Semantic Navigation of Large Code Bases In
Higher-Order, Dynamically Typed Languages

S. Alexander Spoon and Olin Shivers
College of Computing
Georgia Institute of Technology
Atlanta, GA 30032

Abstract— Chuck is a new code browser that allows navigation formed by deeper semantic connections between elements of
of a code base alongsemanti(_:struc_tures, such_as data-flow and the code, such as the data- and control-flow induced by the
higher-order control-flow relationships. Employing the fast DDP dynamic semantics of the language. (In particular, note that

type inferencer, it is effective on dynamically typed code bases
grf order of magnitude larger than the code bases supported by control flow in a higher-order functional or object-oriented

previous browsers. Chuck supports the full Smalltalk language, language is no longer directly encoded in the syntax of the lan-
and is now shipped as a standard component of the Squeak guage.) For example, semantic navigation allows programmers

open-source Smalltalk system, where it routinely works with code to navigate from aew expression to the expressions that use
bases exceeding 300,000 lines of code. Chuck's implementation igypiacts created by that expression. It allows programmers to
tuned for interactive use, and is transparently integrated with the . .
Squeak system’s existing code-browsing tools. Thus, it provides navigate from a.message-send expresspn t(_) the ngrrow set of
semantic navigation of a live code base that is still being edited Methods that might respond to that specific invocation. These
without requiring long pauses for reanalysis due to edits of the links, whose increased precision and tighter bounds help guide
code. and focus programmers’ exploration of large code bases, are
provided by program analysis.
Powerful and precise semantically-directed code browsers
Higher-order, dynamically typed programming languagese critically enabling tools for working with large code bases.
occupy a vital and thriving niche in the programming ecosy#®vithout them, code bases can become self-limiting as they
tem. According to its web page, tlezboard.com | forum- grow. Clearly, it helps programmers develop applications when
hosting service, which is written in Smalltalk, currentlythey have access to a large, underlying base of existing code—
supports over ten million subscribers [1]. The Chrysler Ce programmer can reuse existing components instead of
software, also written in Smalltalk, includes 2000 classes ahdving to reinvent everything from scratch, exploiting the
30,000 methods [2]. Over a thirteen-month period in 2002xisting investment in design, construction and debugging that
2003, Cincom reported 1800 new registrations per month fihre existing code represents. However, when the size of the
the non-commercial version of their VisualWorks Smalltallexisting code becomes too large, the programmer can suffer
system [3]. It is important to find ways to maintain and reuseformation overload, and may, in the end, decide that the
these code bases. Since they often have multi-year life spawein of writing the application completely from scratch is
and typically include code whose development goes bapkeferable to the pain of wandering lost through a tractless
multiple decades, reverse engineering is important for thesesteland of undifferentiated software, sifting for possibly
systems. relevant components to use. Sophisticated navigation aids help
Code browsing tools help reverse engineering by providimggogrammers, in the popular phrase, stand on each other’s
reliable information about the code base and by providirghoulders, rather than each other’s toes.
navigation paths through the code base. Instead of inferringunfortunately, the program analyses required to provide pre-
information through conventions, idioms, textual searches, cise semantic navigation for higher-order, dynamically typed
possibly erroneous or misleading documentation, programmésguages are polynomial time (or worse) , and so have not
using a code browser get reliable information and navigati@ealed to code bases with hundreds of thousands of lines of
paths that are determined automatically from the code basmle. This paper discusses Chuck, a new code browser with
according to the syntax and semantics of the language. semantic navigation for Smalltalk, thawesscale to large code
Syntactic navigatiomllows the user to navigate through thédases.
code along paths determined by simple syntax-level relationsChuck’s core technology is thBDP type inferencer [4],
For example, it allows programmers to navigate from classeich provides the necessary static analysis. However, in the
to their superclasses and subclasses, from variables to themwcess of building Chuck, we also learned that such a tool
pressions that use them, and from methods to the methods tfames challenges beyond simple asymptotic scalability. We had
override. The standard Smalltalk browsing tools include exteto design the system to produce fast resaligsistently not
sive support for syntactic navigatioBemantic navigatigrthe just on average. Further, Chuck is required to analyze live
topic of this paper, allows the programmer to follow pathsode bases where, as dynamic-language practitioners expect,

I. INTRODUCTION

ezboard.com�

the programmer can tightly interleave code browsing and cottee Vortex project, and they report that all of the context-
editing. Such environments require reanalysis whenever thensitive algorithms require an unreasonable amount of time
code is edited but must not allow that reanalysis to pauaad memory for larger Cecil programs [15]. They write:
overly long and induce programmer impatience. Larger Cecil programs may benefit from context-

Chuck is implemented in and for Squeak [5], a production- sensitivity, but our experiments demonstrated that
level implementation of Smalltalk [6], and is now a load scalability problems prevent the context-sensitive
option in the standard releases of Squeak. Chuck is hosted on algorithms from being applied beyond the domain
SqueakSourég and at the time of this writing has the second- of small benchmark programs. Thus the search
largest number of downloads of the 200+ Squeak projects for a scalable and effective call graph construction
hosted on that sife We infer from this statistic that the tool algorithm for programs that make heavy use of
addresses a true need of Squeak programmers. polymorphism and dynamic dispatching remains an

After reviewing DDP, this paper describes the four naviga- open problem.
tion paths provided by Chuck and the solutions Chuck has toThere are linear-time unification-based algorithms that have
the two other challenges mentioned above. We then conngotat promise [16], but they have yet to be proven practical
this research to several areas of related work, describe futéwe the present application. First, these context-insensitive
work on Chuck, and conclude. algorithms sacrifice precision for speed; it is not clear if they

As a note on terminology, when we say “large code baseyould produce usefully precise results on large, extremely
we consistently mean code bases with hundreds of thousapdymorphic, higher-order code bases. Second, it is difficult
of lines of code. to use even a linear-time algorithm for semantic browsers that

allow interleaved code changes. The linear-time algorithms are
II. TYPE INFERENCE WITHDDP linear in the amount of codend thus require a substantial
amount of computation for large code bases.

The type-inference problem is similar for various dynamic DDP is a recently developed type-inference algorithm which
languages, including Smalltalk [6], Self [7], Scheme [8], ani$ effective for Smalltalk code bases with hundreds of thou-
Cecil [9]. Algorithms that are effective in one language tengands of lines of code. The details of the algorithm are
to be effective in the others. All of these languages shap@blished separately [4]. This section gives an overview from
the difficulty that the analyses of control flow and data flowhe perspective of a client of the algorithm.
are interdependent [10]; all of these languages have and us&he essence dDDP’s approach is to cast the problem as
dynamic dispatch on types and have data-dependent contralemand-driven, backwards-chaining algorithm thatnes
flow induced by objects or by higher-order functions. goals. It posts goals to itself, such as “What is the type of

Efforts on this type-inference problem date back at least twariablex ?,” and then tries to solve those goals. Solving a goal
decades. Suzuki's work in 1981 is the oldest published wousually requires posting other goals. For example, finding the
that infers types in Smalltalk without any type declarationype of a variable requires finding the type of each expression
[11]. More recently, in 1991, Shivers formalizedntext using ever assigned to that variable. Whenever the algorithm needs
abstract contoursas a central technique and a central designgoal that is not already being pursed, it creates a new one
difference among type-inference algorithms [12]. Later, thend adds it to thgoal poolof goals being pursued.
core of Agesen’s “Cartesian Products Algorithn€RA) is the The kinds of goalsDDP can pose to itself correspond
insight of choosing contexts based on data-flow informationtosely to the four navigation paths that Chuck allows. Thus,
CPA selects contexts as tuples of parameter types [13]. (Taealiscussion of the kinds of goals is deferred usgic. IV.
algorithm gets its name because the tuples are chosen as cartAll demand-driven algorithms have the structure described
sian products of the possible argument types for each methaah)far [17]. What set®DP apart from other demand-driven
More recently yet, Flanagan and Felleisen have increased #hgorithms is that it sometimgmunesgoals instead of finding
speed and scalability of type-inference algorithms by isolatireg precise answer for them. Pruning a goal means that the
part of the algorithm to work on individual modules. By doingoal is given a sufficiently conservative solution that the
so, their algorithm spends less time analyzing the entire cogleal no longer requires other goals to find its answer. An
base [14]. example would beX is of type Anything” Pruning provides a

Unfortunately, the existing algorithms do not scale to larg€chnique for the algorithm to control how hard it is working.
dynamically typed code bases. Certainly, no successful resdités a technique for sacrificing precision to gain scalability.
have been reported for such large code bases. Geival, The heuristic implicit in using pruning is the notion that
implemented a wide selection of these algorithms as part @inservative approximations that occur far from the original

query in the subgoal tree don't hurt precision too much—

L ttp /www. SqUeaksource.com analogous to the similar tactic a chess program might use of

2 Chuck has 3698 downloads while Seaside has 4141. These are pushing approximate board evaluations deep into the search
download counts that not been processed or filtered in any way, and trFSng

a more careful analysis might adjust Chuck’s relative ranking by a few leve Tf.1 dard>DP . | ith h . .
The point would remain, however, that Chuck is among the most-downloaded e standar pruning algorithm chooses prunings in

projects implemented in Squeak. order to limit the total number of goals being studied. The

http://www.squeaksource.com�

standard algorithm is parameterized bymning threshold have widely varying performance. As described in the previous
K. Whenever the analyzer has creaféchew goals, it prunes section, a threshold of 3000 nodes yielded an average time of
enough goals that only goals remain relevant to the main30 seconds per query, but the slowest of those queries required
goal. After a pruning, any goals that no longer effect the maover 10 minutes.
goal, either directly or indirectly, are removed from the goal For interactive use, these occasional large response times
pool. Thus, oncedDDP has created its firsk” goals, the goal are not acceptable. We would prefer to provide consistently
pool varies betweetrl and2 x K goals for the remainder of fast responses even if the responses are not as precise as
the analysis. possible. A crude way to obtain consistently fast responses
Instead of requiring time that is linear or more in the sizeould be simply to halt the algorithm if a response has not
of the code basd)DP appears, according to experiments tbeen found within some time limit and report failure. That is,
date, to require time proportional to the pruning threshold. Thign the analysis, and if it requires more than, say, five seconds,
result is intuitive for the relatively small choices of pruningerminate it and report that no information was found.
threshold used in practice. Each goal tends to be updated onl{Chuck obtains a more graceful degradation of precision than
a very few times, and with a small threshold, the algorithrthis drop-dead approach by taking advantage of the structure
only manipulates small types and other data-flow structured.the DDP pruning algorithm. The tool begins by using the
This performance characterization is promising for use standard pruning algorithm with a pruning threshold of 3000.

interactive tools that operate on large code bases. If no result has been found within three seconds, then the
Chuck modifies this pruning algorithm as described ipruning threshold is decreased to 50 and the algorithm is given
Sec. Il in order to support interactive use. two more seconds to complete. Usually the algorithm finishes

The performance oDDP has been measured empiricallyin a fraction of a second with a pruning threshold of 50, but
[18] in an extension of a previously reported experiment [4in the unusual case that it requires two or more seconds, the
While the details of these experiments are beyond the scopeatgiorithm is terminated after all and the system reports that
this paper, the results bear summarizing because they influenoeinformation was found.
the tuning ofDDP’s pruning algorithm for use in Chuck. Based on the experiments we've performed, the crude

In our experiments, a typical Squeak code base was ass@mproach of using a threshold of 3000, and stopping after five
bled based on Squeak 3.7. The resulting code base, hencefsetonds yields an answer—precise or imprecise—to 40% of
called “the experimental code base,” has 358,872 non-blafype queries. The remaining 60% would necessarily have to be
lines of code, 2485 classes, and 48,715 methods. We sele@asiwered with the maximal typAnything The more gradual
nine applications within this code base and uB&P to infer approach finds answers to a total of 94% of the queries: it
types for the instance variables declared in those applicatioagswers 37% in the first three seconds, and 57% after reduc-
Each variable was the target of 12 type-inference queriésg the threshold to 50. Both approaches have a maximum
where each query used a different pruning threshold rangiggecution time of five seconds, but gradual reduction of the
from 50-10,000. Each query was timed, and each inferred tyiseshold yields a complete analysis of many more queries.
was classified as precise or imprecigDP’s performance Additionally, the gradual-reduction approach has an improved
under each pruning threshold can then be summarized witlexpected analysis time of 2.6 seconds instead of 3.3 seconds.
pair of statistics: the average time required and the percentagVith this pruning algorithm, the time required per query
of results that are designated precise. does not depend on the speed or load of the underlying

These results suggest that 3000 is a moderate, balanggthine. All queries finish in five seconds. Instead, the speed
choice of pruning threshold. With a pruning threshold of 300@nd load on the underlying computer affect theality of
DDP answers type queries in an average of 30 seconds, andesfults thatDDP produces. A slower machine will still finish
those answers, 49% are precise. On the other hand, an extreaeh query in five seconds but will produce less precise results.
choice of threshold is 50. With a pruning threshold of 50, the

: S IV. SEMANTIC NAVIGATION PATHS
algorithm answers type queries in an average of less than one . : o
second, but still answers 35% of the queries precisely. Chuck uses program analysis to provide navigation along
four paths in the semantic structure of the code base:

I1l. PRUNING ALGORITHM FORINTERACTIVE TOOLS « A flow queryasks where the value of a computation could
DDP can be tuned to trade off between speed of analysis and flow.
quality of results. It does so by tuning iBuning algorithm ~ « A type queryasks what kinds of values could flow to a
Chuck modifiesDDP to use a pruning algorithm specifically given expression.
suited for use in interactive tools. « A responders queryasks where control could go at a
The standardDP pruning algorithm limits the number of given method invocation.
active goals according to a fixgoruning thresholdchosen ¢ A senders quergsks which program points could transfer
before the analyzer begins. As described earlier, choosing control to a given method.
a lower pruning threshold tends to increase the speed Edch navigation path is useful to programmers at different
the inference but decrease the final answer’s precision. Tlires. The different paths also exactly correspond to the kinds
behavior is only a tendency, however, and individual querie$ goals that direct search internally in the DDP analysis.

G Chuck Browser: FreeCellBoard

Chuck-Sender Sets & |ChineseCheckerPiece |- all — Jeardeell
| Chuck-TI-Unification g iChineseCheckers A Bctions f cellsRow
Chuck Browser; P|aying[ardDeck |Chuck-Type Inference” |CipherPanel accessing | cellsRowspacer
— — = —— T - — | Chuek-TI-01d | CrosticPanel hardness | freetell
wok-Sender Sets @ MorphicGamesInfo mll - all —- X {empyDropPolicy! |Chuck-Dead Code Remr | CrosticquotePanel private | freetells
uck-TI-Unification i PlayingCard A dropping/grabbing ‘hasCards | Chuck-Al-Core | FreeCell | ando ! homeCell
uck-Type Inference | PlayingCardDeck BCCESFING ;133’9““ | Chuck-Al-ExecutionUn: | FreeCellBoard layout ;humetells
uck-11-01d | PlavingCardMorph layout |newseed | Morphic-Games | EreeCellStatistics initialization {layout
uck-Dead Code Remc | SameGame shuffling/dealing |removeAllCards | Morphic-Games-Chess | Mines | drawing Istacks
uck-Al-Cors — z 25 jseed | Morphic-Games-Atomic | MinesBoard ¥/ card in a stagk | stacksRow
uck-Al-ExecutionUs:|find.. i) zation | seed: | - - |
orphic-Games find again (g} i stackingOrder: 4 » instanice 7 ¢lass
orphic-Games-Chess |set search string (h) (=4 ‘ stackingFolicy o A . —
orphic-Games-Atomic| do again (1) | stackingPolicy: 1
unda (z) | subDeckStartinght: 4 | | homeCell |
B |copy () R . homeCell « self cardCell,
cut (x) homeCell stackingPolicy: #straight
paste (v} stackingOrder: #ascending:
. . aste... s P A
+ stackingPolicy |45 a7 emptyDropPolicy! #inOrder:

target: self;
cardDroppedSelector: #cardMovedHome:
cardDraggedSelector: *dragCard:fromHome:;

print it {p)
ingpeet it (1)
explore it (1)

detug it accepiCardselector: *acceptSingleCardion:,
accept (3} + homeCell
cancel (1)

show bytecodes

more. ..
EE - extract method

Fig. 3. This screenshot shows the user returning to the browser after tracing
through the derivation browser (shown|ifig. 2) to an interesting piece of
Fig. 1. Chuck is seamlessly integrated with the standard Smalltalk develapede. The highlighted code, a literal féstraight , is the code the user
ment environment. In this screenshot, the programmer is exploring code usiragl selected in the derivation browser before returning to the code browser.
the Squeak system’s basic code browser, and requests the type of a variable
reference occurring in the source code. The top four panes, from right to left,
show that the programmer is examining (1) mettstackingPolicy of

(2) theaccessing group of (3) clas®layingCardDeck , which is in (4)

the Morphic-Games application. The pane occupying the bottom half of
the screen shows the code for the method, a simple instance-variable fetch.
The programmer has highlighted the variasiackingPolicy and, with a
mouse click, called up the standard Squeak context menu, which now includes
the Chuck operations relevant to the selected code, “infer type” and “trace
flow.” The “infer type” operation has been selected. The result of the query,
with the response’s supporting derivation, is shown belovkiqm 2

question: What is the type of:

PlavingCardDeck stackingPolicy 7

pruning: 3000 03 503 (510

[: find answer :]

Fig. 4. If a user asks to retry a goal, this dialogue appears, allowing the user

. e s to change the pruning schedule and thus retry the goal with more effort.
(% Inference Derivation 100 9 P 9 y g
w Type of [FlavingCardDeck stackingPolicy] iz { UndefinedObiject #ztagger #szingle #

PlavinglardDeck stackingPolicy

<Tops

{ Undefined0bject #stagzer *zingle *altStraight #ztraight }

w justification (2}
= Type of [aSymbol] is { #straight #altStraight #single }

E backwards forward
{ *gtraight #aliStraight *zingle }
+ justification {4}
w Type of [#siraight] is #siraight
#ztraight
<Topr
”sotgaight explore the goal
b justification (0)
p-all goals referenced {0}
B Senders ?f‘ PlayirllgCa;dDec1k>>stackmgpolicy: are: Sender Set {[{{Classes, Pl
BT T [#zingle] i i
B ng: sr [”;llrtlsgtreai;ht]Sig%":ltsmaight data flow
B-all goals referenced (4}
b Type of [#stagger] iz #*stagger
B-all goals referenced (2}
a4 _b"
Fig. 2. Chuck answers the query frofig. 1 with a derivation browser
The top line of the browser shows the initial query: “What is the type of
stackingPolicy in classPlayingCardDeck ?” The derivation shows
a tree browser, and the children lines of the top line show details about the
initial query. The first two lines describe the query in detail, while the fourth
gives the inferred type. The next two children lines show the subsidiary queries control flow senders responders
used to find a type for the initial query. These children lines can be expanded
in turn to show details about the associated queries. In this screenshot, the
user has expanded multiple queries and is about to ask Chuck to “retry goal,”

that is, try the selected query again but with a higher pruning threshold.

Fig. 5. The four queries Chuck can answer along with their dependencies
on each other.

Flow queries

A flow queryasks where the value in a variable or expredl® Symbol#stagger) :
gLaused Chuck to include it as a possible type.

he types returned are exactly the types derivedDiDpP.
e possible types are:

sion will flow when code in the code base runs. This inform
tion is useful to see where something is ultimately used. Fo[1
example, a user can select the varidRédiansPerDegree U
in classFloat , ask where the variable flows, and be told °
that the variable flows to the methodsliansToDegrees
degreesToRadians , *, and/ in classFloat . By read-
ing the code of these methods, the user can see that
radiansToDegrees and degreesToRadians refer to
the variable in order to convert angles between radians and
degrees, and in turn those two methods pass the number to
the* and/ methods.

The available locations that Chuck reports in response to
a flow query are precisely the flow positions DPDP. The
following flow positions are possible:

« Variables
For exampleDisplay is a flow position designating the
values assigned to thRisplay global variable during
program execution.

« Expressions
Any expression is a flow position designating the values
the expression might produce at run time.

o Methods
For example, methodext of classRandomis a flow
position designating values held by the receivaslf()
of the specified method.

« Sets of the above
Any set of the above flow positions is itself a flow
position.

« Anywhere
The flow positionAnywheredescribes all flow positions
in the entire code base.

« Nowhere
The flow positionNowhereis a flow position that never
holds a value. If a variable is never used, then it flows to
Nowhere

These flow positions are additionally discriminated by static
contexts provided by means of the analysis’ abstract contours;
this is a level of detail beyond the scope of this paper [18].

Type queries

A type queryasks what kind of values a variable or
expression will hold when the code base runs. For ex-
ample, the programmer might ask what type of values is
held by the stackingPolicy instance variable of class
PlayingCardDeck , as shown inFig. 1. Perhaps the pro-
grammer is considering using this class but wonders what
options are available for this setting.

The tool would respond in this case that the variable might
hold either the valuail or one of the symbol#¢stagger
#single , #altStraight , Or #straight , as shown in
Fig. 2. The programmer thus learns that the variable holds an
ad hocenumerated type. The tool would then allow the user
to navigate backwards along the data-flow paths that gave rise

T

to each option. Continuing the example, the user could select

and then navigate to the code which

Individual class

For examplePlayingCardDeck s a valid type which
includes all instances of that class.

Individual symbol

For examplefstraight is a type which includes only
the symbol object namestraight

It's worth asking why we bother to build this kind of
precision into the static abstractions used by Chuck’s
analysis—this is, after all, a design decision in the
construction of the tool. There are two idioms or patterns
of use in Smalltalk that drive the need for this precision.
First, as we have seen in our playing-card example shown
in the figures, sets of symbols are frequently employed by
Smalltalk programmers to serve ad hoc“enumerated
types.” Thus it's important to be able to track these
symbols through the program’s data flow in order to
produce type reports that correspond to the programmer’s
internal model.

A different pattern employing symbols is critical for de-
termining program control flow. Smalltalk programmers
frequently use symbol-driven key dispatch in the event
loops of application GUIs. The dispatch is implemented
by means of theperform: method, which allows the
message sent to an object to be specified as a data value (a
symbol), rather than a fixed name. Chuck’s DDP analysis
correctly traces method invocation that is dispatched by
perform: indirection, given the reasonable restriction
that symbols used iperform: dispatch must be literals
appearing somewhere in the program (rather than data
computed fromge.g, strings).

Thus determining the control flow of a GUI's event-
handling loop requires determining which symbols flow
to the handlerperform: dispatch. Without this level

of discrimination in the analysis’ static abstractions, the
static control flow of this kind of code would collapse
into an unworkably conservative “crossbar” of possible
control edges, which would, in turn, poison the precision
of any data flow connected to the event-handling code.
Individual block

A block type specifies a particular block from the source
code. Smalltalk blocks are akin to Scheme lambda ex-
pressions. A block type includes all closure objects which
were created by evaluating the specified block. Note that
handling blocks with precision is critical for semantic
analysis of Smalltalk programs. Smalltalk blocks are first-
class values used in a pervasive and fine-grained way.
For example, the basic if/then/else construct in Smalltalk
is provided by sending two block objects to the boolean
selector. Failure to handle blocks in a polyvariant manner
would confuse together the control flow of every single
conditional branch in the entire code base.

o A set of the above A data-flow question, to contrast, asks about the paths
Any set of types of the above kinds is itself a type. Fahrough which data can flow at run time. A flow query asks
example, #straight or PlayingCardDeck " is a for the locations to which a value can flow, given a specified
type including the symba#straight and all instances start location. A type query finds the type of an expression by

of classPlayingCardDeck . finding the locations that contribute a value that will flow to
« Anything the expression at run time.

Type Anythingincludes every possible object. The direction of flowof a query can bdorward or back-
« Nothing wards A forward query asks what will happen in the future as

Type Nothing includes no objects at all. Occasionallythe code base executes. Responders queries and flow queries
a variable is never assigned a value (for example, thee both forward queries. A responders query asks for the
parameters of a method that is never invoked). methods to which control might transfer in response to a

Again, types are additionally discriminated by abstract-contoltessage-send expression, whereas a flow query asks what
context, which is particularly important for higher-order valuegxpressions might later hold a value that is currently stored

such as blocks. in a specified start expression.
A backwardsquery asks about the past of program execu-
Responders queries tion. A senders query is a backwards query because it asks

A responders quergsks what methods might respond whelhich message—senq.statements in the past caused 09ntf0| to
a particular message-send expression executes. As an extrigpsfer to .the' SP?C'f'?d method. A type query gsks, in the
example, if one browses to claBasicLintRuleTest g course of finding its fln_ql answer, WhICh expressions in the
new method in the experimental code base, and selects ff#St ¢an flow to a specified expression.
message send dfitialize , the standard syntax-directed
query shows 756 potential responders. Chuck’s enhanced V. EXPLANATIONS AND TRYING HARDER
semantic query uses type information and shows only one.

In addition to providing navigation paths and raw informa-
tion, Chuckexplainsits answers using derivation browserlt
explains the answer to each query by showing the other queries

A senders queryasks what expressions might invoke @sed to support that answer. Those queries in turn have their
method. This is a useful tool for code exploration. For e%wn explanation, leading naturally to the expandable tree view
ample, a programmer might wonder what is the standard Wa)own inFig. 2 Each query shown in the derivation browser
to use clasHtmlParser . Seeking examples, the programmay be expanded to see information about the query. When a
mer might ask what expressions invoke the clagsisse: qguery is expanded, the derivation browser shows the question
method; in the standard Squeak code base, Chuck will shgygt query asks, the answBDP found to the question, and
the exact six expressions that can possibly invoke the methpd subsidiary queries used to find that answer. The user may
at run time. expand these subsidiary queries, and then expand their queries,

Chuck's senders query enhances the standard Smalltiglk By doing so, the user simultaneously traces through an
senders query. The standard query is syntactic: it only lookgplanation of the original query’s answer and traces through
at the name of the method invoked by a send statement.siantic paths of the code base.
our HtmlParser example, it will return ten expressions cgnsider the example shown[Fig. 2. A programmer has
including irrelevant false-positive invocations, including codgsked about the type of variablackingPolicy . and
that invokes VRML and email parsers. More extreme examplgs, ,ck has reported that the type is a set of symbols. In
exist: methods with common names suchirisialize order to learn why#straight is included in the set, the
often have only one sender according to Chuck, but hundregdssy can trace one level down and see th@ymbol , the
of senders according to the standard tool. first parameter of methodtackingPolicy: , can hold
#straight . Tracing through that claim’s explanation, the
user sees that some method is invokatackingPolicy:

Chuck’s four navigation paths correspond to flow queriesith #straight passed as a literal argument. Finally, the
that vary on two axesFig. 5 shows this diagrammatically. derivation browser also allows a programmer to retry a goal
The two axes areontrol- versus data-flovand direction of with more effort. DDP has a fundamental trade off between
flow. time required and precision of results, and sometimes it finds

A control-flow question asks about the links in the controhn imprecise result simply because it returned an answer too
structure of the program. In a higher-order language, thegeickly. By default,DDP uses the pruning schedule described
paths are determined by the dynamic semantics; they are moSec. lll and thus reliably finishes within five seconds. If
simple syntactic links. Responders queries and senders queasiggogrammer is unsatisfied with the answer and is strongly
are both control-flow questions: they ask about the order ioterested in the particular question, then the user may use a
execution of message-send expressions and the class metlcodsext menu in the derivation browser and ask the tool to try
they invoke. the query again with more effort expended.

Senders queries

Queries and semantic structure

The try harder dialog is shown irFig. 4 with the default and normal code editing, and Chuck will recompute data-flow
level of effort depicted: the algorithm begins with a pruningnformation as needed.
threshold of 3000, decreases to 50 after 3 seconds, ando accomplish this, the tool is sufficiently integrated with
decreases to 1 after a total of 5 seconds. To find better restiis standard Squeak tools that it can detect when the code
at the expense of more time, a user may enter a differdsdse changes and update its internal information accordingly.
pruning schedule—for example, increasing the 3 secondsTihe processing is correspondingly divided into two phases:
30 seconds—and then select “find answer.” semantic analysis that is performed at the time of the query,
and syntactic analysis that is performed in advance and is
updated each time the programmer commits an edit, e.g., each
It's worth stressing that, although Chuck is the produgime the programmer defines a new class.
of the first author’'s doctoral research, it is not a “research The syntactic information maintained by Chuck consists of
prototype.” It works on full-blown Smalltalk and is now athe following tables:
standard component shipped with the Squeak open-source
programming environment for Smalltalk. *
Chuck integrates seamlessly with the standard Squeak pro:
gramming tools. Users do not execute a visibly separate tool
in order to use Chuck’s additional queries. Instead, they use
ubiquitous context menus to navigate between Chuck windows
and regular browser windows. *
Users first invoke Chuck from the regular code browsers.
They select something of interest, such as an expression,
variable, or class, and then invoke the context menu using,
a designated mouse button. This interface is familiar to users
because it is already used for refactorings and the standard
(syntactic) navigation paths [19].

VI. INTEGRATION WITH STANDARD TOOLS

parseTree , which maps each method to its parse tree.
methodsimplementing , which maps each possible
method name to the list of methods in the system that
implement the method. This is used in responders queries
when the receiver type i&nything

expressionsSending , which maps each method
name to the list ofend statements which send the name.
This is used to find theend statements that may invoke

a method.

symbolLiterals , which maps each method name to
the list of literal expressions that mention a symbol
for that method name. This table is used for analyzing

) i Smalltalk’s perform: method, a method that invokes
The menu items added depend on the item selected. If the methods by a computed name.

user selects an expression or variable, then the menu includes assignmentsDefining , which maps each variable

options for type queries and flow queries. If the user selects to the list of statements which assign something to that
a message-send expression, the menu additionally includes a variable. This is used when processing type queries
responders query. For a method, the menu includes a senders expressionsReading which maps each variable .to

query. I o tools | Huck the list of statements that read from that variable. This is
Users can also return to existing Squeak tools from Chuck. used when processing flow queries.

Again, context menus provide the interface. If a user selects. |]]]
any expression, method, or variable in a Chuck derivatigd!is information requires approximately 65 megabytes of

browser, then the context menu allows the user to “browS€mory to maintain for a typical development image (the

it” and return to a regular Squeak code browser displaying tfigndard Squeak 3.7/Basic release with Chuck loaded, about
selected item. 306,000 lines of code).

Continuing the example from the previous section (seeThe updat'es required af'ter code changes are straightforward
Fig. 2), the user might wonder what method is passal”d propqrtlonal to the size of the code being altered. For
ing #straight as an argument tstackingPolicy: example, if a new method is added to the code base, then:
The user could select “browse the goal’'s target” and re-. The method’s parse tree is addedp@arseTrees
turn to a code browser pointed at methdwmeCell e The method is added to the list in
of class FreeCellBoard , as shown inlFig. 32 Since methodsimplementing corresponding to the
FreeCellBoard is part of the Free Cell game implemented method’s name.
in the code base, andomeCell is presumably a method « For each message-send expression in the method,
to create a “home cell” area of a Free Cell board, the user the expression is added to the appropriate list in
now has enough information to locate an example use of expressionsSending
PlayingCardDeck that uses thettstraight stacking « For each literal expression in the method where the literal
policy: the user can start a game of Free Cell and then inspect is a symbol, the expression is added to the symbol’s list

the stack of cards in one of the home cells. in symbolLiterals
o« For each assignment statement in the method,
VII. ANALYZING LIVE CODE the statement is added to list of statements in
Chuck operates on live code, just like the programming assignmentsDefining corresponding to the
tools of Self [7], Dr. Scheme [20] and Smalltalk. Usersrux variable on the left-hand side of the assignment

need to run the analyzer overnight and then browse the results statement.
the next day. Instead, users may intermingle code browsinge For each variable expression, the expression is added to

the appropriate list irexpressionsReading . development culture and thus programmers frequently try to

These changes are reversed when a method is removed.'&pove falsely marked errors in their code before releasing it.
other code changes are described as a combination of methoghuck has three contributions over existing tools of this

changes are: demonstrated with existing tools: Chuck is effective on code

. If a method is changed, then the tables are updated a es with hundreds of thousands of lines of code. Second,
the method was remov;ad followed by the method bei uck queries may be freely interleaved with edits to the code
added se; programmers do not have to worry about when to re-

« If a class definition is changed, then the tables are updat%]ecu'[:a the type ;fnfetr_enlcetr) mt “ghé ?f r)e;/v co?e edits, '.I'tﬂlrd,t
as if every method in the class and its subclasses werpanalyzer can etiectively be funeg Tof Interactive use withou

removed before the definition change and added ba%'lznply imposing a drop-dead time limit.

after the definition change. B. Type Inference for Program Understanding

The time taken for these hash-table operations are swampe®ata-flow analysis has been studied for other program-
by the overhead of the Squeak system’s dynamic Smalltalkderstanding applications besides improved code browsers.
byte-code compiler, which is invoked in response to code’Callahan and Jackson have written a type-inference tool for
changes. For example, when a method is added, Chuck a@dsalled Lackwit [25], and Deursen and Moonen have written
entries to its tables for that method, and the system compikesimilar tool for Cobol [26]. In both cases, the authors argue
the method to byte code. The additional overhead involved timat type inference in some suitably enriched refinement of the
maintaining the syntactic data structures is imperceptible. base language’s type system can provide useful information

for program understanding even though the languages in both
VIII. RELATED WORK cases are already statically typed.

Chuck adds to a number of ongoing threads of researchChuck shares the spirit of such work but studies type
This section describes Chuck’s relation to significant worRference in the specific context of semantic browsers for large
from each of these threads. dynamic code bases.

A. Navigating with Inferred Types C. Slicing

, they can find the portion of a program

necessary to cause a selected variable to gain its first value.

For example, Agesen and Madse'n built a typg-basqﬂere are many variations on the basic theme of slicing. The
browser for Self based on tePA type-inference algorithm slicer might choose enough of the program to give a variable

[21]. This type-based browser uses data-flow informatiaf) ot jts” values instead of just the first. The slicer might

inferred in a whole-program analysis. The browser uses tiect the portion of the program executiafier a selected
information to display additional type information. Furtheryiapie Instead of insisting on a fully executable slice, the

the browser can browse methods in the context of particulg[oer might select a smaller portion of code that seems more
argument type_se.g.to browse the® method of classzlan directly relevant to the programmer's question.

when the receiver and the argument are Heittat 's. With gemantic browsers such as Chuck present similar depen-
the approach of this browser, if the program changes thgR . information in a different way. Instead of immediately
currently open browsers become invalid and the analysis ne%‘ijéplaying the entire portion of a program that is relevant to a

to be repeated. selected portion of code, a semantic browser let programmers

Another example is Mr. Spidey, a semantic browser that iy igate through the code along data-flow and control-flow
tegrates with the PLT dialect of Scheme [22], [23]. Mr. Sp'dekfaths one step at a time. This approach can help keep a

includes similar navigation and information paths as Ch“%ogrammer from becoming overwhelmed in cases where the
and as Agesen and Madsen’s type-based browser. slice is large.

Both of these example systems make some effort at type o)
checking in addition to type-based browsing. If an expressiors Navigating with Unsound Types
type indicates that it might cause a type error at run time, Finally, another direction is to use unsound types that do not
then the expression is colored red. We do not have any datgture all possible types. Robert, Brant and Johnson’s refac-
establishing whether this feature is effective, and not merdlyring browser [19] uses dynamic type information to guide
possible, using types inferred with DDP. We do not expeits work. Alternatively, the tool can rely on matching common
the DDP-inferred types to be sufficient by themselves fadioms, e.g, extracting information from naming conventions
effective static type checking, and thus Chuck does not includech as “Hungarian notation,” which allow programmers to
type-checking feedback. The approach might become maag variables with extra unchecked type annotations above
promising for large Smalltalk code bases if type inferenand beyond what is provided by the language’s actual static
and soft types [24] become a common part of Smalltabemantics.

Such approaches do not find fully reliable information, but
they still have uses. They can typically run very quickly
because they do not need to check for unusual cases or
respect the actual language semantics. Further, they can ad-
dress program-analysis problems for which no analyzer is
yet effective. While we confess to a certain unease at the
use of unsound analysis systems, we note that program-
development tools can provide both false positives as well
as false negatives as long as they “do the right thing” often
enough for programmers to perceive benefit.

Still, ceteris paribusit’s better to have a sound source of
information than an unsound one. The present work extends
the applicability of tools that use static analysis instead of an
unsound source of type information. This work can be viewed
as one demonstration that analysis-based tools can plausibly
be as effective on large code bases as tools that do not give
any soundness guarantee. It would be interesting future work
to compare directly the speed and precision of the two kinds
of tools.

IX. FUTURE WORK

The Chuck browser has been available in the standard
Squeak open-source Smalltalk programming environment
since July 2004. The tool provides a platform for us to
explore technology that supports humans engaged in program
understanding.

Chuck is an ongoing development project. We continue to
extend its capabilities in various ways. Some directions we are
currently pursuing are:

« Improved inference rules
The current rules dDDP are complete and conservatively
capture the application-writing portion of Smalltalk, but
improved rules can give more precise information. One
improvement to the rules being pursued is the use of
abstract data contours to precisely analyze data polymor-
phism,e.g, that different instances of tHeet class hold
different types of elements. The inference rule DafPA
[28] are helpful but would need updating for Smalltalk’s
differing idioms. In particular, Smalltalk code bases fre-
quently have only one or twmew statements in the
entire code base, and thus abstract data contours should
be based on something like mentions of class hames that
are later instantiated, instead inéw statementper se
A second inference-rule improvement being pursued is
to improve senders-of queries for methods with common
names likanitialize . The standar@®DP rules starts
with the hundreds of methods callimgjtialize and
then narrows that list using type information. In such
a case it should be faster to reverse these steps. The
analyzer could start with every message-send expression
whose receiver is of an appropriate class, and then narrow
that list down by considering which method name each
of those expressions sends.

« Improved pruning algorithm
Manual review of Chuck’s results suggest that many im-
precise results could be greatly improved if the algorithm

were to choose prunings more carefully. A particular
improvement that is being explored is to change the
measure of distance to the root goal that is used to
determine the relative priority of different goals. The
new measure will consider whether the goal contributes
directly to the root goal’s resule(g, when the root goal
must have a supertype of the type found by the goal),
or is only used indirectly€.g, when the goal provides
call-graph information that will in turn be searched).
The pruning algorithm should be extremely reluctant to
prune goals that directly influence the root goal, because
pruning such a goal produces equivalent results to pruning
the root goal itself. This notion of directness appears to
generalize beyond diregs.indirect to an integer number

of levels of indirection.

Off-line processing

While Chuck is primarily structured to support inter-
leaved browsing and code editing, we have turned our
thoughts to attempting to exploit off-line computation to
assist on-line interaction. The scenario is that we assume
the computer might have eight hours a night during which
the code base is quiescent and not under development.
Could the machine run some kind of whole-program,
batch analysis over the code base that could assist queries
when development resumes each following morning?
Note that whatever data the machine computes during
this off-line period must not be instantly invalidated the
moment the programmer makes the first change of the
day to the system. To make effective use of off-line, batch
analysis, the information computed must remain of utility
so long as the code has not changed too much between
the time of the analysis and the time of the programmer
queries.

One promising avenue is to cache both results and
explanations from the batch analysis. If the user makes
a query that was also made in the batch execution,
then the cached result can have its explanation checked
again to ensure that it is still valid. In many cases the
explanation is likely to remain valid because the code has
not changed much. Even in cases where the explanation
is no longer sufficient, the analysis can begin with the
cached information instead of beginning from scratch.
There is some risk that the result found in this way is
less precise than would have been found with a from-
scratch analysis that used the same amount of time. The
tool, therefore, might also repeat the five-second analysis,
just in case, and provide to the user whichever result is
better.

Further integration with Squeak

Additionally, we plan to integrate Chuck further into
the Squeak programming environment by using Robbes’
Services framework [29]. Currently, Chuck is directly
integrated with the code browser; with Robbes’ frame-
work, it could also be invoked from other tools that
present code to the user, including debuggers, inspectors,
and workspaces. Instead of enhancing the browser tool

itself, Chuck would enhance all tools that display code[10]
User Studies

Chuck’s interface has been tuned in response to feedbé%:]ll
from a limited set of users: our coworkers in the collegg12]
We plan to run a more structured user study with a larger
set of users in order to improve the usability further angds,
in order to test whether Chuck is useful in its intended

role. 4]

X. CONCLUSIONS

Chuck demonstrates that semantic navigation is practié%ﬁ]
in large, higher-order, dynamically typed code bases, even
when the semantic navigation is interleaved with code edits.

To achieve this, Chuck combines a number of techniques: [

Its analyzer uses subgoal pruning in order to get context-
sensitive information much faster than algorithms th?{ﬂ
require time proportional to the size of the code base.

It uses a pruning algorithm tuned for interactive timings.
It spends memory to maintain tables about the syntax g
the code base as the code changes. [19]

Because the tool tolerates code changes, it can be thorou
integrated with existing programming tools. Queries can

i

initiated from the standard code browsers, and when a user
traces a query’s explained result, the user can reenter tH8

standard code browsers at any point.

(22]

Semantic navigation is just one application of type infer-
ence. Other tools that can benefit include improved refactd#s)
ings [19], lint-like tools that find potential errors [22], deadypy)

code removal [21], and optimizing compilation [1EPDP
potentially enables a whole class of analysis-based tools L%)
large higher-order, dynamically typed code bases that sho

(25]

g

be explored.

(1]

(2]
(3]
(4]

(5]

(6]

(7]

(8]

El

[27]

REFERENCES (28]
(2001, May) ezboard ranked in top 100 sites worldwideboard.com
press release. [Online]. Availabldttp://www.ezboard.com/corporate/ [29]
pressroom/20003.24.htm|
A. Radding, “Simplicity, but with control, Information Weekvol. 381,
April 2001.
J. Robertson. post on november 28, 2068mp.lang.smalltalk
USENET group.
S. A. Spoon and O. Shivers, “Demand-driven type inference with sub-
goal pruning: Trading precision for scalability,” EBuropean Conference
on Object-Oriented Programming (ECOQR004.
D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to the
future: The story of Squeak, A practical Smalltalk written in itself,” in
ACM Conference on Object-Oriented Programming, Systems, Language,
and Applications (OOPSLAL997.
A. C. Kay, “The early history of smalltalk,” inThe second ACM
SIGPLAN conference on History of programming language&\CM
Press, 1993, pp. 69-95.
D. Ungar and R. B. Smith, “Self: The power of simplicity,” iIACM
Conference on Object-Oriented Programming, Systems, Language, and
Applications (OOPSLA)1987.
I. N. I. Adams, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman,
R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M.
Pitman, G. J. Rozas, J. G. L. Steele, G. J. Sussman, M. Wand, and
H. Abelson, “Revised report on the algorithmic language scheme,”
SIGPLAN Notices1998.
C. Chambers, “The cecil language specification and rationale,” Depart-
ment of Computer Science and Engineering, University of Washington,
Tech. Rep. TR-93-03-05, March 1993.

10

O. Shivers, “Control-flow analysis of higher-order languages,” Ph.D.
dissertation, Carnegie Mellon University, 1991.

N. Suzuki, “Inferring types in smalltalk,” inACM Symposium on
Principles of Programming Languages (PORWP81, pp. 187-199.

O. Shivers, “The semantics of scheme control-flow analysisPartial
Evaluation and Semantic-Based Program Manipulatib®91, pp. 190—
198.

0. Agesen, “The cartesian product algorithm: Simple and precise type
inference of parametric polymorphism,” iBuropean Conference on
Object-Oriented Programming (ECOOP)995.

C. Flanagan and M. Felleisen, “Componential set-based analysis,”
ACM Transactions on Programming Languages and Systems (TOPLAS)
vol. 21, no. 2, pp. 370-416, 1999.

D. Grove, G. Defouw, J. Dean, and C. Chambers, “Call graph con-
struction in object-oriented languages,” ACM Conference on Object-
Oriented Programming, Systems, Language, and Applications (OOP-
SLA) 1997.

16] G. DeFouw, D. Grove, and C. Chambers, “Fast interprocedural class

analysis,” inProceedings of the 25th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languagesACM Press, 1998, pp.
222-236.

E. Duesterwald, R. Gupta, and M. L. Soffa, “Demand-driven compu-
tation of interprocedural data flow,” iBymposium on Principles of
Programming Languaged995, pp. 37-48.

S. A. Spoon, “Demand-driven type inference with subgoal pruning,”
Ph.D. dissertation, Georgia Institute of Technology, 2005.

D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Theory and Practice of Object Systemsl. 3, no. 4, pp. 253—-263, 1997.
J. Clements, P. T. Graunke, S. Krishnamurthi, and M. Felleisen, “Little
languages and their programming environmentsiMonterey Workshap
2001.

O. Agesen, “Concrete type inference: Delivering object-oriented appli-
cations,” Ph.D. dissertation, Stanford University, 1995.

C. Flanagan and M. Felleisen, “A new way of debugging lisp programs,”
in Proceedings of Lisp Users’ Group Meeting (LUGM)pP98.

C. Flanagan, “Effective static debugging via componential set-based
analysis,” Ph.D. dissertation, Rice University, 1997.

R. Cartwright and M. Fagan, “Soft typing,” iALDI, 1991, pp. 278-292.

R. O’Callahan and D. Jackson, “Lackwit: A program understanding tool
based on type inference,” MCSE '97, 1997.

A. van Deursen and L. Moonen, “An empirical study into cobol type
inferencing,” Science of Computer Programmingpl. 40, no. 2-3, pp.
189-211, July 2001.

F. Tip, “A survey of program slicing techniquesJburnal of program-
ming languagesvol. 3, pp. 121-189, 1995.

T. Wang and S. F. Smith, “Precise constraint-based type inference for
Java,”Lecture Notes in Computer Sciene®l. 2072, pp. 99-117, 2001.
R. Robbes. “Services”. page on Squeak Swiki. [Online]. Available:
http://minnow.cc.gatech.edu/squeak/3727

ezboard.com�
http://www.ezboard.com/corporate/pressroom/2001_03_24.html�
http://www.ezboard.com/corporate/pressroom/2001_03_24.html�
http://minnow.cc.gatech.edu/squeak/3727�

