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Chapter 3
Sparse Distributed Memory and Related M odels

Pentti Kanerva

3.1. Introduction

This chapter describes one basic model of associative memory, cdled the sparse
distributed memory, andrelatesit to ather modelsandcircuits: to ordinary computer
memory, to correlation-matrix memories, to feed-forward artificial neural nets, to
neura circuitsin the brain, and to associative-memory models of the cerelellum.
Presentingthe various designswithin ore framework will hopefully help thereader
see the simil arities and the differences in designs that are often described in
different ways.

3.1.1. SparseDistributed Memory as a Model of Human Long-Term Memory

Sparse Distributed Memory (SDM) was devel oped as a mathematical radel of
human long-term memory (Kanerva 1988. The pursuit of asimpleidealed to the
discovery of the nodel, namely, that thedistances between concgtsin our minds
correspondto the distances between points of a highdimensional space. In what
follows, ‘ high-dimensional’ means that the number of dimensionsisat least in the
hundeds, althoughsmall er numbers of dimensions are often foundin examples.

If aconcept, or apercept, or a noment of experience, or apieceof information
in memory—a point of interest—is represented by a high-dimensiona (or “long’)
vedor, the representation need nbbe exad. This follows from the distribution of
points of a high-dimensional space Any pointof the spacethat might be apoint of
interest isrelatively far from most of the spaceand fom othe points of interest
Therefore, apoint of interest can be represented with considerable slop before itis
confused with other points of interest. In this sense, long \edors are fault-tolerant
or robust, and a device based onthem can take advantageof the robustness.

This corresponds beautifull y to honv humans and animal swith advanced sensory
systems and brains work. The signals recaved by us at two differert times ae
hardly ever identical, and yet we can identify the source of the signal as a spedfic
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individual, object, place, scene, thing. The representations used by the brain must
allow for such identificaion, in fad, they must make the identificaion nearly
automatic, and high-dimensional vedors asinternal representations of things do
that.

Ancther property of high-dimensional spacesalso hasto do with the distances
between pants. If wetaketwo pants (of interest) at randam, they arerelatively far
from each other, onthe average: they are unarrelated. Howewver, there ae many
points between the two that areloseto bot, in the ®nsethat the amourt of space
aroundan intermediate point—in a hypersphere—that contains both of the wo
origina pointsisvery small. This corresponds to the relative ease with which we
can find a concept that linkstwo unrelated concepts.

Strictly spe&ing, a mathematicd spaceneed not beahigh-dimensional vetor
spaceto havethedesired properties; it needsto be ahuge space, with an appropriate
similarity measure for pairs of points, but the nmeasure need nodefine a méric on
the space

Theimportant properties of high-dimensional spaces are evident even with the
simplest of such spaces—that is, when the dimensions are binary. Therefore, the
sparse distributed memory model was developed using long(i.e., high-
dimensional) binary vedorsor words. Thememory isaddressed bysuch words, and
such words are stored and retrieved as data.

The following two examples demonstrate the memory’s robustness ied ng
with approximate data. The memory workswith 256bhit words: it is addressed by
them, and it stores and retrieves them. On top of Figure 31 are nne similar (20%
noisy) 256-bit words. To help uscompare longwords, their 256 bits are laid on a
16-by-16 gid, with 1s shownin black. The noise-free prototypeword was designed
in the shape of acircle within thegrid. (This example s confusingin that it might
be taken to imply that humans recognipeles based onstored retinal images of
circles. No such claim is intendel.) Theninenoisy wordswere stored n a sparse
distributed memory autoassociatively, meaning that each word was stored with
itself asthe address When atenth ndsy word (bottom left), different from the nine,
was used as the address, a eldively noise-free11th word was retrieved (bottom
middle), and with that asthe address, anealy noise-free 12th wad was retrieved
(battom right), which in turn retrieved itself. This example demonstrates the
memory’s tendency to construct a prototype from noisy data.

(( FIGURE 3.1. Nine noisy words are stored ... ))

Figure 3.2 demonstrates seqence storageandrecdl. Six words, shaped as
Roman numerals, are stored in alinked list: | is usedastheaddess to orell, Il is
used astheaddressto store l11, and so forth. Any of thewords |-V can then be used
to recdl the lest of the £quence. For examge, 111 will retrieve IV will retrieve V
will retrieve V1. Theretrieval cuefor the sequence can be noisy, as demonstrated at
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the bottom of the figure. Astheretrieval progresses, aretrieved word, which then
serves as the next address, isless and less noisy. This example resembles human
ability tofind afamiliar tune by heaingapieceof it in themidde, andto recdl the
rest. Thiskind of recallappliesto a multitude of human and animal skills.

(( FIGURE 3.2. Recalling a stored sequence ... ))

3.2. SDM asa Random-Access Memory

Except for the lengths of the address andati words, the memory resembles
ordinary computer memory. It is a generatied randam-acass menory for long
words, aswill be seen shortly, and its construction and operation can fe explained
in terms of an ordinary randam-access mamory.We will start by describing an
ordinary randam-acaess memory.

3.2.1. Random-Access Memory

A randam-access memory (RAM) isan array of M addressabl e storage registers or
memory locations of fixed cgpacity. A locaion'splaceinthememory array iscdled
the location’saddress, and the value stored in the register is cdl ed the location’s
contents. Figure 3.3 represents such amemory, and a horizontal row throughthe
figure represents one memory location. The active Iaationis shown shaded. The
addresses of the locations are on the left, in matéx and the contents are on he
right, in matrix C.

(( FIGURE 3.3. Organization of a random-access memory. ))

A memory with a nillionlocaions (M = 22°) is addressed by 26bit words. The
length of theaddesswill bedenoted byN (N =20in Fig. 3.3). The capacity of a
locaionisreferred to as the memory’sword size, U (U = 32 hitsin Fig. 3.3), and
the capadty of theentire memory is defined conventionally as the word size
multiplied by the number of memory locations (i.e., M x U hits).

Storage andretrieval happ& oneword at a timethrough hree specid registers:
the addressregister, for an N-bit addressinto the menory array; theword-in
register, for a U-bit word that is to be stored in memory; and theword-out register,
for aU-hit word retrieved from memory. To store theword w in location x (the
locaion'saddressx is used asaname for the location),x is placed in the address
register, w is placed in the word-in register, and awrite-into-memory command is
issued. Consequently, w replaces the old contents of location x, while all other
locaionsremain urchanged. To retrieve the word w that was last stored in locaion
X, X is placel in the address register and a ead-from-memory command is issued.
Theresult w appeasin theword-out register. The figure shows (apassible) state of
the mamory after w = 010...110 has been stored in bcaion x = 000...0L1 (the
word-in register holdsw) and then retrieved from the sam location (the address
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register haldsx).

Between matrices A and C inthefigureisan activationvector, y. Its comporents
are Os except for one 1, which indicaes the memory locaionthat is sekcted for
reading or writing (i.e., the location's address matches the addressregister). In a
hardware redization of a randam-access mamory, alocaion sadivationis
determined by an address-deaoder circuit, so that the address matiix A isimplicit.
However, the contents matrix C is an explicit array of 220 x 32 onenbit registers or

flip-flops.
3.2.2. Sparse Distributed Memory

Figure 3.4 represents a sparse distributed memory. From theoutsde, it islikea
randam-aacess memory: it hasthe sme hreespedal registers—address, word-in,
and word-out—and they are used in the same way when words are stored and
retrieved, except that these registersare large (e.g., N = U = 1,000).

(( FIGURE 3.4. Organization of a sparse distributed memory. ))

Construction. Theinternal organization d sparsedistributed memory, likewise, is
an array of addressable storage locaionsof fixed @padty. However, sincethe
addresses are long, it simpassible o buld a hardware locaion—ahard location,
for short—for each of the 2\ addresses. (Neither isit necessary, considering the
enormous capadty that such a memory would fave.)

A memory of reasonable $ze andcgpadty can ke built by taking areasonably
large sample of the 2N addresses and bybuilding ahard location for each aldress
inthe sample. Let M be the size of the sample: we want amemory with M locations
(M =1,000000in Fig. 3.4). The sample can be choen in many vays, and only
some will be consideredhere.

A goodchoiceof addressesfor the hard | ocations depends onthe datato be stored
inthe memory. The data cnsist of the wordsto be stored and d the addresses used
in storing them. For simplicity, we assume n the basic model that he data are
distributed randamly and unformly (i.e., bits are independent of eat ather, and Gs
and 1s are equdly likdy, both in thewords being $ored and in the addressesused
for storingthem). Then theM hard locaions can be picked at randam; that isto say,
we can take auniform randam samge, of size M, of al N-bit addresses. Such a
choiceof locationsis shown in Figure 3.4, where the addresses of thedtionsare
givenin matrix A and the contents are given in matrix C, and where arow through
the figure represents a hard location, just asin Figure 3.3 (row A, of matiix A is
the mth hard address, andC,,, is the contents of locationA,,, aswith RAM, we use
A, to name he mth location).

Activation. In arandam-access memory, to store or retrieve aword with x asthe
address, x is placal in the (20-bit) address register, which adivates locaionx. We
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say that theaddessregister points to locaion x, and that whatever location the
address register pointsto is activated. This does not work with a sparse distributed
memory becaise its (1,000hit) address register never—practically never—points
to ahard locaion because the hard locaions are so few compared to the number of
possible addresses (e.g., 1,000,000 hard addressewss. 21:9%0possibe addesss;
matrix A is an exceedingly sparse sampling of the addressspace).

To compensate for the extreme sparsenessof the memory, aet of nealby
locaionsisadivated at once for example, all the locaionsthat are within acertain
distancefrom x. Sincethe addresss are binary, we can use Hammingdistance
which isthe number of places at which two binary veadors differ. Thus, in asparse
distributed memory, the mth locationis adivated by x (which isin the address
register) if the Hamming dstancebetween x andthe location'saddress A, is below
or equal to athreshad valueH (H standsfor a[Hamming] radius of activation). The
threshold ischosen so that but asmall fradion d the hard locaions are adivated by
any givenx. When the hard addresses A are auniform random sample of theN-
dimensional address pace the binomial distributionwith parametersN and 22 can
be used to find the activation radius H that correspondsto agiven probabilityp of
adivating alocation. Noticethat, in arandom-aacess memory, a location is
adivated only if its address matctes x, meaning that H = 0.

Vectorsd andy in Figure 3.4 show the activation of locationsby addressx. The
distance vedor d givesthe Hamming dstances from the address register to ead of
the hard locations, and the 1s of the adivation vectory mark the locaions that are
close enoughto x to beactivated byit: y,,= 1if d,,<H, andy,,,= 0 aherwise, where
dy=h(x, Ap) isthe Hamming dstancefromx to locaion A, The number of 1sin
y therefore equals the size of the set adivated by x.

Figure 3.5 isancther way of representing he activaion d locations The lage
circle represents the spaceof 2N addresses, Each tiny squareis a hard location, and
its position within the large circle represents the location’s addresses. The small
circle aroundx includes the locaions that are within H bits of x and that therdore
are activated byx.

(( FIGURE 3.5. Address space, hard locations, and the set ... ))

Storage. To store U-bit words, ahard location hasU up—davn cournters. Therange
of a curnter can be small, for example, theintegersfrom-15to 15 TheU counters
for each of the M hard locaions constitute the M x U contents matrix, C, shown on
theright in Figure 34, and they orrespond to heM x U flip-flops of Figure 3.3.
We will assume that all counters are initially set zero.

When x is used as the storage address for the word w, w is stored in eah of the
locaions activated by x. Thus, multiple wpiesof w are stored; in ather words, w is
distributed over a(smadl) number o locations. Thewordw isstored in,or written
into, an adive location as follows: Each-tit of w increments, and each O-bitofw
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deaements, the corresponding ourter o thelocdion. This isequivalent to saying
that thewordw' of —1sand 1s s added yector addition) to thecontents of each
adive location, wherav' isgoatten from w by repladng Os with —1s. Furthermore,
the countersin C are not incremented or decrenented past their limits (i.e,,
overflow and uncerflow are lost).

Figure 3.4 depictsthe memory after the wonat = 010...110 (in the word-in
register) has been stored withx = 100...101asthe aldress (in the aldressregister).
Severa locdions are shown asselected, and the vedorw” =
(-1,1,-1,...,1,1, 1) hasbeen added to their contents. The figure also shows that
many locations have been seleded for writingin the past (e.g., the first location hes
norzero courters), that the last bcation appeas never to havebeen seleced, and
that w appeasto bethefirst word written into the seleded location rear the bottom
of the mamory (the locaion containsw'). Notice that a pasitive value of a courter,
+5, say, tell sthat five more 1sthan Os have been stored in it; similarly, =5 tell sthat
five more Osthan 1s have been stored (provided that the cgadty of the courter has
never been exceeded).

Retrieval. When x isused astheretrieval address, thelocdions adivated byx are
poded asfoll ows: their contents are acawmulated (vedor addition) into avector of
U sums, s, andthe sums are mmpared to athreshold value O to get an ouput vector
z, which then appears in the word-out register (z, = 1iff 5, > 0; sand z are below
matrix C in Fig. 3.4). This poding constitutes a maority rule, in the sense that the
uth output bitis1if, and orly if, more 1sthan Gshave been stored in theuth courters
of the activated locations; otherwise, the output bit is 0.

In Figure 3.4 the word retrieved, z, isthe same as, or very similar to, theword w
that was gored, for the following reason: The same x is used as both storage and
retrieval address, so that the same set of locationsisadivated bahtimes. In storing,
ead active locaion recaves one copy of W', as described abowve; in retrieving, we
get badk all of them, plus a w copies of many dher wordstha have been gored.
This biasesthe sums, s, in the diredion of w’, so that w isalikely result after
threshalding. This principle halds even when the retrieval addressis not exadly x
but isclosetoit. Then we ¢et backmost of the copies of w'.

Theideas of storingmulti ple copies of target wordsin memory, and d retrieving
the nost likely target word based on he majority rule, are found already in the
redundant hash add essing method of Kohonen ad Reuhkah (1978; Kohonen
1980. The method ¢ realizang these ideas in redundantash aldressingis very
different from their redizationin a arse distributedmemory.

Retrieval and memory capacity will be analyzed statisticdly at the end d the next
section, after auniform set of symbols and conventionsfor the remainder of this
chapter has been establi shed. We will note here, however, that the intersections of
adivation setsplay akey rolein the aralysis, for they gpear asweights for the



KANERVA / SDM AND RELATED MODELS / 02/02/02 |/ P.7

words gored in the memory when the sum vedor sis evaluated.

Random-Access Memory asa Special Case .One more comment about a
randam-aacess memory: Proper choice of parametersfor a sparse distributed
memory yields an adinary randam-acces memory. First, theaddess matrix A
must contain all 2N addresses; seoond, the adivation radius H must be zero; and,
third, the ca@aty of ead courter in C must be one bit. The first condtion
guarantees that every possible addess x pointsto atleast one hard locdion. The
secondcondtion guaranteesthat only a location thats pointed to is activated. The
third condtion guaranteesthat when aword iswritten into alocation, it replacesthe
location's old contents, because overflow and underflow arelost. In memory
retrieval, the contentsof all adivelocationsare alded together; inthiscase, thesum
isover one or more locations with hard addressA\ny particular coordnat of the
sum is zero if theword last written (with address x) hasa 0 in that paosition; and it
ispaositiveif theword hasal, so that after thresholdingwe get the word last written
with address x. Therefore, the sparse distributed memory is a generali zaion of the
randam-aacess memory.

Parallel Realization. Storingaword, or retrieving aword, in a sparse distributed
memory involves massive computdion. The contents of theaddessregister are
compared to eat hard address, to determinewhich locdionsto actiwete. For the
model memory with a million | ocations, this means computing one-million
Hamming distances involving 1,000bits ead), and canpaing the distancesto a
threshald. Thisisvery time-consumingif dore serially. However, the adivations of
the hard locaions are independent of each other so hat they can ke computed in
parall el; oncethe addressis broadcast to al the locdions, millionfold parllelism
Ispossible. The addressing computation that determines the set of adive locations
corresponds to address decoding bythe address-decoder circuit in arandom-access
memory.

In storing aword, ead column of courters in matix C (seeFig. 3.4) can be
updated independently of all other columms, so hat thereis an opportunity for
thousand-fold parallelism when 1,000kit words ae stored. Smilarly, inretieving
a1,000-bit word, thereis an oppatunity for thousand-fold parall elism. Further
parall elism is achievedby updating manylocationsat once when aword is stored,
and byacawmulatingmany partial sumsat oncewhen aword isretrieved. It appeas
that neura circuitsin the brain are wired for these kinds of parall elism.

3.3. SDM asa Matrix Memory

The congtruction of the memory was described above in terms of vectors and
matrices. We will now seethat its operationis described naturally in vector—matrix
notation. Such degriptionis convenientin relating the parse distributedmemory
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to the correlaion-matrix memories described by Aderson (968 and Kohonen
(1972—see dso Hopfield (1982, Kohoren (1984, Will shaw (1981), and Chapter
1 by Hassoun—andn relating it to may other kinds of artificial neural networks.
The notationwill also beused forde<ribing variationsand genesli zations of the
basic sparse distributed memory mode!.

3.3.1. Notation

In comparing the memory to arandam-access memory, it is convenientto express
binary addresses and wordsin Os and 1s. In comparing it to a matrix menory,
however, it is more convenient to express them in—1sand 1s (also called bipdar
representation). Thistransformationis already implicit in the storage algoithm
described above: abinary wordw of Osand 1sisstored byaddingthe correspondng
word w' of —1sand 1sinto (the contents of) the active Iaaions. From here on, we
assume that the binary comporents of A andx (and d w andz) are—1sand 1s, and
whether bit refersto Oand 1or to—-1 and 1will depend onthe context.

How isthe adivation of alocationdetermined after this transformation? In the
same way as before, provided that Hamming distanceis definedas the nunfer of
places at which two vedors differ. However, we can also use the inng produd
(scdar product, dot product) of the hard addressA ,, and the addressregister x to
measuretheir similarity: d=d(Ap, X) = A, X. Itrangesfrom-Nto N (d = N means
that the two addressesare most smilar—they ae identical), and it relates linealy
to the Hamming dstance which rangesfrom0to N (0 meansidenticd). Therefore,
Hamming distanceh(A,,,, X) < H if, andonlyif, A,, (k=N-2H (=D). Ina
computer smulation d the memory, however, the exclusive-or (XOR) operation on
addresses of Osand Isusually resultsin the most efficient computation o distances
and of the adivationvedor y.

The following typographic conventions will be used:

S italic lowercase for a scalar or a functicanre.

S  itdicuppercasefor ascaar upper boundor a threshold.
% bald lowercase for a (column) vedor.

v;  ithcomporent of avector, ascalar.

M  bdd uppercas for a matix.

M; ithrow of amatrix, a(column) vedor.

M jthcolumn of a matrix, a (column) vector.

M;; scalar comporent of a mdrix.

MT transpose of amatrix (or of avector).
O  scalar (inner) product of two vedors:u v = u'v.
matrix (outer) product of two vedors:ulJv = uv'.

n =1,23,...,N indexintothe bits of an address.
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u =1,2 3, ...,U indexinto the bits of aword.
t =1,2,3,...,T indexintothedata
m =123, ...,M indexintothehard locations.

3.3.2. Memory Parameters

The sparse distributed memory, asamatrix memory, is described below in terms of
its parameters, progressingwith the informationflow from upper left to lower right
in Figure 3.4. Sanple memory refers to a memory whase parameter values appea
in parenhessin the descriptionsbelow, asin “(e.g., N=1,000".

The external dimensions of the memory are given by

N  Addresslength; dimension of theaddess ace inpu dimendon (e.g,

N =1,000. Small demonstrations can be ma@ with N as small as 25,butN
> 100isrecommended, asthe propertiesof high-dimensional spaceswil | then
be evident.

U  Word length; the nuniber of bits (-1sand 1s) in the words stored; output
dimension(e.g., U =1,000). The minimum, U = 1, correspondsto classifying
the datainto two classes. If U = N, it ispossible b store words
autoassociatively and to store sequences of words as pointer chains, as
demonstrated in Figures 3.1 and 32.

The data set to be stored—thetraining set (X, W)—isgiven by:

T  Traning-set size; number of elementsin the data set (e.g., T = 10,000.

X  Dataraddress matrix; T training addresses; T x N —1sand 1s (e.g., uniform
randam).

W  Data-word matrix; T trainingwords;, T x U —1sand 1s(e.g., uniform
randam). Autoassociative data (self-addressing) means that X =W, and
sequencedata means that X; = W, _ 1 (t>1).

The memory’sinternal parametersare:

M  Memory size number of hard locaions(e.g., M =1,000000. Memory needs
to be sufficient for the data being stored and ér the anountof noiseto be
toleratedinretrieval. Memory capadty islow, sothat T shoud be 1-5 percent
of M (T isthe number of stored paterns; goring many noisy versions of the
same pattern [cf. Fig. 3.1] courts as storing onepatern, or as storing few).

A Hard-address matrix; M hard addresses; M x N —1sand 1s(e.g., uniform
randam). This matrix is fixed. Efficient use of memory requires that A
correspondto the set of data addresses X (seeSec. 3.8 onSDM research).

p Probability of adivation (e.g., p = 0.00045; “idedly,” p=0.000369. This
important parameter determines the number of hard locationsthat are



KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 10

adivated, on the average, by an address, which, in turn, determines how well
stored words are retrieved. The best p maximizesthe signal (dueto the target
word that isbeing retrieved) relaive to thenoise (dueto all other stored
words) in the sum, s, andis approximately (2MT)‘1/3 (seeend d this sdion,
where signal, noise, and memory capacity are discussed).

Radius of activation (e.g., H = 447bits). Thebinomid distributionor its
normal approximation can beused O find the (Hamming) radiusfor agiven
probability. For the sample memory, optimal pis0.000368 so that abou 368
locaions shoutl be ativated at a tine. RadiusH = 446 captures 354
locaions, and H = 447 captures 445l ocaions, onthe average. We chocsethe
|atter.

Activationthreshold onsimil arity (e.g., D = 106). Thisthreshold isrelated to
theradius of adivation byD = N — 2H, so that D = 108and D = 106
correspondto the wo values of H given abo\e.

Range of acounter in theM x U contents matrix C (e.g., ¢ ={-15, 14,
-13,...,14,15}). If therangeisonebit (c={0, 1}), the contentsof alocaion
are determined whally by the most-recent word written into theckbion. An
8-bit byte, an integer variable, and afloating-point variable ae convenent
courtersin computer simulations of the memory.

The following variables describe the memory's date and operation:

X

Storage or retrieval address; contents of the address register; N —1sand 1s
(e.0., X =Xyp.

Similarity vedor; M integersin{—-N,-N+2,-N+ 4, ..., N -2, N}. Sincethe
simil arity between he mth hard address and theaddessregister isgiven by
their inner product A, [k (seeSec. 3.3.1 onNotation), the smilarity veaor
can beexpesed asd = AX.

Activation vector; M Osand 1s. The similarity vedor d is converted into the
adivation vector y by the (noninea) threshad functiony defined byy(d) =
y, wherey,, = 1if d,= D, andy,, = 0 otherwise. The nuntver of 1siny, |y/,
issmadl compared to the nutber of Os |y| = pM); the ativationvedor isa
very sparse vector in avery-high-dimensiona space. Notice that hisisthe
only vedor of Osand 1s; al other binary vedors consist of-1sand 1s.
Input word; U -1sand 1s(e.g., w = W,).

Contents matrix; U x M up—davn counters with rangec, initial value usually
assumed to be0. Since the word w is stored n active locaionA, (i.e., when
Ym= 1) by addingw into the location’s contentS,,, it isstored inall active
locaionsindicated byy by addingthe (outer-product) matrixy [Jw (most of
whaoserowsare0) into C, sothat C := C +y[ Jw, where:= means aubstitution,
and where addition beyondhe angeof a courter isignored. Thisis known
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asthe outer-product, or Hebbian, learning rule.

S Sum vedor; U sums (each sum has[at most] |y| norzeroterms). Becausethe
sum vedor is made up of the contents of the ative locations, it can be
expressed ass= C'y. The U sums give us the final output word z, but they
also tell us how reliable each of the output bitsis. Thefurther asumisfrom
the threshold, the stronger is themmey’ s evidence for the correspondng
output bit.

z Output word; U —1sand 1s. The sumvector sis converted into the output
vedor z by the (nonlinear) threshold tunction z defined byz(s) = z, where z,
=1if5,>0, andz, = -1 oherwise.

In summary, storing the word w into the memory with x as the address can be
expressed as

C:=C+yAx)[Iw
and retrieving the word z correspondng to the address x can be expressedas
z=z(C'y(AX))
3.3.3. Summary Specification

The following matrices describe the mamory’ s operationon the data set—the
training set (X, W)—asawhde:

D  TxM matrix of similarities corresponding tothe dathaddesgs X: D =
(AXT = XAT.

Y  Correspondng T x M matrix of adivations: Y =y(D).

S  TxUmatrix of sumsfor the daaset: S=YC.

Z  Correspondng T x U matrix of outpu words. Z = z(S) = z(YC).

If the initial contents of the memory are 0, and if the capacits of the courters
are never exceeded, storing the T-element data set yields memory contents

T T
C =3 YW, = 5 y(AX) OW
t=1 t=1

This expressionfor C foll ows from the outer-productleaning rule (see C above),
asit is the sumof T matrices, each of which represents an item in the data &.
However, C can beviewed equvalently asa matrix ¢ M x U inner products Cy, ,
of pairs of vedorsof length T. One set of these vedorsisthe M columns of Y, and
the other set isthe U columns of W, so that Cyy,, = Y 7 DW 3, and

C=YTW =y(AX W

The acairacy of recall of thetraining set after it has been stored in memory, is then
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given by
Z-W=2z(YC)-W
=z(YYTW) -W

Thisformis convenient in the mahematcal anaysis of the memory. For example,
it is readily seen hat if theT rows of Y are orthogoral to oreandaher, YY T isa
diagoral matiix approximatdy equal to pMI (I isthe identity matrix), so that

z(YY TW) = W and recall is perfect. Notice hat the rowsof Y for the sample
memory are nearly orthogoral to one aather, and thd the purpose of addressing
throughA isto produce (nealy) orthogora adivation vectors for most pairs of
addresses, whichisaway of sayingthat the setsof locaions adivated by dssmilar
addresses overlap as littl e as possible.

3.3.4. Reation to Correation-Matrix Memories

The M x U inner products that make upC are correlations of a sort: they are
unnamali zed correlations that reflect agreement between the M variables
represented bythe columnsof Y, andthe U variablesrepresented bythe columns of
W. If the columns were normalized to zero mean and to unit length,their inne
products would equal the correlation coefficients used commonly in statistics.
Furthermore, the inner products of adivation vedors(i.e., unnamalized
correlations) Y, Ly serve asweights for the training wordsin memory retrieval,
further justifying the term correlation-matrix memory.

The Y -variables are derived from the X-variables (each Y -variable compares the
data addressesX to a spedfic hard address), whereas in the original correlation
matrix memories (Anderson 1968 Kohonen 1972, the X-variables are used
directly, and the variables are continuows. Changng from theX-variablesto the Y -
variables means, mathematicdly, that theinpu dimensionis blown way up (from a
thousandto amilli on); in pradice it meansthat the memory can be made abitrarily
large, rendering its capadty independent of the inpu dimensionN. The idea of
expanding the inpu dimension goes backat |east to Rosenhlatt's (1962) a-
perceptron network.

3.3.5. Recall Fiddlity (¢)

Wewill now look at the retrieval of words stored in memory, that is, how faithfully
are the stored words reconstructed by the retrieval procedure syfimgtatic
behavior of the memory, asthe inpu dimensionN grows without boundhas been
analyzed in depth by Choul©89. Specific dimension N isassumed here, and the
analysisis smple but approximate. The analysisfollows one givernby Jaeclel
(198%) and uses some of the same symbadls.

What happens when we use one of the aldresses, say, the last data address X+, to
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retrieve aword from memory; how close to the stored word Wt isthe retrieved
word Z+? The output word Zt isgotten from the sum vedor Sy by comparingitsU
sumsto zero. Therefore, we need to find outhow likely will asum inSy be on he
correct side of zero. Since the datara uniform randam, all columns of C hawe te
same statistics, and al sumsin Sy have the same statigics. So it sufficesto look at
asingle coordnate of the daawords, say, the bst, and b assumethat the last bit of
the last dataword, W, is 1. How likely is Sy > 0 if Wy, = 1? Thislikelihoodis
cdled thefidelity for asingle bit, denoted hereby ¢ (phi for ‘fidelity’), andwe now
proceed to estimate it.

The sum vedor Sy retrieved bythe address X+ isasum over the locaions
adivated by X+. The locdions are indicated by the 1s of thetation vector Y,
sothat Sy= Y1' C, whichequalsY"YTW (that C = YTW was shown above). The
|ast coordinate of the sum vedor isthen Sry = Y1 Cy = Y1 YTW, =
(YYD TWpy = (YY) DWy, which showsthat only the last bitsof the data words
contribute to it. Thus, the Uth bit-sum is the (inner) product of two vedors, YY 1
and Wy, where the T-vedor Wy, consists of the stored bits (the last bit of eat
stored word), and the T comporents of Y'Y  act as weights for the stored bits.

Theweights YY 1 have aclea interpretdion in terms of adivationsets andtheir
intersedions or overlaps: they ejua the sizes of the owerlaps. This isill ustrated in
Figure 3.6 (cf. Fig. 3.5). For example, sincethe 1sof Y and Y+ mark the locations
adivated by X; and X+, respedively, theweight Y LY 1 for the tth dataword in the
sum Sy equals the number of locaions adivated by bothX; and X+. Because the
addresses are uniform randam, this overlap ispZM locationsonthe average, where
p isthe probability of adivating alocation, exceptthat fort = T the two activation
sets arethe same andthe overlap iscomplete, coveringpM locdionsonthe average.

(( FIGURE 3.6. Activation overlaps as weights for stored words. ))

In computing fidelity, we will abbreviate notationasfollows: Let B; (= W, ) be
thelast bit of thetth dataword, let Ly = Y LY 1 beitsweight in the sum Sy, and let
Z (= Sry) be the lashit sum. Regard the bisB; and their weightsL, as two sets of
T randam variables, and recdl our assumption that addresses and data &e uniform
randam. Then the bits B, are independentlsand 1swith equal probability (i.e.,
mean E{ B} = 0), and they are also independent of the weights. The weightsL,
beingsizesof activation owerlaps, are nonregative integers. When activationislow,
asit isin the sample memory (p = 0.0004495, the weights resemble independent
Poisson variables: thefirst T — 1 of them havea mean (andvararceVar{L} =)
E{L} = A=A =p°M andthelast hasamean (and variance Var{ L1} =) E{L{} = At
=\ =pM (i.e., complete overlap). For the sample memory these values areeam
adivation\ = pM = 445|ocaions (out of amilli on), and mean adivation owerlapA
=p°M = 0.2 location (t < T). Wewill proceed asif the weights L were independent
Poisson variables, and fenceour result will be approximate.
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We ae assuming thatthe bt we are tryingto recover equals 1 (i.e.,By = Wy, =
1); by symmetry, the analysis of By = —1 isequivaent. The sum X isthen the sum
of T produwcts LBy, and its mean, or expectation, is

T-1
W=E(5} =y E{LB} +E{Lr (1}

t=1
=E{L}
=A

becaiseindependenceand E{B;} = 0 yield E{L{B;} = 0whent < T. The mean sum
can beinterpreted asfoll ows: it containsal A (= 445) copiesof thetarget bit Bt that
have been stored and they reinforce each other, while the other

(T=2)A (= 2,000 bitsin X tend to cancd out ead other.

Retrieval is correct when thesum Z isgreder than 0. However, randam variation
canmake X < 0. Thelikelihood d that happening, dependsonthevariance o?of the
sum, which variance we will now estimate. When he erms are appoximatdy
independent, their variances are appioximaiely additive, so hat

0% =Var{=} = (T - IVar{L,B;} + Var{Ly (L}
The secondvarianceis simply Var{L1} = A. Thefirst variance can berewritten as
Var{L1B1} = E{L1°B1%} - (E{L1B1})?

=E{L43
becaise B,? = 1, and becaseE{LB,} = 0 asabowe. It can be ewritten furtheras

= Var{Ly} + (E{Ly})?

=\ +\2
and we get, for the variance of the sum,

0’=(T-1)A+A)+A

Substituting p2M for A and pM for A, approximating T — 1 with T, and rearanging
finaly yields

0% =Var{Z} = pM[1 + pT(1 + p°M)]

We can now estimate the probability of incorrect recdl, that is, the probability
that >~ < Owhen Bt = 1. Wewill use te fact thatfithe productsLB; are T
independent randam variables, their sum X tends to the normal (Gaussian)
distribution with mean and variance equal to those ofZ. We then get, for the
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probability of a sinde-bit failure,
Pr{Z<0]|u, o} = ®(-o)

where @ isthe normal distribution function; and for the probability of reclling a
bit correctly, or bit-fidelity ¢, we get 1 — d(—p/o), which equals ®(u/o).

3.3.6. Signal (1), Noise (o), and Probability of Activation (p)

We @n regard the mean value 1 (= pM) of thesum X assignal, and the variance g2

(= pM[1 + pT(1 + p®M)]) of the sum as naise. The standard quantity p = p/c isthen
asignd-to-noiseratio (rhofor ‘ratio’) that can becompared to the normal
distribution, to estimate bit-fidelity, as was done above:

¢ = Pr{bit recalled corredly} = ®(p)

The higher the signal-to-noise ration, the more lkely are stored words recdled
correctly. Thispointsto away to find good @ uesfor the probability p of adivating
locaions and, hence, for the adivation radiusH: We want p that maximizesp. To
findthisvalue of p, it isconvenient to start with the expressionfor p2 andto reduce
it to

pM

2 = y2/g2=~
P H 1+ pT(1+p2M)

Taking the derivative with resped to p, settingit to 0, and solving for p gives
_ 1
3/2MT

asthe best probability of activation. This value of p was mentioned ealier, and it
was used to set parameters for the sample memory.

The probability p= (2MT) ™3 of adivatingalocaionisoptimal only when exad
storage addresss are used for retrieval. When a etrieval address sappioximate
(i.e., when it equalsastorage address plus smenaise), baththe signal andthenoise
arereduced, and also their ratioisreducel. Anaysis of thisis more complicated
than the one aboveanditisnat carried out here. Theresult is that, for maximum
recovery of stored woids with appoximate retrieval addresses,p shoud be
somewhat larger than (2MT)‘”3 (typicdly, lessthan twice aslarge); however, when
the data are clustered rather than uniform random,optimum p tends to be smaller
than (2MT)" 13,

Inacaseyet moregeneral, thetrainingset isnat “clean” but contains many nasy
copies of each word to be stored, and he dah addressesare noisy (cf. Fig. 3.1).
Then it makes €nse to store words within asmallerradiusand to retrieve them
within alarger. To all ow such memoriesto be anayzed, Avery Wang (unpubished)
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and Jaekel (1988 have derived formulas for the size of the overlap of adivation
sets with different radii of activation. Asarule, the owerlap decreasesrapidly with
increasing distance letween he @ntersof adivation.

3.3.7. Memory Capacity (1)

Storage andretrieval in astandard random-acaess menory are deterministic.
Therefore, its capadty (in words) can beexpresed smply as the number of
memory locations. In a sparse distributed memory, retrieval of wordsis statisticd.
However, its capaaty, too, can be dfinedas a imit on the nurberT of words that
can be stored andretrieved siccessfully, athough te limit depends on hat we
mean by success.

A simple criterion of success isthata stored bit isretrieved correctly with high
probability ¢ (e.g., 0.99< ¢ < 1). Other criteria can be derived from it or arerelated
toit. Specifically, capacity here isthe maimum T, Ty, such that Pr{Z; , =W, ,}
> ¢; we ae assuming thatexact dorage addressesare used D retrieve the words. It
IS convenient to relate cgpadty to memory sizeM and to define itast = Ty /M.
Asfidelity ¢ approadhes 1, cgpacity T approades0, andthe valuesof T that concern
us here ae smaller than L We will now proceed to edimate T.

In Sedion 3.3.50n Recall Rdelity we saw that the bit-recdl probability ¢ is
approximated by ®(p), where p isthe signal-to-noiseratio as defined above. By
writing out p and substituting T for T we get

1/2
=P =P pM H
b=2() %l+pTM(l+p2M)J N
which leads to
o1 2~0n2= pM
[P=@)]7=p 1+ ptM(1 + p2M)

where @1 istheinverse of the normal distribution function. Dividing bypM in the
numerator and the denominator gives

1

oM +1(1+p2M)

[71(9)]2=

Theright side goesto 1/t asthe memory size M grows without bound, giviag usa
simple expresson for the asymputic cgpacity:

m_ 1
[®~(9)]?
To verify thislimit, we use the optimal probability of activation, taking nde that
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it depends on bothM and T: p = (2MT) Y3 = (2t1M2)~Y3, Then, in the expression
abowve, 1/(pM) = (2T/|\/|)1/3 and goesto zero asM goesto infinity, becaiset < 1.
Similarly, (1 + p*M) =1+ (3 UM)*® andgoesto t.

To compare this asymptotic cgpadty to the cgadty of afinite memory, consider
¢ = 0.999 meaning that abou one bit in athouwsandis retrieved inorrectly. Then
the asymptotic cgpadty isT = 0.105 andthe capadty of the milli on-locaionsample
memory is0.096. Keder (1988 has $rown that the sparse distributed memory and
the binary Hopfield net trained with the ouer-product leaning rule, which is
equivaent to acorrelation-matrix memory, have he same capadty per storage
element or courter. The 0.15N capacity of the Hopfield net (t = 0.15) corresponds
tofidelity ¢ = 0.995 meaning that abou onebit in 200isretrieved incorrectly. The
practicad significance of the sparse distributed memory designisthat, by virtue of
the hard locations, the number of storage elenents isindependenof the inpu and
output dimensions. Doulingthe hardware douldes the number of words of agiven
sizethat can be stored, whereas the caacity of the Hopfield net is limited by he
word size.

A very smple nation of capadty hasbeen sedhere, and it resultsin cacities
of abou 10 percentof memory size. However, the assumpton has been that exad
storage addressesareused inretrieval. If approximate addresses are used, andif less
error istolerated in the words retrieved than in the addresses sed for retrieving
them, the capadty goesdown. The nost compete andysis of capadty unde such
genera condtions has been gven by Chou(1989. Expressng cgpadty in absolute
terms, for example, as Shannorisinformation capadty, is perhaps the most
satisfying. This approadc has been taken by Keeler (1988. Allocating the caacity
isthen a separate issue: whether to store many words or to corred manyerrors. A
practica guide is that he number of stored words shoud be from 1 b 5 percentof
memory size (i.e., of the number of hard locaions).

3.4. SDM asan Artificial Neural Network

The sparse distributed memory, as an artificial neural network, isasynchronots,
fully conreded, threelayer (or two-layer, see lelow), feed-forward net ill ustrated
by Figure 3.7. Theflow of informationinthefigureisfrom left toright. The column
of Ncirclesontheleft iscalled theinpu layer, the column of M circlesinthemidd e
is cdled the hidden layer, and the colurm of U circlesontheright is called the
output layer, andthe drclesin thethreecolumnsarecall ed inpu units, hidden unts,
and output urits, respedively.

(( FIGURE 3.7. Feed-forward artificial neural network. ))

The hidden units and theoutput unts arebonafide artificia neurons, so that, in
fact, there are only two layers of “neurons.” The input units merely represent the
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outputs of some other neurons. The inpus X, to the hidden unitslabel the input
layer, the input coefficientsA,, ,, of the hidde unitslabel thelines leadinginto the
hidden unts, andthe outputsy,,, of the hidden untslabel the hidden layer. If yisthe
adivation function of thehidden units(e.g, y(d) =1if d>D, andy(d) =0
otherwise), the output of the mth hidden unit isgiven by

N 0
Ym = yDZ Am, nxnD
0= u

which, in vector natation, isy,, = Y(A,,[X), where x is the vector of inpus to, and
An, isthevedor of inpu coefficients of, the mth hidden unit.

A similar description applies to the output units, with the outputs of the hidden
units serving as their inpus, so that the outpubf theuth ouput unit is given by

M 0
z, = z0 Cm, uYnd
G2, g

or, invedor notaion, z, = z(Cy, [y). Here, Cpy, isthe vector of input coefficients
of the uth output unt, andzisthe adivation function.

From the equations aboweit isclea that theinpu coefficients of the hidden unts
form theaddess matrix A, andthose of the output units form the contents matrix
C, of asparsedistributed memory. Intheterminology d artificial neural nets, these
are the matrices of connection strengths (synaptic strengths) for the two layers.
‘Fully conreded’ meansthat all elements of these matrices can assaime noreero
values. Later we will seesparsely conreded variationsof the nodel.

Corresponcence between Figures 3.7 and 34 is nowdemonstrated by
transforming Figure 3.7 according to Figure 3.8, which showsfour waysof drawing
artificial neurons. View A shows how they appea in Figure 3.7. View B islaid out
smilarly, but all |abelsnow appear in boxesandcircles. In view C, thediamondand
thecirclethat represent the inner product andthe output, respectively, appea below
the columm of inputcoefficients, so thatthese unts are easily staded sde byside.
View D isessentially the sameasview C, for stadking uritsontop d ead ancther.
We will now redraw Figure 3.7 with units of type D in the hidden layer and with
units of type C in the output layer. An input (acircle) that is shared by many units
isdrawn only once. The result isFigure 3.9. Its correspondence  FHgure 3.4 is
immediate, the vedors and the maricesimplied by Figure 3.7 are explicit, and the
cobwebs of Figure 3.7 are gore.

(( FIGURE 3.8. Four views of an artificial neuron. ))
(( FIGURE 3.9. Sparse distributed memory as an artificial ... ))
In describing the memory, the £rm‘synchonows’ means that allcomputdions
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are comgeted in whatcould be cdled amachne g/cle, after which the network is
ready to perform anoter cycle. The term is superfluous if the net is used as a feed-
forward net akin o a mndam-acaeess memory. However, it is meaningful if the
network’s output is fed backas input: the network is alowed to settle with each
input so that a completely updaed ouput is availalde as the next input

Asa nultilayer feed-forward net, the sparse distributed memory is akin to he
netstrained with the eror badk-propagationagorithm (Rumelhart and McClelland
1986. How are te two dfferent? In abroad sense they are not: wetrto find
matrices A andC, and adivationfunctionsy and z, that fit the source of our data. In
practice, many things are dore differently.

In error back-propagation, the matricesA and C and the adivation vectory are
usually real-valued, the componeats of y usually range oer the interva
[-1, 1] or [0, 1], the adivation functiony anditsinverse ae differentiable, and he
data are stored usng auniform algoiithm to change botl& and C. In sparse
distributed memory, the addressmatrix A isusually binary, and variousmethods are
used for choasing it, but oncealocaion’'s address has been set, it isnot changed as
the data are stored (A is constant); furthermore, the adivationfunctiony is astep
functionthat yields an adivation vector y that ismostly Os, with a few 1s. Another
major differenceisin the sizeof the hidden layer. In back-propagation nets, the
number of hidden units is usially smaller than the nurber d input untsor the
number of itemsin thetraining set; in asparse distributed memory, it ismuch larger.

The differencesimply that, relative to back-propagtion nets, the taining ofa
sparsedistributed memory isfast (it iseasy to demonstrate single-trial leaning), but
applyingit to a rew problem slessautomatic (it requires dhoosng an appropriate
data representation, as discussed in the section onSDM research below).

3.5. SDM asa Moded of the Cerelellum

3.5.1. Modeling Biologywith Artificial Neural Networks

Biologicd neurons are cellsthat process signasin animalsand humans, al owing
them to respondrapidly to the environment. To achieve speead, neurons use dectro-
chemicd mechanismsto generate a sgnal (avoltage lewel or electrical piises) and
to transmit it to neaby and distant sites.

Biologicd neurons come in many varieties. The periphem neurons couplethe
organism to the world. They nclude the £nsory ruronsthat convert an extema
stimulusinto an eledrical signal, the motor neurons whoséegtrica pulses cause
muscle fibersto contract, and ohereffedor neuons that regulatethe secetion of
glands. However, most neuronsin highly evolved aimas are interneurons that
conred diredly to ather neuronsrather than to sensors or to effedors. Interneurons
also come in many \arieties and they are organized into a nultitude of neural
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circuits.

A typicd interneuron has a cdl body and two kinds of arborizations: adendrite
tree that receives signals from oher neuons, and an gontree hat transmitsthe
neuron'ssignal to ather neurons. Transmission-contad points between neurons are
cdled synapses. They are @ther excitatory (positive synaptic weight) or inhibitory
(negative synaptic weight) according to whether asignal received throughthe
synapsefacilitatesor hindersthe adivation d thereceiving reuron. The akon d one
neuron can make synaptic contact with the dendrites and cdl bodes of many other
neurons. Thus, aneuronrecaves multi pleinpus, it integratesthem, andit transmits
theresult to ather neurons

Artificial neural networks are networks of simple, interconreded processing
units, cdled (artificial) neurons. The most common artificial neuronin the
literature has multiple (N) inpus and oneoutpu andis definedby a €t of input
coefficients—avedor of N reds, standing for the synaptic weights—and a
norlinea scalar adivation function. The value of thisfunctionisthe neuron’'s
output, and it servesasinpu to ather neurons. A linear threshold fundionisan
example of an artificial neuron, and the simplest kind—ore with binary inpus and
output—is used in the sparse distributed memory.

It may seem $range to model brain activity with binary neuronswhen real
neurons are very complex in comparison. However, the brain isorganized in large
circuits of neuronsworkingin perallel, and the mathematical study o neura netsis
aimed more & understanding the behavior of circuitsthan of individual neurons. An
important fad—perhaps the most important—isthat the states of alarge circuit can
be mapped oto the points of a high-dimensional space, so that althougha binary
neuronisagrossly smplified model of abiologica neuron, alarge circuit of binary
neurons, by virtueof its high dimenson, can be aussful model of acircuit of
biological neurors.

The sparse distributed memory’s conrection to biology is mack in the standard
way. Each row throughA, d, y, and C in Figure 3.9—ead hidden uit—isan
artificial neuron that represents a biologica neuron. Vedor x representsthe N
signals comingto these neurons asinpus from N other neurons (alongtheir axons),
vedor A, represents the weights of the synapses throughwhich the input signals
enter the mth neuron (at its dendrites), d,, represents the integration étheinpu
signals by the mth neupn, andy,,, represents the output signal, which is passed
alongthe neuron's axonto U other neuons through synpseswith strenghsC,,

We will cdl these (the hidden units) the address-decder neurons because they
are like the address-decodr circuit of a randam-acaess menory: they seled
locaionsfor reading and writing. The aldressthat the mth address-decoder neuron
deadesisgiven by he inpu coefficientsA,,; location A, is activated by inpus x
that equal or are sufficiently similar to A, How similar, depends on the radius of
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adivationH. Itisinterestingthat alinea threshold functionwith Ninpus, whichis
perhapsthe oldest mathematicd model of aneuron, isided for address decodingin
the sparse distributed memory, and that a proper choiceof asingle parameter, the
threshold, makesit into an adressdecocer for alocation d an adinary random
ac@ssmemory.

Likewise, in Figure 3.9, ead column throughC, s, and z isan artificial neuron
that represents abiologica neuron. Sincethese U neurons provide the output of the
circuit, they are calked the output neons. The syngses made by lhe axonsof the
address-decoder neurons with the dendrites of the output neurons are represented
by matrix C, andthey aremodifiable; they arethe sites of information storageinthe
circuit.

We now look a how these synapses are nodified; specifically, what neural
structuresareimplied bythememory’s gorage dgorithm (cf. Figs. 3.4and 39). The
word w is gored by adding it into the courters of the active laations, that is, into
the axonal synapses of active address-deder neurons. Thismeansthat if alocaion
isadivated for writing, its courters are adjusted upward and dovnward; if it isnot
adivated, its courters stay urchanged.

Since the output neurons are independent of each ather, it sufficesto look at just
one of them, say, the uth ouput neuon. SeeFigure 310 center. Theuth output
neuron produces the uth output bit, which is affected only bythe uth bits of the
words that have been stored in the memory. Let us assume that we ae storing the
word w. Its uth bit isw,,. To addw,, into &l the active synapsesin the uth column of
C, it must be made physicdly present at the adive synatic sites of the columm.
Since different sitesin acolumn are active at dfferent times, it mud be male
present at all synaptic sites of the column. A neuron'sway of presentingasignal is
by passingit alongthe axon. This suggeststhat the uth bit wy, of theword-in register
shoud berepresented byaneuronthat correspondsto theuth ouput neuronz,, and
that itsoutput signal shoud be avail able & ead synapsein column u, althoughit is
“captured” only by synapses that have just been adivated by address-decoder
neuronsy. Such an arrangement is shrown in Figure 3.10. It suggests that word-in
neurons are paired with ouput neuons, with the axon tree of aword-in neuron
passibly meshingwith the dendrite tree of the correspondng ouput neuron, asthat
would help carry the signal to all synagtic sitesof a column. Thiskind of pairing,
when foundin abrain circuit, can help usinterpret the circuit (Fig. 3.10, on the
right).

(( FIGURE 3.10. Connections to an output neuron. ))
3.5.2. TheCortex of the Cerebdlum

Of the neural circuitsin the brain, the cortex of the cerebellum resembles the sparse
distributed memory the most. The cerebell ar cortex of mammalsisafairly largeand
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highly regular structure with an enormous number of neurons of only five major
kinds, and with two major kinds of input. Its morphdogy has be& studed
extensively since ealy 1900, itsrolein fine motor control has been establi shed,
andits physiologyisstill studied intensively (Ito 1984)

The cortex of the cerebdlum is ketched in FHgure 3.11 after Llinas (1975)
Figure 3.12isFigure 3.9 redrawnin an orientation that correspondsto the sketch of
the cerebell ar cortex.

(( FIGURE 3.11. Sketch of the cortex of the cerebellum.))
(( FIGURE 3.12. Sparse distributed memory’s resemblance ... ))

Within the cortex are the cdl bodes of the granule cdls, the Golgi cells, the
stell ate cells, the basket cdl s, andthe Purkinjecell s. Figure 3.11 showsthe dimbing
fibersand the mossy fibers entering and theas of the Purkinje cellsleaving he
cortex. This agrees with the two inpus into and the one output from a sparse
distributed memory. The correspondence ges deeger: The Puikinje cells that
provide the output, are paired with the climbing fibersthat provide input. A
climbing fiber, which isan axon of an divary cdl that residesin the lrain stem,
could thus have the samerole in the cerelellum as the line from aword-in cell
througha column of courters hasin a sparse distributed memory (seeFig. 3.10),
namely, to make a bit of adat word available at a bit-storage site when words are
stored.

The other set of inpus enters alongthe mossy fibers, which are axons of cells
outsidethe ceebellum. They would then belike an addressinto asparse distributed
memory. Themossy fibersfealinto thegranule cdls, which thuswould correspond
to the hidden units of Figure 3.12 (they gopear as rows acossFig. 39) and would
perform address deaoding. The firing of a granulecdl would conditute adivating
a location for reading rowriting. Therefore, the courters of alocaionwould be
foundamongthe synapses of agranule cell’saxon;these aconsare cdled parallel
fibers. A pardld fiber makes synapses with Golgi cdls, stellate @l s, basket cdls,
andPurkinje cdls. Sincethe Purkinjecell sprovidetheoutput, it isnatural to assume
that their syngses with theparallel fibers are the storage sites or the memory’s
courters.

In addition to the “circuit diagram,” other things suggest that the cortex of the
cerebell um isan associative memory reminiscent of the sparse distributed memory.
Thenumbersarereasonable. Thenumbersquated bel ow were cmmpil ed by L oebner
(1989 in areview of theliterature and they refer to the cerebellum of a at. Severa
million mosgy fibers enter the cerebellum, suggesting that the dimension of the
address gaceis severa million. Thegranule cell s are the most numerous—in he
billions—implying a memory with billions of hard locations, and bna small
fradion of them is active & once which agrees with the model. Eachparal el fiber
interseds the flat dendriti c trees of several hunded Purkinje cdls, implying tat a
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hard locaion hassevera hunded courters. The number of parall el fibers thatpass
throughthe dendritic tree of a single Purkinje cel aroundahunded-thousand,
implying that asingle “bit” of output is computed from aouta hunded-thousand
courters (only few of which are active at once). The nunber o Purkinje cdlsis
aroundamillion, implyingthat the dimension d the datawordsisaroundamillion.
However, asingeolivary cell sendsabou ten climbingfibersto that many Purkinje
cdls, andif, indeed, the climbing fiberstrain the Purkinje cells, the output
dimensionismorelike ahunded-thousand than amilli on. All these numbers mean,
of course, that the erebellar cortex isfar from fully conreded: every granule cdl
does nat reach every Purkinje cdl (nor does every mossy fiber reat every granule
cdl; moreon that below).

Thisinterpretation d the cortex of the cerebell um as an associative memory, akin
to the sparse distributed memory, isbut an outli ne, andit contains discrepanciesthat
are evident even at thelevel of cdl morphdogy. Accordingto themodel, an address
deader (a hidden unit) shoud receiwe all address bits, but a granule cell recaves
inpu from threeto five mossy fibersonly, and for agranule cdl to fire, mog or al
of itsinputs must be firing (the number of active inpusrequired for firing apears
to be controlled by the Golgi cell sthat provide the other mgor input to hegranule
cdls; the Golgi cdlscould ontrol the nunier o locations that are active @ once)
Thevery small number of inpusto agranule cél meansthat adivationisnot based
on Hamming distance from an aldress but on certain address bits being on in he
address register. Activation of locationsof asparse distributed memory under sud
condtions has been treaed specifically by Jaedkel, and the idea ispresent already
in the cerebelr models of Marr and of Albus. Thesewill be discussed in the next
two sediors.

Many detail s of the cerebell ar circuit arenot addressed by this comparisonto the
sparsedistributed memory. The basket cell sconrned tothe Purkinje allsinaspeda
way, the stell ate cell s make synapses with the Purkinje cells, and signals from the
Purkinje cdls and climbingfibers goto the basket cdls and Golgi cells. The nature
of synapses and signals—the neurophysiology of the erebellum—hasnot been
considered. Some of thesethings are aldressed bythe mathematicd modelsof Marr
and of Albus. The pointhere has been b demonstrate some of the variety in aredl
neura circuit, to show how a mahematical model can b used to interpret such a
circuit, and to suggest that the cortex of the ceebellum constitutes an assocative
memory. Because its mossy-fiber input comesfrom all over the cerebral cortex—
from many sensory aress—the cerebell um iswell located for correlating adionthat
it regulates, with information abou the environment.

3.6. Variationsof the M odel

The basic sparse distributed memory model isfully conrecied. This meansthat
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every inpu unit (addresshit) is seen by ewery hidden unit (hard locaion), andthat
every hidden urit isseen byevery ouput unit. Furthermore, all addressesandwords
arebinary. If -1 and lare used as the binary comporents, ‘fully conreded’ means
that nore of the elenents of the address and ontentsmatricesA andC is
(identically) zero. Partially—and sparsely—conneded models have zeosin one or
both of the matrces, asa missing conrectionis markedby aweight that is zero.

Jaeckel has dudied designs with sparse addess matrices and binary data. In the
selected-coordinate design (198%), —1sand 1s ae assumel to be equally likely in
the data addresses; in the hyperplane design (19890, the data-address bits are
assumed to be nostly (e.g., 90%) —1s. Jaedkel’s papers are written in terms of
binary Osand 1s, but herewewill use—1sand 1s, andwill let a0 standfor amissing
conredion a a “dont care”-bit (for which Jaedel usesthe value 1/2). Jaeckel uses
one-milli on-location memories (M = 1,000000) with a 1,000-dimensional address
space (N = 1,000 to demonstrate the cesigns.

3.6.1. Jaeckel’s Seleded-Coordinate Design

In the seleded- coordinate design, the hard-address matrix A has a million rows
withten —1sand 1s(k=10) in eachrow. The—-1sand 1sare chosen with probability
1/2 and they are placeal randamly within the row and independently of other rows;
theremaining PB0coordinates of arow are0s. Thisisequivaent totakingauniform
randam A of —1sand 1sand setting arandom 990 coordiaesin each ow to zero
(different 990for different rows). A locationisadivated if the values of all ten of
its seleded coordinates match the address register x: y,,,= 1iff A, (X =k. The
probability of adivating ahard location isrelated to henumber of norzero
coordinatesin ahard address by p = 0.5 Here, k= 10and p=0.001

3.6.2. Jaeckel’s Hyperplane Design

The hyperplane design deals with data where theaddes®s are &kewed (e.g, 100
1sand 9® -1s). Eachrow of the hard-address matrix A hasthree 1s(k = 3), placed
at randam, and the remaining 997places have Os (thereareno —1s). A locaionis
adivated if the address register has 1s at those ssmethree daces: y,, = 1iff A, X
= k. The probability of adivating alocdionisrelaed to the nurer of 1sin its
addressby p = (L/N)k, where L isthe number of 1sin the dataaddressesx. Here, N
=1,000 L =100 k=3, andp= 0.001.

Jaeckel has $hown that both of these dsigns ae better than te lasic design in
recovering previously stored wods, asjudgedby signal-to-noiseratios. They are
also easier to redize physically—in hardware—becase they require far fewer
conredionsand much lesscomputationin the aldress-decoder unit that determines
the set of active locations.

Theregion d the address acethat adivatesahard locaionin the three designs
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can be interpreted geometrically asfollows: A location of the bast sparse
distributed memory isadivated by all addressesthat are within H Hamming units
of the location’s address, so that the excitiragt pf the address space isa
hypersphere aroundthe hard address In the seleded-coordinate design, a hard
locaionisadivated by all addressesin a subgace of the addressspace @fined by
the k seleded coordinates—that is, by the \ertices of an

(N = k)-dimensional hypercube. In the hyperplane design, the address gaceis a
hyperplane defined by the number of 1sin an address, L (whichis constant over all
data addresss), and a brd location is adivated by he intersedion of theaddess
space with the (N — k)-dimensional hypercube defined bythe k 1sof the hard
address.

The regions have a spherical interpretaionalso in he later two designs, as
suggested bythe adivationcondtionA [k = k (sameformulafor both designs; see
abowe). It tell sthat the exciting points of the address space lie onthe surfaceof a
hypersphere in EuclidearN-space with center coordinates A, (the hard address)
and with Euclidean radius (N — k)ll2 (no ponts of the address ace lie nside the
sphere). This givesriseto intermediate designs, as suggested by Jaedkel (19891):
let the hard addresses be cefined in—1s, Os, and 1s asabove,and | et themth hard
locaion beadivated byall addressesx withinasuitably large hypersphere centered
at the hard address. Specifically, y, = 1if, andonly if, A, (X = G. The parameters
G andk (andL) haveto be choen so thatthe pobability of adivating a location is
reasonable.

The optimum probability of adivation p for the various sparse distribued
memory designs sabou the same—it is in the vicinity of (2MT)‘”3—and the
reasonisthat, in al these asigns, the gtsof locaions activated by two addresses,
x andx’, overlap minimally unlessx andx’ are very similar to each other. The ®ts
behavein the manner of randam sets of approximately pM hard locationseach, with
two such setsoverlapping bypZM locaions, onthe average (unlessx andx’ arevery
similar to each other). Thisis a consequenceof the hghdimension d the addres
space.

In the preaeding section onthe cerebellum we saw that the rerd-address matiix
A, asimplied bythe few inputs (3—5mossy fibers) to eat granule cell, isvery
sparse, and that the nunier d adive inpusrequired for agranule cdl to fire, can
be nodulated by the Golgi cells. This means tinatactivation of granulecdls in
the cerelellum resembles the activation d locationsin an intermediate design tha
is close to the hyperplane design.

Not only are the mossy-fiber connectionstoagranule cél few (3—5 ou of several
million), but aso the granule-cell conredions to a Purkinje cdl are few (hunded
thousand out of billions), so hat dso thecontents matrix C isvery sparse. This
aspect of the cerebllum has not been wdeled mahematcally.
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3.6.3. Hassoun’s Pseudorandom Associative Neural Memory

Independently of the dove developments, Hasoun (1988) has proposd amodé
with arandam, fixed address matrix A and variable contents matix C. Thismodel
allows usto extendthe concepts of this chapter to datawith short addresses (e.g.,N
= 4 bits), and itintroduces ideas abou storing the data (i.e., training) that can be
applied to associative memories atdrge.

The data addressesX andwords W in Hassoun's examples are binary vectorsin
Osand 1s. The dements of the hard-addess matrix A are small integers; they are
chasen at uniform randam from the symmetricinterval {-L,-L+1,-L+2, ...,L},
where L isasmall positiveinteger (e.g., L = 3). Each hard locaion hasitsown
adivation threshod D, which is chosen so that approximately half of al possible
N-bit addressesx activatethelocaion: y,,= 1if A,[X =D, andy,,,=0 atherwise.
The effect of such adressing throughA isto convert the matrixX of N-bit data
addressesinto the matrix Y of M-bit adivation vectors, whereM > N and where
ead activation vedor Y, isabou half Osand relf 1s(probability of adivationpis
around 05).

Geometric interpretation d addressingthroughA isasfoll ows. The space of hard
addressesis an N-dimensional hypercube with sides of length 2L + 1. The unit
cubes or cells of this gaceare patential hard locaions. TheM hard addresses A,
are chosenat uriformrandam from within this ace The space oflab addesss
isan N-cubewith sidesof length 2 it isat the center of the hard-addressspace with
thecdl 000...0at the very certer. The data aldressesthat adivate the bcation A,
are the ones closesb A, and they can be visualized asfollows: A straight line is
drawnfrom A, through 000...0Eadc setting d thethreshold D, then corresponds
to an N — 1-dimensional hyperplaneperpendicular to thisline, at some distance
from A, Thecdls x of the data-addressspace that ae on the A, side of the plane
will adivatelocdion A,,. Thethreshold D,,,ischosen so that the plane autsthe data-
addresses spac into two nealy equal parts.

Thehard addressesA |, correspond raturall y to pdnts (and subspaces) A, of the
data-address space{0, 1} gattenby replacing the negtive componets of A, by
Os, the positive componaets by1s, andthe Os by eiher (a “don't care”). The
absolute values of the componaeits of A ., then serve asweights, and hemth
locaionis adivated byx if the weighted distance between A}, andx isbelow a
threshold (cf. Kanerva 1988 pp. 46—49.

High probabiliy of activation (p = 0.5) works poarly with the outer-product
leaning rule. However, it is appropriate for an analytic solution to storage by the
Ho—-Kashyap recording algorithm (Hassounand Y oussef 1989. This algorithm
findsa mntentsmatrix C that solvesthelinear inequaliti esimplied byZ =W, where
W isthe matrix of data wordsto bestored, and = z(S) = z(Y C) isthe madrix of
wordsretrieved bythe rows of X. Theinequaliti esfollow from the definition d the
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threshdd functionz, asW; , = 1impliesthatS; , >0, and W, , = O impliesthat §
< 0. Hassounand Youssef have shown that this storage agorithm resultsin large
basins of attradion aroundthe data addresses, and that if datare stored
autoassociatively, false dtradors(i.e., spurious gable patternsandlimit cycles) will
berelatively few.

3.6.4. Adaptation to Continuous Variables by Prager and Fallside

All the models discussed ® far have had imary vectors asinputsand outputs
Prager and Fallside (1989 consider severa waysof extendingthe sparsedistributed
memory moded into rea-valued inpus. The following exgriment with spoken
Englishill ustratestheir approad.

Eleven vowels were spoken several times by different people. Each spoken
instance of avowel isrepresented by a 128dimensional vector of realsthat serves
asan address or cue. The correspondng cataword isan 11-bit 1abel. One of the bits
inalabel isal, andits pasition correspongto thevowel in question. Thisisa
standard setup for classficaion byartificial neural nets.

For processing ona computer, theinpu variablesarediscretized into 513integers
intherange 16,127—-16639 The mamory is constructed by choasing (2,000) hard
addresses at uniform randam from a 128-dimensional hypercube with sides of
length 32768 The cdls of this outer space ae aldressed naturally by 128-phce
integersto base 32,768(i.e., these aethevectorsA ), andthe data aldresses x then
occupy asmall hypercube at the center of the hard-address space; the dat-address
space is a 128-dimensional cube with sides of length. BkS3ivationis based on
distance. Address x activates the mth hard location ifthe maximu coordnate
separtion(i.e., L, distance) between x and A ,isat most 16,091 Abou ten percent
of the hard locaionswill be adivated. Experiments with conneced geech ded
similarly with 896dimensional real vectors. In other experiments with the same
data, the use of Euclidean distance and dher distance mesures in place of thel,,
distanceresultedin oy minor changesinthe outcome. See dso Clarke @ al. (1997
for afurther analysis of the model and an example of its use.

Prager and Fall sidetrain the contents matrix C iteratively by corredingerrors ©
asto solve the irequalities implied by Z = W (see the laisparagraph of Sec. 3.6.3).

Thisdesignis smilar to Hassoun'sdesign dscussed in Section 36.3, in that both
have alarge spaceof hard addressesthat includes, at the center, asmall spaceof data
addresses, and that the hard locations are placel at randam within the hard-address
space. The designs arein contrast with Albus CMAC (discussed in the next
section), where the placement of the hard locationsyistamatic.

3.7. Relation tothe Cerebellar Modelsof Marr and of Albus

Thefirst comprehensive mathematica models of the erebellum as aressociative
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memory are by Marr (1969 and byAlbus (1971), developed independently in their
doctoral dissertations, andthey still arethe most compl ete of any such models. They
were developed spedficdly as models of the cerebell ar cortex, whereas the sparse
distributed memory’s resemblanceto the cerelellum was noticed oy after the
model had been dvebped fully.

Marr’sand Albus's models attend to many of the detail s of the cerebellar circuit.
The models are based mostly onconredivity but also onthe nature of the synapses.
Albus (1989 has made a omparison of the two models. The nodels will be
described here insofar asto show their relation to e sparse distribued memory.

3.7.1. Marr’sModel of the Cerebdlum

The main circuit in Marr’s model—in Marr’s vocabulary andin our symbols—
consists of (N =) 7,000inpu fibersthat feed into (M =) 200,000 codoncdlsthat
feed into asinge output cdl. The inpu fibers activate codoncell s, and codon-cell
conredionswith the output cell store information. The @respondenceto the
ceebellum is straightforward: the inpu fibers model mossy fibers, the codoncells
model granule cdls, and theoutput c models a Purkinje cell.

Marr discusses at length he activation d codon cdl s by theinputfibers. Since
the input fibers represent mossy fibers and thgoacdl s represent granule cdl s,
eadt codoncell recavesinpu from 3-5fibersin Marr’smodel. The model assumes
discrete time intervals. During an interval an inpu fiber is either inadive (1) or
adive (+1), and at the end d theinterval a adoncdl i seither inactive (O) or adive
(+1) acordingto the activity of itsinpusduringtheinterval; the codoncdl output
isa linea threshald function of its inpus, with +1 weights.

Theoverall pattern of adivity of theN inpu fibersduringaninterval iscdled the
inpu pattern (an N-vedor of —1sand 1s), andtheresulting pettern of activity of the
M codoncells at the end d theinterval is cdled a donrepresentation d theinpu
pattern (an M-vedor of Os and 1s). Thes correspond regectiwdy, to the aldress
register X, and to the adivation vector y, of a sparse distributed memory.

Essential to the modd is that M is much larger than N, and that the number of 1s
in acodonrepresentation issmall compared toM, and relatively constant;
condtionsthat hold also for the sparse distributed memory. Then the codon
representation amplifies differences between input patterns. To make differencesin
N-bit patterns commensurate with dfferencesin M-bit patterns, Marr usesarelative
measure defined as the number of 1sthat two patterns have in common, divided by
the number of placeswhere ather pattern hasal (i.e., thesizeof theintersection d
1srelative to the size of their union).

Marr’s model’srelationto artificial neural networksis smple. Theinpu fibers
correspondto inpu units, the codoncdl s correspondto hidden units, andthe output
cdl correspondsto an output unt. Each hidden unit has only 3—5inputs, chasen &
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randam from the N input units, and the inpu coefficientsare fixed at +1. Obvioudly,
the net isfar from fully connected, but al hidden units are connected to the output
unit, and these conredions are modifiable. The hidden units are actiated by a
linea threshald function, and the threshold aries. However, it varies not asthe
result of training butdynamicdly so asto keep the number of active hidden units
within desired limits (500-5000). Therefore, to what first lookslike afeed-forward
net must be aldedfeedbadk connedionsthat adjus dynamicaly thethreshads of
the hidden units. The Golgi cdls ae assumel to provide tisfeelback.

In relating Marr’s model to the sparse distributed mamory, the mdoncells
correspondto hard locaions, and the hard-addressmatrix A isvery sparse, as eat
row hask,, 1s(ky=3, 4, 5), placed at randam, andN - k,, Os (there ae no—-1sin
A). A codoncell firesif most of its3—5inpusare adive, andthe Golgi cell s st the
firingthreshald so that 500—-5000codoncell s (out of the 200,000) are adive & any
one time, regardless of the number of active inpu lines. Thus, the activation
functiony,, for hard locaionA ,isathreshold functionwith value 1 (the codoncell
fires) when most—but not necessarily all—of thek,,, 1sof A ,, are matched by 1s
in the address x. The exactcondition of activaionin the examples devebped by
Marr isthat A, (X = R, where the threshold Ris between 1and 5and depeadson
X. Thus, the codorcdls are ativated n Marr smodel in away that resemblesthe
adivation d hard locationsin an intermediate design d sparse distributed memory
that is closeto the hygrplanedesign (in the hygerplane asign, all inpus must be
adivefor acdl tofire).

One of the condtions of the hyperplane designisfar from being satisfied—
namely, that the number of 1sin theaddessis aboutonstant (hernce the name
hyperplane design). In Marr’s model it is allowed b vary widdy (between 20 and
1,000 out of MO0, and ths creaestheneed for adjusting the treshold
dynamicdly. In the sparse distributed memory variations discussed so far, the
thresholdisfixed, but later inthis chapter we will refer to experimentsinwhich the
thresholds are adjusted either dynamically or by training with data.

Marr estimates the capadty of hismodelunder the nost conservative of
assumptions, namely, that (Osand) 1sare alded to ore-hit courtersthat areinitially
0. Under thisassumption, all courterseventually saturate andall i nformationislost,
as pointed outby Albus (1989.

3.7.2. Albus Cerebellar Model Arithmetic Computer (CMAC)

Thisdescription d CMAC isbased ontheonein Albus' bookBrains, Behavior, and
Robaics (1981 and wsesitssymbadls. The purpose hereisto describeit sufficiently
to alow its comparison to the sparse distributed memory.

CMAC isan associative memory with alarge number of addressable storage
locaions, just as the sparse distributed memory is, and the address aceis
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multidimensional. However, the number of dimensions, N, isusually small (e.g., N
= 14), while eat dimengon, rather than being binary, spans a dscree rangeof
values{0, 1, 2, ..., R—1}. Thedimensions are adso cdled inpu variables, and an
input variable mght represent ajoint angle of aroba arm (0—-180 derees)
discretized in five-degree increments (resolution R = 36), and a 14-dimensional
address might represent the anguar positions and \elocities of the jointsin a seven-
jointed robat arm. Different dimensions can havedifferent resolutions, but we
assume here, for simplicity, that all have the same resolutidrR.

An N-dimensional addressin this pace @an berepresented by an N-dimensional
unit cube, or cell, and the entire address spaceis then repesented byRN of these
cdls padked into an N-dimensional cube with sides of length R. The cdlsare
addressed naturally by N-placeintegersto baseR.

A storagelocationisactivated bysome addresses and nd by ahers. In the sparse
distributed memory, these excitingaddresses occupy an N-dimensional spherewith
Hamming radius H, centered at the location s address The eciting region d the
address spacein Albus CMAC isan N-dimensional cube with sides of length K (1
<K <R); itisacubicle of KN cdls (nea the edge of the spaceit is the intersedion
of such acubiclewith the aldressspace adthus containsfewer than KN cdls). The
center coordinates of the cubicle can be thougtt of asthe lacation' s address (the
center coordinates are integersif K is oddand half-way between two integersif K
is even, and the center can lie outside the RN cube).

The hard locations of a sparse distributed memory are placed randamly in the
address pace those of CMAC—the cubicles—are arranged gstematiclly as
follows: First, the RN cube is padked with the KN cubicles starting from the omer
cdl at theorigin—the celladdressed by (0, 0, 0, ...Q). This definesa set of
[R/KIN hard locaions (the ceiling o the fracion meansthat the spaceis covered
completely). The next set of (1+[ (R—1)/K )N hard locationsisdefined by
moving the entire package of cubiclesup by me cdl alongthe main dagoral of the
RN cube—a translation. To cover thaitire address space, cubicles are added ext
tothe existing ores at this gage. Thisisrepeated urtil K sets of hard locations have
been defined (K translations take the cubicles to the starting position), resulting in
atotal of at least K[ R/K [N hard locations. Since eab set of hard locations covers
the entire RN address space and sincethe locationsin aset do notoverlap, each
address activates exadly one location in eat set and ® it adivatesK locaions
overall. Conversely, eath location is activated bythe KN addressesin its defining
cubicle (by fewer if the cubicle spillsover the edge of the pace). The systematc
placement of the hard locations all ows addresses to be @nverted into activation
vedorsvery efficiently inahardwareredizaion a ina mmputer smulation (Albus
1980.

Corresponcence of the hard locaionsto the granule cells of the ceebdlum is
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natural in Albus' model. To makethe model life-like, eachinput variable (i.e., eat
coordinate of the address) isencoded iR + K — 1 hits. A bit in theencoding
represents a nossy fiber, so that a vector &f inpu variable (an address is
presented to CMAC as binary inpuson N(R + K — 1) mossy fibers. In the nodel,
eat granulecell receivesinpu from N mossy fibers, and ead mossy fiber provides
inpu to at least [ RZ/K'|N grandecdls.

The 20-bit codefor aninpu variables, withrange R=17andwithK =4isgiven
in Table 3.1. It corresponds to the encodng of the variadess; and s, in Figure 6.8
in Albus' book (1981 p. 149). The bits are labeled with |etters above the odein
Table 3.1, and the same letters appear below thede in four rows. Bit A, for
example, ison (+) when the input variable is at nost 3, bit B is on when the input
variablefalls between 4and 7, and ® forth.

(( TABLE 3.1. Encoding a 17-level Input Variable s, ... ))

This encoding mimics nature. Many receptor neurons respondmaximally to a
specific value of an inpu variable and b valuesnea it. An addess bit (a mossy
fiber) represents such arecepor, andit is (+)1 when theinpu varialde is near this
specific value. For example, this“central” valuefor bit Bis5.5.

The four rows of labels below the coae in Table 3.1 correspondto the four sets
of cubicles (K = 4) that definethe hard locations (the granule cdls) & CMAC. The
first set depends only onthe input bits labeled by the first row. If the code for an
inpu variables s, has Q, first-row bits (Q, = 5in Table 3.1), then the NQ, first-row
bits of the N inpu variables define QlN hard locationsby assigning a locationto
ead set of N inputsthat combines one first-row bit from ead inpu variable. The
second set of QZN hard locéions sdefined similarly by the NQ, second-row hits,
and so forth with the rest.

We aenow ready to describe Albus CMAC designasaspecial case of Jaeckel’'s
hyperplane design. The N input variables s, are encoded and concatenated into an
N(R + K — 1)-bit address x, which will have NK 1s and
N(R-1 ) -1s. The address matiix A will have 5, QN rows, and ead row will
have N 1s, arranged acording to he desription in the precedng paragraph. The
rest of A will be Os (for “dont care”; there will be no—1sin A). The adivation
vedor y can then becomputed asin the hypeplane design: themth locaionis
adivated by x if the 1s of the hard addressA ,, are mached by 1s irx (i.e., iff A, O
X =N).

If thenumber of inpu variablesislarge enough(e.g., N > 20), the number of rows
inthe aldressmatrix A, asgiven abowve, will beso largethat buildingahard locaion
for eath addressin A isimpractical. To hande such cases, many addressesin A will
use asinge hard locaion. Thecontributionsinto alocaion's contentsfrom
disparate parts of the aldress spacewill then ad asnoise with resped to each ather.
The mapping of theaddressesin A to the hard locaions is pseudaandom andis
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effected by a hashing function. Multi ple assignment of memory locaionsin this
manner has been desribedalso byKohoren and Ruhkala (1978;Kohoren 1980)
in amethod called redundant hash addressng.

After aset of locations has been activated, CMAC isrealy to transfer data. Here,
aswith the sparse distributed memory, we can bok ata singe coordinate of adata
words only, say, the uth coordinate. Since CMAC data are continuows or graded
rather than binary, the storage andretrieval rules cannotbe identical o thos ofa
gparse distributed memory, but they aresimilar. Retrieval issmpler: weusethe sum
S, asoutput and we omit the final thresholding. From the regudarity of CMAC it
follows that the sum isover K adive locations.

From thisis derived a storage (learning) rulefor CMAC: Before storing the
desired ouput value p,, at x, retrieves, usingx asthe aldressandcomputethe eror
sy~ P, - If theerror isacceptable, do nahing. If the aror istoolarge, correct thekK
adive ourters (elements of the matrix C) by addingg(p,, — s,)/K to each, whereg
(0O<gs<1l)isaganfador that affectstherate of learning. This storageruleimplies
that the courters in C court at intervals nogreater than oneKth of the maximum
allowable error (thecouninginterval in the basic garse distributedmemory is1).

In summary, multidimensional input to CMAC can be encoded into along bnary
vedor that serves as an address to a hyperplane-design sparse distributed memory.
The address hitsand he rard-address demders correspond vey natudlly to the
mossy fibersandthegranule cdl sof the ceebell um, respectively, andthe adivation
of ahard location corresponds to the firing of agranule cdl. The syngsesof the
parall e fiberswith the Purkinje cdls are the storage sites suggested by the model,
and the value of an outputvariable is represented by the firing frequency of a
Purkinje cdl. Trainingof CMAC isby errar-corredion, which presumably isthe
function of the climbing fibersin the ceebellum.

3.8. SDM Research

So far in this chapter we have assumed hat the had addes®s and the data are a
uniform randam sample of their respedive spaces (the distribution of the tard
locaionsin CMAC isuniform systematic). This has all owed usto establish a base
line: we have estimated signal, noise, fidelity, and memory capaadty, and we have
suggested reasonable values for various memory parametrs. However, dat from
real processestendto ocair in clusters, and large regionsof the addressspace &ae
empty. When such data aestored in auniformly distributed memory, large numbers
of locations are never adivated and hence are wasted, and many of the ative
locaions are activated repeagdly so hat they, too, are nostly wasted as their
contents turn into noise.

There ae many waysto courter thistendency of datato cluster. Let uslookat the
clustering d data addressesfirst. Several studies have used the memory efficiently
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by distributing the hard addresses A acarding to the distribution of the data
addresses X. Keder (1988 observed that when the two distributions ae the same
andthe adivationradiusH isadjusted for each storage and retrieval opemtion so
that nealy optimal number of locationsare adivated, the statistical propertiesof the
memory are close  those of the basic memory withitormly randam hard
addresses. In agreement with that, Joglekar (1989 experimented with NETtalk data
and got his best results byusng asubset of the data addres®sashard addesss
(NETtalk transcribes English text into phoremes; Sejnowski and Rosenberg 1986.
In aseries of experiments by Danforth (1990, recogrition of spoken djits,
encoded in 240 lits, improved dramaticdly when urniformly randam hard addresses
were replaced by addresses that represented spoken words, but the selected-
coordinate design with threecoordinates performed thebest. In yet ancther
experiment, Saarinen et al. (19910 improved memory utilization by distributing
the hard addresses with Kohoren's self-organizing algorithm.

Two studies have shown that uniform randam hard addresses can beused with
clustered data T the rule for adivating locations is adjusted appropriately. In
Kanerva (1991), storage and retrieval require wo steps: thefirst to determinea
vedor of N positive weightsfor eachdata address X, and the secondto activate
locaions ac®rding to aweighted Hamming distance letweenX, and the hard
addresses A. In Pohjaand Kaski (1992, eachhard location has its own radius of
adivationH,, whichischaosen based onthe data aldresses X so that the probabili ty
of adivating alocaionisnearly optimd.

Itis equally importantto deal with clustering in the stored words For exanple,
someof their bitsmay be mostly on, some may be mostly off, and somemay depend
on ohers. It ispossible to amlyzethe daha (X, Z) and the hard addresses A and to
determine optimal storage and retrieval algorithms (Danforth 1991), but we an
also useiterativetraining byerror corredion, asdescribed abovefor Albus CMAC.
Thiswas dore by Joglekar and byDanforth in their above-mentioned experiments.
When error corredionis used, it compensates for the clustering of addressesas
well, but it also introduces the possbility of overfittingthe model to thetraining set.

Two studies by Rogers (198%, 199() deal specifically with the interactions of
the data with the hard addresses A. In the first of these he concludes that, in
computing the sum vector s, the adive locaionsshoud be weighted according to
the words stored in hem—in faa, eachactive courter Cp,, ,, might be weighted
individually. Thiswould take into account at oncedinumber of words stored in a
hard locationandthe uniformity of thasewords, so asto gverelatively littleweight
to locdions or cournters that record mostly noise. In the £oondstudy he uses a
genetic algarithm to arrive at aset of hard addressestha would store the most
information abou avariable in weather data.

Other research issuesinclude the storageof sequenes (Manevitz 1991) and he
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hierarchical storage of data (Manevitz and Zemach 1997)

Most studies of sparse distributed memory haveused binary dataand rave dedt
with multivalued variables by encodinghiem according to an apppriate bnary
code. Table 3.1 isan example of such acode. Important abou the codeisthat the
Hamming distancebetween odewords correspondsto thedifferencebetween he
values being encoded (it grows with the difference until amaximum of 2k is
reached, after which the Hamming distarnce stays at the maximum). Jorgensen
(1990 propasesthe Radial Basis Sparse Distributed Memory that uses ideas from
radial-basis functions and probdilistic neural networksto ded with continuous
variables; the paper also introduces the Infolding Net for working with
norstationary data. The use of continuous variables by Prager and Fall side has been
discussed in Sedion 3.64.

Sparse distributed memory has be@& simuated on many omputers (Rogers
1990b), including the highly parallel Conredion Machine (Rogers 1989 and
special-purpose neural-network computers (Nordstrom 1991). Hardware
implementations have used standard logic circuitsand manory chps (Flynnet 4.
1987 and programmable gate arays (Saarinenet a. 1991a). A systolic-array
implementation of sparse distributed memory and a esigor circuit for computing
the Hamming distances have keen described by Keder and Cenning (1986)

3.9. Asciative Memory as a @mponent of a System

In practicd systams, an associative memory playsbut a part. It can storeand recall
large numbers of large patterns (high-dimensional vectors) based on oher large
patterns that serve as memory cues, andit can store andrecdl long sequences of
such paterns, doingit all in the presence of noise. In addition to generating ouput
patterns, the memory providesan estimate of their reli abilit y based onthe datait has
stored. But that is all; the memory assigns no meaing to the data beyondthe
reliability estimate. The meaningisdetermined by dher parts of the system, which
are also resporsible for processing datainto forms that are appropriate for an
associative memory. Sometimes these other tasks dredgareprocessing and
postprocessing, but the ermsare mideading inasmuchas they imply hat
preprocessng and postprocessing ae ninor peripheral functions. They are magor
functions—at least in the nervous g/stems of animalsthey are—andfeedback from
memory isintegral to thes “peripheral functions.

For an example of what asensory processor must doin producing petternsfor an
associative memory, consider identifying ¢écts by sight, and assume that the
memory istrained to respondwith the name of an object, in some suitable code
when presented with an oljed (i.e., when addressed bythe encodingfor theobjea).
In what feaures shoud objeds beencoded? To make efficient use of the memory,
all views of an objed—past, present, and fuure—shoudl getthe same encodng,
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and any two different objeds should get differentencodings. The name, as an
encoding, satisfiesthis condtionandso it isan ded encodng, except that it is
arbitrary. What we ask of thevisual system sto produce a encoding that reflects
physicd reality andthat can serve & an inpu to an associative memory, which then
outputs the name.

For thisfinal naming step to be successful—even with views asyet unseen—
different viewsof an ojed shoud produce encodingsthat are simil ar to ead ather
asmeasured by something like the Hamming dstance, but that are dissmil ar to the
encodings of other objeds. A raw retinal image (apixel map) isapoa encoding,
becaisetheretinal cell sexcited byan oljed vary drasticdly with viewing distance
and with gazerelative © the objed. It is sSmple for usto fix the gaze—to look
directly at the objed—»buit it isimpractica to bring objects toa standard viewing
distance in order to recognize hem. Therefore, the visua system needsto
compensatefor changesin viewing dstance by encoding—byexpressingimagesin
featuresthat arerelatively insensitiveto viewing dstance Orientation d linesinthe
retinal image satisfy thisconditi on, makingthem goodfeaturesfor vision. Thismay
explainthe dundanceof orientation-sensitive neuronsinthevisual cortex, andwhy
the human visual system is much more sengtive to rotation than to scde (we are
poar at recognizing ohedsin new orientations; we must resort to mental rotation).
Encoding shapesin longvectors of bits for an asciative memory, where a bit
encodes orientation at a location, has beerestribed by Kanerva (1990.

What abou the daim that” peripheral” processing, particularly sensory
processing, isamajor adivity in the brain? Large aeas of thebrain are specific to
one sensory modality or anoter.

In robats that learn, anassociative memory storesaworld model that elates
sensory inpu to adion. The flow of eventsintheworld is presented to the memory
as asequence of large patterns. These patterns encode sensor data, internal-state
variables, and commandsto the acuators. The memory’s ability to store these
sequences andto recall them under condtionsthat resemble the past, allowsitsuse
for predicting and planning. Albus (1981,1991) argues that intdligent behavor of
animals and robas in complex environments requires not just one associative
memory but a large hierarchy of them, with the sensars and the actugors atthe
bottom of the hierarchy.

3.10. Summary

In this chapter we have explored a nurber of related designsfor an asociative
memory. Common to them isa feed-forward architedure throughtwo layers of
inpu coefficients or weights represented bythe mdrices A andC. Thematrix A is
constant, and the matrix C isvariable. The M rows of A are interpreted as the
addresses of M hard locations, and heM rows of C are interpreted as the contents
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of thoselocations. Therowsof A arearandam sample of the hard-address acein
al but the Albus CMAC moddl, in which the sample is systematic.When te
sampleisrandam, it shoud allow for the distribution of the daa.

Thematrix A andthethreshad functiony transform N-dimensional inpu vectors
into M-dimensional activation vedorsof Osand 1s. SinceM is much larger than N,
the effed isatremendous increase over the inpu dimension and a correspondng
increase in the separation of paternsand in menory capaty. Thissmplifiesthe
storage of words by matrix C. The training of C can be by theouter-product
leaning rule, by error correction (deltarule), by an analytic solution of a st of
linea inequaliti es, or by a cmbination d the abowve. Training, by andlarge, isfast.
These memoriesrequire much hardware per stored pattern, but theresolution d the
comporents can be low.

Thehighfan-out and subsequent fan-in (divergence and convergence) implied by
these designs are found aso in many neural drcuitsin thebrain. The
corresponaenceismost strikingin the aortex of the cerebellum, suggesting that the
cerebellum could function as an associative memory with hillionsof hard locations,
eat one @padle of storing several-hunded-bit words.

The properties of these asociative memoriesimply that if such memory devices,
indeed, play an important part in thebrain, thebrain must dso nclude deicesthat
are dedicaed to the sensory systems and that transform sensoy signals into forms
appropriate for an associative memory.

Pattern Computing. The nervous g/stem offers usanew model of computing, to
be mntrasted with traditional numeric computing and symbolic computing. It deds
with large patterns as computational units and therefore it might be alledpattern
computing. The man untsin numeric computing are numbers, say, 32-bit integers
or 64-hit floating-point numbers, and we think of them as datg in symbolic
computing they are pointers of fewer than 32bits, and we can think of them as
names (very compad, “ideal” encodngs;seediscussion onsensory encoding in
Sec 3.9). In contrast, the unitsin pattern computing have hundeds or thousands of
bits, they serve bath as painters and as data, and they neal nat be precise. Nature
has found away to compute with such units, and we are baely beginning to
understand how it isdore. It appeasthat much of the paver of pattem computing
derivesfrom the ge@méry of very-high-dimensonal spaces and from the

parall elism in computing hat it all ows.
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Table 3.1
Encodinga17-level Inpu Variable s, in 20 Bits K = 4)

Input bit

FMSAGNTBHPVCIJQWDKRXE

0 ++4++-cccooeea e
1 -4 ++--ccmomee e
7
3 ettt
Y/ R Tk S
5 ----- SRR T S
6 ------ TR S
7 e EREE o
8 -------- SRR o ST
o [ +++ oo
10 ---------- +++ 4o
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jC J ++++---
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