
Semantic Navigation of Large Code Bases in
Higher-Order, Dynamically Typed Languages

S. Alexander Spoon and Olin Shivers
College of Computing

Georgia Institute of Technology
Atlanta, GA 30032

Abstract— Chuck is a new code browser that allows navigation
of a code base alongsemanticstructures, such as data-flow and
higher-order control-flow relationships. Employing the fast DDP
type inferencer, it is effective on dynamically typed code bases
an order of magnitude larger than the code bases supported by
previous browsers. Chuck supports the full Smalltalk language,
and is now shipped as a standard component of the Squeak
open-source Smalltalk system, where it routinely works with code
bases exceeding 300,000 lines of code. Chuck’s implementation is
tuned for interactive use, and is transparently integrated with the
Squeak system’s existing code-browsing tools. Thus, it provides
semantic navigation of a live code base that is still being edited
without requiring long pauses for reanalysis due to edits of the
code.

I. I NTRODUCTION

Higher-order, dynamically typed programming languages
occupy a vital and thriving niche in the programming ecosys-
tem. According to its web page, theezboard.com forum-
hosting service, which is written in Smalltalk, currently
supports over ten million subscribers [1]. The Chrysler C3
software, also written in Smalltalk, includes 2000 classes and
30,000 methods [2]. Over a thirteen-month period in 2002–
2003, Cincom reported 1800 new registrations per month for
the non-commercial version of their VisualWorks Smalltalk
system [3]. It is important to find ways to maintain and reuse
these code bases. Since they often have multi-year life spans,
and typically include code whose development goes back
multiple decades, reverse engineering is important for these
systems.

Code browsing tools help reverse engineering by providing
reliable information about the code base and by providing
navigation paths through the code base. Instead of inferring
information through conventions, idioms, textual searches, or
possibly erroneous or misleading documentation, programmers
using a code browser get reliable information and navigation
paths that are determined automatically from the code base
according to the syntax and semantics of the language.

Syntactic navigationallows the user to navigate through the
code along paths determined by simple syntax-level relations.
For example, it allows programmers to navigate from classes
to their superclasses and subclasses, from variables to the ex-
pressions that use them, and from methods to the methods they
override. The standard Smalltalk browsing tools include exten-
sive support for syntactic navigation.Semantic navigation, the
topic of this paper, allows the programmer to follow paths

formed by deeper semantic connections between elements of
the code, such as the data- and control-flow induced by the
dynamic semantics of the language. (In particular, note that
control flow in a higher-order functional or object-oriented
language is no longer directly encoded in the syntax of the lan-
guage.) For example, semantic navigation allows programmers
to navigate from anew expression to the expressions that use
objects created by that expression. It allows programmers to
navigate from a message-send expression to the narrow set of
methods that might respond to that specific invocation. These
links, whose increased precision and tighter bounds help guide
and focus programmers’ exploration of large code bases, are
provided by program analysis.

Powerful and precise semantically-directed code browsers
are critically enabling tools for working with large code bases.
Without them, code bases can become self-limiting as they
grow. Clearly, it helps programmers develop applications when
they have access to a large, underlying base of existing code—
the programmer can reuse existing components instead of
having to reinvent everything from scratch, exploiting the
existing investment in design, construction and debugging that
the existing code represents. However, when the size of the
existing code becomes too large, the programmer can suffer
information overload, and may, in the end, decide that the
pain of writing the application completely from scratch is
preferable to the pain of wandering lost through a tractless
wasteland of undifferentiated software, sifting for possibly
relevant components to use. Sophisticated navigation aids help
programmers, in the popular phrase, stand on each other’s
shoulders, rather than each other’s toes.

Unfortunately, the program analyses required to provide pre-
cise semantic navigation for higher-order, dynamically typed
languages are polynomial time (or worse) , and so have not
scaled to code bases with hundreds of thousands of lines of
code. This paper discusses Chuck, a new code browser with
semantic navigation for Smalltalk, thatdoesscale to large code
bases.

Chuck’s core technology is theDDP type inferencer [4],
which provides the necessary static analysis. However, in the
process of building Chuck, we also learned that such a tool
faces challenges beyond simple asymptotic scalability. We had
to design the system to produce fast resultsconsistently, not
just on average. Further, Chuck is required to analyze live
code bases where, as dynamic-language practitioners expect,

ezboard.com�


the programmer can tightly interleave code browsing and code
editing. Such environments require reanalysis whenever the
code is edited but must not allow that reanalysis to pause
overly long and induce programmer impatience.

Chuck is implemented in and for Squeak [5], a production-
level implementation of Smalltalk [6], and is now a load
option in the standard releases of Squeak. Chuck is hosted on
SqueakSource1, and at the time of this writing has the second-
largest number of downloads of the 200+ Squeak projects
hosted on that site2. We infer from this statistic that the tool
addresses a true need of Squeak programmers.

After reviewingDDP, this paper describes the four naviga-
tion paths provided by Chuck and the solutions Chuck has to
the two other challenges mentioned above. We then connect
this research to several areas of related work, describe future
work on Chuck, and conclude.

As a note on terminology, when we say “large code base,”
we consistently mean code bases with hundreds of thousands
of lines of code.

II. T YPE INFERENCE WITHDDP

The type-inference problem is similar for various dynamic
languages, including Smalltalk [6], Self [7], Scheme [8], and
Cecil [9]. Algorithms that are effective in one language tend
to be effective in the others. All of these languages share
the difficulty that the analyses of control flow and data flow
are interdependent [10]; all of these languages have and use
dynamic dispatch on types and have data-dependent control
flow induced by objects or by higher-order functions.

Efforts on this type-inference problem date back at least two
decades. Suzuki’s work in 1981 is the oldest published work
that infers types in Smalltalk without any type declarations
[11]. More recently, in 1991, Shivers formalizedcontext, using
abstract contours, as a central technique and a central design
difference among type-inference algorithms [12]. Later, the
core of Agesen’s “Cartesian Products Algorithm” (CPA) is the
insight of choosing contexts based on data-flow information:
CPA selects contexts as tuples of parameter types [13]. (The
algorithm gets its name because the tuples are chosen as carte-
sian products of the possible argument types for each method.)
More recently yet, Flanagan and Felleisen have increased the
speed and scalability of type-inference algorithms by isolating
part of the algorithm to work on individual modules. By doing
so, their algorithm spends less time analyzing the entire code
base [14].

Unfortunately, the existing algorithms do not scale to large
dynamically typed code bases. Certainly, no successful results
have been reported for such large code bases. Grove,et al.,
implemented a wide selection of these algorithms as part of

1 http://www.squeaksource.com
2 Chuck has 3698 downloads while Seaside has 4141. These are raw

download counts that not been processed or filtered in any way, and thus
a more careful analysis might adjust Chuck’s relative ranking by a few levels.
The point would remain, however, that Chuck is among the most-downloaded
projects implemented in Squeak.

the Vortex project, and they report that all of the context-
sensitive algorithms require an unreasonable amount of time
and memory for larger Cecil programs [15]. They write:

Larger Cecil programs may benefit from context-
sensitivity, but our experiments demonstrated that
scalability problems prevent the context-sensitive
algorithms from being applied beyond the domain
of small benchmark programs. Thus the search
for a scalable and effective call graph construction
algorithm for programs that make heavy use of
polymorphism and dynamic dispatching remains an
open problem.

There are linear-time unification-based algorithms that have
great promise [16], but they have yet to be proven practical
for the present application. First, these context-insensitive
algorithms sacrifice precision for speed; it is not clear if they
would produce usefully precise results on large, extremely
polymorphic, higher-order code bases. Second, it is difficult
to use even a linear-time algorithm for semantic browsers that
allow interleaved code changes. The linear-time algorithms are
linear in the amount of codeand thus require a substantial
amount of computation for large code bases.

DDP is a recently developed type-inference algorithm which
is effective for Smalltalk code bases with hundreds of thou-
sands of lines of code. The details of the algorithm are
published separately [4]. This section gives an overview from
the perspective of a client of the algorithm.

The essence ofDDP’s approach is to cast the problem as
a demand-driven, backwards-chaining algorithm thatprunes
goals. It posts goals to itself, such as “What is the type of
variablex?,” and then tries to solve those goals. Solving a goal
usually requires posting other goals. For example, finding the
type of a variable requires finding the type of each expression
ever assigned to that variable. Whenever the algorithm needs
a goal that is not already being pursed, it creates a new one
and adds it to thegoal poolof goals being pursued.

The kinds of goalsDDP can pose to itself correspond
closely to the four navigation paths that Chuck allows. Thus,
a discussion of the kinds of goals is deferred untilSec. IV.

All demand-driven algorithms have the structure described
so far [17]. What setsDDP apart from other demand-driven
algorithms is that it sometimesprunesgoals instead of finding
a precise answer for them. Pruning a goal means that the
goal is given a sufficiently conservative solution that the
goal no longer requires other goals to find its answer. An
example would be “x is of typeAnything.” Pruning provides a
technique for the algorithm to control how hard it is working.
It is a technique for sacrificing precision to gain scalability.
The heuristic implicit in using pruning is the notion that
conservative approximations that occur far from the original
query in the subgoal tree don’t hurt precision too much—
analogous to the similar tactic a chess program might use of
pushing approximate board evaluations deep into the search
tree.

The standardDDP pruning algorithm chooses prunings in
order to limit the total number of goals being studied. The

2

http://www.squeaksource.com�


standard algorithm is parameterized by apruning threshold,
K. Whenever the analyzer has createdK new goals, it prunes
enough goals that onlyK goals remain relevant to the main
goal. After a pruning, any goals that no longer effect the main
goal, either directly or indirectly, are removed from the goal
pool. Thus, onceDDP has created its firstK goals, the goal
pool varies betweenK and2 ∗K goals for the remainder of
the analysis.

Instead of requiring time that is linear or more in the size
of the code base,DDP appears, according to experiments to
date, to require time proportional to the pruning threshold. This
result is intuitive for the relatively small choices of pruning
threshold used in practice. Each goal tends to be updated only
a very few times, and with a small threshold, the algorithm
only manipulates small types and other data-flow structures.
This performance characterization is promising for use in
interactive tools that operate on large code bases.

Chuck modifies this pruning algorithm as described in
Sec. III in order to support interactive use.

The performance ofDDP has been measured empirically
[18] in an extension of a previously reported experiment [4].
While the details of these experiments are beyond the scope of
this paper, the results bear summarizing because they influence
the tuning ofDDP’s pruning algorithm for use in Chuck.

In our experiments, a typical Squeak code base was assem-
bled based on Squeak 3.7. The resulting code base, henceforth
called “the experimental code base,” has 358,872 non-blank
lines of code, 2485 classes, and 48,715 methods. We selected
nine applications within this code base and usedDDP to infer
types for the instance variables declared in those applications.
Each variable was the target of 12 type-inference queries,
where each query used a different pruning threshold ranging
from 50–10,000. Each query was timed, and each inferred type
was classified as precise or imprecise.DDP’s performance
under each pruning threshold can then be summarized with a
pair of statistics: the average time required and the percentage
of results that are designated precise.

These results suggest that 3000 is a moderate, balanced
choice of pruning threshold. With a pruning threshold of 3000,
DDP answers type queries in an average of 30 seconds, and of
those answers, 49% are precise. On the other hand, an extreme
choice of threshold is 50. With a pruning threshold of 50, the
algorithm answers type queries in an average of less than one
second, but still answers 35% of the queries precisely.

III. PRUNING ALGORITHM FOR INTERACTIVE TOOLS

DDP can be tuned to trade off between speed of analysis and
quality of results. It does so by tuning itspruning algorithm.
Chuck modifiesDDP to use a pruning algorithm specifically
suited for use in interactive tools.

The standardDDP pruning algorithm limits the number of
active goals according to a fixedpruning thresholdchosen
before the analyzer begins. As described earlier, choosing
a lower pruning threshold tends to increase the speed of
the inference but decrease the final answer’s precision. This
behavior is only a tendency, however, and individual queries

have widely varying performance. As described in the previous
section, a threshold of 3000 nodes yielded an average time of
30 seconds per query, but the slowest of those queries required
over 10 minutes.

For interactive use, these occasional large response times
are not acceptable. We would prefer to provide consistently
fast responses even if the responses are not as precise as
possible. A crude way to obtain consistently fast responses
would be simply to halt the algorithm if a response has not
been found within some time limit and report failure. That is,
run the analysis, and if it requires more than, say, five seconds,
terminate it and report that no information was found.

Chuck obtains a more graceful degradation of precision than
this drop-dead approach by taking advantage of the structure
of the DDP pruning algorithm. The tool begins by using the
standard pruning algorithm with a pruning threshold of 3000.
If no result has been found within three seconds, then the
pruning threshold is decreased to 50 and the algorithm is given
two more seconds to complete. Usually the algorithm finishes
in a fraction of a second with a pruning threshold of 50, but
in the unusual case that it requires two or more seconds, the
algorithm is terminated after all and the system reports that
no information was found.

Based on the experiments we’ve performed, the crude
approach of using a threshold of 3000, and stopping after five
seconds yields an answer—precise or imprecise—to 40% of
type queries. The remaining 60% would necessarily have to be
answered with the maximal type,Anything. The more gradual
approach finds answers to a total of 94% of the queries: it
answers 37% in the first three seconds, and 57% after reduc-
ing the threshold to 50. Both approaches have a maximum
execution time of five seconds, but gradual reduction of the
threshold yields a complete analysis of many more queries.
Additionally, the gradual-reduction approach has an improved
expected analysis time of 2.6 seconds instead of 3.3 seconds.

With this pruning algorithm, the time required per query
does not depend on the speed or load of the underlying
machine. All queries finish in five seconds. Instead, the speed
and load on the underlying computer affect thequality of
results thatDDP produces. A slower machine will still finish
each query in five seconds but will produce less precise results.

IV. SEMANTIC NAVIGATION PATHS

Chuck uses program analysis to provide navigation along
four paths in the semantic structure of the code base:
• A flow queryasks where the value of a computation could

flow.
• A type queryasks what kinds of values could flow to a

given expression.
• A responders queryasks where control could go at a

given method invocation.
• A senders queryasks which program points could transfer

control to a given method.
Each navigation path is useful to programmers at different
times. The different paths also exactly correspond to the kinds
of goals that direct search internally in the DDP analysis.

3



Fig. 1. Chuck is seamlessly integrated with the standard Smalltalk develop-
ment environment. In this screenshot, the programmer is exploring code using
the Squeak system’s basic code browser, and requests the type of a variable
reference occurring in the source code. The top four panes, from right to left,
show that the programmer is examining (1) methodstackingPolicy of
(2) theaccessing group of (3) classPlayingCardDeck , which is in (4)
the Morphic-Games application. The pane occupying the bottom half of
the screen shows the code for the method, a simple instance-variable fetch.
The programmer has highlighted the variablestackingPolicy and, with a
mouse click, called up the standard Squeak context menu, which now includes
the Chuck operations relevant to the selected code, “infer type” and “trace
flow.” The “infer type” operation has been selected. The result of the query,
with the response’s supporting derivation, is shown below, inFig. 2

Fig. 2. Chuck answers the query fromFig. 1 with a derivation browser.
The top line of the browser shows the initial query: “What is the type of
stackingPolicy in classPlayingCardDeck ?” The derivation shows
a tree browser, and the children lines of the top line show details about the
initial query. The first two lines describe the query in detail, while the fourth
gives the inferred type. The next two children lines show the subsidiary queries
used to find a type for the initial query. These children lines can be expanded
in turn to show details about the associated queries. In this screenshot, the
user has expanded multiple queries and is about to ask Chuck to “retry goal,”
that is, try the selected query again but with a higher pruning threshold.

Fig. 3. This screenshot shows the user returning to the browser after tracing
through the derivation browser (shown inFig. 2) to an interesting piece of
code. The highlighted code, a literal for#straight , is the code the user
had selected in the derivation browser before returning to the code browser.

Fig. 4. If a user asks to retry a goal, this dialogue appears, allowing the user
to change the pruning schedule and thus retry the goal with more effort.

type flow

senders responders

backwards forward

data flow

control flow

Fig. 5. The four queries Chuck can answer along with their dependencies
on each other.

4



Flow queries

A flow queryasks where the value in a variable or expres-
sion will flow when code in the code base runs. This informa-
tion is useful to see where something is ultimately used. For
example, a user can select the variableRadiansPerDegree
in classFloat , ask where the variable flows, and be told
that the variable flows to the methodsradiansToDegrees ,
degreesToRadians , * , and / in classFloat . By read-
ing the code of these methods, the user can see that
radiansToDegrees and degreesToRadians refer to
the variable in order to convert angles between radians and
degrees, and in turn those two methods pass the number to
the * and / methods.

The available locations that Chuck reports in response to
a flow query are precisely the flow positions ofDDP. The
following flow positions are possible:

• Variables
For example,Display is a flow position designating the
values assigned to theDisplay global variable during
program execution.

• Expressions
Any expression is a flow position designating the values
the expression might produce at run time.

• Methods
For example, methodnext of classRandom is a flow
position designating values held by the receiver (self )
of the specified method.

• Sets of the above
Any set of the above flow positions is itself a flow
position.

• Anywhere
The flow positionAnywheredescribes all flow positions
in the entire code base.

• Nowhere
The flow positionNowhereis a flow position that never
holds a value. If a variable is never used, then it flows to
Nowhere.

These flow positions are additionally discriminated by static
contexts provided by means of the analysis’ abstract contours;
this is a level of detail beyond the scope of this paper [18].

Type queries

A type query asks what kind of values a variable or
expression will hold when the code base runs. For ex-
ample, the programmer might ask what type of values is
held by thestackingPolicy instance variable of class
PlayingCardDeck , as shown inFig. 1. Perhaps the pro-
grammer is considering using this class but wonders what
options are available for this setting.

The tool would respond in this case that the variable might
hold either the valuenil or one of the symbols#stagger ,
#single , #altStraight , or #straight , as shown in
Fig. 2. The programmer thus learns that the variable holds an
ad hocenumerated type. The tool would then allow the user
to navigate backwards along the data-flow paths that gave rise

to each option. Continuing the example, the user could select
the symbol#stagger and then navigate to the code which
caused Chuck to include it as a possible type.

The types returned are exactly the types derived byDDP.
The possible types are:
• Individual class

For example,PlayingCardDeck is a valid type which
includes all instances of that class.

• Individual symbol
For example,#straight is a type which includes only
the symbol object namedstraight .
It’s worth asking why we bother to build this kind of
precision into the static abstractions used by Chuck’s
analysis—this is, after all, a design decision in the
construction of the tool. There are two idioms or patterns
of use in Smalltalk that drive the need for this precision.
First, as we have seen in our playing-card example shown
in the figures, sets of symbols are frequently employed by
Smalltalk programmers to serve asad hoc “enumerated
types.” Thus it’s important to be able to track these
symbols through the program’s data flow in order to
produce type reports that correspond to the programmer’s
internal model.
A different pattern employing symbols is critical for de-
termining program control flow. Smalltalk programmers
frequently use symbol-driven key dispatch in the event
loops of application GUIs. The dispatch is implemented
by means of theperform: method, which allows the
message sent to an object to be specified as a data value (a
symbol), rather than a fixed name. Chuck’s DDP analysis
correctly traces method invocation that is dispatched by
perform: indirection, given the reasonable restriction
that symbols used inperform: dispatch must be literals
appearing somewhere in the program (rather than data
computed from,e.g., strings).
Thus determining the control flow of a GUI’s event-
handling loop requires determining which symbols flow
to the handler’sperform: dispatch. Without this level
of discrimination in the analysis’ static abstractions, the
static control flow of this kind of code would collapse
into an unworkably conservative “crossbar” of possible
control edges, which would, in turn, poison the precision
of any data flow connected to the event-handling code.

• Individual block
A block type specifies a particular block from the source
code. Smalltalk blocks are akin to Scheme lambda ex-
pressions. A block type includes all closure objects which
were created by evaluating the specified block. Note that
handling blocks with precision is critical for semantic
analysis of Smalltalk programs. Smalltalk blocks are first-
class values used in a pervasive and fine-grained way.
For example, the basic if/then/else construct in Smalltalk
is provided by sending two block objects to the boolean
selector. Failure to handle blocks in a polyvariant manner
would confuse together the control flow of every single
conditional branch in the entire code base.

5



• A set of the above
Any set of types of the above kinds is itself a type. For
example, “#straight or PlayingCardDeck ” is a
type including the symbol#straight and all instances
of classPlayingCardDeck .

• Anything
Type Anything includes every possible object.

• Nothing
Type Nothing includes no objects at all. Occasionally
a variable is never assigned a value (for example, the
parameters of a method that is never invoked).

Again, types are additionally discriminated by abstract-contour
context, which is particularly important for higher-order values
such as blocks.

Responders queries

A responders queryasks what methods might respond when
a particular message-send expression executes. As an extreme
example, if one browses to classBasicLintRuleTest ’s
new method in the experimental code base, and selects the
message send ofinitialize , the standard syntax-directed
query shows 756 potential responders. Chuck’s enhanced
semantic query uses type information and shows only one.

Senders queries

A senders queryasks what expressions might invoke a
method. This is a useful tool for code exploration. For ex-
ample, a programmer might wonder what is the standard way
to use classHtmlParser . Seeking examples, the program-
mer might ask what expressions invoke the class’sparse:
method; in the standard Squeak code base, Chuck will show
the exact six expressions that can possibly invoke the method
at run time.

Chuck’s senders query enhances the standard Smalltalk
senders query. The standard query is syntactic: it only looks
at the name of the method invoked by a send statement. In
our HtmlParser example, it will return ten expressions
including irrelevant false-positive invocations, including code
that invokes VRML and email parsers. More extreme examples
exist: methods with common names such asinitialize
often have only one sender according to Chuck, but hundreds
of senders according to the standard tool.

Queries and semantic structure

Chuck’s four navigation paths correspond to flow queries
that vary on two axes.Fig. 5 shows this diagrammatically.
The two axes arecontrol- versus data-flowand direction of
flow.

A control-flow question asks about the links in the control
structure of the program. In a higher-order language, these
paths are determined by the dynamic semantics; they are not
simple syntactic links. Responders queries and senders queries
are both control-flow questions: they ask about the order of
execution of message-send expressions and the class methods
they invoke.

A data-flow question, to contrast, asks about the paths
through which data can flow at run time. A flow query asks
for the locations to which a value can flow, given a specified
start location. A type query finds the type of an expression by
finding the locations that contribute a value that will flow to
the expression at run time.

The direction of flowof a query can beforward or back-
wards. A forward query asks what will happen in the future as
the code base executes. Responders queries and flow queries
are both forward queries. A responders query asks for the
methods to which control might transfer in response to a
message-send expression, whereas a flow query asks what
expressions might later hold a value that is currently stored
in a specified start expression.

A backwardsquery asks about the past of program execu-
tion. A senders query is a backwards query because it asks
which message-send statements in the past caused control to
transfer to the specified method. A type query asks, in the
course of finding its final answer, which expressions in the
past can flow to a specified expression.

V. EXPLANATIONS AND TRYING HARDER

In addition to providing navigation paths and raw informa-
tion, Chuckexplainsits answers using aderivation browser. It
explains the answer to each query by showing the other queries
used to support that answer. Those queries in turn have their
own explanation, leading naturally to the expandable tree view
shown inFig. 2. Each query shown in the derivation browser
may be expanded to see information about the query. When a
query is expanded, the derivation browser shows the question
that query asks, the answerDDP found to the question, and
the subsidiary queries used to find that answer. The user may
expand these subsidiary queries, and then expand their queries,
etc. By doing so, the user simultaneously traces through an
explanation of the original query’s answer and traces through
semantic paths of the code base.

Consider the example shown inFig. 2. A programmer has
asked about the type of variablestackingPolicy , and
Chuck has reported that the type is a set of symbols. In
order to learn why#straight is included in the set, the
user can trace one level down and see thataSymbol , the
first parameter of methodstackingPolicy: , can hold
#straight . Tracing through that claim’s explanation, the
user sees that some method is invokingstackingPolicy:
with #straight passed as a literal argument. Finally, the
derivation browser also allows a programmer to retry a goal
with more effort.DDP has a fundamental trade off between
time required and precision of results, and sometimes it finds
an imprecise result simply because it returned an answer too
quickly. By default,DDP uses the pruning schedule described
in Sec. III and thus reliably finishes within five seconds. If
a programmer is unsatisfied with the answer and is strongly
interested in the particular question, then the user may use a
context menu in the derivation browser and ask the tool to try
the query again with more effort expended.

6



The try harder dialog is shown inFig. 4 with the default
level of effort depicted: the algorithm begins with a pruning
threshold of 3000, decreases to 50 after 3 seconds, and
decreases to 1 after a total of 5 seconds. To find better results
at the expense of more time, a user may enter a different
pruning schedule—for example, increasing the 3 seconds to
30 seconds—and then select “find answer.”

VI. I NTEGRATION WITH STANDARD TOOLS

It’s worth stressing that, although Chuck is the product
of the first author’s doctoral research, it is not a “research
prototype.” It works on full-blown Smalltalk and is now a
standard component shipped with the Squeak open-source
programming environment for Smalltalk.

Chuck integrates seamlessly with the standard Squeak pro-
gramming tools. Users do not execute a visibly separate tool
in order to use Chuck’s additional queries. Instead, they use
ubiquitous context menus to navigate between Chuck windows
and regular browser windows.

Users first invoke Chuck from the regular code browsers.
They select something of interest, such as an expression,
variable, or class, and then invoke the context menu using
a designated mouse button. This interface is familiar to users
because it is already used for refactorings and the standard
(syntactic) navigation paths [19].

The menu items added depend on the item selected. If the
user selects an expression or variable, then the menu includes
options for type queries and flow queries. If the user selects
a message-send expression, the menu additionally includes a
responders query. For a method, the menu includes a senders
query.

Users can also return to existing Squeak tools from Chuck.
Again, context menus provide the interface. If a user selects
any expression, method, or variable in a Chuck derivation
browser, then the context menu allows the user to “browse
it” and return to a regular Squeak code browser displaying the
selected item.

Continuing the example from the previous section (see
Fig. 2), the user might wonder what method is pass-
ing #straight as an argument tostackingPolicy: .
The user could select “browse the goal’s target” and re-
turn to a code browser pointed at methodhomeCell
of class FreeCellBoard , as shown in Fig. 3. Since
FreeCellBoard is part of the Free Cell game implemented
in the code base, andhomeCell is presumably a method
to create a “home cell” area of a Free Cell board, the user
now has enough information to locate an example use of
PlayingCardDeck that uses the#straight stacking
policy: the user can start a game of Free Cell and then inspect
the stack of cards in one of the home cells.

VII. A NALYZING L IVE CODE

Chuck operates on live code, just like the programming
tools of Self [7], Dr. Scheme [20] and Smalltalk. Users donot
need to run the analyzer overnight and then browse the results
the next day. Instead, users may intermingle code browsing

and normal code editing, and Chuck will recompute data-flow
information as needed.

To accomplish this, the tool is sufficiently integrated with
the standard Squeak tools that it can detect when the code
base changes and update its internal information accordingly.
The processing is correspondingly divided into two phases:
semantic analysis that is performed at the time of the query,
and syntactic analysis that is performed in advance and is
updated each time the programmer commits an edit, e.g., each
time the programmer defines a new class.

The syntactic information maintained by Chuck consists of
the following tables:

• parseTree , which maps each method to its parse tree.
• methodsImplementing , which maps each possible

method name to the list of methods in the system that
implement the method. This is used in responders queries
when the receiver type isAnything.

• expressionsSending , which maps each method
name to the list ofsend statements which send the name.
This is used to find thesend statements that may invoke
a method.

• symbolLiterals , which maps each method name to
the list of literal expressions that mention a symbol
for that method name. This table is used for analyzing
Smalltalk’s perform: method, a method that invokes
methods by a computed name.

• assignmentsDefining , which maps each variable
to the list of statements which assign something to that
variable. This is used when processing type queries.

• expressionsReading , which maps each variable to
the list of statements that read from that variable. This is
used when processing flow queries.

This information requires approximately 65 megabytes of
memory to maintain for a typical development image (the
standard Squeak 3.7/Basic release with Chuck loaded, about
306,000 lines of code).

The updates required after code changes are straightforward
and proportional to the size of the code being altered. For
example, if a new method is added to the code base, then:

• The method’s parse tree is added toparseTrees .
• The method is added to the list in

methodsImplementing corresponding to the
method’s name.

• For each message-send expression in the method,
the expression is added to the appropriate list in
expressionsSending .

• For each literal expression in the method where the literal
is a symbol, the expression is added to the symbol’s list
in symbolLiterals .

• For each assignment statement in the method,
the statement is added to list of statements in
assignmentsDefining corresponding to the
variable on the left-hand side of the assignment
statement.

• For each variable expression, the expression is added to

7



the appropriate list inexpressionsReading .

These changes are reversed when a method is removed. All
other code changes are described as a combination of method
removals followed by method additions. Examples of such
changes are:

• If a method is changed, then the tables are updated as if
the method was removed followed by the method being
added.

• If a class definition is changed, then the tables are updated
as if every method in the class and its subclasses were
removed before the definition change and added back
after the definition change.

The time taken for these hash-table operations are swamped
by the overhead of the Squeak system’s dynamic Smalltalk
byte-code compiler, which is invoked in response to code
changes. For example, when a method is added, Chuck adds
entries to its tables for that method, and the system compiles
the method to byte code. The additional overhead involved in
maintaining the syntactic data structures is imperceptible.

VIII. R ELATED WORK

Chuck adds to a number of ongoing threads of research.
This section describes Chuck’s relation to significant work
from each of these threads.

A. Navigating with Inferred Types

Chuck most closely relates to the general topic of navigation
with inferred data-flow information. Research in this area uses
static analysis in order to improve code-browsing tools.

For example, Agesen and Madsen built a type-based
browser for Self based on theCPA type-inference algorithm
[21]. This type-based browser uses data-flow information
inferred in a whole-program analysis. The browser uses this
information to display additional type information. Further,
the browser can browse methods in the context of particular
argument types,e.g. to browse the* method of classFloat
when the receiver and the argument are bothFloat ’s. With
the approach of this browser, if the program changes then
currently open browsers become invalid and the analysis needs
to be repeated.

Another example is Mr. Spidey, a semantic browser that in-
tegrates with the PLT dialect of Scheme [22], [23]. Mr. Spidey
includes similar navigation and information paths as Chuck
and as Agesen and Madsen’s type-based browser.

Both of these example systems make some effort at type
checking in addition to type-based browsing. If an expression’s
type indicates that it might cause a type error at run time,
then the expression is colored red. We do not have any data
establishing whether this feature is effective, and not merely
possible, using types inferred with DDP. We do not expect
the DDP-inferred types to be sufficient by themselves for
effective static type checking, and thus Chuck does not include
type-checking feedback. The approach might become more
promising for large Smalltalk code bases if type inference
and soft types [24] become a common part of Smalltalk

development culture and thus programmers frequently try to
remove falsely marked errors in their code before releasing it.

Chuck has three contributions over existing tools of this
family. First, it is effective in larger code bases than have been
demonstrated with existing tools: Chuck is effective on code
bases with hundreds of thousands of lines of code. Second,
Chuck queries may be freely interleaved with edits to the code
base; programmers do not have to worry about when to re-
execute the type inferencer in light of new code edits. Third,
its analyzer can effectively be tuned for interactive use without
simply imposing a drop-dead time limit.

B. Type Inference for Program Understanding

Data-flow analysis has been studied for other program-
understanding applications besides improved code browsers.
O’Callahan and Jackson have written a type-inference tool for
C called Lackwit [25], and Deursen and Moonen have written
a similar tool for Cobol [26]. In both cases, the authors argue
that type inference in some suitably enriched refinement of the
base language’s type system can provide useful information
for program understanding even though the languages in both
cases are already statically typed.

Chuck shares the spirit of such work but studies type
inference in the specific context of semantic browsers for large
dynamic code bases.

C. Slicing

Slicing tools find the parts of a program that are relevant
in various ways to a user-selected portion of the program
[27]. For example, they can find the portion of a program
necessary to cause a selected variable to gain its first value.
There are many variations on the basic theme of slicing. The
slicer might choose enough of the program to give a variable
all of its values instead of just the first. The slicer might
select the portion of the program executingafter a selected
variable. Instead of insisting on a fully executable slice, the
slicer might select a smaller portion of code that seems more
directly relevant to the programmer’s question.

Semantic browsers such as Chuck present similar depen-
dency information in a different way. Instead of immediately
displaying the entire portion of a program that is relevant to a
selected portion of code, a semantic browser let programmers
navigate through the code along data-flow and control-flow
paths one step at a time. This approach can help keep a
programmer from becoming overwhelmed in cases where the
slice is large.

D. Navigating with Unsound Types

Finally, another direction is to use unsound types that do not
capture all possible types. Robert, Brant and Johnson’s refac-
toring browser [19] uses dynamic type information to guide
its work. Alternatively, the tool can rely on matching common
idioms, e.g., extracting information from naming conventions
such as “Hungarian notation,” which allow programmers to
tag variables with extra unchecked type annotations above
and beyond what is provided by the language’s actual static
semantics.

8



Such approaches do not find fully reliable information, but
they still have uses. They can typically run very quickly
because they do not need to check for unusual cases or
respect the actual language semantics. Further, they can ad-
dress program-analysis problems for which no analyzer is
yet effective. While we confess to a certain unease at the
use of unsound analysis systems, we note that program-
development tools can provide both false positives as well
as false negatives as long as they “do the right thing” often
enough for programmers to perceive benefit.

Still, ceteris paribus, it’s better to have a sound source of
information than an unsound one. The present work extends
the applicability of tools that use static analysis instead of an
unsound source of type information. This work can be viewed
as one demonstration that analysis-based tools can plausibly
be as effective on large code bases as tools that do not give
any soundness guarantee. It would be interesting future work
to compare directly the speed and precision of the two kinds
of tools.

IX. FUTURE WORK

The Chuck browser has been available in the standard
Squeak open-source Smalltalk programming environment
since July 2004. The tool provides a platform for us to
explore technology that supports humans engaged in program
understanding.

Chuck is an ongoing development project. We continue to
extend its capabilities in various ways. Some directions we are
currently pursuing are:

• Improved inference rules
The current rules ofDDP are complete and conservatively
capture the application-writing portion of Smalltalk, but
improved rules can give more precise information. One
improvement to the rules being pursued is the use of
abstract data contours to precisely analyze data polymor-
phism,e.g., that different instances of theSet class hold
different types of elements. The inference rules ofDCPA
[28] are helpful but would need updating for Smalltalk’s
differing idioms. In particular, Smalltalk code bases fre-
quently have only one or twonew statements in the
entire code base, and thus abstract data contours should
be based on something like mentions of class names that
are later instantiated, instead ofnew statementsper se.
A second inference-rule improvement being pursued is
to improve senders-of queries for methods with common
names likeinitialize . The standardDDP rules starts
with the hundreds of methods callinginitialize and
then narrows that list using type information. In such
a case it should be faster to reverse these steps. The
analyzer could start with every message-send expression
whose receiver is of an appropriate class, and then narrow
that list down by considering which method name each
of those expressions sends.

• Improved pruning algorithm
Manual review of Chuck’s results suggest that many im-
precise results could be greatly improved if the algorithm

were to choose prunings more carefully. A particular
improvement that is being explored is to change the
measure of distance to the root goal that is used to
determine the relative priority of different goals. The
new measure will consider whether the goal contributes
directly to the root goal’s result (e.g., when the root goal
must have a supertype of the type found by the goal),
or is only used indirectly (e.g., when the goal provides
call-graph information that will in turn be searched).
The pruning algorithm should be extremely reluctant to
prune goals that directly influence the root goal, because
pruning such a goal produces equivalent results to pruning
the root goal itself. This notion of directness appears to
generalize beyond directvs. indirect to an integer number
of levels of indirection.

• Off-line processing
While Chuck is primarily structured to support inter-
leaved browsing and code editing, we have turned our
thoughts to attempting to exploit off-line computation to
assist on-line interaction. The scenario is that we assume
the computer might have eight hours a night during which
the code base is quiescent and not under development.
Could the machine run some kind of whole-program,
batch analysis over the code base that could assist queries
when development resumes each following morning?
Note that whatever data the machine computes during
this off-line period must not be instantly invalidated the
moment the programmer makes the first change of the
day to the system. To make effective use of off-line, batch
analysis, the information computed must remain of utility
so long as the code has not changed too much between
the time of the analysis and the time of the programmer
queries.
One promising avenue is to cache both results and
explanations from the batch analysis. If the user makes
a query that was also made in the batch execution,
then the cached result can have its explanation checked
again to ensure that it is still valid. In many cases the
explanation is likely to remain valid because the code has
not changed much. Even in cases where the explanation
is no longer sufficient, the analysis can begin with the
cached information instead of beginning from scratch.
There is some risk that the result found in this way is
less precise than would have been found with a from-
scratch analysis that used the same amount of time. The
tool, therefore, might also repeat the five-second analysis,
just in case, and provide to the user whichever result is
better.

• Further integration with Squeak
Additionally, we plan to integrate Chuck further into
the Squeak programming environment by using Robbes’
Services framework [29]. Currently, Chuck is directly
integrated with the code browser; with Robbes’ frame-
work, it could also be invoked from other tools that
present code to the user, including debuggers, inspectors,
and workspaces. Instead of enhancing the browser tool

9



itself, Chuck would enhance all tools that display code.
• User Studies

Chuck’s interface has been tuned in response to feedback
from a limited set of users: our coworkers in the college.
We plan to run a more structured user study with a larger
set of users in order to improve the usability further and
in order to test whether Chuck is useful in its intended
role.

X. CONCLUSIONS

Chuck demonstrates that semantic navigation is practical
in large, higher-order, dynamically typed code bases, even
when the semantic navigation is interleaved with code edits.
To achieve this, Chuck combines a number of techniques:

• Its analyzer uses subgoal pruning in order to get context-
sensitive information much faster than algorithms that
require time proportional to the size of the code base.

• It uses a pruning algorithm tuned for interactive timings.
• It spends memory to maintain tables about the syntax of

the code base as the code changes.

Because the tool tolerates code changes, it can be thoroughly
integrated with existing programming tools. Queries can be
initiated from the standard code browsers, and when a user
traces a query’s explained result, the user can reenter the
standard code browsers at any point.

Semantic navigation is just one application of type infer-
ence. Other tools that can benefit include improved refactor-
ings [19], lint-like tools that find potential errors [22], dead-
code removal [21], and optimizing compilation [15].DDP
potentially enables a whole class of analysis-based tools for
large higher-order, dynamically typed code bases that should
be explored.

REFERENCES

[1] (2001, May) ezboard ranked in top 100 sites worldwide.ezboard.com
press release. [Online]. Available:http://www.ezboard.com/corporate/
pressroom/200103 24.html

[2] A. Radding, “Simplicity, but with control,”Information Week, vol. 381,
April 2001.

[3] J. Robertson. post on november 28, 2003.comp.lang.smalltalk
USENET group.

[4] S. A. Spoon and O. Shivers, “Demand-driven type inference with sub-
goal pruning: Trading precision for scalability,” inEuropean Conference
on Object-Oriented Programming (ECOOP), 2004.

[5] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to the
future: The story of Squeak, A practical Smalltalk written in itself,” in
ACM Conference on Object-Oriented Programming, Systems, Language,
and Applications (OOPSLA), 1997.

[6] A. C. Kay, “The early history of smalltalk,” inThe second ACM
SIGPLAN conference on History of programming languages. ACM
Press, 1993, pp. 69–95.

[7] D. Ungar and R. B. Smith, “Self: The power of simplicity,” inACM
Conference on Object-Oriented Programming, Systems, Language, and
Applications (OOPSLA), 1987.

[8] I. N. I. Adams, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman,
R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M.
Pitman, G. J. Rozas, J. G. L. Steele, G. J. Sussman, M. Wand, and
H. Abelson, “Revised5 report on the algorithmic language scheme,”
SIGPLAN Notices, 1998.

[9] C. Chambers, “The cecil language specification and rationale,” Depart-
ment of Computer Science and Engineering, University of Washington,
Tech. Rep. TR-93-03-05, March 1993.

[10] O. Shivers, “Control-flow analysis of higher-order languages,” Ph.D.
dissertation, Carnegie Mellon University, 1991.

[11] N. Suzuki, “Inferring types in smalltalk,” inACM Symposium on
Principles of Programming Languages (POPL), 1981, pp. 187–199.

[12] O. Shivers, “The semantics of scheme control-flow analysis,” inPartial
Evaluation and Semantic-Based Program Manipulation, 1991, pp. 190–
198.

[13] O. Agesen, “The cartesian product algorithm: Simple and precise type
inference of parametric polymorphism,” inEuropean Conference on
Object-Oriented Programming (ECOOP), 1995.

[14] C. Flanagan and M. Felleisen, “Componential set-based analysis,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 21, no. 2, pp. 370–416, 1999.

[15] D. Grove, G. Defouw, J. Dean, and C. Chambers, “Call graph con-
struction in object-oriented languages,” inACM Conference on Object-
Oriented Programming, Systems, Language, and Applications (OOP-
SLA), 1997.

[16] G. DeFouw, D. Grove, and C. Chambers, “Fast interprocedural class
analysis,” inProceedings of the 25th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages. ACM Press, 1998, pp.
222–236.

[17] E. Duesterwald, R. Gupta, and M. L. Soffa, “Demand-driven compu-
tation of interprocedural data flow,” inSymposium on Principles of
Programming Languages, 1995, pp. 37–48.

[18] S. A. Spoon, “Demand-driven type inference with subgoal pruning,”
Ph.D. dissertation, Georgia Institute of Technology, 2005.

[19] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Theory and Practice of Object Systems, vol. 3, no. 4, pp. 253–263, 1997.

[20] J. Clements, P. T. Graunke, S. Krishnamurthi, and M. Felleisen, “Little
languages and their programming environments,” inMonterey Workshop,
2001.

[21] O. Agesen, “Concrete type inference: Delivering object-oriented appli-
cations,” Ph.D. dissertation, Stanford University, 1995.

[22] C. Flanagan and M. Felleisen, “A new way of debugging lisp programs,”
in Proceedings of Lisp Users’ Group Meeting (LUGM), 1998.

[23] C. Flanagan, “Effective static debugging via componential set-based
analysis,” Ph.D. dissertation, Rice University, 1997.

[24] R. Cartwright and M. Fagan, “Soft typing,” inPLDI, 1991, pp. 278–292.
[25] R. O’Callahan and D. Jackson, “Lackwit: A program understanding tool

based on type inference,” inICSE ’97, 1997.
[26] A. van Deursen and L. Moonen, “An empirical study into cobol type

inferencing,”Science of Computer Programming, vol. 40, no. 2–3, pp.
189–211, July 2001.

[27] F. Tip, “A survey of program slicing techniques,”Journal of program-
ming languages, vol. 3, pp. 121–189, 1995.

[28] T. Wang and S. F. Smith, “Precise constraint-based type inference for
Java,”Lecture Notes in Computer Science, vol. 2072, pp. 99–117, 2001.

[29] R. Robbes. “Services”. page on Squeak Swiki. [Online]. Available:
http://minnow.cc.gatech.edu/squeak/3727

10

ezboard.com�
http://www.ezboard.com/corporate/pressroom/2001_03_24.html�
http://www.ezboard.com/corporate/pressroom/2001_03_24.html�
http://minnow.cc.gatech.edu/squeak/3727�

