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Chapter 3

Sparse Distr ibuted Memory and Related Models

Pentti Kanerva

3.1. Introduction

This chapter describes one basic model of associative memory, called the sparse 
distributed memory, and relates it to other models and circuits: to ordinary computer 
memory, to correlation-matrix memories, to feed-forward artificial neural nets, to 
neural circuits in the brain, and to associative-memory models of the cerebellum. 
Presenting the various designs within one framework will hopefully help the reader 
see the similarities and the differences in designs that are often described in 
different ways.

3.1.1. Sparse Distr ibuted Memory as a Model of Human Long-Term Memory

Sparse Distributed Memory (SDM) was developed as a mathematical model of 
human long-term memory (Kanerva 1988). The pursuit of a simple idea led to the 
discovery of the model, namely, that the distances between concepts in our minds 
correspond to the distances between points of a high-dimensional space. In what 
follows, ‘high-dimensional’ means that the number of dimensions is at least in the 
hundreds, although smaller numbers of dimensions are often found in examples.

If a concept, or a percept, or a moment of experience, or a piece of information 
in memory—a point of interest—is represented by a high-dimensional (or “ long”) 
vector, the representation need not be exact. This follows from the distribution of 
points of a high-dimensional space: Any point of the space that might be a point of 
interest is relatively far from most of the space and from other points of interest. 
Therefore, a point of interest can be represented with considerable slop before it is 
confused with other points of interest. In this sense, long vectors are fault-tolerant 
or robust, and a device based on them can take advantage of the robustness.

This corresponds beautifully to how humans and animals with advanced sensory 
systems and brains work. The signals received by us at two different times are 
hardly ever identical, and yet we can identify the source of the signal as a specific 
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individual, object, place, scene, thing. The representations used by the brain must 
allow for such identification, in fact, they must make the identification nearly 
automatic, and high-dimensional vectors as internal representations of things do 
that.

Another property of high-dimensional spaces also has to do with the distances 
between points. If we take two points (of interest) at random, they are relatively far 
from each other, on the average: they are uncorrelated. However, there are many 
points between the two that are close to both, in the sense that the amount of space 
around an intermediate point—in a hypersphere—that contains both of the two 
original points is very small . This corresponds to the relative ease with which we 
can find a concept that links two unrelated concepts.

Strictly speaking, a mathematical space need not be a high-dimensional vector 
space to have the desired properties; it needs to be a huge space, with an appropriate 
similarity measure for pairs of points, but the measure need not define a metric on 
the space.

The important properties of high-dimensional spaces are evident even with the 
simplest of such spaces—that is, when the dimensions are binary. Therefore, the 
sparse distributed memory model was developed using long (i.e., high-
dimensional) binary vectors or words. The memory is addressed by such words, and 
such words are stored and retrieved as data.

The following two examples demonstrate the memory’s robustness in dealing 
with approximate data. The memory works with 256-bit words: it is addressed by 
them, and it stores and retrieves them. On top of Figure 3.1 are nine similar (20% 
noisy) 256-bit words. To help us compare long words, their 256 bits are laid on a 
16-by-16 grid, with 1s shown in black. The noise-free prototype word was designed 
in the shape of a circle within the grid. (This example is confusing in that it might 
be taken to imply that humans recognize circles based on stored retinal images of 
circles. No such claim is intended.) The nine noisy words were stored in a sparse 
distributed memory autoassociatively, meaning that each word was stored with 
itself as the address. When a tenth noisy word (bottom left), different from the nine, 
was used as the address, a relatively noise-free 11th word was retrieved (bottom 
middle), and with that as the address, a nearly noise-free 12th word was retrieved 
(bottom right), which in turn retrieved itself. This example demonstrates the 
memory’s tendency to construct a prototype from noisy data.

 (( FIGURE 3.1. Nine noisy words are stored … ))

Figure 3.2 demonstrates sequence storage and recall. Six words, shaped as 
Roman numerals, are stored in a linked list: I is used as the address to store II, II is 
used as the address to store III , and so forth. Any of the words I–V can then be used 
to recall the rest of the sequence. For example, III will retrieve IV will retrieve V 
will retrieve VI. The retrieval cue for the sequence can be noisy, as demonstrated at 
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the bottom of the figure. As the retrieval progresses, a retrieved word, which then 
serves as the next address, is less and less noisy. This example resembles human 
abilit y to find a familiar tune by hearing a piece of it in the middle, and to recall the 
rest. This kind of recall applies to a multitude of human and animal skills.

 (( FIGURE 3.2. Recalling a stored sequence … ))

3.2. SDM as a Random-Access Memory

Except for the lengths of the address and data words, the memory resembles 
ordinary computer memory. It is a generalized random-access memory for long 
words, as will be seen shortly, and its construction and operation can be explained 
in terms of an ordinary random-access memory. We will start by describing an 
ordinary random-access memory.

3.2.1. Random-Access Memory

A random-access memory (RAM) is an array of M addressable storage registers or 
memory locations of fixed capacity. A location’s place in the memory array is called 
the location’s address, and the value stored in the register is called the location’s 
contents. Figure 3.3 represents such a memory, and a horizontal row through the 
figure represents one memory location. The active location is shown shaded. The 
addresses of the locations are on the left, in matrix A, and the contents are on the 
right, in matrix C.

 (( FIGURE 3.3. Organization of a random-access memory. ))

A memory with a mil lion locations (M = 220) is addressed by 20-bit words. The 
length of the address will be denoted by N (N = 20 in Fig. 3.3). The capacity of a 
location is referred to as the memory’s word size, U (U = 32 bits in Fig. 3.3), and 
the capacity of the entire memory is defined conventionally as the word size 
multiplied by the number of memory locations (i.e., M × U bits).

Storage and retrieval happen one word at a time through three special registers: 
the address register, for an N-bit address into the memory array; the word-in 
register, for a U-bit word that is to be stored in memory; and the word-out register, 
for a U-bit word retrieved from memory. To store the word w in location x (the 
location’s address x is used as a name for the location), x is placed in the address 
register, w is placed in the word-in register, and a write-into-memory command is 
issued. Consequently, w replaces the old contents of location x, while all other 
locations remain unchanged. To retrieve the word w that was last stored in location 
x, x is placed in the address register and a read-from-memory command is issued. 
The result w appears in the word-out register. The figure shows (a possible) state of 
the memory after w = 010…110 has been stored in location x = 000…011 (the 
word-in register holds w) and then retrieved from the same location (the address 
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register holds x).
Between matrices A and C in the figure is an activation vector, y. Its components 

are 0s except for one 1, which indicates the memory location that is selected for 
reading or writing (i.e., the location’s address matches the address register). In a 
hardware realization of a random-access memory, a location’s activation is 
determined by an address-decoder circuit, so that the address matrix A is implicit. 
However, the contents matrix C is an explicit array of 220 × 32 one-bit registers or 
flip-flops.

3.2.2. Sparse Distr ibuted Memory

Figure 3.4 represents a sparse distributed memory. From the outside, it is like a 
random-access memory: it has the same three special registers—address, word-in, 
and word-out—and they are used in the same way when words are stored and 
retrieved, except that these registers are large (e.g., N = U = 1,000).

 (( FIGURE 3.4. Organization of a sparse distributed memory. ))

Construction. The internal organization of sparse distributed memory, likewise, is 
an array of addressable storage locations of fixed capacity. However, since the 
addresses are long, it is impossible to build a hardware location—a hard location, 
for short—for each of the 2N addresses. (Neither is it necessary, considering the 
enormous capacity that such a memory would have.)

A memory of reasonable size and capacity can be built by taking a reasonably 
large sample of the 2N addresses and by building a hard location for each address 
in the sample. Let M be the size of the sample: we want a memory with M locations 
(M = 1,000,000 in Fig. 3.4). The sample can be chosen in many ways, and only 
some will be considered here.

A good choice of addresses for the hard locations depends on the data to be stored 
in the memory. The data consist of the words to be stored and of the addresses used 
in storing them. For simplicity, we assume in the basic model that the data are 
distributed randomly and uniformly (i.e., bits are independent of each other, and 0s 
and 1s are equally likely, both in the words being stored and in the addresses used 
for storing them). Then the M hard locations can be picked at random; that is to say, 
we can take a uniform random sample, of size M, of all N-bit addresses. Such a 
choice of locations is shown in Figure 3.4, where the addresses of the locations are 
given in matrix A and the contents are given in matrix C, and where a row through 
the figure represents a hard location, just as in Figure 3.3 (row Am of matrix A is 
the mth hard address, and Cm is the contents of location Am; as with RAM, we use 
Am to name the mth location).

Activation. In a random-access memory, to store or retrieve a word with x as the 
address, x is placed in the (20-bit) address register, which activates location x. We 
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say that the address register points to location x, and that whatever location the 
address register points to is activated. This does not work with a sparse distributed 
memory because its (1,000-bit) address register never—practically never—points 
to a hard location because the hard locations are so few compared to the number of 
possible addresses (e.g., 1,000,000 hard addresses vs. 21,000 possible addresses; 
matrix A is an exceedingly sparse sampling of the address space).

To compensate for the extreme sparseness of the memory, a set of nearby 
locations is activated at once, for example, all the locations that are within a certain 
distance from x. Since the addresses are binary, we can use Hamming distance, 
which is the number of places at which two binary vectors differ. Thus, in a sparse 
distributed memory, the mth location is activated by x (which is in the address 
register) if the Hamming distance between x and the location’s address Am is below 
or equal to a threshold value H (H stands for a [Hamming] radius of activation). The 
threshold is chosen so that but a small fraction of the hard locations are activated by 
any given x. When the hard addresses A are a uniform random sample of the N-
dimensional address space, the binomial distribution with parameters N and 1/2 can 
be used to find the activation radius H that corresponds to a given probability p of 
activating a location. Notice that, in a random-access memory, a location is 
activated only if its address matches x, meaning that H = 0.

Vectors d and y in Figure 3.4 show the activation of locations by address x. The 
distance vector d gives the Hamming distances from the address register to each of 
the hard locations, and the 1s of the activation vector y mark the locations that are 
close enough to x to be activated by it: ym = 1 if dm ≤ H, and ym = 0 otherwise, where 
dm = h(x, Am) is the Hamming distance from x to location Am. The number of 1s in 
y therefore equals the size of the set activated by x.

Figure 3.5 is another way of representing the activation of locations. The large 
circle represents the space of 2N addresses. Each tiny square is a hard location, and 
its position within the large circle represents the location’s addresses. The small 
circle around x includes the locations that are within H bits of x and that therefore 
are activated by x.

(( FIGURE 3.5. Address space, hard locations, and the set … ))

Storage. To store U-bit words, a hard location has U up–down counters. The range 
of a counter can be small, for example, the integers from −15 to 15. The U counters 
for each of the M hard locations constitute the M × U contents matrix, C, shown on 
the right in Figure 3.4, and they correspond to the M × U flip-flops of Figure 3.3. 
We will assume that all counters are initially set to zero.

When x is used as the storage address for the word w, w is stored in each of the 
locations activated by x. Thus, multiple copies of w are stored; in other words, w is 
distributed over a (small ) number of locations. The word w is stored in, or written 
into, an active location as follows: Each 1-bit of w increments, and each 0-bit of w 
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decrements, the corresponding counter of the location. This is equivalent to saying 
that the word w′ of −1s and 1s is added (vector addition) to the contents of each 
active location, where w′ is gotten from w by replacing 0s with −1s. Furthermore, 
the counters in C are not incremented or decremented past their limits (i.e., 
overflow and underflow are lost).

Figure 3.4 depicts the memory after the word w = 010…110 (in the word-in 
register) has been stored with x = 100…101 as the address (in the address register). 
Several locations are shown as selected, and the vector w´ = 
(−1, 1, −1, …, 1, 1, 1) has been added to their contents. The figure also shows that 
many locations have been selected for writing in the past (e.g., the first location has 
nonzero counters), that the last location appears never to have been selected, and 
that w appears to be the first word written into the selected location near the bottom 
of the memory (the location contains w′). Notice that a positive value of a counter, 
+5, say, tells that five more 1s than 0s have been stored in it; similarly, −5 tells that 
five more 0s than 1s have been stored (provided that the capacity of the counter has 
never been exceeded).

Retr ieval. When x is used as the retrieval address, the locations activated by x are 
pooled as follows: their contents are accumulated (vector addition) into a vector of 
U sums, s, and the sums are compared to a threshold value 0 to get an output vector 
z, which then appears in the word-out register (zu = 1 iff su > 0; s and z are below 
matrix C in Fig. 3.4). This pooling constitutes a majority rule, in the sense that the 
uth output bit is 1 if, and only if, more 1s than 0s have been stored in the uth counters 
of the activated locations; otherwise, the output bit is 0.

In Figure 3.4 the word retrieved, z, is the same as, or very similar to, the word w 
that was stored, for the following reason: The same x is used as both storage and 
retrieval address, so that the same set of locations is activated both times. In storing, 
each active location receives one copy of w´, as described above; in retrieving, we 
get back all  of them, plus a few copies of many other words that have been stored. 
This biases the sums, s, in the direction of w´, so that w is a li kely result after 
thresholding. This principle holds even when the retrieval address is not exactly x 
but is close to it. Then we get back most of the copies of w´.

The ideas of storing multiple copies of target words in memory, and of retrieving 
the most likely target word based on the majority rule, are found already in the 
redundant hash addressing method of Kohonen and Reuhkala (1978; Kohonen 
1980). The method of realizing these ideas in redundant hash addressing is very 
different from their realization in a sparse distributed memory.

Retrieval and memory capacity will be analyzed statistically at the end of the next 
section, after a uniform set of symbols and conventions for the remainder of this 
chapter has been established. We will note here, however, that the intersections of 
activation sets play a key role in the analysis, for they appear as weights for the 
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words stored in the memory when the sum vector s is evaluated.

Random-Access Memory as a Special Case .One more comment about a 
random-access memory: Proper choice of parameters for a sparse distributed 
memory yields an ordinary random-access memory. First, the address matrix A 
must contain all 2N addresses; second, the activation radius H must be zero; and, 
third, the capacity of each counter in C must be one bit. The first condition 
guarantees that every possible address x points to at least one hard location. The 
second condition guarantees that only a location that is pointed to is activated. The 
third condition guarantees that when a word is written into a location, it replaces the 
location’s old contents, because overflow and underflow are lost. In memory 
retrieval, the contents of all active locations are added together; in this case, the sum 
is over one or more locations with hard address x. Any particular coordinate of the 
sum is zero if the word last written (with address x) has a 0 in that position; and it 
is positive if the word has a 1, so that after thresholding we get the word last written 
with address x. Therefore, the sparse distributed memory is a generalization of the 
random-access memory.

Parallel Realization. Storing a word, or retrieving a word, in a sparse distributed 
memory involves massive computation. The contents of the address register are 
compared to each hard address, to determine which locations to activate. For the 
model memory with a million l ocations, this means computing one-million 
Hamming distances involving 1,000 bits each, and comparing the distances to a 
threshold. This is very time-consuming if done serially. However, the activations of 
the hard locations are independent of each other so that they can be computed in 
parallel; once the address is broadcast to all the locations, milli on-fold parallelism 
is possible. The addressing computation that determines the set of active locations 
corresponds to address decoding by the address-decoder circuit in a random-access 
memory.

In storing a word, each column of counters in matrix C (see Fig. 3.4) can be 
updated independently of all other columns, so that there is an opportunity for 
thousand-fold parallelism when 1,000-bit words are stored. Similarly, in retrieving 
a 1,000-bit word, there is an opportunity for thousand-fold parallelism. Further 
parallelism is achieved by updating many locations at once when a word is stored, 
and by accumulating many partial sums at once when a word is retrieved. It appears 
that neural circuits in the brain are wired for these kinds of parallelism.

3.3. SDM as a Matr ix Memory

The construction of the memory was described above in terms of vectors and 
matrices. We will now see that its operation is described naturally in vector–matrix 
notation. Such description is convenient in relating the sparse distributed memory 
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to the correlation-matrix memories described by Anderson (1968) and Kohonen 
(1972)—see also Hopfield (1982), Kohonen (1984), Willshaw (1981), and Chapter 
1 by Hassoun—and in relating it to many other kinds of artific ial neural networks. 
The notation will also be used for describing variations and generalizations of the 
basic sparse distributed memory model.

3.3.1. Notation

In comparing the memory to a random-access memory, it is convenient to express 
binary addresses and words in 0s and 1s. In comparing it to a matrix memory, 
however, it is more convenient to express them in −1s and 1s (also called bipolar 
representation). This transformation is already implicit in the storage algorithm 
described above: a binary word w of 0s and 1s is stored by adding the corresponding 
word w′ of −1s and 1s into (the contents of) the active locations. From here on, we 
assume that the binary components of A and x (and of w and z) are −1s and 1s, and 
whether bit refers to 0 and 1 or to −1 and 1 will depend on the context.

How is the activation of a location determined after this transformation? In the 
same way as before, provided that Hamming distance is defined as the number of 
places at which two vectors differ. However, we can also use the inner product 
(scalar product, dot product) of the hard address Am and the address register x to 
measure their similarity: d = d(Am, x) = Am ⋅ x. It ranges from −N to N (d = N means 
that the two addresses are most similar—they are identical), and it relates linearly 
to the Hamming distance, which ranges from 0 to N (0 means identical). Therefore, 
Hamming distance h(Am, x) ≤ H if, and only if, Am ⋅ x ≥ N − 2H (= D). In a 
computer simulation of the memory, however, the exclusive-or (XOR) operation on 
addresses of 0s and 1s usually results in the most efficient computation of distances 
and of the activation vector y.

The following typographic conventions will be used:

s italic lowercase for a scalar or a function name.
S italic uppercase for a scalar upper bound or a threshold.
v bold lowercase for a (column) vector.
vi ith component of a vector, a scalar.
M bold uppercase for a matrix.
M i ith row of a matrix, a (column) vector.
M ⋅,j jth column of a matrix, a (column) vector.
Mi ,j scalar component of a matrix.

MT transpose of a matrix (or of a vector).
⋅ scalar (inner) product of two vectors: u ⋅ v = uTv.
 matrix (outer) product of two vectors: u v = uvT.

n = 1, 2, 3, …, N  index into the bits of an address.
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u = 1, 2, 3, …, U index into the bits of a word.
t = 1, 2, 3, …, T index into the data.
m = 1, 2, 3, …, M index into the hard locations.

3.3.2. Memory Parameters

The sparse distributed memory, as a matrix memory, is described below in terms of 
its parameters, progressing with the information flow from upper left to lower right 
in Figure 3.4. Sample memory refers to a memory whose parameter values appear 
in parentheses in the descriptions below, as in “(e.g., N = 1,000)” .

The external dimensions of the memory are given by:

N Address length; dimension of the address space; input dimension (e.g.,
N = 1,000). Small demonstrations can be made with N as small as 25, but N 
> 100 is recommended, as the properties of high-dimensional spaces wil l then 
be evident.

U Word length; the number of bits (−1s and 1s) in the words stored; output 
dimension (e.g., U = 1,000). The minimum, U = 1, corresponds to classifying 
the data into two classes. If U = N, it is possible to store words 
autoassociatively and to store sequences of words as pointer chains, as 
demonstrated in Figures 3.1 and 3.2.

The data set to be stored—the training set (X, W)—is given by:

T Training-set size; number of elements in the data set (e.g., T = 10,000).
X Data-address matrix; T training addresses; T × N −1s and 1s (e.g., uniform 

random).
W Data-word matrix; T training words; T × U −1s and 1s (e.g., uniform 

random). Autoassociative data (self-addressing) means that X = W, and 
sequence data means that Xt = Wt − 1 (t > 1).

The memory’s internal parameters are:

M Memory size; number of hard locations (e.g., M = 1,000,000). Memory needs 
to be sufficient for the data being stored and for the amount of noise to be 
tolerated in retrieval. Memory capacity is low, so that T should be 1–5 percent 
of M (T is the number of stored patterns; storing many noisy versions of the 
same pattern [cf. Fig. 3.1] counts as storing one pattern, or as storing few).

A Hard-address matrix; M hard addresses; M × N  −1s and 1s (e.g., uniform 
random). This matrix is fixed. Efficient use of memory requires that A 
correspond to the set of data addresses X (see Sec. 3.8 on SDM research).

p Probabilit y of activation (e.g., p = 0.000445; “ ideally,” p = 0.000368). This 
important parameter determines the number of hard locations that are 
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activated, on the average, by an address, which, in turn, determines how well 
stored words are retrieved. The best p maximizes the signal (due to the target 
word that is being retrieved) relative to the noise (due to all other stored 
words) in the sum, s, and is approximately (2MT)−1/3 (see end of this section, 
where signal, noise, and memory capacity are discussed).

H Radius of activation (e.g., H = 447 bits). The binomial distribution or its 
normal approximation can be used to find the (Hamming) radius for a given 
probability. For the sample memory, optimal p is 0.000368, so that about 368 
locations should be activated at a time. Radius H = 446 captures 354 
locations, and H = 447 captures 445 locations, on the average. We choose the 
latter.

D Activation threshold on similarity (e.g., D = 106). This threshold is related to 
the radius of activation by D = N − 2H, so that D = 108 and D = 106 
correspond to the two values of H given above.

c Range of a counter in the M × U contents matrix C (e.g., c = { −15, −14,
−13, …, 14, 15} ). If the range is one bit (c = {0, 1}), the contents of a location 
are determined wholly by the most-recent word written into the location. An 
8-bit byte, an integer variable, and a floating-point variable are convenient 
counters in computer simulations of the memory.

The following variables describe the memory’s state and operation:

x Storage or retrieval address; contents of the address register; N  −1s and 1s 
(e.g., x = Xt).

d Similarity vector; M integers in {−N, −N + 2, −N + 4, …, N − 2, N} . Since the 
similarity between the mth hard address and the address register is given by 
their inner product Am ⋅ x (see Sec. 3.3.1 on Notation), the similarity vector 
can be expressed as d = Ax.

y Activation vector; M  0s and 1s. The similarity vector d is converted into the 
activation vector y by the (nonlinear) threshold function y defined by y(d) = 
y, where ym = 1 if dm ≥ D, and ym = 0 otherwise. The number of 1s in y, , 
is small compared to the number of 0s  (  ≈ pM); the activation vector is a 
very sparse vector in a very-high-dimensional space. Notice that this is the 
only vector of 0s and 1s; all other binary vectors consist of −1s and 1s.

w Input word; U  −1s and 1s (e.g., w = Wt).
C Contents matrix; U × M up–down counters with range c, initial value usually 

assumed to be 0. Since the word w is stored in active location Am (i.e., when 
ym = 1) by adding w into the location’s contents Cm, it is stored in all  active 
locations indicated by y by adding the (outer-product) matrix y w (most of 
whose rows are 0) into C, so that C := C + y w, where := means substitution, 
and where addition beyond the range of a counter is ignored. This is known 

y
y
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as the outer-product, or Hebbian, learning rule.
s Sum vector; U sums (each sum has [at most]  nonzero terms). Because the 

sum vector is made up of the contents of the active locations, it can be 
expressed as s = CTy. The U sums give us the final output word z, but they 
also tell us how reliable each of the output bits is. The further a sum is from 
the threshold, the stronger is the memory’s evidence for the corresponding 
output bit.

z Output word; U  −1s and 1s. The sum vector s is converted into the output 
vector z by the (nonlinear) threshold function z defined by z(s) = z, where zu 
= 1 if su > 0, and zu = −1 otherwise.

In summary, storing the word w into the memory with x as the address can be 
expressed as

C := C + y(Ax) w

and retrieving the word z corresponding to the address x can be expressed as

z = z(CTy(Ax))

3.3.3. Summary Specification

The following matrices describe the memory’s operation on the data set—the 
training set (X, W)—as a whole:

D T × M matrix of similarities corresponding to the data addresses X: D = 
(AXT)T = XAT.

Y Corresponding T × M matrix of activations: Y = y(D).
S T × U matrix of sums for the data set: S = YC.
Z Corresponding T × U matrix of output words: Z = z(S) = z(YC).

If the initial contents of the memory are 0, and if the capacities of the counters 
are never exceeded, storing the T-element data set yields memory contents

C = Wt = Wt

This expression for C follows from the outer-product learning rule (see C above), 
as it is the sum of T matrices, each of which represents an item in the data set. 
However, C can be viewed equivalently as a matrix of M × U inner products Cm,u 
of pairs of vectors of length T. One set of these vectors is the M columns of Y, and 
the other set is the U columns of W, so that Cm,u = Y⋅,m ⋅ W⋅,u, and

C = YTW = y(AX T)W

The accuracy of recall of the training set after it has been stored in memory, is then 

y

Y t

t 1=

T

∑ y AX t( )
t 1=

T

∑
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given by

Z − W = z(YC) − W

= z(YYTW) − W

This form is convenient in the mathematical analysis of the memory. For example, 
it is readily seen that if the T rows of Y are orthogonal to one another, YYT is a 
diagonal matrix approximately equal to pM I  (I  is the identity matrix), so that 
z(YYTW) = W and recall is perfect. Notice that the rows of Y for the sample 
memory are nearly orthogonal to one another, and that the purpose of addressing 
through A is to produce (nearly) orthogonal activation vectors for most pairs of 
addresses, which is a way of saying that the sets of locations activated by dissimilar 
addresses overlap as littl e as possible.

3.3.4. Relation to Cor relation-Matr ix Memor ies

The M × U inner products that make up C are correlations of a sort: they are 
unnormalized correlations that reflect agreement between the M variables 
represented by the columns of Y, and the U variables represented by the columns of 
W. If the columns were normalized to zero mean and to unit length, their inner 
products would equal the correlation coefficients used commonly in statistics. 
Furthermore, the inner products of activation vectors (i.e., unnormalized 
correlations) Yt ⋅ y serve as weights for the training words in memory retrieval, 
further justifying the term correlation-matrix memory.

The Y-variables are derived from the X-variables (each Y-variable compares the 
data addresses X to a specific hard address), whereas in the original correlation-
matrix memories (Anderson 1968; Kohonen 1972), the X-variables are used 
directly, and the variables are continuous. Changing from the X-variables to the Y-
variables means, mathematically, that the input dimension is blown way up (from a 
thousand to a milli on); in practice it means that the memory can be made arbitrarily 
large, rendering its capacity independent of the input dimension N. The idea of 
expanding the input dimension goes back at least to Rosenblatt’s (1962) α-
perceptron network.

3.3.5. Recall Fideli ty (ϕ)

We will now look at the retrieval of words stored in memory, that is, how faithfully 
are the stored words reconstructed by the retrieval procedure. The asymptotic 
behavior of the memory, as the input dimension N grows without bound, has been 
analyzed in depth by Chou (1989). Specific dimension N is assumed here, and the 
analysis is simple but approximate. The analysis follows one given by Jaeckel 
(1989a) and uses some of the same symbols.

What happens when we use one of the addresses, say, the last data address XT, to 
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retrieve a word from memory; how close to the stored word WT is the retrieved 
word ZT? The output word ZT is gotten from the sum vector ST by comparing its U 
sums to zero. Therefore, we need to find out how likely will a sum in ST be on the 
correct side of zero. Since the data are uniform random, all columns of C have the 
same statistics, and all sums in ST have the same statistics. So it suffices to look at 
a single coordinate of the data words, say, the last, and to assume that the last bit of 
the last data word, WT,U, is 1. How likely is ST,U > 0 if WT,U = 1? This li kelihood is 
called the fidelity for a single bit, denoted here by ϕ (phi for ‘f idelity’) , and we now 
proceed to estimate it.

The sum vector ST retrieved by the address XT is a sum over the locations 
activated by XT. The locations are indicated by the 1s of the activation vector YT, 
so that ST = YT

TC, which equals YT
TYTW (that C = YTW was shown above). The 

last coordinate of the sum vector is then ST,U = YT
TC ⋅,U = YT

TYTW⋅,U = 
(YYT)T W⋅,U = (YYT) ⋅ W⋅,U, which shows that only the last bits of the data words 
contribute to it. Thus, the Uth bit-sum is the (inner) product of two vectors, YY T 
and W⋅,U, where the T-vector W⋅,U consists of the stored bits (the last bit of each 
stored word), and the T components of YYT act as weights for the stored bits.

The weights YYT have a clear interpretation in terms of activation sets and their 
intersections or overlaps: they equal the sizes of the overlaps. This is ill ustrated in 
Figure 3.6 (cf. Fig. 3.5). For example, since the 1s of Yt and YT mark the locations 
activated by Xt and XT, respectively, the weight Yt ⋅ YT for the tth data word in the 
sum ST equals the number of locations activated by both Xt and XT. Because the 
addresses are uniform random, this overlap is p2M locations on the average, where 
p is the probabilit y of activating a location, except that for t = T the two activation 
sets are the same and the overlap is complete, covering pM locations on the average.

 (( FIGURE 3.6. Activation overlaps as weights for stored words. ))

In computing fidelity, we will abbreviate notation as follows: Let Bt (= Wt,U) be 
the last bit of the tth data word, let Lt = Yt ⋅ YT be its weight in the sum ST,U, and let 
Σ (= ST,U) be the last bit sum. Regard the bits Bt and their weights Lt as two sets of 
T random variables, and recall our assumption that addresses and data are uniform 
random. Then the bits Bt are independent −1s and 1s with equal probability (i.e., 
mean E{ Bt} = 0), and they are also independent of the weights. The weights Lt, 
being sizes of activation overlaps, are nonnegative integers. When activation is low, 
as it is in the sample memory (p = 0.000445), the weights resemble independent 
Poisson variables: the first T − 1 of them have a mean (and variance Var{Lt} ≈) 
E{ Lt}  = λt = λ = p2M and the last has a mean (and variance Var{LT} ≈) E{ LT} = λT 
= Λ = pM (i.e., complete overlap). For the sample memory these values are: mean 
activation Λ = pM = 445 locations (out of a milli on), and mean activation overlap λ 
= p2M = 0.2 location (t < T). We will proceed as if the weights Lt were independent 
Poisson variables, and hence our result will be approximate.
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We are assuming that the bit we are trying to recover equals 1 (i.e., BT = WT,U = 
1); by symmetry, the analysis of BT = −1 is equivalent. The sum Σ is then the sum 
of T products LtBt, and its mean, or expectation, is

µ = E{ Σ} = {LtBt} + E{ LT ⋅ 1}

= E{ LT}

= Λ

because independence and E{ Bt} = 0 yield E{ LtBt} = 0 when t < T. The mean sum 
can be interpreted as follows: it contains all Λ (= 445) copies of the target bit BT that 
have been stored and they reinforce each other, while the other
(T − 1)λ (= 2,000) bits in Σ tend to cancel out each other.

Retrieval is correct when the sum Σ is greater than 0. However, random variation 
can make Σ ≤ 0. The likelihood of that happening, depends on the variance σ2 of the 
sum, which variance we will now estimate. When the terms are approximately 
independent, their variances are approximately additive, so that

σ2 = Var{ Σ} ≈ (T − 1)Var{L1B1} + Var{ LT ⋅ 1}

The second variance is simply Var{LT} ≈ Λ. The first variance can be rewritten as

Var{ L1B1} ≡ E{ L1
2B1

2} − (E{ L1B1} )2

= E{ L1
2}

because B1
2 = 1, and because E{ L1B1} = 0 as above. It can be rewritten further as

≡ Var{L1} + (E{ L1} )2

≈ λ + λ2

and we get, for the variance of the sum,

σ2 ≈ (T − 1) (λ + λ2) + Λ

Substituting p2M for λ and pM for Λ, approximating T − 1 with T, and rearranging 
finally yields

σ2 = Var{ Σ} ≈ pM[1 + pT(1 + p2M)]

We can now estimate the probabilit y of incorrect recall , that is, the probability 
that Σ ≤ 0 when BT = 1. We will use the fact that if the products LtBt are T 
independent random variables, their sum Σ tends to the normal (Gaussian) 
distribution with mean and variance equal to those of Σ. We then get, for the 

E
t 1=

T 1–

∑
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probability of a single-bit failure,

Pr{ Σ ≤ 0 | µ, σ} ≈ Φ(−µ/σ)

where Φ is the normal distribution function; and for the probabilit y of recalling a 
bit correctly, or bit-fidelity ϕ, we get 1 − Φ(−µ/σ), which equals Φ(µ/σ).

3.3.6. Signal (µ), Noise (σ), and Probabili ty of Activation (p)

We can regard the mean value µ (= pM) of the sum Σ as signal, and the variance σ2 
(≈ pM[1 + pT(1 + p2M)]) of the sum as noise. The standard quantity ρ = µ/σ is then 
a signal-to-noise ratio (rho for ‘ ratio’) that can be compared to the normal 
distribution, to estimate bit-fideli ty, as was done above:

ϕ = Pr{bit recalled correctly} ≈ Φ(ρ)

The higher the signal-to-noise ration, the more likely are stored words recalled 
correctly. This points to a way to find good values for the probabilit y p of activating 
locations and, hence, for the activation radius H: We want p that maximizes ρ. To 
find this value of p, it is convenient to start with the expression for ρ2 and to reduce 
it to

 

Taking the derivative with respect to p, setting it to 0, and solving for p gives

as the best probabilit y of activation. This value of p was mentioned earlier, and it 
was used to set parameters for the sample memory.

The probabilit y p = (2MT)−1/3 of activating a location is optimal only when exact 
storage addresses are used for retrieval. When a retrieval address is approximate 
(i.e., when it equals a storage address plus some noise), both the signal and the noise 
are reduced, and also their ratio is reduced. Analysis of this is more complicated 
than the one above, and it is not carried out here. The result is that, for maximum 
recovery of stored words with approximate retrieval addresses, p should be 
somewhat larger than (2MT)−1/3 (typically, less than twice as large); however, when 
the data are clustered rather than uniform random, optimum p tends to be smaller 
than (2MT)−1/3.

In a case yet more general, the training set is not “clean” but contains many noisy 
copies of each word to be stored, and the data addresses are noisy (cf. Fig. 3.1). 
Then it makes sense to store words within a smaller radius and to retrieve them 
within a larger. To allow such memories to be analyzed, Avery Wang (unpublished) 

ρ2 µ2 σ2⁄ pM
1 pT 1 p2M+( )+
-----------------------------------------≈=

p
1

2MT3
----------------=
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and Jaeckel (1988) have derived formulas for the size of the overlap of activation 
sets with different radii of activation. As a rule, the overlap decreases rapidly with 
increasing distance between the centers of activation.

3.3.7. Memory Capacity (τ)

Storage and retrieval in a standard random-access memory are deterministic. 
Therefore, its capacity (in words) can be expressed simply as the number of 
memory locations. In a sparse distributed memory, retrieval of words is statistical. 
However, its capacity, too, can be defined as a limit on the number T of words that 
can be stored and retrieved successfully, although the limit depends on what we 
mean by success.

A simple criterion of success is that a stored bit is retrieved correctly with high 
probability ϕ (e.g., 0.99 ≤ ϕ ≤ 1). Other criteria can be derived from it or are related 
to it. Specifically, capacity here is the maximum T, Tmax, such that Pr{Zt,u = Wt,u} 
≥ ϕ; we are assuming that exact storage addresses are used to retrieve the words. It 
is convenient to relate capacity to memory size M and to define it as τ = Tmax/M. 
As fidelity ϕ approaches 1, capacity τ approaches 0, and the values of τ that concern 
us here are smaller than 1. We wil l now proceed to estimate τ.

In Section 3.3.5 on Recall Fidelity we saw that the bit-recall probability ϕ is 
approximated by Φ(ρ), where ρ is the signal-to-noise ratio as defined above. By 
writing out ρ and substituting τM for T we get

which leads to

where Φ−1 is the inverse of the normal distribution function. Dividing by pM in the 
numerator and the denominator gives

The right side goes to 1/τ as the memory size M grows without bound, giving us a 
simple expression for the asymptotic capacity:

To verify this limit , we use the optimal probabilit y of activation, taking note that 

ϕ Φ ρ( ) Φ pM
1 pτM 1 p2M+( )+
----------------------------------------------

1 2⁄

 
 ≈ ≈

Φ 1– ϕ( )[ ]2 ρ2 pM
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it depends on both M and τ: p = (2MT)−1/3 = (2τM2)−1/3. Then, in the expression 
above, 1/(pM) = (2τ/M)1/3 and goes to zero as M goes to infinity, because τ < 1. 
Similarly, τ(1 + p2M) = τ + (  τ/M)1/3 and goes to τ.

To compare this asymptotic capacity to the capacity of a finite memory, consider 
ϕ = 0.999, meaning that about one bit in a thousand is retrieved incorrectly. Then 
the asymptotic capacity is τ ≈ 0.105, and the capacity of the milli on-location sample 
memory is 0.096. Keeler (1988) has shown that the sparse distributed memory and 
the binary Hopfield net trained with the outer-product leaning rule, which is 
equivalent to a correlation-matrix memory, have the same capacity per storage 
element or counter. The 0.15N capacity of the Hopfield net (τ = 0.15) corresponds 
to fidelity ϕ = 0.995, meaning that about one bit in 200 is retrieved incorrectly. The 
practical significance of the sparse distributed memory design is that, by virtue of 
the hard locations, the number of storage elements is independent of the input and 
output dimensions. Doubling the hardware doubles the number of words of a given 
size that can be stored, whereas the capacity of the Hopfield net is limited by the 
word size.

A very simple notion of capacity has been used here, and it results in capacities 
of about 10 percent of memory size. However, the assumption has been that exact 
storage addresses are used in retrieval. If approximate addresses are used, and if less 
error is tolerated in the words retrieved than in the addresses used for retrieving 
them, the capacity goes down. The most complete analysis of capacity under such 
general conditions has been given by Chou (1989). Expressing capacity in absolute 
terms, for example, as Shannon’s information capacity, is perhaps the most 
satisfying. This approach has been taken by Keeler (1988). Allocating the capacity 
is then a separate issue: whether to store many words or to correct many errors. A 
practical guide is that the number of stored words should be from 1 to 5 percent of 
memory size (i.e., of the number of hard locations).

3.4. SDM as an Ar tificial Neural Network

The sparse distributed memory, as an artificial neural network, is a synchronous, 
fully connected, three-layer (or two-layer, see below), feed-forward net ill ustrated 
by Figure 3.7. The flow of information in the figure is from left to right. The column 
of N circles on the left is called the input layer, the column of M circles in the middle 
is called the hidden layer, and the column of U circles on the right is called the 
output layer, and the circles in the three columns are called input units, hidden units, 
and output units, respectively.

 (( FIGURE 3.7. Feed-forward artificial neural network. ))

The hidden units and the output units are bona fide artificial neurons, so that, in 
fact, there are only two layers of “neurons.” The input units merely represent the 

1
4
---
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outputs of some other neurons. The inputs xn to the hidden units label the input 
layer, the input coefficients Am,n of the hidden units label the lines leading into the 
hidden units, and the outputs ym of the hidden units label the hidden layer. If y is the 
activation function of the hidden units (e.g., y(d) = 1 if d ≥ D, and y(d) = 0 
otherwise), the output of the mth hidden unit is given by

which, in vector notation, is ym = y(Am ⋅ x), where x is the vector of inputs to, and 
Am is the vector of input coefficients of, the mth hidden unit.

A similar description applies to the output units, with the outputs of the hidden 
units serving as their inputs, so that the output of the uth output unit is given by

or, in vector notation, zu = z(C⋅,u ⋅ y). Here, C⋅,u is the vector of input coefficients 
of the uth output unit, and z is the activation function.

From the equations above it is clear that the input coefficients of the hidden units 
form the address matrix A, and those of the output units form the contents matrix 
C, of a sparse distributed memory. In the terminology of artificial neural nets, these 
are the matrices of connection strengths (synaptic strengths) for the two layers. 
‘Fully connected’ means that all elements of these matrices can assume nonzero 
values. Later we will see sparsely connected variations of the model.

Correspondence between Figures 3.7 and 3.4 is now demonstrated by 
transforming Figure 3.7 according to Figure 3.8, which shows four ways of drawing 
artificial neurons. View A shows how they appear in Figure 3.7. View B is laid out 
similarly, but all labels now appear in boxes and circles. In view C, the diamond and 
the circle that represent the inner product and the output, respectively, appear below 
the column of input coefficients, so that these units are easily stacked side by side. 
View D is essentially the same as view C, for stacking units on top of each another. 
We will now redraw Figure 3.7 with units of type D in the hidden layer and with 
units of type C in the output layer. An input (a circle) that is shared by many units 
is drawn only once. The result is Figure 3.9. Its correspondence to Figure 3.4 is 
immediate, the vectors and the matrices implied by Figure 3.7 are explicit, and the 
cobwebs of Figure 3.7 are gone.

(( FIGURE 3.8. Four views of an artificial neuron. ))

 (( FIGURE 3.9. Sparse distributed memory as an artificial … ))

In describing the memory, the term ‘synchronous’ means that all computations 
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are completed in what could be called a machine cycle, after which the network is 
ready to perform another cycle. The term is superfluous if the net is used as a feed-
forward net akin to a random-access memory. However, it is meaningful if the 
network’s output is fed back as input: the network is allowed to settle with each 
input so that a completely updated output is available as the next input.

As a multilayer feed-forward net, the sparse distributed memory is akin to the 
nets trained with the error back-propagation algorithm (Rumelhart and McClelland 
1986). How are the two different? In a broad sense they are not: we try to find 
matrices A and C, and activation functions y and z, that fit the source of our data. In 
practice, many things are done differently.

In error back-propagation, the matrices A and C and the activation vector y are 
usually real-valued, the components of y usually range over the interval 
[−1, 1] or [0, 1], the activation function y and its inverse are differentiable, and the 
data are stored using a uniform algorithm to change both A and C. In sparse 
distributed memory, the address matrix A is usually binary, and various methods are 
used for choosing it, but once a location’s address has been set, it is not changed as 
the data are stored (A is constant); furthermore, the activation function y is a step 
function that yields an activation vector y that is mostly 0s, with a few 1s. Another 
major difference is in the size of the hidden layer. In back-propagation nets, the 
number of hidden units is usually smaller than the number of input units or the 
number of items in the training set; in a sparse distributed memory, it is much larger.

The differences imply that, relative to back-propagation nets, the training of a 
sparse distributed memory is fast (it is easy to demonstrate single-trial learning), but 
applying it to a new problem is less automatic (it requires choosing an appropriate 
data representation, as discussed in the section on SDM research below).

3.5. SDM as a Model of the Cerebellum

3.5.1. Modeling Biology with Ar tificial Neural Networks

Biological neurons are cells that process signals in animals and humans, allowing 
them to respond rapidly to the environment. To achieve speed, neurons use electro-
chemical mechanisms to generate a signal (a voltage level or electrical pulses) and 
to transmit it to nearby and distant sites.

Biological neurons come in many varieties. The peripheral neurons couple the 
organism to the world. They include the sensory neurons that convert an external 
stimulus into an electrical signal, the motor neurons whose electrical pulses cause 
muscle fibers to contract, and other effector neurons that regulate the secretion of 
glands. However, most neurons in highly evolved animals are interneurons that 
connect directly to other neurons rather than to sensors or to effectors. Interneurons 
also come in many varieties and they are organized into a multitude of neural 
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circuits.
A typical interneuron has a cell body and two kinds of arborizations: a dendrite 

tree that receives signals from other neurons, and an axon tree that transmits the 
neuron’s signal to other neurons. Transmission-contact points between neurons are 
called synapses. They are either excitatory (positive synaptic weight) or inhibitory 
(negative synaptic weight) according to whether a signal received through the 
synapse facil itates or hinders the activation of the receiving neuron. The axon of one 
neuron can make synaptic contact with the dendrites and cell bodies of many other 
neurons. Thus, a neuron receives multiple inputs, it integrates them, and it transmits 
the result to other neurons.

Artificial neural networks are networks of simple, interconnected processing 
units, called (artificial) neurons. The most common artificial neuron in the 
li terature has multiple (N) inputs and one output and is defined by a set of input 
coefficients—a vector of N reals, standing for the synaptic weights—and a 
nonlinear scalar activation function. The value of this function is the neuron’s 
output, and it serves as input to other neurons. A linear threshold function is an 
example of an artificial neuron, and the simplest kind—one with binary inputs and 
output—is used in the sparse distributed memory.

It may seem strange to model brain activity with binary neurons when real 
neurons are very complex in comparison. However, the brain is organized in large 
circuits of neurons working in parallel, and the mathematical study of neural nets is 
aimed more at understanding the behavior of circuits than of individual neurons. An 
important fact—perhaps the most important—is that the states of a large circuit can 
be mapped onto the points of a high-dimensional space, so that although a binary 
neuron is a grossly simpli fied model of a biological neuron, a large circuit of binary 
neurons, by virtue of its high dimension, can be a useful model of a circuit of 
biological neurons.

The sparse distributed memory’s connection to biology is made in the standard 
way. Each row through A, d, y, and C in Figure 3.9—each hidden unit—is an 
artificial neuron that represents a biological neuron. Vector x represents the N 
signals coming to these neurons as inputs from N other neurons (along their axons), 
vector Am represents the weights of the synapses through which the input signals 
enter the mth neuron (at its dendrites), dm represents the integration of the input 
signals by the mth neuron, and ym represents the output signal, which is passed 
along the neuron’s axon to U other neurons through synapses with strengths Cm.

We will call these (the hidden units) the address-decoder neurons because they 
are like the address-decoder circuit of a random-access memory: they select 
locations for reading and writing. The address that the mth address-decoder neuron 
decodes is given by the input coefficients Am; location Am is activated by inputs x 
that equal or are suff iciently similar to Am. How similar, depends on the radius of 
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activation H. It is interesting that a linear threshold function with N inputs, which is 
perhaps the oldest mathematical model of a neuron, is ideal for address decoding in 
the sparse distributed memory, and that a proper choice of a single parameter, the 
threshold, makes it into an address decoder for a location of an ordinary random-
access memory.

Likewise, in Figure 3.9, each column through C, s, and z is an artificial neuron 
that represents a biological neuron. Since these U neurons provide the output of the 
circuit, they are called the output neurons. The synapses made by the axons of the 
address-decoder neurons with the dendrites of the output neurons are represented 
by matrix C, and they are modifiable; they are the sites of information storage in the 
circuit.

We now look at how these synapses are modified; specifically, what neural 
structures are implied by the memory’s storage algorithm (cf. Figs. 3.4 and 3.9). The 
word w is stored by adding it into the counters of the active locations, that is, into 
the axonal synapses of active address-decoder neurons. This means that if a location 
is activated for writing, its counters are adjusted upward and downward; if it is not 
activated, its counters stay unchanged.

Since the output neurons are independent of each other, it suffices to look at just 
one of them, say, the uth output neuron. See Figure 3.10 center. The uth output 
neuron produces the uth output bit, which is affected only by the uth bits of the 
words that have been stored in the memory. Let us assume that we are storing the 
word w. Its uth bit is wu. To add wu into all the active synapses in the uth column of 
C, it must be made physically present at the active synaptic sites of the column. 
Since different sites in a column are active at different times, it must be made 
present at all synaptic sites of the column. A neuron’s way of presenting a signal is 
by passing it along the axon. This suggests that the uth bit wu of the word-in register 
should be represented by a neuron that corresponds to the uth output neuron zu, and 
that its output signal should be available at each synapse in column u, although it is 
“captured” only by synapses that have just been activated by address-decoder 
neurons y. Such an arrangement is shown in Figure 3.10. It suggests that word-in 
neurons are paired with output neurons, with the axon tree of a word-in neuron 
possibly meshing with the dendrite tree of the corresponding output neuron, as that 
would help carry the signal to all synaptic sites of a column. This kind of pairing, 
when found in a brain circuit, can help us interpret the circuit (Fig. 3.10, on the 
right).

(( FIGURE 3.10. Connections to an output neuron. ))

3.5.2. The Cortex of the Cerebellum

Of the neural circuits in the brain, the cortex of the cerebellum resembles the sparse 
distributed memory the most. The cerebellar cortex of mammals is a fairly large and 
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highly regular structure with an enormous number of neurons of only five major 
kinds, and with two major kinds of input. Its morphology has been studied 
extensively since early 1900s, its role in fine motor control has been established, 
and its physiology is still studied intensively (Ito 1984).

The cortex of the cerebellum is sketched in Figure 3.11 after Llinás (1975). 
Figure 3.12 is Figure 3.9 redrawn in an orientation that corresponds to the sketch of 
the cerebellar cortex.

(( FIGURE 3.11. Sketch of the cortex of the cerebellum. ))

(( FIGURE 3.12. Sparse distributed memory’s resemblance … ))

Within the cortex are the cell bodies of the granule cells, the Golgi cells, the 
stellate cells, the basket cells, and the Purkinje cells. Figure 3.11 shows the climbing 
fibers and the mossy fibers entering and the axons of the Purkinje cells leaving the 
cortex. This agrees with the two inputs into and the one output from a sparse 
distributed memory. The correspondence goes deeper: The Purkinje cells that 
provide the output, are paired with the climbing fibers that provide input. A 
climbing fiber, which is an axon of an olivary cell that resides in the brain stem, 
could thus have the same role in the cerebellum as the line from a word-in cell 
through a column of counters has in a sparse distributed memory (see Fig. 3.10), 
namely, to make a bit of a data word available at a bit-storage site when words are 
stored.

The other set of inputs enters along the mossy fibers, which are axons of cells 
outside the cerebellum. They would then be like an address into a sparse distributed 
memory. The mossy fibers feed into the granule cells, which thus would correspond 
to the hidden units of Figure 3.12 (they appear as rows across Fig. 3.9) and would 
perform address decoding. The firing of a granule cell would constitute activating 
a location for reading or writing. Therefore, the counters of a location would be 
found among the synapses of a granule cell’ s axon; these axons are called parallel 
fibers. A parallel fiber makes synapses with Golgi cells, stellate cells, basket cells, 
and Purkinje cells. Since the Purkinje cells provide the output, it is natural to assume 
that their synapses with the parallel fibers are the storage sites or the memory’s 
counters.

In addition to the “circuit diagram,” other things suggest that the cortex of the 
cerebellum is an associative memory reminiscent of the sparse distributed memory. 
The numbers are reasonable. The numbers quoted below were compiled by Loebner 
(1989) in a review of the literature and they refer to the cerebellum of a cat. Several 
million mossy fibers enter the cerebellum, suggesting that the dimension of the 
address space is several milli on. The granule cells are the most numerous—in the 
bil lions—implying a memory with billions of hard locations, and only a small 
fraction of them is active at once, which agrees with the model. Each parallel fiber 
intersects the flat dendritic trees of several hundred Purkinje cell s, implying that a 
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hard location has several hundred counters. The number of parallel fibers that pass 
through the dendritic tree of a single Purkinje cell is around a hundred-thousand, 
implying that a single “bit” of output is computed from about a hundred-thousand 
counters (only few of which are active at once). The number of Purkinje cells is 
around a milli on, implying that the dimension of the data words is around a mill ion. 
However, a single olivary cell sends about ten climbing fibers to that many Purkinje 
cells, and if, indeed, the climbing fibers train the Purkinje cells, the output 
dimension is more like a hundred-thousand than a milli on. All these numbers mean, 
of course, that the cerebellar cortex is far from fully connected: every granule cell 
does not reach every Purkinje cell (nor does every mossy fiber reach every granule 
cell; more on that below).

This interpretation of the cortex of the cerebellum as an associative memory, akin 
to the sparse distributed memory, is but an outline, and it contains discrepancies that 
are evident even at the level of cell morphology. According to the model, an address 
decoder (a hidden unit) should receive all address bits, but a granule cell receives 
input from three to five mossy fibers only, and for a granule cell to fire, most or all 
of its inputs must be firing (the number of active inputs required for fi ring appears 
to be controlled by the Golgi cells that provide the other major input to the granule 
cells; the Golgi cell s could control the number of locations that are active at once). 
The very small number of inputs to a granule cell means that activation is not based 
on Hamming distance from an address but on certain address bits being on in the 
address register. Activation of locations of a sparse distributed memory under such 
conditions has been treated specifically by Jaeckel, and the idea is present already 
in the cerebellar models of Marr and of Albus. These will be discussed in the next 
two sections.

Many details of the cerebellar circuit are not addressed by this comparison to the 
sparse distributed memory. The basket cells connect to the Purkinje cells in a special 
way, the stellate cells make synapses with the Purkinje cells, and signals from the 
Purkinje cells and climbing fibers go to the basket cells and Golgi cells. The nature 
of synapses and signals—the neurophysiology of the cerebellum—has not been 
considered. Some of these things are addressed by the mathematical models of Marr 
and of Albus. The point here has been to demonstrate some of the variety in a real 
neural circuit, to show how a mathematical model can be used to interpret such a 
circuit, and to suggest that the cortex of the cerebellum constitutes an associative 
memory. Because its mossy-fiber input comes from all over the cerebral cortex—
from many sensory areas—the cerebellum is well located for correlating action that 
it regulates, with information about the environment.

3.6. Var iations of the Model

The basic sparse distributed memory model is fully connected. This means that 
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every input unit (address bit) is seen by every hidden unit (hard location), and that 
every hidden unit is seen by every output unit. Furthermore, all addresses and words 
are binary. If −1 and 1 are used as the binary components, ‘ fully connected’ means 
that none of the elements of the address and contents matrices A and C is 
(identically) zero. Partially—and sparsely—connected models have zeros in one or 
both of the matrices, as a missing connection is marked by a weight that is zero.

Jaeckel has studied designs with sparse address matrices and binary data. In the 
selected-coordinate design (1989a), −1s and 1s are assumed to be equally likely in 
the data addresses; in the hyperplane design (1989b), the data-address bits are 
assumed to be mostly (e.g., 90%) −1s. Jaeckel’s papers are written in terms of 
binary 0s and 1s, but here we will use −1s and 1s, and wil l let a 0 stand for a missing 
connection or a “don’t care”-bit (for which Jaeckel uses the value 1/2). Jaeckel uses 
one-milli on-location memories (M = 1,000,000) with a 1,000-dimensional address 
space (N = 1,000) to demonstrate the designs.

3.6.1. Jaeckel’s Selected-Coordinate Design

In the selected- coordinate design, the hard-address matrix A has a million rows 
with ten −1s and 1s (k = 10) in each row. The −1s and 1s are chosen with probabilit y 
1/2 and they are placed randomly within the row and independently of other rows; 
the remaining 990 coordinates of a row are 0s. This is equivalent to taking a uniform 
random A of −1s and 1s and setting a random 990 coordinates in each row to zero 
(different 990 for different rows). A location is activated if the values of all ten of 
its selected coordinates match the address register x: ym = 1 iff Am ⋅ x = k. The 
probability of activating a hard location is related to the number of nonzero 
coordinates in a hard address by p = 0.5k. Here, k = 10 and p = 0.001.

3.6.2. Jaeckel’s Hyperplane Design

The hyperplane design deals with data where the addresses are skewed (e.g.,  1 0 0  
1s and 900  −1s). Each row of the hard-address matrix A has three 1s (k = 3), placed 
at random, and the remaining 997 places have 0s (there are no −1s). A location is 
activated if the address register has 1s at those same three places: ym = 1 iff Am ⋅ x 
= k. The probability of activating a location is related to the number of 1s in its 
address by p ≈ (L/N)k, where L is the number of 1s in the data addresses x. Here, N 
= 1,000, L = 100, k = 3, and p ≈ 0.001.

Jaeckel has shown that both of these designs are better than the basic design in 
recovering previously stored words, as judged by signal-to-noise ratios. They are 
also easier to realize physically—in hardware—because they require far fewer 
connections and much less computation in the address-decoder unit that determines 
the set of active locations.

The region of the address space that activates a hard location in the three designs 
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can be interpreted geometrically as follows: A location of the basic sparse 
distributed memory is activated by all addresses that are within H Hamming units 
of the location’s address, so that the exciting part of the address space is a 
hypersphere around the hard address. In the selected-coordinate design, a hard 
location is activated by all addresses in a subspace of the address space defined by 
the k selected coordinates—that is, by the vertices of an
(N − k)-dimensional hypercube. In the hyperplane design, the address space is a 
hyperplane defined by the number of 1s in an address, L (which is constant over all 
data addresses), and a hard location is activated by the intersection of the address 
space with the (N − k)-dimensional hypercube defined by the k 1s of the hard 
address.

The regions have a spherical interpretation also in the latter two designs, as 
suggested by the activation condition Am ⋅ x = k (same formula for both designs; see 
above). It tells that the exciting points of the address space lie on the surface of a 
hypersphere in Euclidean N-space, with center coordinates Am (the hard address) 
and with Euclidean radius (N − k)1/2 (no points of the address space lie inside the 
sphere). This gives rise to intermediate designs, as suggested by Jaeckel (1989b): 
let the hard addresses be defined in −1s, 0s, and 1s as above, and let the mth hard 
location be activated by all addresses x within a suitably large hypersphere centered 
at the hard address. Specifically, ym = 1 if, and only if, Am ⋅ x ≥ G. The parameters 
G and k (and L) have to be chosen so that the probability of activating a location is 
reasonable.

The optimum probabil ity of activation p for the various sparse distributed 
memory designs is about the same—it is in the vicinity of (2MT)−1/3—and the 
reason is that, in all these designs, the sets of locations activated by two addresses, 
x and x′, overlap minimally unless x and x′ are very similar to each other. The sets 
behave in the manner of random sets of approximately pM hard locations each, with 
two such sets overlapping by p2M locations, on the average (unless x and x′ are very 
similar to each other). This is a consequence of the high dimension of the address 
space.

In the preceding section on the cerebellum we saw that the hard-address matrix 
A, as implied by the few inputs (3–5 mossy fibers) to each granule cell, is very 
sparse, and that the number of active inputs required for a granule cell to fire, can 
be modulated by the Golgi cells. This means that the activation of granule cells in 
the cerebellum resembles the activation of locations in an intermediate design that 
is close to the hyperplane design.

Not only are the mossy-fiber connections to a granule cell few (3–5 out of several 
million), but also the granule-cell connections to a Purkinje cell are few (hundred 
thousand out of billions), so that also the contents matrix C is very sparse. This 
aspect of the cerebellum has not been modeled mathematically.
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3.6.3. Hassoun’s Pseudorandom Associative Neural Memory

Independently of the above developments, Hassoun (1988) has proposed a model 
with a random, fixed address matrix A and variable contents matrix C. This model 
allows us to extend the concepts of this chapter to data with short addresses (e.g., N 
= 4 bits), and it introduces ideas about storing the data (i.e., training) that can be 
applied to associative memories at large.

The data addresses X and words W in Hassoun’s examples are binary vectors in 
0s and 1s. The elements of the hard-address matrix A are small integers; they are 
chosen at uniform random from the symmetric interval {−L, −L + 1, −L + 2, …, L} , 
where L is a small positive integer (e.g., L = 3). Each hard location has its own 
activation threshold Dm, which is chosen so that approximately half of all possible 
N-bit addresses x activate the location:  ym = 1 if A m ⋅ x ≥ Dm, and ym = 0 otherwise. 
The effect of such addressing through A is to convert the matrix X of N-bit data 
addresses into the matrix Y of M-bit activation vectors, where M >> N and where 
each activation vector Ym is about half 0s and half 1s (probability of activation p is 
around 0.5).

Geometric interpretation of addressing through A is as follows. The space of hard 
addresses is an N-dimensional hypercube with sides of length 2L + 1. The unit 
cubes or cells of this space are potential hard locations. The M hard addresses Am 
are chosen at uniform random from within this space. The space of data addresses 
is an N-cube with sides of length 2; it is at the center of the hard-address space, with 
the cell 000…0 at the very center. The data addresses that activate the location Am 
are the ones closest to Am and they can be visualized as follows: A straight line is 
drawn from Am through 000…0. Each setting of the threshold Dm then corresponds 
to an N − 1-dimensional hyperplane perpendicular to this line, at some distance 
from Am. The cells x of the data-address space that are on the Am side of the plane 
will activate location Am. The threshold Dm is chosen so that the plane cuts the data-
addresses space into two nearly equal parts.

The hard addresses A m correspond naturally to points (and subspaces) A ḿ  of the 
data-address space { 0, 1}N gotten by replacing the negative components of Am by 
0s, the positive components by 1s, and the 0s by either (a “don’ t care”). The 
absolute values of the components of A m then serve as weights, and the mth 
location is activated by x if the weighted distance between A ḿ  and x is below a 
threshold (cf. Kanerva 1988, pp. 46–48).

High probability of activation (p ≈ 0.5) works poorly with the outer-product 
leaning rule. However, it is appropriate for an analytic solution to storage by the 
Ho–Kashyap recording algorithm (Hassoun and Youssef 1989). This algorithm 
finds a contents matrix C that solves the linear inequaliti es implied by Z = W, where 
W is the matrix of data words to be stored, and Z = z(S) = z(YC) is the matrix of 
words retrieved by the rows of X. The inequaliti es follow from the definition of the 
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threshold function z, as Wt,u = 1 implies that St,u > 0, and Wt,u = 0 implies that St,u 
< 0. Hassoun and Youssef have shown that this storage algorithm results in large 
basins of attraction around the data addresses, and that if data are stored 
autoassociatively, false attractors (i.e., spurious stable patterns and limit cycles) will 
be relatively few.

3.6.4. Adaptation to Continuous Var iables by Prager and Fallside

All the models discussed so far have had binary vectors as inputs and outputs. 
Prager and Fallside (1989) consider several ways of extending the sparse distributed 
memory model into real-valued inputs. The following experiment with spoken 
English ill ustrates their approach.

Eleven vowels were spoken several times by different people. Each spoken 
instance of a vowel is represented by a 128-dimensional vector of reals that serves 
as an address or cue. The corresponding data word is an 11-bit label. One of the bits 
in a label is a 1, and its position corresponds to the vowel in question. This is a 
standard setup for classification by artificial neural nets.

For processing on a computer, the input variables are discretized into 513 integers 
in the range 16,127–16,639. The memory is constructed by choosing (2,000) hard 
addresses at uniform random from a 128-dimensional hypercube with sides of 
length 32,768. The cells of this outer space are addressed naturally by 128-place 
integers to base 32,768 (i.e., these are the vectors A m), and the data addresses x then 
occupy a small hypercube at the center of the hard-address space; the data-address 
space is a 128-dimensional cube with sides of length 513. Activation is based on 
distance. Address x activates the mth hard location if the maximu coordinate 
separtion (i.e., L∞ distance) between x and A m is at most 16,091. About ten percent 
of the hard locations wil l be activated. Experiments with connected speech deal 
similarly with 896-dimensional real vectors. In other experiments with the same 
data, the use of Euclidean distance and other distance measures in place of the L∞ 
distance resulted in only minor changes in the outcome. See also Clarke et al. (1991) 
for a further analysis of the model and an example of its use.

Prager and Fallside train the contents matrix C iteratively by correcting errors so 
as to solve the inequaliti es implied by Z = W (see the last paragraph of Sec. 3.6.3).

This design is similar to Hassoun’s design discussed in Section 3.6.3, in that both 
have a large space of hard addresses that includes, at the center, a small space of data 
addresses, and that the hard locations are placed at random within the hard-address 
space. The designs are in contrast with Albus’ CMAC (discussed in the next 
section), where the placement of the hard locations is systematic.

3.7. Relation to the Cerebellar Models of Marr and of Albus

The first comprehensive mathematical models of the cerebellum as an associative 
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memory are by Marr (1969) and by Albus (1971), developed independently in their 
doctoral dissertations, and they still are the most complete of any such models. They 
were developed specifically as models of the cerebellar cortex, whereas the sparse 
distributed memory’s resemblance to the cerebellum was noticed only after the 
model had been developed fully.

Marr’s and Albus’s models attend to many of the details of the cerebellar circuit. 
The models are based mostly on connectivity but also on the nature of the synapses. 
Albus (1989) has made a comparison of the two models. The models will be 
described here insofar as to show their relation to the sparse distributed memory.

3.7.1. Marr ’s Model of the Cerebellum

The main circuit in Marr’s model—in Marr’s vocabulary and in our symbols—
consists of (N =) 7,000 input fibers that feed into (M =) 200,000 codon cells that 
feed into a single output cell . The input fibers activate codon cells, and codon-cell 
connections with the output cell store information. The correspondence to the 
cerebellum is straightforward: the input fibers model mossy fibers, the codon cells 
model granule cells, and the output cell models a Purkinje cell.

Marr discusses at length the activation of codon cells by the input fibers. Since 
the input fibers represent mossy fibers and the codon cells represent granule cell s, 
each codon cell receives input from 3–5 fibers in Marr’s model. The model assumes 
discrete time intervals. During an interval an input fiber is either inactive (−1) or 
active (+1), and at the end of the interval a codon cell i s either inactive (0) or active 
(+1) according to the activity of its inputs during the interval; the codon-cell output 
is a linear threshold function of its inputs, with +1 weights.

The overall pattern of activity of the N input fibers during an interval is called the 
input pattern (an N-vector of −1s and 1s), and the resulting pattern of activity of the 
M codon cells at the end of the interval is called a codon representation of the input 
pattern (an M-vector of 0s and 1s). These correspond, respectively, to the address 
register x, and to the activation vector y, of a sparse distributed memory.

Essential to the model is that M is much larger than N, and that the number of 1s 
in a codon representation is small compared to M, and relatively constant; 
conditions that hold also for the sparse distributed memory. Then the codon 
representation ampli fies differences between input patterns. To make differences in 
N-bit patterns commensurate with differences in M-bit patterns, Marr uses a relative 
measure defined as the number of 1s that two patterns have in common, divided by 
the number of places where either pattern has a 1 (i.e., the size of the intersection of 
1s relative to the size of their union).

Marr’s model’s relation to artificial neural networks is simple. The input fibers 
correspond to input units, the codon cells correspond to hidden units, and the output 
cell corresponds to an output unit. Each hidden unit has only 3–5 inputs, chosen at 
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random from the N input units, and the input coefficients are fixed at +1. Obviously, 
the net is far from fully connected, but all hidden units are connected to the output 
unit, and these connections are modifiable. The hidden units are activated by a 
linear threshold function, and the threshold varies. However, it varies not as the 
result of training but dynamically so as to keep the number of active hidden units 
within desired limits (500–5,000). Therefore, to what first looks like a feed-forward 
net must be added feedback connections that adjust dynamically the thresholds of 
the hidden units. The Golgi cells are assumed to provide this feedback.

In relating Marr’s model to the sparse distributed memory, the codon cells 
correspond to hard locations, and the hard-address matrix A is very sparse, as each 
row has km  1s (km = 3, 4, 5), placed at random, and N − km  0s (there are no −1s in 
A). A codon cell fires if most of its 3–5 inputs are active, and the Golgi cells set the 
firing threshold so that 500–5,000 codon cells (out of the 200,000) are active at any 
one time, regardless of the number of active input lines. Thus, the activation 
function ym for hard location A m is a threshold function with value 1 (the codon cell 
fires) when most—but not necessarily all—of the km  1s of A m are matched by 1s 
in the address x. The exact condition of activation in the examples developed by 
Marr is that A m ⋅ x ≥ R, where the threshold R is between 1 and 5 and depends on 
x. Thus, the codon cells are activated in Marr’ s model in a way that resembles the 
activation of hard locations in an intermediate design of sparse distributed memory 
that is close to the hyperplane design (in the hyperplane design, all  inputs must be 
active for a cell to fire).

One of the conditions of the hyperplane design is far from being satisfied—
namely, that the number of 1s in the address is about constant (hence the name 
hyperplane design). In Marr’s model it is allowed to vary widely (between 20 and 
1,000 out of 7,000), and this creates the need for adjusting the threshold 
dynamically. In the sparse distributed memory variations discussed so far, the 
threshold is fixed, but later in this chapter we will refer to experiments in which the 
thresholds are adjusted either dynamically or by training with data.

Marr estimates the capacity of his model under the most conservative of 
assumptions, namely, that (0s and) 1s are added to one-bit counters that are initially 
0. Under this assumption, all counters eventually saturate and all i nformation is lost, 
as pointed out by Albus (1989).

3.7.2. Albus’ Cerebellar Model Ar ithmetic Computer (CMAC)

This description of CMAC is based on the one in Albus’ book Brains, Behavior, and 
Robotics (1981) and uses its symbols. The purpose here is to describe it sufficiently 
to allow its comparison to the sparse distributed memory.

CMAC is an associative memory with a large number of addressable storage 
locations, just as the sparse distributed memory is, and the address space is 
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multidimensional. However, the number of dimensions, N, is usually small (e.g., N 
= 14), while each dimension, rather than being binary, spans a discrete range of 
values {0, 1, 2, …, R − 1}. The dimensions are also called input variables, and an 
input variable might represent a joint angle of a robot arm (0–180 degrees) 
discretized in five-degree increments (resolution R = 36), and a 14-dimensional 
address might represent the angular positions and velocities of the joints in a seven-
jointed robot arm. Different dimensions can have different resolutions, but we 
assume here, for simplicity, that all have the same resolution R.

An N-dimensional address in this space can be represented by an N-dimensional 
unit cube, or cell , and the entire address space is then represented by RN of these 
cells packed into an N-dimensional cube with sides of length R. The cells are 
addressed naturally by N-place integers to base R.

A storage location is activated by some addresses and not by others. In the sparse 
distributed memory, these exciting addresses occupy an N-dimensional sphere with 
Hamming radius H, centered at the location’s address. The exciting region of the 
address space in Albus’ CMAC is an N-dimensional cube with sides of length K (1 
< K < R); it is a cubicle of KN cells (near the edge of the space it is the intersection 
of such a cubicle with the address space and thus contains fewer than KN cells). The 
center coordinates of the cubicle can be thought of as the location’s address (the 
center coordinates are integers if K is odd and half-way between two integers if K 
is even, and the center can lie outside the RN cube).

The hard locations of a sparse distributed memory are placed randomly in the 
address space; those of CMAC—the cubicles—are arranged systematically as 
follows: First, the RN cube is packed with the KN cubicles starting from the corner 
cell at the origin—the cell addressed by (0, 0, 0, …, 0). This defines a set of 

 hard locations (the ceil ing of the fraction means that the space is covered 
completely). The next set of  hard locations is defined by 
moving the entire package of cubicles up by one cell along the main diagonal of the 
RN cube—a translation. To cover the entire address space, cubicles are added next 
to the existing ones at this stage. This is repeated until K sets of hard locations have 
been defined (K translations take the cubicles to the starting position), resulting in 
a total of at least K  hard locations. Since each set of hard locations covers 
the entire RN address space, and since the locations in a set do not overlap, each 
address activates exactly one location in each set and so it activates K locations 
overall . Conversely, each location is activated by the KN addresses in its defining 
cubicle (by fewer if the cubicle spil ls over the edge of the space). The systematic 
placement of the hard locations allows addresses to be converted into activation 
vectors very eff iciently in a hardware realization or in a computer simulation (Albus 
1980).

Correspondence of the hard locations to the granule cells of the cerebellum is 

R K⁄ N

1 R 1–( ) K⁄+( )N

R K⁄ N
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natural in Albus’ model. To make the model li fe-like, each input variable (i.e., each 
coordinate of the address) is encoded in R + K − 1 bits. A bit in the encoding 
represents a mossy fiber, so that a vector of N input variable (an address) is 
presented to CMAC as binary inputs on N(R + K − 1) mossy fibers. In the model, 
each granule cell receives input from N mossy fibers, and each mossy fiber provides 
input to at least  granule cells.

The 20-bit code for an input variable sn with range R = 17 and with K = 4 is given 
in Table 3.1. It corresponds to the encoding of the variables s1 and s2 in Figure 6.8 
in Albus’ book (1981, p. 149). The bits are labeled with letters above the code in 
Table 3.1, and the same letters appear below the code in four rows. Bit A, for 
example, is on (+) when the input variable is at most 3, bit B is on when the input 
variable falls between 4 and 7, and so forth.

(( TABLE 3.1. Encoding a 17-level Input Variable sn … ))

This encoding mimics nature. Many receptor neurons respond maximally to a 
specific value of an input variable and to values near it. An address bit (a mossy 
fiber) represents such a receptor, and it is (+)1 when the input variable is near this 
specific value. For example, this “central” value for bit B is 5.5.

The four rows of labels below the code in Table 3.1 correspond to the four sets 
of cubicles (K = 4) that define the hard locations (the granule cells) of CMAC. The 
first set depends only on the input bits labeled by the first row. If the code for an 
input variables sn has Q1 first-row bits (Q1 = 5 in Table 3.1), then the NQ1 first-row 
bits of the N input variables define Q1

N hard locations by assigning a location to 
each set of N inputs that combines one first-row bit from each input variable. The 
second set of Q2

N hard locations is defined similarly by the NQ2 second-row bits, 
and so forth with the rest.

We are now ready to describe Albus’ CMAC design as a special case of Jaeckel’s 
hyperplane design. The N input variables sn are encoded and concatenated into an 
N(R + K − 1)-bit address x, which wil l have NK  1s and
N(R − 1 )  −1s. The address matrix A will have ∑k Qk

N rows, and each row will 
have N 1s, arranged according to the description in the preceding paragraph. The 
rest of A will be 0s (for “don’t care”; there will be no −1s in A). The activation 
vector y can then be computed as in the hyperplane design: the mth location is 
activated by x if the 1s of the hard address A m are matched by 1s in x (i.e., iff A m ⋅ 
x = N).

If the number of input variables is large enough (e.g., N > 20), the number of rows 
in the address matrix A, as given above, will be so large that building a hard location 
for each address in A is impractical. To handle such cases, many addresses in A will 
use a single hard location. The contributions into a location’s contents from 
disparate parts of the address space will t hen act as noise with respect to each other. 
The mapping of the addresses in A to the hard locations is pseudorandom and is 

R K⁄ N
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effected by a hashing function. Multiple assignment of memory locations in this 
manner has been described also by Kohonen and Reuhkala (1978; Kohonen 1980) 
in a method called redundant hash addressing.

After a set of locations has been activated, CMAC is ready to transfer data. Here, 
as with the sparse distributed memory, we can look at a single coordinate of a data 
words only, say, the uth coordinate. Since CMAC data are continuous or graded 
rather than binary, the storage and retrieval rules cannot be identical to those of a 
sparse distributed memory, but they are similar. Retrieval is simpler: we use the sum 
su as output and we omit the final thresholding. From the regularity of CMAC it 
follows that the sum is over K active locations.

From this is derived a storage (learning) rule for CMAC: Before storing the 
desired output value  at x, retrieve su using x as the address and compute the error 
su − . If the error is acceptable, do nothing. If the error is too large, correct the K 
active counters (elements of the matrix C) by adding g(  − su)/K to each, where g 
(0 < g ≤ 1) is a gain factor that affects the rate of learning. This storage rule implies 
that the counters in C count at intervals no greater than one Kth of the maximum 
allowable error (the counting interval in the basic sparse distributed memory is 1).

In summary, multidimensional input to CMAC can be encoded into a long binary 
vector that serves as an address to a hyperplane-design sparse distributed memory. 
The address bits and the hard-address decoders correspond very naturally to the 
mossy fibers and the granule cells of the cerebellum, respectively, and the activation 
of a hard location corresponds to the firing of a granule cell . The synapses of the 
parallel fibers with the Purkinje cells are the storage sites suggested by the model, 
and the value of an output variable is represented by the firing frequency of a 
Purkinje cell . Training of CMAC is by error-correction, which presumably is the 
function of the climbing fibers in the cerebellum.

3.8. SDM Research

So far in this chapter we have assumed that the hard addresses and the data are a 
uniform random sample of their respective spaces (the distribution of the hard 
locations in CMAC is uniform systematic). This has allowed us to establish a base 
line: we have estimated signal, noise, fidelity, and memory capacity, and we have 
suggested reasonable values for various memory parameters. However, data from 
real processes tend to occur in clusters, and large regions of the address space are 
empty. When such data are stored in a uniformly distributed memory, large numbers 
of locations are never activated and hence are wasted, and many of the active 
locations are activated repeatedly so that they, too, are mostly wasted as their 
contents turn into noise.

There are many ways to counter this tendency of data to cluster. Let us look at the 
clustering of data addresses first. Several studies have used the memory efficiently 

p̂u

p̂u

p̂u
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by distributing the hard addresses A according to the distribution of the data 
addresses X. Keeler (1988) observed that when the two distributions are the same 
and the activation radius H is adjusted for each storage and retrieval operation so 
that nearly optimal number of locations are activated, the statistical properties of the 
memory are close to those of the basic memory with uniformly random hard 
addresses. In agreement with that, Joglekar (1989) experimented with NETtalk data 
and got his best results by using a subset of the data addresses as hard addresses 
(NETtalk transcribes English text into phonemes; Sejnowski and Rosenberg 1986). 
In a series of experiments by Danforth (1990), recognition of spoken digits, 
encoded in 240 bits, improved dramatically when uniformly random hard addresses 
were replaced by addresses that represented spoken words, but the selected-
coordinate design with three coordinates performed the best. In yet another 
experiment, Saarinen et al. (1991b) improved memory utilization by distributing 
the hard addresses with Kohonen’s self-organizing algorithm.

Two studies have shown that uniform random hard addresses can be used with 
clustered data if the rule for activating locations is adjusted appropriately. In 
Kanerva (1991), storage and retrieval require two steps: the first to determine a 
vector of N positive weights for each data address X t, and the second to activate 
locations according to a weighted Hamming distance between X t and the hard 
addresses A. In Pohja and Kaski (1992), each hard location has its own radius of 
activation Hm, which is chosen based on the data addresses X so that the probabili ty 
of activating a location is nearly optimal.

It is equally important to deal with clustering in the stored words. For example, 
some of their bits may be mostly on, some may be mostly off, and some may depend 
on others. It is possible to analyze the data (X, Z) and the hard addresses A and to 
determine optimal storage and retrieval algorithms (Danforth 1991), but we can 
also use iterative training by error correction, as described above for Albus’ CMAC. 
This was done by Joglekar and by Danforth in their above-mentioned experiments. 
When error correction is used, it compensates for the clustering of addresses as 
well , but it also introduces the possibilit y of overfitting the model to the training set.

Two studies by Rogers (1989a, 1990a) deal specifically with the interactions of 
the data with the hard addresses A. In the first of these he concludes that, in 
computing the sum vector s, the active locations should be weighted according to 
the words stored in them—in fact, each active counter Cm,u might be weighted 
individually. This would take into account at once the number of words stored in a 
hard location and the uniformity of those words, so as to give relatively litt le weight 
to locations or counters that record mostly noise. In the second study he uses a 
genetic algorithm to arrive at a set of hard addresses that would store the most 
information about a variable in weather data.

Other research issues include the storage of sequences (Manevitz 1991) and the 
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hierarchical storage of data (Manevitz and Zemach 1997).
Most studies of sparse distributed memory have used binary data and have dealt 

with multivalued variables by encoding them according to an appropriate binary 
code. Table 3.1 is an example of such a code. Important about the code is that the 
Hamming distance between codewords corresponds to the difference between the 
values being encoded (it grows with the difference until a maximum of 2k is 
reached, after which the Hamming distance stays at the maximum). Jorgensen 
(1990) proposes the Radial Basis Sparse Distributed Memory that uses ideas from 
radial-basis functions and probabilistic neural networks to deal with continuous 
variables; the paper also introduces the Infolding Net for working with 
nonstationary data. The use of continuous variables by Prager and Fallside has been 
discussed in Section 3.6.4.

Sparse distributed memory has been simulated on many computers (Rogers 
1990b), including the highly parallel Connection Machine (Rogers 1989b) and 
special-purpose neural-network computers (Nordström 1991). Hardware 
implementations have used standard logic circuits and memory chips (Flynn et al. 
1987) and programmable gate arrays (Saarinen et al. 1991a). A systolic-array 
implementation of sparse distributed memory and a resistor circuit for computing 
the Hamming distances have been described by Keeler and Denning (1986).

3.9. Associative Memory as a Component of a System

In practical systems, an associative memory plays but a part. It can store and recall 
large numbers of large patterns (high-dimensional vectors) based on other large 
patterns that serve as memory cues, and it can store and recall long sequences of 
such patterns, doing it all i n the presence of noise. In addition to generating output 
patterns, the memory provides an estimate of their reliabilit y based on the data it has 
stored. But that is all; the memory assigns no meaning to the data beyond the 
reliability estimate. The meaning is determined by other parts of the system, which 
are also responsible for processing data into forms that are appropriate for an 
associative memory. Sometimes these other tasks are called preprocessing and 
postprocessing, but the terms are misleading inasmuch as they imply that 
preprocessing and postprocessing are minor peripheral functions. They are major 
functions—at least in the nervous systems of animals they are—and feedback from 
memory is integral to these “peripheral” functions.

For an example of what a sensory processor must do in producing patterns for an 
associative memory, consider identifying objects by sight, and assume that the 
memory is trained to respond with the name of an object, in some suitable code, 
when presented with an object (i.e., when addressed by the encoding for the object). 
In what features should objects be encoded? To make eff icient use of the memory, 
all views of an object—past, present, and future—should get the same encoding, 
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and any two different objects should get different encodings. The name, as an 
encoding, satisfies this condition and so it is an ideal encoding, except that it is 
arbitrary. What we ask of the visual system is to produce an encoding that reflects 
physical reality and that can serve as an input to an associative memory, which then 
outputs the name.

For this final naming step to be successful—even with views as yet unseen—
different views of an object should produce encodings that are similar to each other 
as measured by something like the Hamming distance, but that are dissimilar to the 
encodings of other objects. A raw retinal image (a pixel map) is a poor encoding, 
because the retinal cells excited by an object vary drastically with viewing distance 
and with gaze relative to the object. It is simple for us to fix the gaze—to look 
directly at the object—but it is impractical to bring objects to a standard viewing 
distance in order to recognize them. Therefore, the visual system needs to 
compensate for changes in viewing distance by encoding—by expressing images in 
features that are relatively insensitive to viewing distance. Orientation of lines in the 
retinal image satisfy this condition, making them good features for vision. This may 
explain the abundance of orientation-sensitive neurons in the visual cortex, and why 
the human visual system is much more sensitive to rotation than to scale (we are 
poor at recognizing objects in new orientations; we must resort to mental rotation). 
Encoding shapes in long vectors of bits for an associative memory, where a bit 
encodes orientation at a location, has been described by Kanerva (1990).

What about the claim that “peripheral” processing, particularly sensory 
processing, is a major activity in the brain? Large areas of the brain are specific to 
one sensory modality or another.

In robots that learn, an associative memory stores a world model that relates 
sensory input to action. The flow of events in the world is presented to the memory 
as a sequence of large patterns. These patterns encode sensor data, internal-state 
variables, and commands to the actuators. The memory’s ability to store these 
sequences and to recall them under conditions that resemble the past, allows its use 
for predicting and planning. Albus (1981, 1991) argues that intelligent behavior of 
animals and robots in complex environments requires not just one associative 
memory but a large hierarchy of them, with the sensors and the actuators at the 
bottom of the hierarchy.

3.10. Summary

In this chapter we have explored a number of related designs for an associative 
memory. Common to them is a feed-forward architecture through two layers of 
input coefficients or weights represented by the matrices A and C. The matrix A is 
constant, and the matrix C is variable. The M rows of A are interpreted as the 
addresses of M hard locations, and the M rows of C are interpreted as the contents 
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of those locations. The rows of A are a random sample of the hard-address space in 
all but the Albus’ CMAC model, in which the sample is systematic. When the 
sample is random, it should allow for the distribution of the data.

The matrix A and the threshold function y transform N-dimensional input vectors 
into M-dimensional activation vectors of 0s and 1s. Since M is much larger than N, 
the effect is a tremendous increase over the input dimension and a corresponding 
increase in the separation of patterns and in memory capacity. This simpli fies the 
storage of words by matrix C. The training of C can be by the outer-product 
learning rule, by error correction (delta rule), by an analytic solution of a set of 
linear inequaliti es, or by a combination of the above. Training, by and large, is fast. 
These memories require much hardware per stored pattern, but the resolution of the 
components can be low.

The high fan-out and subsequent fan-in (divergence and convergence) implied by 
these designs are found also in many neural circuits in the brain. The 
correspondence is most striking in the cortex of the cerebellum, suggesting that the 
cerebellum could function as an associative memory with billions of hard locations, 
each one capable of storing several-hundred-bit words.

The properties of these associative memories imply that if such memory devices, 
indeed, play an important part in the brain, the brain must also include devices that 
are dedicated to the sensory systems and that transform sensory signals into forms 
appropriate for an associative memory.

Pattern Computing. The nervous system offers us a new model of computing, to 
be contrasted with traditional numeric computing and symbolic computing. It deals 
with large patterns as computational units and therefore it might be called pattern 
computing. The main units in numeric computing are numbers, say, 32-bit integers 
or 64-bit floating-point numbers, and we think of them as data; in symbolic 
computing they are pointers of fewer than 32 bits, and we can think of them as 
names (very compact, “ ideal” encodings; see discussion on sensory encoding in 
Sec. 3.9). In contrast, the units in pattern computing have hundreds or thousands of 
bits, they serve both as pointers and as data, and they need not be precise. Nature 
has found a way to compute with such units, and we are barely beginning to 
understand how it is done. It appears that much of the power of pattern computing 
derives from the geometry of very-high-dimensional spaces and from the 
parallelism in computing that it allows.
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  Table 3.1
Encoding a 17-level Input Variable sn in 20 Bits (K = 4)

————————————————————————————————————————————
 Input bit

 sn  ————————————————————————————————————————
 F M S A G N T B H P V C J Q W D K R X E 

————————————————————————————————————————————
0  + + + + - - - - - - - - - - - - - - - - 

 1  - + + + + - - - - - - - - - - - - - - - 
 2  - - + + + + - - - - - - - - - - - - - - 
 3  - - - + + + + - - - - - - - - - - - - - 
 4  - - - - + + + + - - - - - - - - - - - - 
 5  - - - - - + + + + - - - - - - - - - - - 
 6  - - - - - - + + + + - - - - - - - - - - 
 7  - - - - - - - + + + + - - - - - - - - - 
 8  - - - - - - - - + + + + - - - - - - - - 
 9  - - - - - - - - - + + + + - - - - - - - 
10  - - - - - - - - - - + + + + - - - - - - 
11  - - - - - - - - - - - + + + + - - - - - 
12  - - - - - - - - - - - - + + + + - - - - 
13  - - - - - - - - - - - - - + + + + - - - 
14  - - - - - - - - - - - - - - + + + + - - 
15  - - - - - - - - - - - - - - - + + + + - 
16  - - - - - - - - - - - - - - - - + + + + 
————————————————————————————————————————————

 A  B  C  D  E
 F  G  H  J  K

 M  N  P  Q  R
 S  T  V  W  X

————————————————————————————————————————————


