41009
mtrt 2873 39180
soot-c 4979 90355

sablecc-j 8853 164056
polyglot 6227 120634
antlr 4021 77934
bloat 5415 106629
chart 7323 110594
jython 4560 69026
pmd 7388 115857
ps 5320 106718

Table 5.1: Information about our benchmarks. We include the SPECjvm98 suite, soot-c
and sablecc-j from the Ashes suite [Ash], several benchmarks from the DaCapo suite
version beta050224 [DaC], and the Polyglot Java front-end [NCM03]. The “Statements”
column gives the number of edges in the graph representation. The numbers include the
reachable portions of the Java library, determining using a call graph constructed on the
fly with Andersen’s analysis [And94] by Spark [LH03].

170

Chapter 5. Context-Sensitive Points-To Analysis

downcast safety is unlikely to satisfy other demanding clients.

We also experimented with a client that tries to prove disjointness of the contents

of objects allocated in factory methods, i.e., methods that return a newly-allocated

object for each call. For example, an iterator() method typically allocates a new

Iterator object for each call. The client looks for factory methods using simple pat-

tern matching, and then tries to prove disjointness of method return values for objects

allocated in different calls to these methods. For iterator(), the client tries to show

that calls to next() on Iterator objects allocated by different calls to iterator()

can return distinct objects. Proving such disjointness properties could be important,

e.g., to reduce false positives for a verification client. Furthermore, this client requires

greater precision than the 1H algorithm of [LH06] can provide (since it requires at

least 2 levels of object-sensitivity), and hence illustrates the benefits of having a more

precise analysis.

Finally, to further test performance, we ran a client that queried the DemRef anal-

ysis for all application variables where the 1H analysis yielded a more precise result

than context-insensitive analysis, representing a client that requires near-exhaustive

points-to information.

5.4.2 Experimental Results

Imprecision of context-insensitive analysis We found context-insensitive An-

dersen’s analysis (from Spark [LH03]) to be insufficient for proving downcasts safe

in our benchmarks. The analysis could prove an average of only 7.8% of casts safe,

ranging from 0% for compress to 31.7% for sablecc-j. This result is consistent with

previous work [LH06], and shows the client’s need for more precise analysis.

Precision for cast-checking Table 5.2 shows that our refinement algorithm pro-

vides more precision for the cast-checking client than the 1H algorithm. The refine-

171

Chapter 5. Context-Sensitive Points-To Analysis

Benchmark Casts DemRef DemRef Full 1H
Time (s) Safe Safe Safe

compress 6 44.8 33.3 33.3 0.0
db 24 44.4 79.2 37.5 25.0
jack 135 62.8 52.6 23.0 31.1
javac 315 150.3 20.6 12.4 13.3
jess 76 63.7 72.4 6.6 57.9

mpegaudio 12 58.8 25.0 25.0 33.3
mtrt 10 47.4 50.0 40.0 40.0
soot-c 906 387.8 28.0 14.1 8.3

sablecc-j 362 315.8 18.5 5.5 11.9
polyglot 3482 750.3 88.1 6.8 72.5
antlr 281 118.2 50.9 2.8 21.7
bloat 1217 472.6 12.6 5.2 6.7
chart 535 283.5 38.5 9.0 30.5
jython 464 84.9 8.8 2.8 6.5
pmd 1135 571.7 15.1 10.0 11.2
ps 659 131.1 6.2 5.5 41.0

Table 5.2: Results for the cast safety client. The “Casts” column gives the number of
downcasts that context-insensitive analysis cannot prove safe; these numbers differ from
those in Lhotak’s work because we exclude casts of non-pointers (e.g.,float to int), as
they cannot cause a runtime exception. The three rightmost columns respectively give
the percentage of these casts proved safe by our refinement algorithm (“DemRef”), our
demand-driven algorithm configured to treat all code precisely (“Full”), and the object-
sensitive analysis of Lhotak’s work [LH06] (“1H”). The “DemRef Time” column gives the
running time for the refinement algorithm in seconds.

ment technique proved an average of 1.61x as many casts safe as the 1H algorithm

(excluding compress where 1H proved no casts safe), ranging from 0.15x for ps to

3.39x for soot-c. The large precision benefit for the soot-c benchmark stems pri-

marily from precise handling of iterators. For example, proving the cast to Foo safe

is beyond the capabilities of the 1H algorithm for the following code:7

Iterator i = x.iterator(); o = (Foo)i.next();

7Two levels of object-sensitivity (including the heap abstraction) would suffice for this case, but
that analysis does not yet scale in the Paddle framework [Lho].

172

Chapter 5. Context-Sensitive Points-To Analysis

Benchmark # Factory Dist (%) Time (s)
db 1 100.0 44.2
jack 1 100.0 52.7
javac 7 28.6 63.1
jess 12 91.7 52.6
soot-c 19 63.2 58.0

sablecc-j 9 55.6 106.4
polyglot 22 31.8 183.6
antlr 3 100.0 56.8
bloat 13 30.8 63.0
chart 19 36.8 110.3
jython 14 21.4 55.4
pmd 20 25.0 101.6
ps 1 100.0 69.5

Table 5.3: Results for the factory method client. The “# Factory” column gives the
number of detected factory methods, and the “Dist” column gives the percentage of those
factory methods for which the analysis could distinguish the contents of the allocated
objects. The “Time” column gives the running time in seconds.

The refinement algorithm is significantly more precise for cast checking (within

the same budget) than a demand-driven analysis that treats all code precisely (the

“Full” algorithm), as shown in Table 5.2. Given the analysis budget of 75000 nodes,

the algorithm with refinement proved 4.25x more casts safe than without refinement,

ranging from 1x for mpegaudio to 17.88x for antlr; doubling the analysis budget

had a negligible impact on this result. The algorithm without refinement is often

even less precise than then 1H algorithm, showing the importance of using both the

demand-driven approach and refinement.

There are several reasons why some casts cannot be proved safe by our analysis.

DemRef was less precise than 1H for the ps benchmark due to 181 casts of objects read

from an operator stack mutated in many parts of the program; the large amount of

relevant code led to DemRef choosing incorrect fields to refine for these casts. Proving

certain casts safe requires flow- or path-sensitivity, e.g., for casts dominated by an

173

Chapter 5. Context-Sensitive Points-To Analysis

Benchmark # Queries Av. Query (s) Time (s)
compress 35 0.08 46.9

db 98 0.09 53.3
jack 350 0.19 119.2
javac 2727 0.32 942.2
jess 587 0.43 303.6

mpegaudio 69 0.08 61.4
mtrt 84 0.07 50.5

soot-c 2481 0.58 1503.6
sablecc-j 5704 0.50 2957.0
polyglot 18893 0.26 5118.6
antlr 3143 0.32 1070.7
bloat 3354 0.31 1103.4
chart — — —
jython 3127 0.19 647.3
pmd 8079 0.68 5593.3
ps 3859 0.16 690.7

Table 5.4: Results for querying all application variables for which the 1H algorithm of
Lhotak’s work [LH06] yielded a more precise result than a context-insensitive analysis.
The “# Queries” column gives the number of such variables, the “Av. Query” column
gives the average query time in seconds, and the “Time” column gives the total time in
seconds. Results for chart are not shown, as we could not run the 1H algorithm on it in
available memory.

174

Chapter 5. Context-Sensitive Points-To Analysis

instanceof check that ensures their safety; many such casts can be proved safe by

an extra intraprocedural analysis [O’C00, WS01]. Sometimes, context-sensitive call

graph construction consumes the bulk of analysis time for DemRef, but is unnecessary

for a precise result; automatically determining which virtual call sites require precise

handling is future work.

Precision for factory methods Our analysis proved the contents of many factory-

allocated objects disjoint, as shown in Table 5.3. Excluding benchmarks with fewer

than 5 factory methods, the analysis proved disjointness for an average of 42.8% of

the methods in each benchmark, ranging from 21.4% for jython to 91.7% for jess.

This result shows that precision greater than that provided by the 1H algorithm is

required for realistic clients besides downcast checking, and that our analysis can

provide that precision.

Scalability of refinement approach Due to our demand-driven approach, the

memory requirements of our analysis are significantly less than those of previous

approaches. In the experiments, our analysis never consumed more than 5MB of

memory for any query, and our implementation does no caching between queries. The

memory required to store the results from the context-insensitive analysis pre-pass is

less than 30MB using BDDs [BLQ+03], yielding a maximum memory requirement of

35MB for these benchmarks. In comparison, we could not run the object-sensitive

algorithm of [LH06] on the chart benchmark within 2GB of RAM, and a precise

equality-based analysis requires 1GB of RAM on large benchmarks [Ste].

Table 5.2 shows that the refinement algorithm scaled well for the cast checking

client, taking under 13 minutes for each benchmark. The factory method client

took under 4 minutes per benchmark (as seen in Table 5.3), as it raised few queries.

Table 5.4 gives the data for the client that queried all application variables for which

the 1H algorithm gave a more precise answer than context-insensitive analysis. The

longest running time for this client was was 94 minutes for pmd, with an average

175

Chapter 5. Context-Sensitive Points-To Analysis

query time of 0.68 seconds. Our current implementation computes each query result

from scratch, and we believe that for large numbers of queries, performance could be

significantly improved through more caching.

176

Chapter 6

Thin Slicing

“Thin-slicing is part of what makes the unconscious so dazzling. But it’s

also what we find most problematic about rapid cognition. How is it pos-

sible to gather the necessary information for a sophisticated judgment in

such a short time?” Malcolm Gladwell, Blink: The Power of Thinking

Without Thinking

This chapter presents thin slicing, a refinement-based program understanding tool

based on ideas from our points-to analysis. As discussed in §1.3, thin slicing aims to

use refinement to focus programmer attention on those statements most relevant to

her development task, just as our points-to analysis uses refinement to focus analysis

effort on statements most relevant to the client property. In fact, the technique for

explaining heap-based value flow in thin slices is based directly on the match-edge-

based refinement in our points-to analysis. Here, we present the details of how thin

slices are defined, refined, and computed; see §1.3 for a high level overview of thin

slicing.

The rest of this chapter is organized as follows. §6.1 defines producer statements

and the thin slicing process, and §6.2 defines thin slices using traditional dependences.

177

Chapter 6. Thin Slicing

§6.3 describes our technique for expanding (refining) thin slices to explain heap-based

value flow and control dependences. §6.4 presents algorithms for computing thin

slices as variants of a traditional slicing algorithm. Finally, §6.5 gives results from

our experimental evaluation.

6.1 Defining Thin Slices

In this section, we define the producer statements included in a thin slice. We also

show how statements excluded from the thin slice explain why the producer state-

ments affect the seed. A simple example, seen in Figure 6.1, is used to illustrate

these concepts. §6.2 defines the statements in a thin slice using traditional notions of

dependence.

Slicing determines the parts of a program “relevant” to some seed statement. In

traditional slicing, relevance is defined as any statement possibly affecting the values

computed by the seed. As originally stated by Weiser [Wei79], this relevance definition

requires the slice to include an executable subset of the program in which the seed

always performs the same computation as in the original program. Thin slicing differs

from classical slicing primarily in its more selective notion of relevance.

With thin slicing, only producer statements for the seed are relevant. We define

producer statements in terms of direct uses of memory locations (variables or object

fields in Java). A statement s directly uses a location l iff s uses l for some computa-

tion other than a pointer dereference. For example, the statement y = x.f does not

directly use x, but it does directly use o.f , where x points to o. A statement t is a

producer for a seed s iff (1) s = t or (2) t writes a value to a location directly used

by some other producer.

Consider computing a thin slice for line 7 in the toy example of Figure 6.1. Line 7

directly uses an object field written at line 5 (since w and z are aliased), and therefore,

178

Chapter 6. Thin Slicing

1 x = new A();

2 z = x;

3 y = new B();

4 w = x;

5 w.f = y;

6 if (w == z) {

7 v = z.f; // the seed

8 }

Figure 6.1: A small program to illustrate thin slicing. Directly-used locations (see §6.1)
in the thin slice for line 7 are underlined.

line 5 is a producer. Similarly, line 5 directly uses y, which is written at line 3, making

line 3 a producer as well. Hence, line 5 and line 3 are comprise the thin slice for line 7

(along with line 7 itself). In contrast, the traditional slice for line 7 is the entire

example.

We call the non-producer statements in the traditional slice explainer statements.

These statements show why the producer statements can affect the seed. Explainer

statements can show one of two things about the producers:

Heap-based value flow When values flow between producers through heap loca-

tions, the locations are accessed using aliased pointers. Explainer statements

show how these base pointers may become aliased.

Control flow The remaining explainer statements show the conditions (i.e., the ex-

pressions in conditional branches) under which producer statements actually

execute.

Consider again the example of Figure 6.1. Line 2 and line 4 show that w and z

both point to the A object allocated at line 1. Hence, these lines are explainers for

the heap-based value flow between line 5 and line 7 in the thin slice. Line 6 explains

control flow, showing the condition under which the seed statement actually executes.

179

Chapter 6. Thin Slicing

Thin slicing’s separation of producer and explainer statements provides a natural,

structured method for exploring a traditional slice. Traditional slices must include

transitive explainer statements (i.e., explainers for the explainers and so on), since

any statement possibly affecting the seed is relevant for such a slice. While this

transitivity can lead to an overwhelming number of explainer statements, thin slices

structure them into a manageable hierarchy. Explainers for heap-based value flow

in a thin slice can be shown using two additional thin slices, as shown in §6.3.1.

The behavior of a conditional guarding a thin slice statement can also be understood

through an additional thin slice. In this manner, more and more thin slices can be

used to show explainers, in the limit yielding the traditional slice.

In practice, we have found that very few explainers are needed to accomplish

typical debugging and understanding tasks. In our evaluation, over half the tasks

could be completed with a thin slice alone. In most other cases, only one or two

explainer statements were required, and these explainers were lexically close to thin

slice statements (further discussed in §6.3.2). Hence, thin slicing is highly effective at

identifying the statements in a traditional slice most relevant to developer tasks.

6.2 Thin Slices as Dependences

In §6.1, we defined thin slices in terms of producer statements. Here we define thin

slices in terms of the dependences typically used to define traditional slices. The thin

slice for a seed s is a subset of those statements upon which s is transitively flow

dependent (also known as data dependent), obtained by ignoring uses of base pointers

in dereferences.

A statement s is flow dependent on statement t if the following three conditions

hold [HPR89]:

1. s can read from some storage location l.

180

Chapter 6. Thin Slicing

v = z.fw.f = y

w = x

y = new B()

z = xx = new A() w == z

Figure 6.2: A dependence graph for the program of Figure 6.1. Thick edges indicate non-
base-pointer flow dependences, used for thin slicing. Traditional slicing also uses base
pointer flow dependences (the dashed edges) and control dependences (the dotted edge).

2. t can write to l.

3. There exists a control-flow path from t to s on which l is not re-defined.

For Java-like languages, storage locations are either variables (local or global) or

object fields, with the latter accessed through some field dereference of the form x.f.

Traditional slices must include the transitive flow dependences of the seed.

Thin slices ignore base pointer flow dependences, thereby excluding statements ex-

plaining heap-based value flow. A base pointer flow dependence is a flow dependence

due solely to the use of a pointer in a field dereference. For the statement y = x.f,

flow dependences due to the use of x are base pointer flow dependences. Similarly, a

statement of the form p.f = q has base pointer flow dependences due to the use of p.

Ignoring base pointer flow dependences leaves only producer flow dependences, which

transitively connect a statement to its producers. For example, y = x.f would have a

producer flow dependence to some statement z.f = w, where x and z may be aliased.

Figure 6.2 shows an example dependence graph for the program of Figure 6.1.

Nodes represent statements, and edges represent dependences between statements.

As is standard for dependence graphs [HRB88, RHSR94], edges are drawn in the

direction opposite of the dependences, so thin slicing requires computing backwards

reachability. In Figure 6.2, the solid edges indicate the producer flow dependences,

181

Chapter 6. Thin Slicing

while the dashed edges indicate ignored base pointer flow dependences. The dotted

edge is a control dependence, to be discussed shortly. The seed v = z.f is only

reachable from w.f = y and y = new B() via solid edges, and these statements are

the producers for the seed, as expected.

An interesting correspondence exists between producer flow dependences and

edges in pointer analysis graph representation with match edges. The producer flow

dependences for a field write x.f = y are a subset of those field reads w = z.f such

that an edge y
match−−−→ w exists in our initial pointer analysis graph (which includes

all possible match edges). (There may not be a producer flow dependence for each

possible match edge since a more precise alias analysis may be used to compute the

flow dependences.) Ignoring base pointer flow dependences in thin slicing allows the

user to view heap-based value flow without necessarily understanding why the corre-

sponding base pointers are may-aliased. This abstraction corresponds exactly to how

match edges allow our pointer analysis to selectively skip checking for aliasing of base

pointers.

Note that thin slices also exclude control dependences, explainers of control flow.

Intuitively, statement s is control dependent on conditional e if e can affect how many

times s executes (Tip’s survey [Tip95] has a more formal definition). Figure 6.2 has

a dotted control dependence edge from conditional w == z to v = z.f, the statement

in its if block in Figure 6.1. §6.3 describes our empirical observation that important

control dependences are nearly always lexically close to thin slice statements, and

hence can be discovered easily.

6.3 Expanding Thin Slices

Here, we discuss in more detail how thin slices can be refined, or expanded, to show

explainer statements, as discussed in §6.1. To review, explainer statements can answer

182

Chapter 6. Thin Slicing

questions of the following form about a thin slice T :

1. Given statements x := y.f and w.f := z in T such that w and y are aliased

(causing value flow from z to x), what statements cause the aliasing?

2. Under what conditions can some statement s in T execute?

A thin slicing tool answers these questions when requested by the user. §6.3.1 dis-

cusses a technique for explaining aliasing using two additional thin slices. §6.3.2 dis-

cusses how relevant control dependences are usually “close” to thin slice statements,

making their discovery relatively straightforward.

Example We use the example in Figure 6.3, a simple program fragment manipulat-

ing a file, to illustrate thin slice expansion. The example displays only a small part

of the File implementation, the tracking of whether the file is open using a boolean

field. The readFromFile() function throws an exception if the file passed to it is not

open. Finally, the main() method creates a file, erroneously closes it, and then passes

it to readFromFile(), causing the exception. The File object is read from a Vector

before being passed to close() and readFromFile(), complicating discovery of the

bug.

6.3.1 Question 1: Explaining Aliasing

When a thin slice includes statements that copy a value through the heap, some-

times the user needs to understand why those statements access the same heap loca-

tion. For the example of Figure 6.3, suppose that the user asks for a thin slice from

line 10 to determine why line 11 threw an exception. The computed thin slice will

be {3, 4, 5, 9, 10} (highlighted with underlines), the only statements that can produce

the boolean open value. Clearly, these statements fail to diagnose the bug completely:

the user still does not know which File is passed to close() before being passed to

183

Chapter 6. Thin Slicing

1 class File {
2 boolean open;
3 File() { ...; this.open = true; }
4 isOpen() { return this.open; }
5 close() { ...; this.open = false; }
6 ...
7 }
8 readFromFile(File f) {
9 boolean open = f.isOpen();

10 if (!open)
11 throw new ClosedException();
12 } ...
13 }
14 main() {
15 File f = new File();
16 Vector files = new Vector();
17 files.add(f);
18 ...;
19 File g = (File)files.get(i);
20 g.close();
21 ...;
22 File h = (File)files.get(i);
23 readFromFile(h);
24 }

Figure 6.3: An example for showing expansion of thin slices, similar to an example we
saw in our evaluation. The bug is an exception thrown at line 11, and understanding
the bug requires an explanation of aliasing (§6.3.1) and following a control dependence
(§6.3.2). We use single underlines to highlight relevant expressions in the initial thin slice,
and double underlines for expressions in explainer statements for aliasing.

isOpen(). To diagnose this bug, the user must determine which statements cause the

‘this’ pointers of close() and isOpen() to be aliased.

We can expand thin slices to explain aliasing by computing additional thin slices

for the base pointers in question. Given aliased base pointers x and y, we compute thin

slices seeded with the statements defining x and y (unique assuming SSA form). These

thin slices will show why some common object o can flow to both x and y, causing

them to be aliased. For Figure 6.3, the common object for the ’this’ parameters of

close() and isOpen() is the File allocated at line 15. Double underlines in Figure 6.3

184

Chapter 6. Thin Slicing

indicate the statements added to explain the flow of the File (the Vector class is elided

for clarity). Note line 16 is still omitted, as it does not touch the File object. Given

these thin slices, the user sees that line 20 closes the File, and that the bug could be

fixed by either not closing the file or by removing it from the Vector.

Note that this expansion technique for explaining aliasing closely matches our

technique for refining match edges in our points-to analysis. Expanding a thin slice

to explain a particular alias has an effect similar to removing the match edge between

the corresponding field access edges in our points-to analysis graph representation.

Removing this match edge forces our points-to analysis to see if the corresponding

base pointers are may-aliased, but other match edges are still used to skip the alias

checking for other field accesses. Similarly, recursive thin slices are used to explain

may-aliasing to the user in thin slice expansion, thereby avoiding expansion for other

related field accesses.

Explaining aliasing using additional thin slices yields an intuitive hierarchical

structure to heap-based flow, making it more understandable for the user. Suppose

that statements x := y.f and w.f := z appear in a thin slice. Expanding the thin

slice to show flow into x and w adds one more level of data dependences to the slice. If

during expansion, statements a := b.g and c.g := d are added, the aliasing of b and

c could be explained with another level of data dependences, and so on. If Figure 6.3

were changed so that the flow of the Vector to the add() and get() in main() was

complex (e.g., it got stored in a data structure), another level of thin slices would

explain that flow. The ability to show these different levels of aliasing in a structured

manner relies on the fact that only field reads and writes can dereference pointers

in Java; in C, which allows for creating pointers to pointers and taking addresses of

variables, explanations of why two statements access the same memory location may

not be so simple.

Array accesses can require explainer statements beyond those showing the aliasing

185

Chapter 6. Thin Slicing

of the array pointers. Say that we have statements a = b[i] and c[j] = d in the thin

slice, such that there is value flow from d to a. In trying to understand this heap-based

flow, the user may wonder both (1) how b and c can be aliased (the same question as

with field accesses), and additionally (2) how the array indices i and j can have the

same value. The latter question can be answered through thin slices on each of the

array index expressions (with any necessary expansion).

Two additional technical points about explaining aliasing merit mention. First,

the thin slices explaining aliasing should be restricted to only show the flow of objects

that can flow to both base pointers, filtering statements showing flow of an object to

just one of them. This filtering eliminates some statements irrelevant to explaining

the aliasing. Second, context sensitivity may be necessary to focus the aliasing ex-

planations in some cases. For example, if the code of Figure 6.3 were part of a large

program where many File objects were used, the user would likely want to ask about

aliasing ’this’ in isOpen() for the particular call at line 9, rather than for all calls.

We encountered one case in which an explanation of aliasing was necessary in

our experiments, and we believe that many similar situations often arise in practice.

In our programming experience, we have found that when such bugs arise, they

can be tricky to debug, as values can be mutated in unexpected places. Analyses

that find typestate bugs [DLS02, FYD+06], e.g., reading from a file after closing it,

could benefit from using thin slices to explain bugs that involve aliasing. Such tools

sometimes hide error reports that involve aliasing, since there is no mechanism in the

tool for explaining the aliasing succinctly [MSA+04].

6.3.2 Question 2: Control Dependence

In our experience, when a debugging or program understanding task requires viewing

control dependences, the control-relevant statements usually lie lexically close to some

186

Chapter 6. Thin Slicing

statement in the thin slice. In Figure 6.3, the bug manifests at line 11, which throws

the exception. As no value flows into the throw statement, a thin slice from the throw

statement will not aid debugging. However, code inspection immediately shows that

the condition of the if statement at line 10 is relevant to the bug, as it directly

controls whether the exception is thrown. With this information, the obvious next

step is to thin slice from line 10 to learn more about the bug, as described in §6.3.1.

While this example may seem contrived, our experiments show that Figure 6.3

reflects the common case. For nearly all tasks in our evaluation, at most one or two

control dependences were relevant, and they all lay syntactically close to statements

in the thin slice. We also found that the vast majority of control dependences are

unnecessary for understanding the seed behavior. Hence, we believe that in practice,

simply showing the thin slice statements in the source code suffices for identifying any

relevant control dependences; the user can take additional thin slices from relevant

conditionals to understand their behavior. Additional tool support may be useful for

indicating non-obvious control dependences, e.g., due to exceptions.

6.4 Computing Thin Slices

Computing a thin slice entails computing a statement’s transitive flow dependences,

ignoring uses of base pointers (as discussed in §6.2). As in previous work on slic-

ing [HRB88, Rep98], we compute thin slices using variants of graph reachability.

Here, we first describe the basics of constructing our graph representation, a subset

of system dependence graphs [HRB88] (§6.4.1). Then, we briefly present two simple

algorithms to compute thin slices, one context insensitive (§6.4.2) and one context

sensitive (§6.4.3).

187

Chapter 6. Thin Slicing

6.4.1 Graph Construction

In both thin slice algorithms, we first compute a subset of the system dependence

graph (SDG) program representation of Horwitz et al. [HRB88]. Previous work [LH96,

AH03] has described how to compute SDGs for Java-like languages, and we mostly

re-use those techniques (slight differences are discussed in §7.2). Our implementation

handles the full Java Virtual Machine bytecode language, excluding concurrency. Our

representation differs in that we (1) exclude control dependence edges and (2) han-

dle heap-based flow dependences differently, depending on the thin slicing algorithm

(details in §6.4.2 and §6.4.3).

SDG construction relies on the results of a points-to analysis. We use the points-

to analysis to compute a call graph for the program, necessary for tracking interpro-

cedural dependences. We also use the points-to analysis to determine which heap

locations can be defined (used) by field writes (reads), in order to track heap-based

value flow. §6.5 shows that precise points-to analysis is key for effective thin slicing

of Java programs.

Our representation of data dependences for local variables and method parameters

is straightforward. At a high level, we represent such dependences as follows:

1. For a statement x = e, where x is a local, we add edges to all statements using

x, excluding uses in pointer dereferences of the form x.f. We operate on an

SSA representation, so these edges are added flow sensitively.

2. For an actual parameter node for a call to method m(), we query the call graph

to find the possible call targets m1, . . . ,mk. Then, for each mi, we add an edge

from the actual parameter node to the corresponding formal parameter node.

Return values are handled similarly.

Our thin slicing algorithms differ from the standard SDG handling of data depen-

dence, and from each other, in their treatment of definitions of heap locations (i.e.,

188

Chapter 6. Thin Slicing

statements of the form x.f := e) as described below.

6.4.2 Context-Insensitive Thin Slicing

Our first algorithm computes traditional (context-insensitive) graph reachability on

our SDG variant to compute thin slices. In this approach, we represent data depen-

dences for heap access statements as follows:

• For a statement x.f := e, we add an edge to each statement with an expression

w.f on its right-hand side, such that the points-to analysis indicates x may-alias

w.

Note that we add direct edges to statements in other procedures. In contrast, the

traditional SDG only includes interprocedural edges for parameter passing and return

values. The advantage of this approach is that we need not model heap accesses using

additional parameters and return values, as is done with traditional slicing [HRB88].

In practice, not using heap parameters dramatically increases scalability without sig-

nificant loss in precision (discussed further in §6.4.3 and §6.5).

Having computed the graph, a simple transitive closure gives the thin slice for a

particular seed. It is straightforward to construct the graph and do the traversal in

a demand-driven fashion. A potential disadvantage of this approach is that it may

return unrealizable paths [RHS95] due to lack of context sensitivity (§6.5 shows this

issue is not significant in practice).

6.4.3 Context-Sensitive Thin Slicing

The context-sensitive thin slicing algorithm uses an SDG variant closer to that used in

traditional slicing, created compositionally from program dependence graphs (PDGs)

for each procedure. Intraprocedurally, this approach handles heap accesses as follows:

189

Chapter 6. Thin Slicing

• For a statement x.f := e, we add an edge to each statement with an expression

w.f on its right-hand side in the same procedure such that the points-to analysis

indicates x may-alias w.

We handle interprocedural heap flow in the same way as the standard SDG, with

heap reads and writes modeled as extra parameters and return values to each pro-

cedure [AG98, HRB88]. Our implementation introduces such parameters using the

same heap partitions used by the preliminary pointer analysis. Discovering the ap-

propriate set of parameters for each procedure requires an interprocedural mod-ref

analysis [RLS+01], computed using the result of the points-to analysis.

Having built the graph, we compute context-sensitive reachability as a partially

balanced parentheses problem [Rep98]. Our implementation relies on a backwards,

demand-driven tabulation algorithm [RHS95].

In our experience, constructing an SDG using heap parameters can be very ex-

pensive for large programs. Furthermore, we found that for realistic usage patterns,

context sensitivity did not provide much benefit for thin slicing. See §6.5 for details.

6.5 Evaluation

We now present an empirical evaluation of thin slicing for debugging and program

understanding tasks. Our experiments validate four hypotheses:

• Thin slices lead the user to desired statements. For the tasks we consid-

ered, thin slices often contain the desired statements (e.g., the buggy statement

for a debugging task). When statements explaining pointer aliasing or control

flow were relevant, the statements were always lexically close to statements in

the thin slice. Subjectively, we also found a thin slicer very useful for under-

standing one set of benchmarks.

190

Chapter 6. Thin Slicing

• Thin slices focus better on desired statements than traditional slices.

We compared context-insensitive thin slicing to context-insensitive traditional

slicing (the context-sensitive configurations did not scale) with identical han-

dling of control dependences and a breadth-first strategy for inspecting state-

ments, simulating real-world use of a program understanding tool. The exper-

iments showed that finding desired statements in a traditional slice required

inspecting 3.3 times more statements than a thin slice for the debugging tasks,

and 9.4 times more statements for the program understanding tasks.

• A precise pointer analysis is key to effective thin slicing. We used

a pointer analysis with object-sensitive handling [MRR05] of key collections

classes for the thin slicer. With a less precise pointer analysis, up to 17.2X

more statements required inspection in thin slices to find desired statements.

• Thin slices can be computed efficiently. Our context-insensitive thin

slicing algorithm scaled well to large programs, with the cost of computing

thin slices insignificant compared to the pre-requisite call graph construction

and pointer analysis. We were unable to scale a context-sensitive traditional

slicer [HRB88] to our larger benchmarks.

The remainder of this section proceeds as follows. §6.5.1 describes our experi-

mental configuration and methodology. §6.5.2 presents details of the debugging ex-

periment, which studied the effectiveness of thin and traditional slicing for locating

injected bugs in a standard suite for evaluating debugging tools [DER05]. Finally,

§6.5.3 describes the program understanding experiment, which tests the effectiveness

of thin and traditional slicing for discovering why certain downcasts cannot fail in the

SPECjvm98 benchmark suite.

191

Chapter 6. Thin Slicing

Program Methods Bytecode Call Graph SDG
Size (KB) Nodes Statements

Software-Artifact Infrastructure Repository
nanoxml 541 35 817 22205
jtopas 337 24 397 23766
ant 11147 632 20164 584155

xmlsec 11192 678 17075 525886
SPECjvm98
mtrt 470 32 514 19699
jess 1061 67 1466 46037
javac 1610 118 2127 71041
jack 592 55 1088 38114

Table 6.1: Benchmark characteristics, derived from methods discovered during on-the-fly
call graph construction, including Java library methods. The number of call graph nodes
exceeds the number of distinct methods due to limited cloning-based context-sensitivity
in the points-to analysis. SDG Statements reports the number of scalar statements, but
excludes parameter passing statements introduced to model the heap.

6.5.1 Configuration and Methodology

We implemented the thin and traditional data slicers using the IBM T.J. Watson Li-

braries for Analysis (WALA) [WAL]. We utilized call graph construction and pointer

analysis algorithms provided by WALA, along with its tabulation solver for context-

sensitive analysis [RHS95]. We analyzed our benchmarks with the Sun JDK 1.4.2_09

standard library code, for which WALA provides models of important native meth-

ods. WALA uses heuristics to analyze the most common uses of reflection in Java,

but in general reflection and native methods may still cause some unsoundness, as is

typical in Java static analysis implementations. All experiments were performed on

a Lenovo ThinkPad t60p with dual 2.2GHz Intel T2600 processors and 2GB RAM.

The analyzer ran on the Sun JDK 1.5_07 using at most 1GB of heap space.

Table 6.1 provides information about the programs used in our experiments. For

pointer analysis and call graph construction, we used a variant of Andersen’s analysis

192

Chapter 6. Thin Slicing

with on-the-fly call graph construction [And94, RMR01], with fully object-sensitive

cloning [MRR05] for objects of key collections classes, as described in [FYD+06] (the

importance of this precision is discussed later in the section). We excluded from

the call graphs a few large standard libraries (e.g.,javax.swing, java.awt) which we

deemed a priori uninteresting for the tasks at hand, since none of our tested tasks

involved those libraries. For all experiments reported, call graph construction and

pointer analysis ran in under 5 minutes.

Note that the points-to analysis information needed for thin slicing could be nat-

urally computed on-demand along with thin slices. We outlined the connections

between thin slicing and our refinement-based points-to analysis in §6.2 and §6.3. In

a realistic IDE setting, pre-computing an exhaustive pointer analysis would proba-

bly not be suitable from a performance standpoint, making demand-driven pointer

analysis critical for usability. At the time of this evaluation, our refinement-based

points-to analysis was not implemented in WALA, and hence we decided to base our

experiments on existing WALA points-to analyses. We plan to have a version of thin

slicing based on refinement-based points-to analysis implemented in the near future.

Scalability For the dependence graph traversal, we considered both the context-

insensitive (flat graph reachability) and context-sensitive (tabulation) algorithms pre-

sented in §6.4.

In all cases, the time and space to compute the thin slice or traditional slice

with the context-insensitive algorithm was insignificant compared to the preliminary

pointer analysis. Context-insensitive thin slicing took under 6 seconds for all tests

except ant, which took 47 seconds since a large number of interprocedural heap

dependence edges had to be added. These low running times are not surprising, as

context-insensitive slicing (thin or traditional) reduces to simple graph reachability

on a demand-driven construction of the SDG program representation.

Our implementation of context-sensitive traditional slicing [RHSR94] scales to

193

Chapter 6. Thin Slicing

handle most experiments on the smaller test cases (nanoxml, jtopas, mtrt, jack). For

the larger codes, our implementation could not complete in reasonable time and/or

space. We believe our implementation is fairly well-tuned, as the analysis engine

(based on tabulation [Rep98]) has evolved over several years and been used in sev-

eral studies reporting scalable interprocedural dataflow analyses (e.g., [FYD+06]).

For slicing, the key bottleneck comes from handling of the heap; as programs grow

larger, the number of SDG statements introduced to model heap parameter-passing

quickly explodes, dramatically increasing space and time requirements. For our larger

benchmarks, the full SDG grew to over 10 million nodes before exhausting available

memory; we suspect the number of nodes would grow much larger given adequate

space. Note that heap parameters are also a scalability bottleneck in a commercial

slicing tool [Tei].

In all results reported, we compare results from the context-insensitive thin slicer

to a context-insensitive traditional slicer, which scaled to all benchmarks. This pro-

vides an apples-to-apples comparison, as all experimental parameters match exactly

for the two algorithms; the only difference was how each handled data dependences.

Measuring Slice Size Nearly all existing work measures the precision of a slice by

its full size. However, in practice, once a user of a program understanding tool has

discovered all of the desired statements for her original problem (e.g., those causing

some bug), she will not inspect the rest of the slice. Our experiments aim to simulate

this realistic usage pattern.

For each task, we identify both a seed statement for the slice and a set of desired

statements, i.e., those statements whose discovery suffices for completing the task.

For example, for a debugging task, the seed is the point of failure, and the desired

statement is the cause of the bug. We then aim to measure how many statements in

the slice the user must inspect to discover the desired statements.

We use a breadth-first traversal strategy to simulate the order in which statements

194

Chapter 6. Thin Slicing

are inspected by the user, as in the work of Renieris and Reiss [RR03]. Intuitively,

statements “closer” to the seed seem more likely to be relevant to its behavior. Hence,

we assume the user gradually explores statements of increasing distance (defined by

the dependence graph of the technique) from the seed until the desired statements

are found; a breadth-first search of the dependence graph simulates this strategy.

Note that CodeSurfer [Cod], perhaps the most widely-used slicing tool, supports such

dependence-graph browsing for viewing slices. The BFS evaluation metric has also

been used in other recent work [RR03, ZGG06b, ZJL+06]. For thin and traditional

slicing, our tables report the number of statements inspected using this breadth-first

inspection strategy.

To our knowledge, ours is the first work to compare static slicing algorithms

using a measure intended to simulate the usage of a realistic tool, rather than just

comparing the full slice sizes. We note that the two measures produce qualitatively

different results. For example, in one of our smaller test cases, nanoxml-1, context

sensitivity reduces the traditional slice size from 8067 statements to 381 statements,

but the number of statements explored in the traversal decreases only from 32 to 26.

We observed similar results for thin slices. Given these results, the context-sensitive

algorithm of §6.4.3 does not seem beneficial for thin slicing as likely used in practice.

Control Dependence As discussed in §6.3.2, relevant control dependences were

observed to be always lexically close to statements in the thin slice, as in the ex-

ample of Figure 6.3. Furthermore, most control dependences were not useful for the

tested tasks, and it is not obvious how to automatically expose important control de-

pendences. Hence, we manually pre-determined the important control dependences

for our tasks, and counted only those control dependences as inspected for both the

thin and traditional slicers. This handling of control dependences allowed us to focus

on the effectiveness of thin slicing’s handling of data dependences compared with a

traditional slicer’s.

195

Chapter 6. Thin Slicing

Threats to Validity One threat to the validity of our results is that our study of

debugging tasks (§6.5.2) uses injected bugs from the SIR suite [DER05], which may

not accurately reflect the characteristics of real bugs. Several techniques were used

to make the injected bugs in the SIR suite realistic, described in detail in [DER05].

The bugs were of a wide variety: they could alter both the control and data flow

of the program, and the resulting failures ranged from program crashes to incorrect

output. Nevertheless, we intend to do a future study with real bugs to confirm that

thin slicing still provides a significant benefit.

Our use of breadth-first search on the dependence graph to simulate programmer

exploration of the slice may not accurately reflect how developers would use a slicing

tool. If most developers are able to very quickly prune statements in a traditional

slice irrelevant to their tasks, then the BFS metric would overstate the advantage

of thin slicing. In the future, we aim to do a user study to obtain more definitive

answers on the productivity benefits of thin slicing.

Finally, our use of whole-program pointer analysis and call graph construction

for the thin slicer may not scale to larger benchmarks. These analyses also may

not be suitable for use inside a development environment, as code edits could require

expensive re-computation of the pointer analysis results. We plan to employ demand-

driven, refinement-based pointer analysis [SB06] in the next version of the thin slicer

to overcome these drawbacks.

6.5.2 Experiment: Locating Bugs

Our first experiment tested locating several bugs, (1) to see if thin slices include

the buggy statement when slicing from the seed, and (2) to compare the number

of inspected statements for thin and traditional slices. We investigated several in-

jected bugs in the Java programs in the Software-Artifact Infrastructure Repository

196

Chapter 6. Thin Slicing

(SIR) [DER05]. SIR provides both several injected bugs for each program and test

suites that can be used to expose the bugs. For each injected bug, we ran the cor-

responding test suite to discover a failure. Then, we ran both thin and traditional

slicing from the failure point, measuring how many statements had to be inspected

to find the bug (as described in §6.5.1).

Three points should be noted about the SIR programs and injected bugs. First, we

were unable to include two SIR programs in these experiments, jmeter and siena. We

could not determine the appropriate library dependences to build jmeter, and in our

runs, no test cases exposed the injected bugs in siena. Also, the suite provides several

versions of each benchmark; we chose bugs from the most recent versions. Finally,

some of the injected bugs represent bugs of omission, i.e., bugs that deleted necessary

code. If the omission bug removed an assignment to a local or a conditional branch,

we chose as the desired target statements the immediate data or control dependent

successor statements, respectively. We excluded bugs that deleted field writes, as

there was no obvious relationship between the deleted write and the surrounding

code in the method.

Table 6.2 presents results for our debugging experiment. Several of the injected

buggy statements were quite close to the failure points of the programs, and hence

both the traditional and thin slicers found the bugs very quickly. For example, with

jtopas-1, the buggy statement itself fails with a NullPointerException. These sorts

of bugs can be easily debugged without tool support, but we include them for com-

pleteness.

Using the traditional slicer required inspecting 1 to 4.52 times more statements

than thin slicing to find the bug. The total number of inspected statements for

traditional slicing was 3.3 times higher than with thin slicing, a measure of the total

inspection effort saved. The injected bugs in nanoxml in particular often required

tracing a value as it is inserted and later retrieved from one or two Vectors, as in the

197

Chapter 6. Thin Slicing

Bug # Thin # Trad. Ratio # Control # ThinCIPA # TradCIPA
nanoxml-1 12 32 2.67 0 12 32
nanoxml-2 25 113 4.52 0 431 1675
nanoxml-3 29 123 4.24 0 472 1883
nanoxml-4 12 33 2.75 1 17 44
nanoxml-5 35 156 4.46 1 159 45
nanoxml-6 12 52 4.33 0 35 90
jtopas-1 1 1 1 0 1 1
jtopas-2 2 2 1 1 2 2
ant-1 2 2 1 1 2 2
ant-2 4 5 1.25 0 4 5
ant-3 34 55 1.62 15 251 501
ant-4 3 3 1 2 3 3

xml-security-1 2 2 1 1 2 2

Table 6.2: Evaluation of thin slicing for debugging. For each bug, we show the number
of statements that must be inspected in the thin slice (the “Thin” column) and the
traditional slice (the “Trad” column) to discover the bug using BFS traversal (see §6.5.1).
We also give the ratio of traditional statements to thin slice statements, and the number
of control dependences that must be exposed to find the bug; the numbers for thin
and traditional slices include these control dependences. Finally, we give the number of
inspected statements for thin and traditional slicing when context-insensitive points-to
analysis is used, without object-sensitive handling for containers (the “ThinCIPA” and
“TradCIPA” columns). Slicing of any kind was not useful for five bugs in xml-security

and one bug in ant; these bugs do not appear in the table.

example of Figure 1.3. Tracing this flow by hand can be difficult and time-consuming,

and hence we think that thin slicing can have the greatest impact for this type of

bug.

Debugging nanoxml-5 required exposing statements causing aliasing (see §6.3.1),

for reasons similar to those of the example in Figure 6.3. To simulate this user

action, we ran the thin slicer in a configuration that included statements explaining

one level of indirect aliasing. The results show that exposing such statements in this

controlled manner is useful, as we still inspected significantly fewer statements than

the traditional slice.

Few control dependences were relevant for these debugging tests, validating our

198

Chapter 6. Thin Slicing

decision to ignore control dependence in thin slices. For all but one bug, the number of

control dependences that need to be followed is 2 or less. These control dependences

were always obvious from code surrounding the thin slice (as discussed in §6.3.2).

The high number of control dependences for ant-3 is due to the fact that the buggy

function has 12 return statements, and one of them is directly control dependent on

the bug; we included one control dependence for each return, as it is not obvious

which one caused the bug. Nevertheless, all the control dependences were still near

statements in the thin slice.

The precision of our preliminary points-to analysis was key to the effectiveness

of the thin slicer. The “ThinCIPA” and “TradCIPA” columns in Table 6.2 show our

results to be considerably worse with a points-to analysis that does not treat container

classes like Vector object sensitively. In cases involving such data structures, the

number of statements inspected with the thin slice increased by up to a factor of

17.2X with the less precise analysis, likely making the thin slicing tool unusable.

Finally, for five bugs in xml-security and one bug in ant, no type of slicing

could help the user find the bug, and hence they do not appear in the table. The

xml-security bugs all followed the same pattern:

long hash = computeHash(input); // buggy

assert hash == expectedHash; // fails

In xml-security, the computeHash() equivalent is complex, spanning several .class

files, and the injected bugs were buried in the algorithm internals. In such cases,

slicing from this assertion failure (whether static or dynamic) will inevitably bring

in most or all of the code that computes the hash function. This example illustrates

that slicing of course is not a panacea; delta debugging [Zel02] or refactoring to test

at a finer granularity may help in these situations. We find the fact that thin slicing

was useful for 13 out of 19 inspected bugs encouraging.

199

Chapter 6. Thin Slicing

1 class Node {
2 final int op;
3 static int ADD_NODE_OP = 1;
4 Node(int op) { this.op = op; }
5 }
6 class AddNode extends Node {
7 AddNode(...) {
8 super(ADD_NODE_OP); ...
9 }

10 }
11 void simplify(Node n) {
12 int op = n.op;
13 switch (op) {
14 case ADD_NODE_OP:
15 AddNode add = (AddNode) n;
16 ...
17 }
18 }

Figure 6.4: An example illustrating a tough cast. Expressions in the thin slice used to
understand the safety of the cast are underlined.

In summary, we found that for these injected bugs, thin slices very often contain

the buggy statements, and the bugs could be found more quickly with a thin slicer

than a traditional slicer. Also, 11.5 statements on average required inspection with

the thin slicer (ranging from 1 to 35), quite a manageable number; the average for the

traditional slicer was significantly larger at 54.8 statements, ranging from 1 to 156.

6.5.3 Experiment: Understanding Tough Casts

Our second experiment involved using slicing to hand-validate the safety of tough

casts in the SPECjvm98 benchmarks. A tough cast is a downcast in a program

that cannot be verified by precise and scalable pointer analysis (we used the same

pointer analysis used to construct our call graph). For example, the cast at line 15

in Figure 6.4, adapted from the javac benchmark, is a tough cast. This cast cannot

fail because the value of the op field of AddNode objects is ADD_NODE_OP, as guaranteed

200

Chapter 6. Thin Slicing

by line 8, and no other subclasses of Node (not shown) have ADD_NODE_OP in their op

field. Typically, tough casts are those that (1) are not used to cast values retrieved

from a container (due to lack of generics) and (2) are not dominated by an explicit

instanceof check ensuring their safety.

Tough casts present a good test of the efficacy of thin slicing in aiding program

understanding. The safety of tough casts is often due to some global invariant of a

program. These invariants are often (in our experience) undocumented, and discov-

ering the invariants can aid the programmer in understanding the overall structure

and behavior of the program. Furthermore, discovering these invariants by hand can

be difficult, as it often requires tracing value flow through several disparate parts

of the program. Hence, easing the understanding of tough casts with tool support

aids overall program understanding and additionally can be useful for refactoring or

adding parametrized types or annotations.

Our experimental configuration involved first manually identifying those state-

ments that showed each tough cast could not fail (the desired statements of §6.5.1)

with the help of the thin slicer, and then comparing the BFS traversal sizes of the

thin and traditional slices from the cast to these desired statements. In the example

of Figure 6.4, we can understand the tough cast through thin slicing by following a

control dependence from the cast, and then computing a thin slice for line 12 to see

what value op gets for different subclasses of Node. For each SPEC benchmark, we

investigated 10 tough casts at random, or all tough casts if there were fewer than 10.

Note that the compress and db benchmarks had no tough casts, and mpegaudio was

excluded since its bytecodes are obfuscated, making understanding its casts difficult.

Also, we failed to determine the reason for cast safety for 6 casts in javac and one

cast in jess. In these cases, the safety of the cast relies on some subtle invariant that

is not easy to determine for one unfamiliar with the code.

The thin slicer significantly eased the manual process of determining the desired

201

Chapter 6. Thin Slicing

Cast # Thin # Trad. Ratio # Control # ThinCIPA # TradCIPA
mtrt-1 22 51 2.32 0 22 51
mtrt-2 23 52 2.26 0 23 52
jess-1 6 7 1.17 2 6 7
jess-2 13 39 3 0 25 93
jess-3 6 6 1 2 6 6
jess-4 6 7 1.17 2 6 7
jess-5 6 7 1.17 2 6 7
jess-6 6 6 1 2 6 6
javac-1 57 910 16 1 57 910
javac-2 43 853 19.8 1 43 853
javac-3 65 2224 34.2 1 65 2267
javac-4 45 855 19 1 45 855
jack-1 18 79 4.39 0 303 758
jack-2 57 151 2.65 0 339 647
jack-3 18 69 3.83 0 304 603
jack-4 18 79 4.39 0 304 759
jack-5 57 151 2.65 0 339 647
jack-6 35 132 3.77 0 338 802
jack-7 35 132 3.77 0 338 802
jack-8 35 132 3.77 0 338 802
jack-9 30 79 2.63 0 304 759
jack-10 57 151 2.65 0 339 647

Table 6.3: Evaluation of thin slicing for understanding tough casts. The types of data in
the table columns are described with Table 6.2.

statements for each tough cast. Although the code was unfamiliar to us, our thin

slicing tool guided us through heap-based value flow, saving a great deal of time. The

thin slicer was especially helpful when source code was not available, e.g., for the

jack benchmark, as we had to study a compiler representation of the bytecodes and

could not use standard IDE-based source navigation tools.

Results for the tough casts experiment appear in Table 6.3. Thin slicing helped

understand tough casts more effectively than traditional slicing: the number of state-

ments examined using a traditional slice exceeded by 1.17 to 34.2 times the number

examined using a thin slice. In total, 9.4 times more statements were examined

with the traditional slicer than the thin slicer. In javac, the casts resembled Fig-

202

Chapter 6. Thin Slicing

ure 6.4. The code includes a large number of Node subclasses used pervasively in

the program, resulting in large numbers for the traditional slicer. The importance of

object-sensitive container handling in the points-to analysis is seen for the jack casts,

where the number of inspected statements increased by factors of 5.9-16.9X with less

precise analysis.

The absolute numbers of inspected statements exceeded those for the debugging

tests, but they remained manageable for a user. The thin slicer required inspecting an

average of 29.3 statements (ranging from 6-65), while the traditional slicer required an

average of 280 (ranging from 6 to 2224). For javac, many of the thin slice statements

were writes of opcodes in a large number of constructors (like in Figure 6.4), which

could be quickly inspected to ensure that a suitable constant is written. For jack, the

BFS traversal over-estimated the number of thin slice statements that needed to be

inspected; once we understood the benchmark, we could terminate the search early

at some statements which we knew would not cause the cast to fail.

In summary, we conclude thin slicing can effectively provide tool support to iden-

tify statements that ensure tough casts cannot fail. A traversal based on thin slicing

typically touches significantly fewer statements than a traversal based on traditional

transitive flow dependence.

203

Chapter 7

Related Work

Here we discuss the previous work most closely related to our work on points-to

analysis and thin slicing. First, we discuss previous work on pointer analysis in §7.1.

Then, we discuss work related to thin slicing in §7.2.

7.1 Pointer Analysis Related Work

In §1.2.2, we gave a brief overview of the progression of points-to analysis research

over the last 15 years. Here, we give a more detailed comparison of our points-to

analysis with closely related work, specifically covering the following key areas:

• Context-insensitive points-to analysis

• Context-sensitive points-to analysis

• Refinement-based points-to analysis

• Demand-driven points-to analysis

• Incremental points-to analysis

204

Chapter 7. Related Work

• CFL-reachability

• Cast verification

We do not aim to comprehensively discuss all work on points-to analysis; see [O’C00,

Hin01, GC01, Ryd03] for more comprehensive discussions and comparisons of various

points-to analyses.

7.1.1 Context-insensitive points-to analysis

The key difference between the context-insensitive points-to analysis of Chapter 4

and most previous work is our demand-driven, refinement-based approach. Sev-

eral exhaustive context-insensitive points-to analyses [And94, Ste96, FFSA98, Das00,

SFA00, HT01b, RMR01, WL02, LH03, BLQ+03, ZC04] were discussed in §1.2.2. We

showed in §4.4 that our analysis could nearly match the precision of Andersen’s anal-

ysis for tested clients with a budget of 2ms per query, yielding up to a 16X speed

improvement over a state-of-the-art exhaustive algorithm [LH03].

Previous work has studied the trade-offs between field-based and field-sensitive

points-to analysis for Java (see §2.2.2 for relevant definitions), as we do through

refinement with match edges. Liang et al. experimented with a variety of points-

to analysis algorithms for Java [LPH01]. They conclude that field-sensitivity yields

little benefit over field-based analysis for the extra required effort. Our precision

results in the demand-driven setting support this conclusion. The field-based program

representation used in the work of Lhoták and Hendren [LH03] is similar to our graph

with conservative match edges; instead of a match edge, they create a node for each

field, and represent getfields and putfields to assignments from and to the field node.

This representation works well for exhaustive propagation of points-to sets, but the

match edge representation is more suitable for our refinement techniques.

205

Chapter 7. Related Work

Algorithm Eq / CS CS Shown to
Sub CG Heap Scale

Zhu / Whaley [WL04, ZC04] Sub X
Whaley [WR99] Sub
Choi [CGS+99] Sub
Fähndrich [FRD00] Eq X X
Rehof [RF01] Sub X
Emami [EGH94] Sub X
Wilson [WL95] Sub X
Cherem [CR04] Eq X
Ruf [Ruf00] Eq X 1.1 lib
Liang [LH01] Eq X
Guyer [GL03] Sub X
Lattner [LLA07] Eq X X
O’Callahan [O’C00] Eq X X
Steensgaard (CS) [Ste] Eq X X X
Wang [WS01] Sub X X 1.1 lib
Object-sensitive [MRR05, LH06] Sub X X 1-limited
Naik [NAW06] Sub X X 3-limited
Current paper Sub X X X

Table 7.1: A comparison of key properties of previous analyses. Algorithms are named
by first author unless they have been referred to differently in this paper; note that
Steensgaard (CS) [Ste] is different than his original analysis [Ste96]. The “Eq/Sub” column
indicates whether assignments are modeled with equality or subset constraints, and the “CS
CG” and “CS Heap” columns respectively indicate the use of a context-sensitive call graph
and heap abstraction (see §2.2.4 and §2.2.5 for definitions). Finally, the “Shown to Scale”
column indicates whether the algorithm has been shown to scale to large Java benchmarks;
“1.1 lib” means the smaller Java 1.1 libraries were analyzed, and k-limiting [Shi88] is
indicated where used.

7.1.2 Context-sensitive points-to analysis

The context-sensitive points-to analysis of Chapter 5 is distinguished from previous

work by its ability to scalably compute a context-sensitive heap abstraction and call

graph while requiring far less memory than existing approaches. Table 7.1 gives key

properties of several other context-sensitive points-to analysis algorithms; here we

206

Chapter 7. Related Work

summarize some of the approaches taken by these analyses.

While effective for clients like escape analysis, summary-based analyses with sub-

set constraints [WL95, WR99] have only been shown to scale to medium-sized pro-

grams. Summary-based analyses that use equality constraints have typically been

more scalable [O’C00, FRD00, Ste, LLA07]. The algorithms of O’Callahan [O’C00]

and Lattner and Adve [LLA07] scale well with a context-sensitive heap abstraction,

but are less scalable when computing a context-sensitive call graph. A similar analy-

sis for C# scales with a context-sensitive call graph [Ste], but still requires more than

1GB of memory on its largest benchmark.

Binary decision diagrams (BDDs) have been used in several recent systems to

greatly improve the scalability of context-sensitive analysis. The Zhu and Calman

[ZC04] and Whaley and Lam [WL04] algorithm, while quite scalable, uses a context-

insensitive heap abstraction and call graph, leading to precision loss [LH06]. We

compare extensively with the BDD-based 1-limited object-sensitive analysis of [LH06]

in Section 5.4; object-sensitive analysis [MRR05] analyzes methods separately based

on the receiver object instead of using call strings, exploiting typical object-oriented

code structure for greater precision and scalability.

Naik et al. present a static race detection tool based on a scalable 3-limited

object-sensitive analysis [NAW06]. It is difficult to compare our analysis with theirs

directly, as their race detection client raises object-sensitive queries, which are in

general incomparable with context-sensitive queries [MRR05]. As future work we plan

to design an object-sensitive version of our analysis, allowing for a better comparison.

Hackett and Aiken [HA06] present a points-to analysis for C with context sensitiv-

ity (including a context-sensitive heap abstraction), flow sensitivity, and partial path

sensitivity. The analysis is summary based and implemented through a translation

to SAT. Their analysis takes several hours to analyze large C programs.

207

Chapter 7. Related Work

7.1.3 Refinement-based points-to analysis

Plevyak and Chien [PC94] present a type inference algorithm for object-oriented pro-

grams that uses refinement whenever a potential imprecision in the analysis result is

detected. The refinement is accomplished through cloning, e.g., analyzing a function

separately for different call sites. In contrast to their work, which aggressively refines

away all imprecision, our analyses only refine in parts of the program deemed likely

to yield a more precise result for the client. This more selective refinement is key to

scalability.

Guyer and Lin [GL03] present a client-driven points-to analysis for C that detects

which statements cause imprecision for a given client, and then re-analyzes the pro-

gram with greater flow and context sensitivity for those statements. Their results

show that they obtain much of the precision benefit of flow and context sensitivity

at a small extra cost, and their work was an inspiration for ours. The key difference

with our work is similar to the difference with Plevyak and Chien’s, namely that

their analysis adds sensitivity to all possibly polluting statements when imprecision

is detected. This approach does not scale for Java, as it requires too much code to

be treated precisely.

7.1.4 Demand-driven points-to analysis

The demand-driven points-to analysis of Heintze and Tardieu [HT01a] is the best

known in the literature. The analysis is for C, and they show promising results with

a client that tries to resolve calls through function pointers. We show in §4.4 that

when adapted to Java, this analysis does not provide satisfactory performance.

208

Chapter 7. Related Work

7.1.5 CFL-reachability

Our use of CFL-reachability is based on the work of Reps et al. on developing and

utilizing the CFL-reachability framework [RHSR94, RHS95, HRS95, Rep98]. The LF

grammar in Figure 3.2 is an adaptation of the grammar given for Andersen’s analysis

for C in [Rep98]. Our key insight was to recognize that Andersen’s analysis for Java

is a balanced-parentheses problem when expressed in terms of CFL-reachability, a

structure we exploit in both our context-insensitive and context-sensitive algorithms.

Our match edges are related to the summary edges used by the tabulation al-

gorithm for balanced parentheses languages [RHS95, RHSR94, Rep94]. Summary

edges are computed bottom-up as paths between parentheses are found. In contrast,

match edges are added exhaustively and then refined by checking for paths between

parentheses.

CFL-reachability formulations lead directly to demand-driven algorithms through

the use of the magic-sets transformation [Rep94]. The inference rules of FullFS

(presented in §4.6), an adaptation of the demand-driven algorithm of Heintze et

al. [HT01a], correspond exactly to a magic-sets transformation of the grammar in

Figure 3.2 with pointsTo as the start symbol.

Recent work of Kodumal and Aiken [KA04, KA07] has elucidated the connec-

tion between CFL-reachability and set constraints. Their work shows how to effi-

ciently solve balanced-parentheses CFL-reachability problems with a set constraints

solver [KA04], and more recent work shows how to additionally handle an intersected

regular language [KA07]. As presented, their work requires explicit construction of

the state machine for the regular language, which would make applying their tech-

nique to our context-sensitive points-to analysis formulation difficult to scale (the

number of states in RC (see §5.2) is exponential in the size of the program).

209

Chapter 7. Related Work

7.1.6 Incremental points-to analysis

Some recent work makes promising advances in performing incremental points-to

analysis. Kodumal and Aiken show how to perform a limited form of incremental

analysis in a set constraints solver using backtracking [KA05]. Their technique is most

effective in cases where code changes are primarily limited to a small set of source

files, which they show is a typical development pattern. Hirzel et al. present a points-

to analysis implemented in a JIT compiler that handles all Java language features,

which can quickly update its computed results after program changes [HDDH07]. Our

approach to handling code changes is to recompute from scratch points-to queries that

are affected by a program change. In cases where the number of queried variables

is moderate, our approach has the advantages of simplicity, as no engineering for

incrementality is needed, and of not needing to cache intermediate analysis results,

which can consume significant amounts of memory,

Choi et al. [CGS+99] and Whaley and Rinard [WR99] define flow and context-

sensitive points-to and escape analyses for Java. Vivien and Rinard extend the anal-

ysis in [WR99] to be incremental [VR01], focusing analysis effort on code deemed to

be likely to yield profitable results. Their results show that their incremental analysis

obtains most of the effect of an exhaustive analysis in much less time. Our positive

results for early termination may be explained by similar underlying principles. It is

unclear how long their analysis takes to answer individual queries.

7.1.7 Cast verification

Constraint-based analyses have been developed to convert legacy Java programs to use

Java 5 generics, and they have been shown to prove many downcasts safe [DKTE04,

FTD+05]. These analyses rely on the generics annotations of Java 5 java.util classes

to model their behavior. In contrast, our approach determines properties of library

210

Chapter 7. Related Work

code without annotations, and hence handles application data structures as well. Fur-

thermore, our analysis can be used for more than cast safety, as shown by our factory

method client. In other work, Wang and Smith present a context-sensitive constraint-

based type analysis [WS01] and show that it is effective at proving downcasts safe.

However, they analyze the Java 1.1 libraries, which are significantly smaller than the

Java 1.3 libraries used in the present work.

In general, there are various type inference algorithms that are in some cases

comparable to points-to analyses. Cartesian-product analysis [Age95] was an early

inference algorithm that precisely handled polymorphic code (through context sensi-

tivity), and numerous variants have been proposed since then (e.g., in some of the

aforementioned cast verification work [WS01, DKTE04]). For some clients, such type

inference algorithms are insufficient, and a points-to analysis is required. For exam-

ple, tainting analysis (e.g., [LL05]) relies on tracking the flow of individual objects

from untrusted sources to trusted sinks, rather than just inferring a precise concrete

type for the sink.

7.2 Thin Slicing Related Work

Since first being defined by Weiser in 1979 [Wei79], slicing has inspired a large body

of work on computing slices and on applications to a variety of software engineering

tasks. We refer the reader to Tip’s survey [Tip95] and Krinke’s thesis [Kri03] for

broad overviews of slicing technology and challenges. Here, we focus on the work

most relevant to our own.

Our thin slicing algorithm is a straightforward adaptation of the SDG-based ap-

proach first presented by Horwitz et al. [HRB88]. Our implementation of a traditional

slicer is in fact tabulation-based, as suggested in [Rep98] and the 20-year Retrospec-

tive to [HRB88].

211

Chapter 7. Related Work

CodeSurfer [Cod] is a program understanding tool for C and C++ based on the

analysis techniques of [HRB88, RHSR94]. CodeSurfer also uses pointer analysis to

allow navigation from a use of a heap location to potential defs. Our evaluation met-

ric of a breadth-first traversal strategy aims to simulate use of a tool like CodeSurfer,

which allows for navigating the dependence graph. While CodeSurfer allows naviga-

tion of all control and data dependences, thin slicing emphasizes producer statements

and shows explainer statements using additional thin slices (see §6.1); our evaluation

has shown that this technique quickly leads users to the most relevant statements.

Atkinson and Griswold [AG98] present a slicer relying on a preliminary flow-

insensitive pointer analysis. This work targets C, and so had to deal with difficulties

arising from issues such as stack-directed pointers and unsafe memory access, which

do not arise in Java. Larsen and Harrold [LH96] presented one of the first slicing

approaches for object-oriented software, adding pseudo-parameters for fields to track

dependencies through the heap. Our context- sensitive slicer implementation uses

a similar approach, but relies on a partially context-sensitive preliminary pointer

analysis to disambiguate locations with field- and object-sensitivity, and additional

pseudo-parameters to soundly handle all fields that may be accessed transitively by

callees.

In recent years, several papers have improved precision by integrating more precise

static alias analysis into slicing. Liang and Harrold [LH98] present a novel approach to

represent formal parameter objects with trees. Hammer and Snelting [HS04] present

an enhancement to this approach, including a criterion for sound limiting of tree sizes

for recursive data structures. Both these approaches are more powerful than relying

solely on a preceding flow-insensitive alias analysis, since must-alias information on

parameters can allow sound strong updates. It is not clear how far these algorithms

scale; the experimental results of Hammer and Snelting address programs significantly

smaller than the benchmarks considered here. In future work, we plan to incorporate

212

Chapter 7. Related Work

aspects of Hammer and Snelting’s approach for thin slices.

Orso et al. [OSH04] present a classification of data dependence edges in an SDG,

based on certainty of may-alias information, and the span (scope) of a program over

which a data dependence flows. They propose an incremental slicing procedure to

aid debugging, whereby a tool can provide progressively larger slices by including

progressively more classes of data dependencies. Our thin slice expansion technique

is similar in spirit, but goes in a different direction by expanding slices to include

statements that indirectly give rise to the primary alias relations.

Mock et al. [MACE02] showed that for C programs with heavy pointer use, using

dynamic points-to data significantly improved slice precision over a conservative flow-

insensitive pointer analysis. We suspect Java programs resemble C programs with

heavy pointer use with regard to data dependence.

PSE [MSA+04] is a static analysis tool for localizing the causes of typestate errors

in C and C++ programs by essentially computing a variant of a backward slice, with

extra filtering based on the type of error. Their system is able to perform strong

updates on the heap in some situations, using a technique we plan to try in our thin

slicer. Their work unsoundly ignores may-aliasing in some configurations, partly due

to the fact that traces involving aliasing are hard for developers to understand. If

applied to a Java-like language, our technique for explaining aliases in thin slices may

help solve this problem, as discussed in §6.3.1.

Recently, Zhang et al. have considerably improved the state-of-the-art in dynamic

slicing [ZTG06, ZGZ04, ZGG06a, ZGG06b]. Thin slicing applies naturally to dynamic

data dependences, and we believe dynamic thin slices could provide benefits similar

to static thin slices. Zhang et al.’s work on improving scalability [ZGZ04, ZTG06]

could be leveraged to create a more scalable dynamic thin slicer. Their recent work

on pruning dynamic slices [ZGG06a] is complementary to ours: thin slicing and their

heuristics for determining when a statement is unlikely to be relevant (based on

213

Chapter 7. Related Work

which statements output good and bad values) could be fruitfully combined. Recent

work [ZGG06b] observes that using dynamic data dependences alone can often iden-

tify buggy statements in C programs; we suspect that in fact those data dependences

considered by a thin slicer would also be sufficient. Finally, this work [ZGG06b] also

suggests exploring statements closer to the seed first when viewing a slice, an idea we

also use in our evaluation.

214

Chapter 8

Conclusions and Future Work

We have presented two refinement-based techniques for analysis and understanding of

large object-oriented programs. Our refinement-based points-to analysis exploits the

balanced parentheses structure of Java heap accesses to provide both scalability and

precision. Thin slicing uses a novel notion of relevance and user-guided refinement to

better focus programmer attention on those statements most relevant to development

tasks. Together, our points-to analysis and thin slicing enable new types of program-

ming tools that could significantly ease the process of developing and maintaining

large-scale object-oriented programs.

Many clients other than those we tested could benefit from the scalability and

precision of our refinement-based points-to analysis. An incomplete list of recent

analyses that may benefit includes work on type-state verification [FYD+06], race de-

tection [NAW06], reflection analysis [LWL05], and analyses for security bugs [LL05].

By using our pointer analysis, these analyses may be able to much larger programs

or reduce their false positive rate through more precise handling of the heap. Addi-

tionally, use with a wider variety of clients may expose opportunities to improve the

points-to analysis itself, e.g., with a different refinement policy.

215

Chapter 8. Conclusions and Future Work

A practical IDE-based implementation of our points-to analysis would pose some

interesting engineering challenges. One key issue would be how to maintain the global

program representations still required by the points-to analysis, i.e., a pre-computed

call graph and information on where fields are accessed (for addition of match edges).

IDEs like Eclipse do very little caching of program representations like abstract syntax

trees to reduce memory overhead. Maintaining a call graph in memory for a large

program may be too expensive, necessitating a balance of on-demand computation

and limited caching. In addition, any global data like a call graph must be updated

incrementally as the programmer edits the code, which may pose another interested

engineering challenge.

A parallel implementation of our points-to analysis could yield a large scalability

improvement. Since our analysis does no sharing of state across queries, the analysis

can be trivially parallelized by running each query on its own processor. The mem-

ory usage of our analysis may need to be more carefully engineered to make good

use of the cache on a multiprocessor. However, with proper engineering, a parallel

implementation of the pointer analysis could provide large real-world speedups, as

multicore processors are becoming pervasive.

The next step in validating thin slicing would be to build an IDE-based imple-

mentation and test its usefulness with developers. Various user-interface issues may

arise during this process. The thin slice could be shown to the user in a standard tree

view, but a graph view may be more intuitive, especially in cases where expansion is

necessary. Also, assuming the thin slicer is built atop our refinement-based pointer

analysis, it remains an open question how to handle budgets and early termination

in the user interface.

Ideally, an IDE-based thin slicer would make extensive use of developer feedback.

Better incorporation of such feedback into the compilation and analysis process has

been a longstanding open problem (e.g., see Knuth’s study [Knu71]). Thin slicing

216

Chapter 8. Conclusions and Future Work

provides a promising avenue for progress on this issue, as users can easily track a small

number of statements that the analysis thinks are relevant to the seed statement. One

could imagine various ways that the user could help improve the analysis result, e.g.,

by providing reasons why certain statements are not relevant or by suggesting a

different refinement policy for the underlying pointer analysis. Lessons learned from

implementing such a thin slicer and evaluating it in a user study may be broadly

applicable to software quality tools.

217

Bibliography

[AAB+00] Bowen Alpern, Dick Attanasio, John Barton, Michael Burke, Perry
Cheng, Jong-Deok Choi, Anthony Cocchi, Stephen Fink, David Grove,
Michael Hind, Susan Flynn Hummel, Derek Lieber, Vassily Litvinov, Ton
Ngo, Mark Mergen, Vivek Sarkar, Mauricio Serrano, Janice Shepherd,
Stephen Smith, V. C. Sreedhar, Harini Srinivasan, and John Whaley.
The Jalapeno virtual machine. IBM Systems Journal, Java Performance
Issue, 39(1), 2000.

[AG98] Darren C. Atkinson and William G. Griswold. Effective whole-program
analysis in the presence of pointers. In Foundations of Software Engi-
neering, pages 46–55, 1998.

[Age95] Ole Agesen. The cartesian product algorithm: Simple and precise type
inference of parametric polymorphism. In ECOOP, pages 2–26, 1995.

[AH03] Matthew Allen and Susan Horwitz. Slicing Java programs that throw and
catch exceptions. In PEPM ’03: Proceedings of the 2003 ACM SIGPLAN
workshop on Partial evaluation and semantics-based program manipula-
tion, pages 44–54, New York, NY, USA, 2003. ACM Press.

[And94] Lars O. Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, University of Copenhagen, DIKU, 1994.

[Ash] Ashes suite collection. http://www.sable.mcgill.ca/software/.

[BLQ+03] Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren, and Navindra
Umanee. Points-to analysis using BDDs. In Conference on Programming
Language Design and Implementation (PLDI), June 2003.

[BR01] Thomas Ball and Sriram K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. In SPIN ’01: Proceedings of the
8th international SPIN workshop on Model checking of software, pages
103–122, New York, NY, USA, 2001. Springer-Verlag New York, Inc.

218

BIBLIOGRAPHY

[BS96] David Bacon and Peter Sweeney. Fast static analysis of C++ virtual
function calls. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), San Jose, CA, October 1996.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst.,
13(4):451–490, 1991.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam Sreedhar,
and Sam Midkiff. Escape analysis for Java. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), November 1999.

[Cha06] Swarat Chaudhuri. CFL-reachability in subcubic time. Technical report,
IBM Research Report RC24126, 2006.

[Cod] CodeSurfer. http://www.grammatech.com/products/codesurfer/.

[CR04] Sigmund Cherem and Radu Rugina. Region analysis and transformation
for java programs. In ISMM ’04: Proceedings of the 4th international
symposium on Memory management, 2004.

[CU91] Craig Chambers and David Ungar. Making pure object-oriented lan-
guages practical. In Norman Meyrowitz, editor, Proceedings of the Con-
ference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), volume 26, pages 1–15, New York, NY, 1991. ACM
Press.

[DaC] DaCapo Benchmark Suite. http://www-
ali.cs.umass.edu/DaCapo/gcbm.html.

[DADY04] Nurit Dor, Stephen Adams, Manuvir Das, and Zhe Yang. Software vali-
dation via scalable path-sensitive value flow analysis. In ISSTA ’04: Pro-
ceedings of the 2004 ACM SIGSOFT international symposium on Soft-
ware testing and analysis, pages 12–22, New York, NY, USA, 2004. ACM
Press.

[Das00] Manuvir Das. Unification-based pointer analysis with directional assign-
ments. In Conference on Programming Language Design and Implemen-
tation (PLDI), Vancouver, British Columbia, Canada, June 2000.

219

BIBLIOGRAPHY

[DER05] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering, 10(4), October
2005.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In European Con-
ference on Object-Oriented Programming (ECOOP), August 1995.

[DGS97] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A practical
framework for demand-driven interprocedural data flow analysis. ACM
Transactions on Programming Languages and Systems, 19(6):992–1030,
November 1997.

[DKTE04] Alan Donovan, Adam Kiezun, Matthew S. Tschantz, and Michael D.
Ernst. Converting Java programs to use generic libraries. In Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2004.

[DLFR01] Manuvir Das, Ben Liblit, Manuel Fähndrich, and Jakob Rehof. Esti-
mating the impact of scalable pointer analysis on optimization. In SAS,
pages 260–278, 2001.

[DLS02] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: path-sensitive pro-
gram verification in polynomial time. In Conference on Programming
Language Design and Implementation (PLDI), 2002.

[DMM98] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based
alias analysis. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998
conference on Programming language design and implementation, pages
106–117, New York, NY, USA, 1998. ACM Press.

[Ecl] The Eclipse Platform. http://www.eclipse.org/.

[EcP] Eclipse Plugin Central. http://www.eclipseplugincentral.com.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-
sensitive interprocedural points-to analysis in the presence of function
pointers. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 confer-
ence on Programming language design and implementation, pages 242–
256, New York, NY, USA, 1994. ACM Press.

220

BIBLIOGRAPHY

[FFA00] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. Polymorphic
versus monomorphic flow-insensitive points-to analysis for c. In SAS ’00:
Proceedings of the 7th International Symposium on Static Analysis, pages
175–198, London, UK, 2000. Springer-Verlag.

[FFSA98] Manuel Fändrich, Jeffrey S. Foster, Zhendong Su, and Alex Aiken. Par-
tial online cycle elimination in inclusion constraint graphs. In Conference
on Programming Language Design and Implementation (PLDI), Mon-
treal, Canada, June 1998.

[FKS00] Stephen Fink, Kathleen Knobe, and Vivek Sarkar. Unified analysis of
array and object reference in strongly typed languages. In Proceedings
of the 2000 Static Analysis Symposium, June 2000.

[Fow99] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[FQ03] S. Fink and F. Qian. Design, implementation and evaluation of adaptive
recompilation with on-stack replacement, 2003.

[FRD99] Manuel Fähndrich, Jakob Rehof, and Manuvir Das. From polymorphic
subtyping to CFL-reachability: Context-sensitive flow analysis using in-
stantiation constraints. Technical report, Microsoft Research Technical
Report MSR-TR-99-84, 1999.

[FRD00] Manuel Fähndrich, Jakob Rehof, and Manuvir Das. Scalable context-
sensitive flow analysis using instantiation constraints. In Conference on
Programming Language Design and Implementation (PLDI), 2000.

[FTD+05] Robert Fuhrer, Frank Tip, Julian Dolby, Adam Kiezun, and Markus
Keller. Refactoring techniques for migrating applications to generic java
container classes. In European Conference on Object-Oriented Program-
ming (ECOOP), 2005.

[FYD+06] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing. In
International symposium on Software testing and analysis (ISSTA), 2006.

[GC01] David Grove and Craig Chambers. A framework for call graph construc-
tion algorithms. ACM Trans. Program. Lang. Syst., 23(6):685–746, 2001.

[GL03] Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In
International Static Analysis Symposium (SAS), San Diego, CA, June
2003.

221

BIBLIOGRAPHY

[HA06] Brian Hackett and Alex Aiken. How is aliasing used in systems software?
In SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering, pages
69–80, New York, NY, USA, 2006. ACM Press.

[Har78] Michael A. Harrison. Introduction to Formal Language Theory. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1978.

[HCXE02] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system
and language for building system-specific, static analyses. In Conference
on Programming Language Design and Implementation (PLDI), 2002.

[HDDH07] Martin Hirzel, Daniel Von Dincklage, Amer Diwan, and Michael Hind.
Fast online pointer analysis. ACM Trans. Program. Lang. Syst., 29(2):11,
2007.

[HDWY06] Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Modular
checking for buffer overflows in the large. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), 2006.

[Hin01] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE), Snowbird, Utah, June 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, 1969.

[HPR89] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer
variables. In Conference on Programming Language Design and Imple-
mentation (PLDI), 1989.

[HRB88] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slic-
ing using dependence graphs. In Conference on Programming Language
Design and Implementation (PLDI), 1988.

[HRS95] Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand interprocedu-
ral dataflow analysis. In SIGSOFT’95: Proceedings of the Third ACM
SIGSOFT Symposium on the Foundations of Software Engineering, 1995.

[HS04] Christian Hammer and Gregor Snelting. An improved slicer for Java.
In Proceedings of the ACM-SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 17–22, 2004.

222

BIBLIOGRAPHY

[HT01a] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis.
In Conference on Programming Language Design and Implementation
(PLDI), Snowbird, Utah, June 2001.

[HT01b] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using
CLA: A million lines of C code in a second. In Conference on Program-
ming Language Design and Implementation (PLDI), Snowbird, Utah,
June 2001.

[J2E] Java Platform Enterprise Edition. http://java.sun.com/javaee.

[J2S] Java Platform Standard Edition. http://java.sun.com/javase.

[jEd] jEdit: Open source programmer’s text editor. http://www.jedit.org.

[KA04] John Kodumal and Alex Aiken. The set constraint/CFL-reachability
connection in practice. In Conference on Programming Language Design
and Implementation (PLDI), June 2004.

[KA05] John Kodumal and Alex Aiken. Banshee: A scalable constraint-based
analysis toolkit. In SAS ’05: Proceedings of the 12th International Static
Analysis Symposium. London, United Kingdom, September 2005.

[KA07] John Kodumal and Alex Aiken. Regularly annotated set constraints. In
PLDI, pages 331–341, 2007.

[Knu71] Donald E. Knuth. An empirical study of FORTRAN programs. Softw.,
Pract. Exper., 1(2):105–133, 1971.

[Kri03] Jens Krinke. Advanced Slicing of Sequential and Concurrent Programs.
PhD thesis, University of Passau, 2003.

[LA05] Chris Lattner and Vikram Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN conference on Program-
ming language design and implementation, pages 129–142, New York,
NY, USA, 2005. ACM Press.

[Lam04] Butler W. Lampson. Software components: Only the giants survive. In
K. Sparck-Jones and A. Herbert, editors, Computer Systems: Theory,
Technology, and Applications, pages 137–146. Springer-Verlag, 2004.

[LH96] Loren Larsen and Mary Jean Harrold. Slicing object-oriented software.
In International Conference on Software Engineering (ICSE), 1996.

223

BIBLIOGRAPHY

[LH98] Donglin Liang and Mary Jean Harrold. Slicing objects using system
dependence graphs. In ICSM, pages 358–367, 1998.

[LH01] Donglin Liang and Mary Jean Harrold. Efficient computation of param-
eterized pointer information for interprocedural analyses. In Proceedings
of the 8th International Symposium on Static Analysis, 2001.

[LH03] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using
Spark. In International Conference on Compiler Construction (CC),
Warsaw, Poland, April 2003.

[LH04] Ondřej Lhoták and Laurie Hendren. Jedd: a BDD-based relational ex-
tension of Java. In Conference on Programming Language Design and
Implementation (PLDI), 2004.

[LH06] Ondřej Lhoták and Laurie Hendren. Context-sensitive points-to analysis:
Is it worth it? In International Conference on Compiler Construction
(CC), 2006.

[Lho] Ondřej Lhoták. Personal communication. 2005.

[Lho02] Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java.
Master’s thesis, McGill University, December 2002.

[Lho06] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams. PhD
thesis, McGill University, January 2006.

[LL05] V. Benjamin Livshits and Monica S. Lam. Finding security errors in Java
programs with static analysis. In Proceedings of the 14th Usenix Security
Symposium, pages 271–286, August 2005.

[LLA07] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making Context-
Sensitive Points-to Analysis with Heap Cloning Practical For The Real
World. In Proceedings of the 2007 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’07), San Diego,
California, June 2007.

[LPH01] Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Extending and
evaluating flow-insensitive and context-insensitive points-to analyses for
Java. In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE), Snowbird, Utah, June 2001.

224

BIBLIOGRAPHY

[LPH02] Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Evaluating the
precision of static reference analysis using profiling. In Internal Sympo-
sium of Software Testing and Analysis (ISSTA), Rome, Italy, July 2002.

[LT93] Nancy G. Leveson and Clark S. Turner. Investigation of the Therac-25
accidents. IEEE Computer, 26(7):18–41, 1993.

[LWL05] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis
for Java. In Kwangkeun Yi, editor, Proceedings of the 3rd Asian Sympo-
sium on Programming Languages and Systems, volume 3780. Springer-
Verlag, November 2005.

[MACE02] Markus Mock, Darren C. Atkinson, Craig Chambers, and Susan J. Eg-
gers. Improving program slicing with dynamic points-to data. SIGSOFT
Softw. Eng. Notes, 27(6):71–80, 2002.

[McC06] Kevin McCoy. How the IRS failed to stop $200M in bogus refunds. USA
Today, December 5, 2006.

[MRR05] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized
object sensitivity for points-to analysis for java. ACM Trans. Softw. Eng.
Methodol., 14(1):1–41, 2005.

[MSA+04] Roman Manevich, Manu Sridharan, Stephen Adams, Manuvir Das, and
Zhe Yang. PSE: explaining program failures via postmortem static anal-
ysis. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering,
pages 63–72, New York, NY, USA, 2004. ACM Press.

[MXBK05] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jun-
gloid mining: helping to navigate the API jungle. In Conference on
Programming Language Design and Implementation (PLDI), 2005.

[NAW06] Mayur Naik, Alex Aiken, and John Whaley. Effective static race de-
tection for Java. In Conference on Programming Language Design and
Implementation (PLDI), 2006.

[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for java. In CC, pages 138–152,
2003.

[NR69] Peter Naur and Brian Randell, editors. Software Engineering: Report
of a conference sponsored by the NATO Science Committee, Garmisch,

225

BIBLIOGRAPHY

Germany, 7-11 Oct. 1968, Brussels. Scientific Affairs Division, NATO,
1969.

[O’C00] Robert O’Callahan. Generalized Aliasing as a Basis for Program Analysis
Tools. PhD thesis, Carnegie Mellon University, November 2000.

[OJ97] Robert O’Callahan and Daniel Jackson. Lackwit: a program understand-
ing tool based on type inference. In ICSE ’97: Proceedings of the 19th
international conference on Software engineering, pages 338–348, New
York, NY, USA, 1997. ACM Press.

[OSH04] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Classifying
data dependences in the presence of pointers for program comprehension,
testing, and debugging. ACM Transactions on Software Engineering and
Methodology (TOSEM), 13(2):199–239, 2004.

[oST] National Institute of Standards and Technlogy. Software errors cost U.S.
economy $59.5 billion annually. NIST News Release 2002-10.

[PC94] John Plevyak and Andrew A. Chien. Precise concrete type inference
for object-oriented languages. In Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), Portland,
Oregon, October 1994.

[Rep94] Thomas Reps. Solving demand versions of interprocedural analysis prob-
lems. In International Conference on Compiler Construction (CC), Ed-
inburgh, Scotland, April 1994.

[Rep98] Thomas Reps. Program analysis via graph reachability. Information and
Software Technology, 40(11-12):701–726, November/December 1998.

[Rep00] Thomas Reps. Undecidability of context-sensitive data-independence
analysis. ACM Trans. Program. Lang. Syst., 22(1):162–186, 2000.

[RF01] Jakob Rehof and Manuel Fähndrich. Type-base flow analysis: from poly-
morphic subtyping to CFL-reachability. In ACM Symposium on Princi-
ples of Programming Languages (POPL), 2001.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In ACM Symposium on Princi-
ples of Programming Languages (POPL), 1995.

226

BIBLIOGRAPHY

[RHSR94] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay.
Speeding up slicing. In ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), New Orleans, LA, December 1994.

[RLS+01] Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, and
Rita Altucher. A schema for interprocedural modification side-effect anal-
ysis with pointer aliasing. ACM Trans. Program. Lang. Syst., 23(2):105–
186, 2001.

[RMR01] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to anal-
ysis for Java using annotated constraints. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), Tampa Bay, Florida, October 2001.

[RR03] Manos Renieris and Steven P. Reiss. Fault localization with nearest
neighbor queries. In IEEE International Conference on Automated Soft-
ware Engineering (ASE), 2003.

[Ruf00] Erik Ruf. Effective synchronization removal for java. In Conference on
Programming Language Design and Implementation (PLDI), 2000.

[Ryd03] Barbara G. Ryder. Dimensions of precision in reference analysis of object-
oriented programming languages. In International Conference on Com-
piler Construction (CC), Warsaw, Poland, April 2003.

[SB06] Manu Sridharan and Rastislav Bodík. Refinement-based context-
sensitive points-to analysis for Java. In Conference on Programming
Language Design and Implementation (PLDI), 2006.

[SFA00] Zhendong Su, Manuel Fähndrich, and Alexander Aiken. Projection merg-
ing: Reducing redundancies in inclusion constraint graphs. In ACM
Symposium on Principles of Programming Languages (POPL), Boston,
Massachusetts, pages 81–95, January 2000.

[SGSB05] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík.
Demand-driven points-to analysis for Java. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), 2005.

[Shi88] O. Shivers. Control flow analysis in scheme. In Conference on Program-
ming Language Design and Implementation (PLDI), 1988.

227

BIBLIOGRAPHY

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–
298, 2002.

[Ste] Bjarne Steensgaard. Personal communication on analysis for Microsoft
Bartok compiler. 2005.

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In ACM
Symposium on Principles of Programming Languages (POPL), 1996.

[Tei] Tim Teitelbaum. Personal communication regarding CodeSurfer. 2007.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121–189, 1995.

[VR01] Frederic Vivien and Martin C. Rinard. Incrementalized pointer and es-
cape analysis. In Conference on Programming Language Design and Im-
plementation (PLDI), Snowbird, Utah, June 2001.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Eti-
enne Gagnon, and Phong Co. Soot - a Java optimization framework. In
Proceedings of CASCON 1999, pages 125–135, 1999.

[WAL] T.J. Watson Libraries for Analysis. http://wala.sourceforge.net.

[Wei79] Mark David Weiser. Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method. PhD thesis,
University of Michigan, Ann Arbor, 1979.

[WL95] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer
analysis for C programs. In Conference on Programming Language De-
sign and Implementation (PLDI), 1995.

[WL02] John Whaley and Monica Lam. An efficient inclusion-based points-to
analysis for strictly-typed languages. In International Static Analysis
Symposium (SAS), Madrid, Spain, September 2002.

[WL04] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Conference on
Programming Language Design and Implementation (PLDI), 2004.

[WR99] John Whaley and Martin Rinard. Compositional pointer and escape anal-
ysis for Java programs. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), November 1999.

228

BIBLIOGRAPHY

[WS01] Tiejun Wang and Scott F. Smith. Precise constraint-based type inference
for java. In 15th European Conference on Object-Oriented Programming
(ECOOP), 2001.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. ACM Trans. Program. Lang. Syst., 13(2):181–210,
1991.

[Yan90] Mihalis Yannakakis. Graph-theoretic methods in database theory. In
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), April 1990.

[YHR99] Suan Hsi Yong, Susan Horwitz, and Thomas W. Reps. Pointer analysis
for programs with structures and casting. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 91–103, 1999.

[ZC04] Jianwen Zhu and Silvian Calman. Symbolic pointer analysis revisited.
In Conference on Programming Language Design and Implementation
(PLDI), 2004.

[Zel02] Andreas Zeller. Isolating cause-effect chains from computer programs.
SIGSOFT Softw. Eng. Notes, 27(6):1–10, 2002.

[ZGG06a] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning dynamic
slices with confidence. In Conference on Programming Language Design
and Implementation (PLDI), 2006.

[ZGG06b] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. A study of effec-
tiveness of dynamic slicing in locating real faults. Empirical Software
Engineering, 2006. To appear.

[ZGZ04] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Efficient forward com-
putation of dynamic slices using reduced ordered binary decision dia-
grams. In International Conference on Software Engineering (ICSE),
2004.

[ZJL+06] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex
Aiken. Statistical debugging: Simultaneous identification of multiple
bugs. In Proceedings of the 23rd International Conference on Machine
Learning, 2006.

[ZR07] Xin Zheng and Radu Rugina. Demand-driven alias analysis for c. Tech-
nical report, Cornell University CIS TR2007-2089, 2007.

229

BIBLIOGRAPHY

[ZTG06] Xiangyu Zhang, Sriraman Tallam, and Rajiv Gupta. Dynamic slicing
long running programs through execution fast forwarding. In ACM SIG-
SOFT Symposium on Foundations of Software Engineering, 2006.

230

	List of Figures
	List of Tables
	Introduction
	Our Approach: Refinement
	Refinement-Based Points-To Analysis
	Motivation
	A Brief History of Points-to Analysis
	Our Approach

	Thin Slicing
	Motivation
	Our Approach

	Dissertation Overview

	Points-To Analysis Background
	Points-To Analysis Definition
	Points-To Analysis Precision
	Assignments
	Field accesses
	Call Graph
	Method Calls
	Heap Abstraction
	Control Flow

	Points-To Analysis Formulations
	Context-Free Language Reachability
	Context-Insensitive Formulation
	Graph Representation
	Analysis Grammar
	Other Java Language Features

	Context-Sensitive Formulation
	On-The-Fly Call Graph Formulation
	Intuition
	Graph Representation
	The LOTF Language
	Adding Context Sensitivity
	Discussion

	Context-Insensitive Points-To Analysis
	Algorithm Overview
	Demand-Driven Points-To Analysis
	Client-Driven Refinement
	Simplified Formulation
	Refinement Algorithm
	Proofs of Termination and Soundness

	Regular Approximation
	Regular Reachability
	RegularPT
	Improving Precision with Types

	Refinement
	Refining through match edge removal
	RefinedRegularPT

	Evaluation
	Experimental Configuration
	Experimental Results

	Java vs. C
	FullFS Details
	Adaptation of Tabulation Algorithm
	Tabulation Algorithm for Points-To Analysis
	Discussion

	Context-Sensitive Points-To Analysis
	Algorithm Overview
	Simplified Formulation
	Context-Sensitive Refinement Algorithm
	Refinement on Java programs

	Decidable Formulation
	Context-Sensitive Analysis in CFL-Reachability
	Handling Recursion

	Refinement Algorithm
	Refinement for LRF-reachability
	Pseudocode
	Refinement Loop
	Computing Points-To Sets
	Refinement Policy

	Evaluation
	Experimental Configuration
	Experimental Results

	Thin Slicing
	Defining Thin Slices
	Thin Slices as Dependences
	Expanding Thin Slices
	Question 1: Explaining Aliasing
	Question 2: Control Dependence

	Computing Thin Slices
	Graph Construction
	Context-Insensitive Thin Slicing
	Context-Sensitive Thin Slicing

	Evaluation
	Configuration and Methodology
	Experiment: Locating Bugs
	Experiment: Understanding Tough Casts

	Related Work
	Pointer Analysis Related Work
	Context-insensitive points-to analysis
	Context-sensitive points-to analysis
	Refinement-based points-to analysis
	Demand-driven points-to analysis
	CFL-reachability
	Incremental points-to analysis
	Cast verification

	Thin Slicing Related Work

	Conclusions and Future Work
	Bibliography

