
KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 1

In M.H. Hassoun, ed., Associative Neural Memories: Theory and Implementation,
pp. 50–76. New York: Oxford University Press, 1993.

Copyright © 1993 and 2002 by Pentti Kanerva <pkaner va@rn i . or g>

Chapter 3

Sparse Distr ibuted Memory and Related Models

Pentti Kanerva

3.1. Introduction

This chapter describes one basic model of associative memory, called the sparse
distributed memory, and relates it to other models and circuits: to ordinary computer
memory, to correlation-matrix memories, to feed-forward artificial neural nets, to
neural circuits in the brain, and to associative-memory models of the cerebellum.
Presenting the various designs within one framework will hopefully help the reader
see the similarities and the differences in designs that are often described in
different ways.

3.1.1. Sparse Distr ibuted Memory as a Model of Human Long-Term Memory

Sparse Distributed Memory (SDM) was developed as a mathematical model of
human long-term memory (Kanerva 1988). The pursuit of a simple idea led to the
discovery of the model, namely, that the distances between concepts in our minds
correspond to the distances between points of a high-dimensional space. In what
follows, ‘high-dimensional’ means that the number of dimensions is at least in the
hundreds, although smaller numbers of dimensions are often found in examples.

If a concept, or a percept, or a moment of experience, or a piece of information
in memory—a point of interest—is represented by a high-dimensional (or “ long”)
vector, the representation need not be exact. This follows from the distribution of
points of a high-dimensional space: Any point of the space that might be a point of
interest is relatively far from most of the space and from other points of interest.
Therefore, a point of interest can be represented with considerable slop before it is
confused with other points of interest. In this sense, long vectors are fault-tolerant
or robust, and a device based on them can take advantage of the robustness.

This corresponds beautifully to how humans and animals with advanced sensory
systems and brains work. The signals received by us at two different times are
hardly ever identical, and yet we can identify the source of the signal as a specific

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 2

individual, object, place, scene, thing. The representations used by the brain must
allow for such identification, in fact, they must make the identification nearly
automatic, and high-dimensional vectors as internal representations of things do
that.

Another property of high-dimensional spaces also has to do with the distances
between points. If we take two points (of interest) at random, they are relatively far
from each other, on the average: they are uncorrelated. However, there are many
points between the two that are close to both, in the sense that the amount of space
around an intermediate point—in a hypersphere—that contains both of the two
original points is very small . This corresponds to the relative ease with which we
can find a concept that links two unrelated concepts.

Strictly speaking, a mathematical space need not be a high-dimensional vector
space to have the desired properties; it needs to be a huge space, with an appropriate
similarity measure for pairs of points, but the measure need not define a metric on
the space.

The important properties of high-dimensional spaces are evident even with the
simplest of such spaces—that is, when the dimensions are binary. Therefore, the
sparse distributed memory model was developed using long (i.e., high-
dimensional) binary vectors or words. The memory is addressed by such words, and
such words are stored and retrieved as data.

The following two examples demonstrate the memory’s robustness in dealing
with approximate data. The memory works with 256-bit words: it is addressed by
them, and it stores and retrieves them. On top of Figure 3.1 are nine similar (20%
noisy) 256-bit words. To help us compare long words, their 256 bits are laid on a
16-by-16 grid, with 1s shown in black. The noise-free prototype word was designed
in the shape of a circle within the grid. (This example is confusing in that it might
be taken to imply that humans recognize circles based on stored retinal images of
circles. No such claim is intended.) The nine noisy words were stored in a sparse
distributed memory autoassociatively, meaning that each word was stored with
itself as the address. When a tenth noisy word (bottom left), different from the nine,
was used as the address, a relatively noise-free 11th word was retrieved (bottom
middle), and with that as the address, a nearly noise-free 12th word was retrieved
(bottom right), which in turn retrieved itself. This example demonstrates the
memory’s tendency to construct a prototype from noisy data.

 ((FIGURE 3.1. Nine noisy words are stored …))

Figure 3.2 demonstrates sequence storage and recall. Six words, shaped as
Roman numerals, are stored in a linked list: I is used as the address to store II, II is
used as the address to store III , and so forth. Any of the words I–V can then be used
to recall the rest of the sequence. For example, III will retrieve IV will retrieve V
will retrieve VI. The retrieval cue for the sequence can be noisy, as demonstrated at

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 3

the bottom of the figure. As the retrieval progresses, a retrieved word, which then
serves as the next address, is less and less noisy. This example resembles human
abilit y to find a familiar tune by hearing a piece of it in the middle, and to recall the
rest. This kind of recall applies to a multitude of human and animal skills.

 ((FIGURE 3.2. Recalling a stored sequence …))

3.2. SDM as a Random-Access Memory

Except for the lengths of the address and data words, the memory resembles
ordinary computer memory. It is a generalized random-access memory for long
words, as will be seen shortly, and its construction and operation can be explained
in terms of an ordinary random-access memory. We will start by describing an
ordinary random-access memory.

3.2.1. Random-Access Memory

A random-access memory (RAM) is an array of M addressable storage registers or
memory locations of fixed capacity. A location’s place in the memory array is called
the location’s address, and the value stored in the register is called the location’s
contents. Figure 3.3 represents such a memory, and a horizontal row through the
figure represents one memory location. The active location is shown shaded. The
addresses of the locations are on the left, in matrix A, and the contents are on the
right, in matrix C.

 ((FIGURE 3.3. Organization of a random-access memory.))

A memory with a mil lion locations (M = 220) is addressed by 20-bit words. The
length of the address will be denoted by N (N = 20 in Fig. 3.3). The capacity of a
location is referred to as the memory’s word size, U (U = 32 bits in Fig. 3.3), and
the capacity of the entire memory is defined conventionally as the word size
multiplied by the number of memory locations (i.e., M × U bits).

Storage and retrieval happen one word at a time through three special registers:
the address register, for an N-bit address into the memory array; the word-in
register, for a U-bit word that is to be stored in memory; and the word-out register,
for a U-bit word retrieved from memory. To store the word w in location x (the
location’s address x is used as a name for the location), x is placed in the address
register, w is placed in the word-in register, and a write-into-memory command is
issued. Consequently, w replaces the old contents of location x, while all other
locations remain unchanged. To retrieve the word w that was last stored in location
x, x is placed in the address register and a read-from-memory command is issued.
The result w appears in the word-out register. The figure shows (a possible) state of
the memory after w = 010…110 has been stored in location x = 000…011 (the
word-in register holds w) and then retrieved from the same location (the address

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 4

register holds x).
Between matrices A and C in the figure is an activation vector, y. Its components

are 0s except for one 1, which indicates the memory location that is selected for
reading or writing (i.e., the location’s address matches the address register). In a
hardware realization of a random-access memory, a location’s activation is
determined by an address-decoder circuit, so that the address matrix A is implicit.
However, the contents matrix C is an explicit array of 220 × 32 one-bit registers or
flip-flops.

3.2.2. Sparse Distr ibuted Memory

Figure 3.4 represents a sparse distributed memory. From the outside, it is like a
random-access memory: it has the same three special registers—address, word-in,
and word-out—and they are used in the same way when words are stored and
retrieved, except that these registers are large (e.g., N = U = 1,000).

 ((FIGURE 3.4. Organization of a sparse distributed memory.))

Construction. The internal organization of sparse distributed memory, likewise, is
an array of addressable storage locations of fixed capacity. However, since the
addresses are long, it is impossible to build a hardware location—a hard location,
for short—for each of the 2N addresses. (Neither is it necessary, considering the
enormous capacity that such a memory would have.)

A memory of reasonable size and capacity can be built by taking a reasonably
large sample of the 2N addresses and by building a hard location for each address
in the sample. Let M be the size of the sample: we want a memory with M locations
(M = 1,000,000 in Fig. 3.4). The sample can be chosen in many ways, and only
some will be considered here.

A good choice of addresses for the hard locations depends on the data to be stored
in the memory. The data consist of the words to be stored and of the addresses used
in storing them. For simplicity, we assume in the basic model that the data are
distributed randomly and uniformly (i.e., bits are independent of each other, and 0s
and 1s are equally likely, both in the words being stored and in the addresses used
for storing them). Then the M hard locations can be picked at random; that is to say,
we can take a uniform random sample, of size M, of all N-bit addresses. Such a
choice of locations is shown in Figure 3.4, where the addresses of the locations are
given in matrix A and the contents are given in matrix C, and where a row through
the figure represents a hard location, just as in Figure 3.3 (row Am of matrix A is
the mth hard address, and Cm is the contents of location Am; as with RAM, we use
Am to name the mth location).

Activation. In a random-access memory, to store or retrieve a word with x as the
address, x is placed in the (20-bit) address register, which activates location x. We

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 5

say that the address register points to location x, and that whatever location the
address register points to is activated. This does not work with a sparse distributed
memory because its (1,000-bit) address register never—practically never—points
to a hard location because the hard locations are so few compared to the number of
possible addresses (e.g., 1,000,000 hard addresses vs. 21,000 possible addresses;
matrix A is an exceedingly sparse sampling of the address space).

To compensate for the extreme sparseness of the memory, a set of nearby
locations is activated at once, for example, all the locations that are within a certain
distance from x. Since the addresses are binary, we can use Hamming distance,
which is the number of places at which two binary vectors differ. Thus, in a sparse
distributed memory, the mth location is activated by x (which is in the address
register) if the Hamming distance between x and the location’s address Am is below
or equal to a threshold value H (H stands for a [Hamming] radius of activation). The
threshold is chosen so that but a small fraction of the hard locations are activated by
any given x. When the hard addresses A are a uniform random sample of the N-
dimensional address space, the binomial distribution with parameters N and 1/2 can
be used to find the activation radius H that corresponds to a given probability p of
activating a location. Notice that, in a random-access memory, a location is
activated only if its address matches x, meaning that H = 0.

Vectors d and y in Figure 3.4 show the activation of locations by address x. The
distance vector d gives the Hamming distances from the address register to each of
the hard locations, and the 1s of the activation vector y mark the locations that are
close enough to x to be activated by it: ym = 1 if dm ≤ H, and ym = 0 otherwise, where
dm = h(x, Am) is the Hamming distance from x to location Am. The number of 1s in
y therefore equals the size of the set activated by x.

Figure 3.5 is another way of representing the activation of locations. The large
circle represents the space of 2N addresses. Each tiny square is a hard location, and
its position within the large circle represents the location’s addresses. The small
circle around x includes the locations that are within H bits of x and that therefore
are activated by x.

((FIGURE 3.5. Address space, hard locations, and the set …))

Storage. To store U-bit words, a hard location has U up–down counters. The range
of a counter can be small, for example, the integers from −15 to 15. The U counters
for each of the M hard locations constitute the M × U contents matrix, C, shown on
the right in Figure 3.4, and they correspond to the M × U flip-flops of Figure 3.3.
We will assume that all counters are initially set to zero.

When x is used as the storage address for the word w, w is stored in each of the
locations activated by x. Thus, multiple copies of w are stored; in other words, w is
distributed over a (small) number of locations. The word w is stored in, or written
into, an active location as follows: Each 1-bit of w increments, and each 0-bit of w

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 6

decrements, the corresponding counter of the location. This is equivalent to saying
that the word w′ of −1s and 1s is added (vector addition) to the contents of each
active location, where w′ is gotten from w by replacing 0s with −1s. Furthermore,
the counters in C are not incremented or decremented past their limits (i.e.,
overflow and underflow are lost).

Figure 3.4 depicts the memory after the word w = 010…110 (in the word-in
register) has been stored with x = 100…101 as the address (in the address register).
Several locations are shown as selected, and the vector w´ =
(−1, 1, −1, …, 1, 1, 1) has been added to their contents. The figure also shows that
many locations have been selected for writing in the past (e.g., the first location has
nonzero counters), that the last location appears never to have been selected, and
that w appears to be the first word written into the selected location near the bottom
of the memory (the location contains w′). Notice that a positive value of a counter,
+5, say, tells that five more 1s than 0s have been stored in it; similarly, −5 tells that
five more 0s than 1s have been stored (provided that the capacity of the counter has
never been exceeded).

Retr ieval. When x is used as the retrieval address, the locations activated by x are
pooled as follows: their contents are accumulated (vector addition) into a vector of
U sums, s, and the sums are compared to a threshold value 0 to get an output vector
z, which then appears in the word-out register (zu = 1 iff su > 0; s and z are below
matrix C in Fig. 3.4). This pooling constitutes a majority rule, in the sense that the
uth output bit is 1 if, and only if, more 1s than 0s have been stored in the uth counters
of the activated locations; otherwise, the output bit is 0.

In Figure 3.4 the word retrieved, z, is the same as, or very similar to, the word w
that was stored, for the following reason: The same x is used as both storage and
retrieval address, so that the same set of locations is activated both times. In storing,
each active location receives one copy of w´, as described above; in retrieving, we
get back all of them, plus a few copies of many other words that have been stored.
This biases the sums, s, in the direction of w´, so that w is a li kely result after
thresholding. This principle holds even when the retrieval address is not exactly x
but is close to it. Then we get back most of the copies of w´.

The ideas of storing multiple copies of target words in memory, and of retrieving
the most likely target word based on the majority rule, are found already in the
redundant hash addressing method of Kohonen and Reuhkala (1978; Kohonen
1980). The method of realizing these ideas in redundant hash addressing is very
different from their realization in a sparse distributed memory.

Retrieval and memory capacity will be analyzed statistically at the end of the next
section, after a uniform set of symbols and conventions for the remainder of this
chapter has been established. We will note here, however, that the intersections of
activation sets play a key role in the analysis, for they appear as weights for the

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 7

words stored in the memory when the sum vector s is evaluated.

Random-Access Memory as a Special Case .One more comment about a
random-access memory: Proper choice of parameters for a sparse distributed
memory yields an ordinary random-access memory. First, the address matrix A
must contain all 2N addresses; second, the activation radius H must be zero; and,
third, the capacity of each counter in C must be one bit. The first condition
guarantees that every possible address x points to at least one hard location. The
second condition guarantees that only a location that is pointed to is activated. The
third condition guarantees that when a word is written into a location, it replaces the
location’s old contents, because overflow and underflow are lost. In memory
retrieval, the contents of all active locations are added together; in this case, the sum
is over one or more locations with hard address x. Any particular coordinate of the
sum is zero if the word last written (with address x) has a 0 in that position; and it
is positive if the word has a 1, so that after thresholding we get the word last written
with address x. Therefore, the sparse distributed memory is a generalization of the
random-access memory.

Parallel Realization. Storing a word, or retrieving a word, in a sparse distributed
memory involves massive computation. The contents of the address register are
compared to each hard address, to determine which locations to activate. For the
model memory with a million l ocations, this means computing one-million
Hamming distances involving 1,000 bits each, and comparing the distances to a
threshold. This is very time-consuming if done serially. However, the activations of
the hard locations are independent of each other so that they can be computed in
parallel; once the address is broadcast to all the locations, milli on-fold parallelism
is possible. The addressing computation that determines the set of active locations
corresponds to address decoding by the address-decoder circuit in a random-access
memory.

In storing a word, each column of counters in matrix C (see Fig. 3.4) can be
updated independently of all other columns, so that there is an opportunity for
thousand-fold parallelism when 1,000-bit words are stored. Similarly, in retrieving
a 1,000-bit word, there is an opportunity for thousand-fold parallelism. Further
parallelism is achieved by updating many locations at once when a word is stored,
and by accumulating many partial sums at once when a word is retrieved. It appears
that neural circuits in the brain are wired for these kinds of parallelism.

3.3. SDM as a Matr ix Memory

The construction of the memory was described above in terms of vectors and
matrices. We will now see that its operation is described naturally in vector–matrix
notation. Such description is convenient in relating the sparse distributed memory

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 8

to the correlation-matrix memories described by Anderson (1968) and Kohonen
(1972)—see also Hopfield (1982), Kohonen (1984), Willshaw (1981), and Chapter
1 by Hassoun—and in relating it to many other kinds of artific ial neural networks.
The notation will also be used for describing variations and generalizations of the
basic sparse distributed memory model.

3.3.1. Notation

In comparing the memory to a random-access memory, it is convenient to express
binary addresses and words in 0s and 1s. In comparing it to a matrix memory,
however, it is more convenient to express them in −1s and 1s (also called bipolar
representation). This transformation is already implicit in the storage algorithm
described above: a binary word w of 0s and 1s is stored by adding the corresponding
word w′ of −1s and 1s into (the contents of) the active locations. From here on, we
assume that the binary components of A and x (and of w and z) are −1s and 1s, and
whether bit refers to 0 and 1 or to −1 and 1 will depend on the context.

How is the activation of a location determined after this transformation? In the
same way as before, provided that Hamming distance is defined as the number of
places at which two vectors differ. However, we can also use the inner product
(scalar product, dot product) of the hard address Am and the address register x to
measure their similarity: d = d(Am, x) = Am ⋅ x. It ranges from −N to N (d = N means
that the two addresses are most similar—they are identical), and it relates linearly
to the Hamming distance, which ranges from 0 to N (0 means identical). Therefore,
Hamming distance h(Am, x) ≤ H if, and only if, Am ⋅ x ≥ N − 2H (= D). In a
computer simulation of the memory, however, the exclusive-or (XOR) operation on
addresses of 0s and 1s usually results in the most efficient computation of distances
and of the activation vector y.

The following typographic conventions will be used:

s italic lowercase for a scalar or a function name.
S italic uppercase for a scalar upper bound or a threshold.
v bold lowercase for a (column) vector.
vi ith component of a vector, a scalar.
M bold uppercase for a matrix.
M i ith row of a matrix, a (column) vector.
M ⋅,j jth column of a matrix, a (column) vector.
Mi ,j scalar component of a matrix.

MT transpose of a matrix (or of a vector).
⋅ scalar (inner) product of two vectors: u ⋅ v = uTv.
 matrix (outer) product of two vectors: u v = uvT.

n = 1, 2, 3, …, N index into the bits of an address.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 9

u = 1, 2, 3, …, U index into the bits of a word.
t = 1, 2, 3, …, T index into the data.
m = 1, 2, 3, …, M index into the hard locations.

3.3.2. Memory Parameters

The sparse distributed memory, as a matrix memory, is described below in terms of
its parameters, progressing with the information flow from upper left to lower right
in Figure 3.4. Sample memory refers to a memory whose parameter values appear
in parentheses in the descriptions below, as in “(e.g., N = 1,000)” .

The external dimensions of the memory are given by:

N Address length; dimension of the address space; input dimension (e.g.,
N = 1,000). Small demonstrations can be made with N as small as 25, but N
> 100 is recommended, as the properties of high-dimensional spaces wil l then
be evident.

U Word length; the number of bits (−1s and 1s) in the words stored; output
dimension (e.g., U = 1,000). The minimum, U = 1, corresponds to classifying
the data into two classes. If U = N, it is possible to store words
autoassociatively and to store sequences of words as pointer chains, as
demonstrated in Figures 3.1 and 3.2.

The data set to be stored—the training set (X, W)—is given by:

T Training-set size; number of elements in the data set (e.g., T = 10,000).
X Data-address matrix; T training addresses; T × N −1s and 1s (e.g., uniform

random).
W Data-word matrix; T training words; T × U −1s and 1s (e.g., uniform

random). Autoassociative data (self-addressing) means that X = W, and
sequence data means that Xt = Wt − 1 (t > 1).

The memory’s internal parameters are:

M Memory size; number of hard locations (e.g., M = 1,000,000). Memory needs
to be sufficient for the data being stored and for the amount of noise to be
tolerated in retrieval. Memory capacity is low, so that T should be 1–5 percent
of M (T is the number of stored patterns; storing many noisy versions of the
same pattern [cf. Fig. 3.1] counts as storing one pattern, or as storing few).

A Hard-address matrix; M hard addresses; M × N −1s and 1s (e.g., uniform
random). This matrix is fixed. Efficient use of memory requires that A
correspond to the set of data addresses X (see Sec. 3.8 on SDM research).

p Probabilit y of activation (e.g., p = 0.000445; “ ideally,” p = 0.000368). This
important parameter determines the number of hard locations that are

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 10

activated, on the average, by an address, which, in turn, determines how well
stored words are retrieved. The best p maximizes the signal (due to the target
word that is being retrieved) relative to the noise (due to all other stored
words) in the sum, s, and is approximately (2MT)−1/3 (see end of this section,
where signal, noise, and memory capacity are discussed).

H Radius of activation (e.g., H = 447 bits). The binomial distribution or its
normal approximation can be used to find the (Hamming) radius for a given
probability. For the sample memory, optimal p is 0.000368, so that about 368
locations should be activated at a time. Radius H = 446 captures 354
locations, and H = 447 captures 445 locations, on the average. We choose the
latter.

D Activation threshold on similarity (e.g., D = 106). This threshold is related to
the radius of activation by D = N − 2H, so that D = 108 and D = 106
correspond to the two values of H given above.

c Range of a counter in the M × U contents matrix C (e.g., c = { −15, −14,
−13, …, 14, 15}). If the range is one bit (c = {0, 1}), the contents of a location
are determined wholly by the most-recent word written into the location. An
8-bit byte, an integer variable, and a floating-point variable are convenient
counters in computer simulations of the memory.

The following variables describe the memory’s state and operation:

x Storage or retrieval address; contents of the address register; N −1s and 1s
(e.g., x = Xt).

d Similarity vector; M integers in {−N, −N + 2, −N + 4, …, N − 2, N} . Since the
similarity between the mth hard address and the address register is given by
their inner product Am ⋅ x (see Sec. 3.3.1 on Notation), the similarity vector
can be expressed as d = Ax.

y Activation vector; M 0s and 1s. The similarity vector d is converted into the
activation vector y by the (nonlinear) threshold function y defined by y(d) =
y, where ym = 1 if dm ≥ D, and ym = 0 otherwise. The number of 1s in y, ,
is small compared to the number of 0s (≈ pM); the activation vector is a
very sparse vector in a very-high-dimensional space. Notice that this is the
only vector of 0s and 1s; all other binary vectors consist of −1s and 1s.

w Input word; U −1s and 1s (e.g., w = Wt).
C Contents matrix; U × M up–down counters with range c, initial value usually

assumed to be 0. Since the word w is stored in active location Am (i.e., when
ym = 1) by adding w into the location’s contents Cm, it is stored in all active
locations indicated by y by adding the (outer-product) matrix y w (most of
whose rows are 0) into C, so that C := C + y w, where := means substitution,
and where addition beyond the range of a counter is ignored. This is known

y
y

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 11

as the outer-product, or Hebbian, learning rule.
s Sum vector; U sums (each sum has [at most] nonzero terms). Because the

sum vector is made up of the contents of the active locations, it can be
expressed as s = CTy. The U sums give us the final output word z, but they
also tell us how reliable each of the output bits is. The further a sum is from
the threshold, the stronger is the memory’s evidence for the corresponding
output bit.

z Output word; U −1s and 1s. The sum vector s is converted into the output
vector z by the (nonlinear) threshold function z defined by z(s) = z, where zu
= 1 if su > 0, and zu = −1 otherwise.

In summary, storing the word w into the memory with x as the address can be
expressed as

C := C + y(Ax) w

and retrieving the word z corresponding to the address x can be expressed as

z = z(CTy(Ax))

3.3.3. Summary Specification

The following matrices describe the memory’s operation on the data set—the
training set (X, W)—as a whole:

D T × M matrix of similarities corresponding to the data addresses X: D =
(AXT)T = XAT.

Y Corresponding T × M matrix of activations: Y = y(D).
S T × U matrix of sums for the data set: S = YC.
Z Corresponding T × U matrix of output words: Z = z(S) = z(YC).

If the initial contents of the memory are 0, and if the capacities of the counters
are never exceeded, storing the T-element data set yields memory contents

C = Wt = Wt

This expression for C follows from the outer-product learning rule (see C above),
as it is the sum of T matrices, each of which represents an item in the data set.
However, C can be viewed equivalently as a matrix of M × U inner products Cm,u
of pairs of vectors of length T. One set of these vectors is the M columns of Y, and
the other set is the U columns of W, so that Cm,u = Y⋅,m ⋅ W⋅,u, and

C = YTW = y(AX T)W

The accuracy of recall of the training set after it has been stored in memory, is then

y

Y t

t 1=

T

∑ y AX t()
t 1=

T

∑

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 12

given by

Z − W = z(YC) − W

= z(YYTW) − W

This form is convenient in the mathematical analysis of the memory. For example,
it is readily seen that if the T rows of Y are orthogonal to one another, YYT is a
diagonal matrix approximately equal to pM I (I is the identity matrix), so that
z(YYTW) = W and recall is perfect. Notice that the rows of Y for the sample
memory are nearly orthogonal to one another, and that the purpose of addressing
through A is to produce (nearly) orthogonal activation vectors for most pairs of
addresses, which is a way of saying that the sets of locations activated by dissimilar
addresses overlap as littl e as possible.

3.3.4. Relation to Cor relation-Matr ix Memor ies

The M × U inner products that make up C are correlations of a sort: they are
unnormalized correlations that reflect agreement between the M variables
represented by the columns of Y, and the U variables represented by the columns of
W. If the columns were normalized to zero mean and to unit length, their inner
products would equal the correlation coefficients used commonly in statistics.
Furthermore, the inner products of activation vectors (i.e., unnormalized
correlations) Yt ⋅ y serve as weights for the training words in memory retrieval,
further justifying the term correlation-matrix memory.

The Y-variables are derived from the X-variables (each Y-variable compares the
data addresses X to a specific hard address), whereas in the original correlation-
matrix memories (Anderson 1968; Kohonen 1972), the X-variables are used
directly, and the variables are continuous. Changing from the X-variables to the Y-
variables means, mathematically, that the input dimension is blown way up (from a
thousand to a milli on); in practice it means that the memory can be made arbitrarily
large, rendering its capacity independent of the input dimension N. The idea of
expanding the input dimension goes back at least to Rosenblatt’s (1962) α-
perceptron network.

3.3.5. Recall Fideli ty (ϕ)

We will now look at the retrieval of words stored in memory, that is, how faithfully
are the stored words reconstructed by the retrieval procedure. The asymptotic
behavior of the memory, as the input dimension N grows without bound, has been
analyzed in depth by Chou (1989). Specific dimension N is assumed here, and the
analysis is simple but approximate. The analysis follows one given by Jaeckel
(1989a) and uses some of the same symbols.

What happens when we use one of the addresses, say, the last data address XT, to

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 13

retrieve a word from memory; how close to the stored word WT is the retrieved
word ZT? The output word ZT is gotten from the sum vector ST by comparing its U
sums to zero. Therefore, we need to find out how likely will a sum in ST be on the
correct side of zero. Since the data are uniform random, all columns of C have the
same statistics, and all sums in ST have the same statistics. So it suffices to look at
a single coordinate of the data words, say, the last, and to assume that the last bit of
the last data word, WT,U, is 1. How likely is ST,U > 0 if WT,U = 1? This li kelihood is
called the fidelity for a single bit, denoted here by ϕ (phi for ‘f idelity’) , and we now
proceed to estimate it.

The sum vector ST retrieved by the address XT is a sum over the locations
activated by XT. The locations are indicated by the 1s of the activation vector YT,
so that ST = YT

TC, which equals YT
TYTW (that C = YTW was shown above). The

last coordinate of the sum vector is then ST,U = YT
TC ⋅,U = YT

TYTW⋅,U =
(YYT)T W⋅,U = (YYT) ⋅ W⋅,U, which shows that only the last bits of the data words
contribute to it. Thus, the Uth bit-sum is the (inner) product of two vectors, YY T
and W⋅,U, where the T-vector W⋅,U consists of the stored bits (the last bit of each
stored word), and the T components of YYT act as weights for the stored bits.

The weights YYT have a clear interpretation in terms of activation sets and their
intersections or overlaps: they equal the sizes of the overlaps. This is ill ustrated in
Figure 3.6 (cf. Fig. 3.5). For example, since the 1s of Yt and YT mark the locations
activated by Xt and XT, respectively, the weight Yt ⋅ YT for the tth data word in the
sum ST equals the number of locations activated by both Xt and XT. Because the
addresses are uniform random, this overlap is p2M locations on the average, where
p is the probabilit y of activating a location, except that for t = T the two activation
sets are the same and the overlap is complete, covering pM locations on the average.

 ((FIGURE 3.6. Activation overlaps as weights for stored words.))

In computing fidelity, we will abbreviate notation as follows: Let Bt (= Wt,U) be
the last bit of the tth data word, let Lt = Yt ⋅ YT be its weight in the sum ST,U, and let
Σ (= ST,U) be the last bit sum. Regard the bits Bt and their weights Lt as two sets of
T random variables, and recall our assumption that addresses and data are uniform
random. Then the bits Bt are independent −1s and 1s with equal probability (i.e.,
mean E{ Bt} = 0), and they are also independent of the weights. The weights Lt,
being sizes of activation overlaps, are nonnegative integers. When activation is low,
as it is in the sample memory (p = 0.000445), the weights resemble independent
Poisson variables: the first T − 1 of them have a mean (and variance Var{Lt} ≈)
E{ Lt} = λt = λ = p2M and the last has a mean (and variance Var{LT} ≈) E{ LT} = λT
= Λ = pM (i.e., complete overlap). For the sample memory these values are: mean
activation Λ = pM = 445 locations (out of a milli on), and mean activation overlap λ
= p2M = 0.2 location (t < T). We will proceed as if the weights Lt were independent
Poisson variables, and hence our result will be approximate.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 14

We are assuming that the bit we are trying to recover equals 1 (i.e., BT = WT,U =
1); by symmetry, the analysis of BT = −1 is equivalent. The sum Σ is then the sum
of T products LtBt, and its mean, or expectation, is

µ = E{ Σ} = {LtBt} + E{ LT ⋅ 1}

= E{ LT}

= Λ

because independence and E{ Bt} = 0 yield E{ LtBt} = 0 when t < T. The mean sum
can be interpreted as follows: it contains all Λ (= 445) copies of the target bit BT that
have been stored and they reinforce each other, while the other
(T − 1)λ (= 2,000) bits in Σ tend to cancel out each other.

Retrieval is correct when the sum Σ is greater than 0. However, random variation
can make Σ ≤ 0. The likelihood of that happening, depends on the variance σ2 of the
sum, which variance we will now estimate. When the terms are approximately
independent, their variances are approximately additive, so that

σ2 = Var{ Σ} ≈ (T − 1)Var{L1B1} + Var{ LT ⋅ 1}

The second variance is simply Var{LT} ≈ Λ. The first variance can be rewritten as

Var{ L1B1} ≡ E{ L1
2B1

2} − (E{ L1B1})2

= E{ L1
2}

because B1
2 = 1, and because E{ L1B1} = 0 as above. It can be rewritten further as

≡ Var{L1} + (E{ L1})2

≈ λ + λ2

and we get, for the variance of the sum,

σ2 ≈ (T − 1) (λ + λ2) + Λ

Substituting p2M for λ and pM for Λ, approximating T − 1 with T, and rearranging
finally yields

σ2 = Var{ Σ} ≈ pM[1 + pT(1 + p2M)]

We can now estimate the probabilit y of incorrect recall , that is, the probability
that Σ ≤ 0 when BT = 1. We will use the fact that if the products LtBt are T
independent random variables, their sum Σ tends to the normal (Gaussian)
distribution with mean and variance equal to those of Σ. We then get, for the

E
t 1=

T 1–

∑

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 15

probability of a single-bit failure,

Pr{ Σ ≤ 0 | µ, σ} ≈ Φ(−µ/σ)

where Φ is the normal distribution function; and for the probabilit y of recalling a
bit correctly, or bit-fidelity ϕ, we get 1 − Φ(−µ/σ), which equals Φ(µ/σ).

3.3.6. Signal (µ), Noise (σ), and Probabili ty of Activation (p)

We can regard the mean value µ (= pM) of the sum Σ as signal, and the variance σ2
(≈ pM[1 + pT(1 + p2M)]) of the sum as noise. The standard quantity ρ = µ/σ is then
a signal-to-noise ratio (rho for ‘ ratio’) that can be compared to the normal
distribution, to estimate bit-fideli ty, as was done above:

ϕ = Pr{bit recalled correctly} ≈ Φ(ρ)

The higher the signal-to-noise ration, the more likely are stored words recalled
correctly. This points to a way to find good values for the probabilit y p of activating
locations and, hence, for the activation radius H: We want p that maximizes ρ. To
find this value of p, it is convenient to start with the expression for ρ2 and to reduce
it to

Taking the derivative with respect to p, setting it to 0, and solving for p gives

as the best probabilit y of activation. This value of p was mentioned earlier, and it
was used to set parameters for the sample memory.

The probabilit y p = (2MT)−1/3 of activating a location is optimal only when exact
storage addresses are used for retrieval. When a retrieval address is approximate
(i.e., when it equals a storage address plus some noise), both the signal and the noise
are reduced, and also their ratio is reduced. Analysis of this is more complicated
than the one above, and it is not carried out here. The result is that, for maximum
recovery of stored words with approximate retrieval addresses, p should be
somewhat larger than (2MT)−1/3 (typically, less than twice as large); however, when
the data are clustered rather than uniform random, optimum p tends to be smaller
than (2MT)−1/3.

In a case yet more general, the training set is not “clean” but contains many noisy
copies of each word to be stored, and the data addresses are noisy (cf. Fig. 3.1).
Then it makes sense to store words within a smaller radius and to retrieve them
within a larger. To allow such memories to be analyzed, Avery Wang (unpublished)

ρ2 µ2 σ2⁄ pM
1 pT 1 p2M+()+
---≈=

p
1

2MT3
----------------=

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 16

and Jaeckel (1988) have derived formulas for the size of the overlap of activation
sets with different radii of activation. As a rule, the overlap decreases rapidly with
increasing distance between the centers of activation.

3.3.7. Memory Capacity (τ)

Storage and retrieval in a standard random-access memory are deterministic.
Therefore, its capacity (in words) can be expressed simply as the number of
memory locations. In a sparse distributed memory, retrieval of words is statistical.
However, its capacity, too, can be defined as a limit on the number T of words that
can be stored and retrieved successfully, although the limit depends on what we
mean by success.

A simple criterion of success is that a stored bit is retrieved correctly with high
probability ϕ (e.g., 0.99 ≤ ϕ ≤ 1). Other criteria can be derived from it or are related
to it. Specifically, capacity here is the maximum T, Tmax, such that Pr{Zt,u = Wt,u}
≥ ϕ; we are assuming that exact storage addresses are used to retrieve the words. It
is convenient to relate capacity to memory size M and to define it as τ = Tmax/M.
As fidelity ϕ approaches 1, capacity τ approaches 0, and the values of τ that concern
us here are smaller than 1. We wil l now proceed to estimate τ.

In Section 3.3.5 on Recall Fidelity we saw that the bit-recall probability ϕ is
approximated by Φ(ρ), where ρ is the signal-to-noise ratio as defined above. By
writing out ρ and substituting τM for T we get

which leads to

where Φ−1 is the inverse of the normal distribution function. Dividing by pM in the
numerator and the denominator gives

The right side goes to 1/τ as the memory size M grows without bound, giving us a
simple expression for the asymptotic capacity:

To verify this limit , we use the optimal probabilit y of activation, taking note that

ϕ Φ ρ() Φ pM
1 pτM 1 p2M+()+
--

1 2⁄

 
 ≈ ≈

Φ 1– ϕ()[]2 ρ2 pM
1 pτM 1 p2M+()+
--≈ ≈

Φ 1– ϕ()[]2 1
1

pM
-------- τ 1 p2M+()+
---≈

τ 1
Φ 1– ϕ()[]2

-------------------------≈

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 17

it depends on both M and τ: p = (2MT)−1/3 = (2τM2)−1/3. Then, in the expression
above, 1/(pM) = (2τ/M)1/3 and goes to zero as M goes to infinity, because τ < 1.
Similarly, τ(1 + p2M) = τ + (τ/M)1/3 and goes to τ.

To compare this asymptotic capacity to the capacity of a finite memory, consider
ϕ = 0.999, meaning that about one bit in a thousand is retrieved incorrectly. Then
the asymptotic capacity is τ ≈ 0.105, and the capacity of the milli on-location sample
memory is 0.096. Keeler (1988) has shown that the sparse distributed memory and
the binary Hopfield net trained with the outer-product leaning rule, which is
equivalent to a correlation-matrix memory, have the same capacity per storage
element or counter. The 0.15N capacity of the Hopfield net (τ = 0.15) corresponds
to fidelity ϕ = 0.995, meaning that about one bit in 200 is retrieved incorrectly. The
practical significance of the sparse distributed memory design is that, by virtue of
the hard locations, the number of storage elements is independent of the input and
output dimensions. Doubling the hardware doubles the number of words of a given
size that can be stored, whereas the capacity of the Hopfield net is limited by the
word size.

A very simple notion of capacity has been used here, and it results in capacities
of about 10 percent of memory size. However, the assumption has been that exact
storage addresses are used in retrieval. If approximate addresses are used, and if less
error is tolerated in the words retrieved than in the addresses used for retrieving
them, the capacity goes down. The most complete analysis of capacity under such
general conditions has been given by Chou (1989). Expressing capacity in absolute
terms, for example, as Shannon’s information capacity, is perhaps the most
satisfying. This approach has been taken by Keeler (1988). Allocating the capacity
is then a separate issue: whether to store many words or to correct many errors. A
practical guide is that the number of stored words should be from 1 to 5 percent of
memory size (i.e., of the number of hard locations).

3.4. SDM as an Ar tificial Neural Network

The sparse distributed memory, as an artificial neural network, is a synchronous,
fully connected, three-layer (or two-layer, see below), feed-forward net ill ustrated
by Figure 3.7. The flow of information in the figure is from left to right. The column
of N circles on the left is called the input layer, the column of M circles in the middle
is called the hidden layer, and the column of U circles on the right is called the
output layer, and the circles in the three columns are called input units, hidden units,
and output units, respectively.

 ((FIGURE 3.7. Feed-forward artificial neural network.))

The hidden units and the output units are bona fide artificial neurons, so that, in
fact, there are only two layers of “neurons.” The input units merely represent the

1
4

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 18

outputs of some other neurons. The inputs xn to the hidden units label the input
layer, the input coefficients Am,n of the hidden units label the lines leading into the
hidden units, and the outputs ym of the hidden units label the hidden layer. If y is the
activation function of the hidden units (e.g., y(d) = 1 if d ≥ D, and y(d) = 0
otherwise), the output of the mth hidden unit is given by

which, in vector notation, is ym = y(Am ⋅ x), where x is the vector of inputs to, and
Am is the vector of input coefficients of, the mth hidden unit.

A similar description applies to the output units, with the outputs of the hidden
units serving as their inputs, so that the output of the uth output unit is given by

or, in vector notation, zu = z(C⋅,u ⋅ y). Here, C⋅,u is the vector of input coefficients
of the uth output unit, and z is the activation function.

From the equations above it is clear that the input coefficients of the hidden units
form the address matrix A, and those of the output units form the contents matrix
C, of a sparse distributed memory. In the terminology of artificial neural nets, these
are the matrices of connection strengths (synaptic strengths) for the two layers.
‘Fully connected’ means that all elements of these matrices can assume nonzero
values. Later we will see sparsely connected variations of the model.

Correspondence between Figures 3.7 and 3.4 is now demonstrated by
transforming Figure 3.7 according to Figure 3.8, which shows four ways of drawing
artificial neurons. View A shows how they appear in Figure 3.7. View B is laid out
similarly, but all labels now appear in boxes and circles. In view C, the diamond and
the circle that represent the inner product and the output, respectively, appear below
the column of input coefficients, so that these units are easily stacked side by side.
View D is essentially the same as view C, for stacking units on top of each another.
We will now redraw Figure 3.7 with units of type D in the hidden layer and with
units of type C in the output layer. An input (a circle) that is shared by many units
is drawn only once. The result is Figure 3.9. Its correspondence to Figure 3.4 is
immediate, the vectors and the matrices implied by Figure 3.7 are explicit, and the
cobwebs of Figure 3.7 are gone.

((FIGURE 3.8. Four views of an artificial neuron.))

 ((FIGURE 3.9. Sparse distributed memory as an artificial …))

In describing the memory, the term ‘synchronous’ means that all computations

ym y Am n, xn

n 1=

N

∑ 
 
 

=

zu z Cm u, yn

m 1=

M

∑ 
 
 

=

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 19

are completed in what could be called a machine cycle, after which the network is
ready to perform another cycle. The term is superfluous if the net is used as a feed-
forward net akin to a random-access memory. However, it is meaningful if the
network’s output is fed back as input: the network is allowed to settle with each
input so that a completely updated output is available as the next input.

As a multilayer feed-forward net, the sparse distributed memory is akin to the
nets trained with the error back-propagation algorithm (Rumelhart and McClelland
1986). How are the two different? In a broad sense they are not: we try to find
matrices A and C, and activation functions y and z, that fit the source of our data. In
practice, many things are done differently.

In error back-propagation, the matrices A and C and the activation vector y are
usually real-valued, the components of y usually range over the interval
[−1, 1] or [0, 1], the activation function y and its inverse are differentiable, and the
data are stored using a uniform algorithm to change both A and C. In sparse
distributed memory, the address matrix A is usually binary, and various methods are
used for choosing it, but once a location’s address has been set, it is not changed as
the data are stored (A is constant); furthermore, the activation function y is a step
function that yields an activation vector y that is mostly 0s, with a few 1s. Another
major difference is in the size of the hidden layer. In back-propagation nets, the
number of hidden units is usually smaller than the number of input units or the
number of items in the training set; in a sparse distributed memory, it is much larger.

The differences imply that, relative to back-propagation nets, the training of a
sparse distributed memory is fast (it is easy to demonstrate single-trial learning), but
applying it to a new problem is less automatic (it requires choosing an appropriate
data representation, as discussed in the section on SDM research below).

3.5. SDM as a Model of the Cerebellum

3.5.1. Modeling Biology with Ar tificial Neural Networks

Biological neurons are cells that process signals in animals and humans, allowing
them to respond rapidly to the environment. To achieve speed, neurons use electro-
chemical mechanisms to generate a signal (a voltage level or electrical pulses) and
to transmit it to nearby and distant sites.

Biological neurons come in many varieties. The peripheral neurons couple the
organism to the world. They include the sensory neurons that convert an external
stimulus into an electrical signal, the motor neurons whose electrical pulses cause
muscle fibers to contract, and other effector neurons that regulate the secretion of
glands. However, most neurons in highly evolved animals are interneurons that
connect directly to other neurons rather than to sensors or to effectors. Interneurons
also come in many varieties and they are organized into a multitude of neural

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 20

circuits.
A typical interneuron has a cell body and two kinds of arborizations: a dendrite

tree that receives signals from other neurons, and an axon tree that transmits the
neuron’s signal to other neurons. Transmission-contact points between neurons are
called synapses. They are either excitatory (positive synaptic weight) or inhibitory
(negative synaptic weight) according to whether a signal received through the
synapse facil itates or hinders the activation of the receiving neuron. The axon of one
neuron can make synaptic contact with the dendrites and cell bodies of many other
neurons. Thus, a neuron receives multiple inputs, it integrates them, and it transmits
the result to other neurons.

Artificial neural networks are networks of simple, interconnected processing
units, called (artificial) neurons. The most common artificial neuron in the
li terature has multiple (N) inputs and one output and is defined by a set of input
coefficients—a vector of N reals, standing for the synaptic weights—and a
nonlinear scalar activation function. The value of this function is the neuron’s
output, and it serves as input to other neurons. A linear threshold function is an
example of an artificial neuron, and the simplest kind—one with binary inputs and
output—is used in the sparse distributed memory.

It may seem strange to model brain activity with binary neurons when real
neurons are very complex in comparison. However, the brain is organized in large
circuits of neurons working in parallel, and the mathematical study of neural nets is
aimed more at understanding the behavior of circuits than of individual neurons. An
important fact—perhaps the most important—is that the states of a large circuit can
be mapped onto the points of a high-dimensional space, so that although a binary
neuron is a grossly simpli fied model of a biological neuron, a large circuit of binary
neurons, by virtue of its high dimension, can be a useful model of a circuit of
biological neurons.

The sparse distributed memory’s connection to biology is made in the standard
way. Each row through A, d, y, and C in Figure 3.9—each hidden unit—is an
artificial neuron that represents a biological neuron. Vector x represents the N
signals coming to these neurons as inputs from N other neurons (along their axons),
vector Am represents the weights of the synapses through which the input signals
enter the mth neuron (at its dendrites), dm represents the integration of the input
signals by the mth neuron, and ym represents the output signal, which is passed
along the neuron’s axon to U other neurons through synapses with strengths Cm.

We will call these (the hidden units) the address-decoder neurons because they
are like the address-decoder circuit of a random-access memory: they select
locations for reading and writing. The address that the mth address-decoder neuron
decodes is given by the input coefficients Am; location Am is activated by inputs x
that equal or are suff iciently similar to Am. How similar, depends on the radius of

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 21

activation H. It is interesting that a linear threshold function with N inputs, which is
perhaps the oldest mathematical model of a neuron, is ideal for address decoding in
the sparse distributed memory, and that a proper choice of a single parameter, the
threshold, makes it into an address decoder for a location of an ordinary random-
access memory.

Likewise, in Figure 3.9, each column through C, s, and z is an artificial neuron
that represents a biological neuron. Since these U neurons provide the output of the
circuit, they are called the output neurons. The synapses made by the axons of the
address-decoder neurons with the dendrites of the output neurons are represented
by matrix C, and they are modifiable; they are the sites of information storage in the
circuit.

We now look at how these synapses are modified; specifically, what neural
structures are implied by the memory’s storage algorithm (cf. Figs. 3.4 and 3.9). The
word w is stored by adding it into the counters of the active locations, that is, into
the axonal synapses of active address-decoder neurons. This means that if a location
is activated for writing, its counters are adjusted upward and downward; if it is not
activated, its counters stay unchanged.

Since the output neurons are independent of each other, it suffices to look at just
one of them, say, the uth output neuron. See Figure 3.10 center. The uth output
neuron produces the uth output bit, which is affected only by the uth bits of the
words that have been stored in the memory. Let us assume that we are storing the
word w. Its uth bit is wu. To add wu into all the active synapses in the uth column of
C, it must be made physically present at the active synaptic sites of the column.
Since different sites in a column are active at different times, it must be made
present at all synaptic sites of the column. A neuron’s way of presenting a signal is
by passing it along the axon. This suggests that the uth bit wu of the word-in register
should be represented by a neuron that corresponds to the uth output neuron zu, and
that its output signal should be available at each synapse in column u, although it is
“captured” only by synapses that have just been activated by address-decoder
neurons y. Such an arrangement is shown in Figure 3.10. It suggests that word-in
neurons are paired with output neurons, with the axon tree of a word-in neuron
possibly meshing with the dendrite tree of the corresponding output neuron, as that
would help carry the signal to all synaptic sites of a column. This kind of pairing,
when found in a brain circuit, can help us interpret the circuit (Fig. 3.10, on the
right).

((FIGURE 3.10. Connections to an output neuron.))

3.5.2. The Cortex of the Cerebellum

Of the neural circuits in the brain, the cortex of the cerebellum resembles the sparse
distributed memory the most. The cerebellar cortex of mammals is a fairly large and

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 22

highly regular structure with an enormous number of neurons of only five major
kinds, and with two major kinds of input. Its morphology has been studied
extensively since early 1900s, its role in fine motor control has been established,
and its physiology is still studied intensively (Ito 1984).

The cortex of the cerebellum is sketched in Figure 3.11 after Llinás (1975).
Figure 3.12 is Figure 3.9 redrawn in an orientation that corresponds to the sketch of
the cerebellar cortex.

((FIGURE 3.11. Sketch of the cortex of the cerebellum.))

((FIGURE 3.12. Sparse distributed memory’s resemblance …))

Within the cortex are the cell bodies of the granule cells, the Golgi cells, the
stellate cells, the basket cells, and the Purkinje cells. Figure 3.11 shows the climbing
fibers and the mossy fibers entering and the axons of the Purkinje cells leaving the
cortex. This agrees with the two inputs into and the one output from a sparse
distributed memory. The correspondence goes deeper: The Purkinje cells that
provide the output, are paired with the climbing fibers that provide input. A
climbing fiber, which is an axon of an olivary cell that resides in the brain stem,
could thus have the same role in the cerebellum as the line from a word-in cell
through a column of counters has in a sparse distributed memory (see Fig. 3.10),
namely, to make a bit of a data word available at a bit-storage site when words are
stored.

The other set of inputs enters along the mossy fibers, which are axons of cells
outside the cerebellum. They would then be like an address into a sparse distributed
memory. The mossy fibers feed into the granule cells, which thus would correspond
to the hidden units of Figure 3.12 (they appear as rows across Fig. 3.9) and would
perform address decoding. The firing of a granule cell would constitute activating
a location for reading or writing. Therefore, the counters of a location would be
found among the synapses of a granule cell’ s axon; these axons are called parallel
fibers. A parallel fiber makes synapses with Golgi cells, stellate cells, basket cells,
and Purkinje cells. Since the Purkinje cells provide the output, it is natural to assume
that their synapses with the parallel fibers are the storage sites or the memory’s
counters.

In addition to the “circuit diagram,” other things suggest that the cortex of the
cerebellum is an associative memory reminiscent of the sparse distributed memory.
The numbers are reasonable. The numbers quoted below were compiled by Loebner
(1989) in a review of the literature and they refer to the cerebellum of a cat. Several
million mossy fibers enter the cerebellum, suggesting that the dimension of the
address space is several milli on. The granule cells are the most numerous—in the
bil lions—implying a memory with billions of hard locations, and only a small
fraction of them is active at once, which agrees with the model. Each parallel fiber
intersects the flat dendritic trees of several hundred Purkinje cell s, implying that a

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 23

hard location has several hundred counters. The number of parallel fibers that pass
through the dendritic tree of a single Purkinje cell is around a hundred-thousand,
implying that a single “bit” of output is computed from about a hundred-thousand
counters (only few of which are active at once). The number of Purkinje cells is
around a milli on, implying that the dimension of the data words is around a mill ion.
However, a single olivary cell sends about ten climbing fibers to that many Purkinje
cells, and if, indeed, the climbing fibers train the Purkinje cells, the output
dimension is more like a hundred-thousand than a milli on. All these numbers mean,
of course, that the cerebellar cortex is far from fully connected: every granule cell
does not reach every Purkinje cell (nor does every mossy fiber reach every granule
cell; more on that below).

This interpretation of the cortex of the cerebellum as an associative memory, akin
to the sparse distributed memory, is but an outline, and it contains discrepancies that
are evident even at the level of cell morphology. According to the model, an address
decoder (a hidden unit) should receive all address bits, but a granule cell receives
input from three to five mossy fibers only, and for a granule cell to fire, most or all
of its inputs must be firing (the number of active inputs required for fi ring appears
to be controlled by the Golgi cells that provide the other major input to the granule
cells; the Golgi cell s could control the number of locations that are active at once).
The very small number of inputs to a granule cell means that activation is not based
on Hamming distance from an address but on certain address bits being on in the
address register. Activation of locations of a sparse distributed memory under such
conditions has been treated specifically by Jaeckel, and the idea is present already
in the cerebellar models of Marr and of Albus. These will be discussed in the next
two sections.

Many details of the cerebellar circuit are not addressed by this comparison to the
sparse distributed memory. The basket cells connect to the Purkinje cells in a special
way, the stellate cells make synapses with the Purkinje cells, and signals from the
Purkinje cells and climbing fibers go to the basket cells and Golgi cells. The nature
of synapses and signals—the neurophysiology of the cerebellum—has not been
considered. Some of these things are addressed by the mathematical models of Marr
and of Albus. The point here has been to demonstrate some of the variety in a real
neural circuit, to show how a mathematical model can be used to interpret such a
circuit, and to suggest that the cortex of the cerebellum constitutes an associative
memory. Because its mossy-fiber input comes from all over the cerebral cortex—
from many sensory areas—the cerebellum is well located for correlating action that
it regulates, with information about the environment.

3.6. Var iations of the Model

The basic sparse distributed memory model is fully connected. This means that

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 24

every input unit (address bit) is seen by every hidden unit (hard location), and that
every hidden unit is seen by every output unit. Furthermore, all addresses and words
are binary. If −1 and 1 are used as the binary components, ‘ fully connected’ means
that none of the elements of the address and contents matrices A and C is
(identically) zero. Partially—and sparsely—connected models have zeros in one or
both of the matrices, as a missing connection is marked by a weight that is zero.

Jaeckel has studied designs with sparse address matrices and binary data. In the
selected-coordinate design (1989a), −1s and 1s are assumed to be equally likely in
the data addresses; in the hyperplane design (1989b), the data-address bits are
assumed to be mostly (e.g., 90%) −1s. Jaeckel’s papers are written in terms of
binary 0s and 1s, but here we will use −1s and 1s, and wil l let a 0 stand for a missing
connection or a “don’t care”-bit (for which Jaeckel uses the value 1/2). Jaeckel uses
one-milli on-location memories (M = 1,000,000) with a 1,000-dimensional address
space (N = 1,000) to demonstrate the designs.

3.6.1. Jaeckel’s Selected-Coordinate Design

In the selected- coordinate design, the hard-address matrix A has a million rows
with ten −1s and 1s (k = 10) in each row. The −1s and 1s are chosen with probabilit y
1/2 and they are placed randomly within the row and independently of other rows;
the remaining 990 coordinates of a row are 0s. This is equivalent to taking a uniform
random A of −1s and 1s and setting a random 990 coordinates in each row to zero
(different 990 for different rows). A location is activated if the values of all ten of
its selected coordinates match the address register x: ym = 1 iff Am ⋅ x = k. The
probability of activating a hard location is related to the number of nonzero
coordinates in a hard address by p = 0.5k. Here, k = 10 and p = 0.001.

3.6.2. Jaeckel’s Hyperplane Design

The hyperplane design deals with data where the addresses are skewed (e.g., 1 0 0
1s and 900 −1s). Each row of the hard-address matrix A has three 1s (k = 3), placed
at random, and the remaining 997 places have 0s (there are no −1s). A location is
activated if the address register has 1s at those same three places: ym = 1 iff Am ⋅ x
= k. The probability of activating a location is related to the number of 1s in its
address by p ≈ (L/N)k, where L is the number of 1s in the data addresses x. Here, N
= 1,000, L = 100, k = 3, and p ≈ 0.001.

Jaeckel has shown that both of these designs are better than the basic design in
recovering previously stored words, as judged by signal-to-noise ratios. They are
also easier to realize physically—in hardware—because they require far fewer
connections and much less computation in the address-decoder unit that determines
the set of active locations.

The region of the address space that activates a hard location in the three designs

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 25

can be interpreted geometrically as follows: A location of the basic sparse
distributed memory is activated by all addresses that are within H Hamming units
of the location’s address, so that the exciting part of the address space is a
hypersphere around the hard address. In the selected-coordinate design, a hard
location is activated by all addresses in a subspace of the address space defined by
the k selected coordinates—that is, by the vertices of an
(N − k)-dimensional hypercube. In the hyperplane design, the address space is a
hyperplane defined by the number of 1s in an address, L (which is constant over all
data addresses), and a hard location is activated by the intersection of the address
space with the (N − k)-dimensional hypercube defined by the k 1s of the hard
address.

The regions have a spherical interpretation also in the latter two designs, as
suggested by the activation condition Am ⋅ x = k (same formula for both designs; see
above). It tells that the exciting points of the address space lie on the surface of a
hypersphere in Euclidean N-space, with center coordinates Am (the hard address)
and with Euclidean radius (N − k)1/2 (no points of the address space lie inside the
sphere). This gives rise to intermediate designs, as suggested by Jaeckel (1989b):
let the hard addresses be defined in −1s, 0s, and 1s as above, and let the mth hard
location be activated by all addresses x within a suitably large hypersphere centered
at the hard address. Specifically, ym = 1 if, and only if, Am ⋅ x ≥ G. The parameters
G and k (and L) have to be chosen so that the probability of activating a location is
reasonable.

The optimum probabil ity of activation p for the various sparse distributed
memory designs is about the same—it is in the vicinity of (2MT)−1/3—and the
reason is that, in all these designs, the sets of locations activated by two addresses,
x and x′, overlap minimally unless x and x′ are very similar to each other. The sets
behave in the manner of random sets of approximately pM hard locations each, with
two such sets overlapping by p2M locations, on the average (unless x and x′ are very
similar to each other). This is a consequence of the high dimension of the address
space.

In the preceding section on the cerebellum we saw that the hard-address matrix
A, as implied by the few inputs (3–5 mossy fibers) to each granule cell, is very
sparse, and that the number of active inputs required for a granule cell to fire, can
be modulated by the Golgi cells. This means that the activation of granule cells in
the cerebellum resembles the activation of locations in an intermediate design that
is close to the hyperplane design.

Not only are the mossy-fiber connections to a granule cell few (3–5 out of several
million), but also the granule-cell connections to a Purkinje cell are few (hundred
thousand out of billions), so that also the contents matrix C is very sparse. This
aspect of the cerebellum has not been modeled mathematically.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 26

3.6.3. Hassoun’s Pseudorandom Associative Neural Memory

Independently of the above developments, Hassoun (1988) has proposed a model
with a random, fixed address matrix A and variable contents matrix C. This model
allows us to extend the concepts of this chapter to data with short addresses (e.g., N
= 4 bits), and it introduces ideas about storing the data (i.e., training) that can be
applied to associative memories at large.

The data addresses X and words W in Hassoun’s examples are binary vectors in
0s and 1s. The elements of the hard-address matrix A are small integers; they are
chosen at uniform random from the symmetric interval {−L, −L + 1, −L + 2, …, L} ,
where L is a small positive integer (e.g., L = 3). Each hard location has its own
activation threshold Dm, which is chosen so that approximately half of all possible
N-bit addresses x activate the location: ym = 1 if A m ⋅ x ≥ Dm, and ym = 0 otherwise.
The effect of such addressing through A is to convert the matrix X of N-bit data
addresses into the matrix Y of M-bit activation vectors, where M >> N and where
each activation vector Ym is about half 0s and half 1s (probability of activation p is
around 0.5).

Geometric interpretation of addressing through A is as follows. The space of hard
addresses is an N-dimensional hypercube with sides of length 2L + 1. The unit
cubes or cells of this space are potential hard locations. The M hard addresses Am
are chosen at uniform random from within this space. The space of data addresses
is an N-cube with sides of length 2; it is at the center of the hard-address space, with
the cell 000…0 at the very center. The data addresses that activate the location Am
are the ones closest to Am and they can be visualized as follows: A straight line is
drawn from Am through 000…0. Each setting of the threshold Dm then corresponds
to an N − 1-dimensional hyperplane perpendicular to this line, at some distance
from Am. The cells x of the data-address space that are on the Am side of the plane
will activate location Am. The threshold Dm is chosen so that the plane cuts the data-
addresses space into two nearly equal parts.

The hard addresses A m correspond naturally to points (and subspaces) A ḿ of the
data-address space { 0, 1}N gotten by replacing the negative components of Am by
0s, the positive components by 1s, and the 0s by either (a “don’ t care”). The
absolute values of the components of A m then serve as weights, and the mth
location is activated by x if the weighted distance between A ḿ and x is below a
threshold (cf. Kanerva 1988, pp. 46–48).

High probability of activation (p ≈ 0.5) works poorly with the outer-product
leaning rule. However, it is appropriate for an analytic solution to storage by the
Ho–Kashyap recording algorithm (Hassoun and Youssef 1989). This algorithm
finds a contents matrix C that solves the linear inequaliti es implied by Z = W, where
W is the matrix of data words to be stored, and Z = z(S) = z(YC) is the matrix of
words retrieved by the rows of X. The inequaliti es follow from the definition of the

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 27

threshold function z, as Wt,u = 1 implies that St,u > 0, and Wt,u = 0 implies that St,u
< 0. Hassoun and Youssef have shown that this storage algorithm results in large
basins of attraction around the data addresses, and that if data are stored
autoassociatively, false attractors (i.e., spurious stable patterns and limit cycles) will
be relatively few.

3.6.4. Adaptation to Continuous Var iables by Prager and Fallside

All the models discussed so far have had binary vectors as inputs and outputs.
Prager and Fallside (1989) consider several ways of extending the sparse distributed
memory model into real-valued inputs. The following experiment with spoken
English ill ustrates their approach.

Eleven vowels were spoken several times by different people. Each spoken
instance of a vowel is represented by a 128-dimensional vector of reals that serves
as an address or cue. The corresponding data word is an 11-bit label. One of the bits
in a label is a 1, and its position corresponds to the vowel in question. This is a
standard setup for classification by artificial neural nets.

For processing on a computer, the input variables are discretized into 513 integers
in the range 16,127–16,639. The memory is constructed by choosing (2,000) hard
addresses at uniform random from a 128-dimensional hypercube with sides of
length 32,768. The cells of this outer space are addressed naturally by 128-place
integers to base 32,768 (i.e., these are the vectors A m), and the data addresses x then
occupy a small hypercube at the center of the hard-address space; the data-address
space is a 128-dimensional cube with sides of length 513. Activation is based on
distance. Address x activates the mth hard location if the maximu coordinate
separtion (i.e., L∞ distance) between x and A m is at most 16,091. About ten percent
of the hard locations wil l be activated. Experiments with connected speech deal
similarly with 896-dimensional real vectors. In other experiments with the same
data, the use of Euclidean distance and other distance measures in place of the L∞
distance resulted in only minor changes in the outcome. See also Clarke et al. (1991)
for a further analysis of the model and an example of its use.

Prager and Fallside train the contents matrix C iteratively by correcting errors so
as to solve the inequaliti es implied by Z = W (see the last paragraph of Sec. 3.6.3).

This design is similar to Hassoun’s design discussed in Section 3.6.3, in that both
have a large space of hard addresses that includes, at the center, a small space of data
addresses, and that the hard locations are placed at random within the hard-address
space. The designs are in contrast with Albus’ CMAC (discussed in the next
section), where the placement of the hard locations is systematic.

3.7. Relation to the Cerebellar Models of Marr and of Albus

The first comprehensive mathematical models of the cerebellum as an associative

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 28

memory are by Marr (1969) and by Albus (1971), developed independently in their
doctoral dissertations, and they still are the most complete of any such models. They
were developed specifically as models of the cerebellar cortex, whereas the sparse
distributed memory’s resemblance to the cerebellum was noticed only after the
model had been developed fully.

Marr’s and Albus’s models attend to many of the details of the cerebellar circuit.
The models are based mostly on connectivity but also on the nature of the synapses.
Albus (1989) has made a comparison of the two models. The models will be
described here insofar as to show their relation to the sparse distributed memory.

3.7.1. Marr ’s Model of the Cerebellum

The main circuit in Marr’s model—in Marr’s vocabulary and in our symbols—
consists of (N =) 7,000 input fibers that feed into (M =) 200,000 codon cells that
feed into a single output cell . The input fibers activate codon cells, and codon-cell
connections with the output cell store information. The correspondence to the
cerebellum is straightforward: the input fibers model mossy fibers, the codon cells
model granule cells, and the output cell models a Purkinje cell.

Marr discusses at length the activation of codon cells by the input fibers. Since
the input fibers represent mossy fibers and the codon cells represent granule cell s,
each codon cell receives input from 3–5 fibers in Marr’s model. The model assumes
discrete time intervals. During an interval an input fiber is either inactive (−1) or
active (+1), and at the end of the interval a codon cell i s either inactive (0) or active
(+1) according to the activity of its inputs during the interval; the codon-cell output
is a linear threshold function of its inputs, with +1 weights.

The overall pattern of activity of the N input fibers during an interval is called the
input pattern (an N-vector of −1s and 1s), and the resulting pattern of activity of the
M codon cells at the end of the interval is called a codon representation of the input
pattern (an M-vector of 0s and 1s). These correspond, respectively, to the address
register x, and to the activation vector y, of a sparse distributed memory.

Essential to the model is that M is much larger than N, and that the number of 1s
in a codon representation is small compared to M, and relatively constant;
conditions that hold also for the sparse distributed memory. Then the codon
representation ampli fies differences between input patterns. To make differences in
N-bit patterns commensurate with differences in M-bit patterns, Marr uses a relative
measure defined as the number of 1s that two patterns have in common, divided by
the number of places where either pattern has a 1 (i.e., the size of the intersection of
1s relative to the size of their union).

Marr’s model’s relation to artificial neural networks is simple. The input fibers
correspond to input units, the codon cells correspond to hidden units, and the output
cell corresponds to an output unit. Each hidden unit has only 3–5 inputs, chosen at

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 29

random from the N input units, and the input coefficients are fixed at +1. Obviously,
the net is far from fully connected, but all hidden units are connected to the output
unit, and these connections are modifiable. The hidden units are activated by a
linear threshold function, and the threshold varies. However, it varies not as the
result of training but dynamically so as to keep the number of active hidden units
within desired limits (500–5,000). Therefore, to what first looks like a feed-forward
net must be added feedback connections that adjust dynamically the thresholds of
the hidden units. The Golgi cells are assumed to provide this feedback.

In relating Marr’s model to the sparse distributed memory, the codon cells
correspond to hard locations, and the hard-address matrix A is very sparse, as each
row has km 1s (km = 3, 4, 5), placed at random, and N − km 0s (there are no −1s in
A). A codon cell fires if most of its 3–5 inputs are active, and the Golgi cells set the
firing threshold so that 500–5,000 codon cells (out of the 200,000) are active at any
one time, regardless of the number of active input lines. Thus, the activation
function ym for hard location A m is a threshold function with value 1 (the codon cell
fires) when most—but not necessarily all—of the km 1s of A m are matched by 1s
in the address x. The exact condition of activation in the examples developed by
Marr is that A m ⋅ x ≥ R, where the threshold R is between 1 and 5 and depends on
x. Thus, the codon cells are activated in Marr’ s model in a way that resembles the
activation of hard locations in an intermediate design of sparse distributed memory
that is close to the hyperplane design (in the hyperplane design, all inputs must be
active for a cell to fire).

One of the conditions of the hyperplane design is far from being satisfied—
namely, that the number of 1s in the address is about constant (hence the name
hyperplane design). In Marr’s model it is allowed to vary widely (between 20 and
1,000 out of 7,000), and this creates the need for adjusting the threshold
dynamically. In the sparse distributed memory variations discussed so far, the
threshold is fixed, but later in this chapter we will refer to experiments in which the
thresholds are adjusted either dynamically or by training with data.

Marr estimates the capacity of his model under the most conservative of
assumptions, namely, that (0s and) 1s are added to one-bit counters that are initially
0. Under this assumption, all counters eventually saturate and all i nformation is lost,
as pointed out by Albus (1989).

3.7.2. Albus’ Cerebellar Model Ar ithmetic Computer (CMAC)

This description of CMAC is based on the one in Albus’ book Brains, Behavior, and
Robotics (1981) and uses its symbols. The purpose here is to describe it sufficiently
to allow its comparison to the sparse distributed memory.

CMAC is an associative memory with a large number of addressable storage
locations, just as the sparse distributed memory is, and the address space is

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 30

multidimensional. However, the number of dimensions, N, is usually small (e.g., N
= 14), while each dimension, rather than being binary, spans a discrete range of
values {0, 1, 2, …, R − 1}. The dimensions are also called input variables, and an
input variable might represent a joint angle of a robot arm (0–180 degrees)
discretized in five-degree increments (resolution R = 36), and a 14-dimensional
address might represent the angular positions and velocities of the joints in a seven-
jointed robot arm. Different dimensions can have different resolutions, but we
assume here, for simplicity, that all have the same resolution R.

An N-dimensional address in this space can be represented by an N-dimensional
unit cube, or cell , and the entire address space is then represented by RN of these
cells packed into an N-dimensional cube with sides of length R. The cells are
addressed naturally by N-place integers to base R.

A storage location is activated by some addresses and not by others. In the sparse
distributed memory, these exciting addresses occupy an N-dimensional sphere with
Hamming radius H, centered at the location’s address. The exciting region of the
address space in Albus’ CMAC is an N-dimensional cube with sides of length K (1
< K < R); it is a cubicle of KN cells (near the edge of the space it is the intersection
of such a cubicle with the address space and thus contains fewer than KN cells). The
center coordinates of the cubicle can be thought of as the location’s address (the
center coordinates are integers if K is odd and half-way between two integers if K
is even, and the center can lie outside the RN cube).

The hard locations of a sparse distributed memory are placed randomly in the
address space; those of CMAC—the cubicles—are arranged systematically as
follows: First, the RN cube is packed with the KN cubicles starting from the corner
cell at the origin—the cell addressed by (0, 0, 0, …, 0). This defines a set of

 hard locations (the ceil ing of the fraction means that the space is covered
completely). The next set of hard locations is defined by
moving the entire package of cubicles up by one cell along the main diagonal of the
RN cube—a translation. To cover the entire address space, cubicles are added next
to the existing ones at this stage. This is repeated until K sets of hard locations have
been defined (K translations take the cubicles to the starting position), resulting in
a total of at least K hard locations. Since each set of hard locations covers
the entire RN address space, and since the locations in a set do not overlap, each
address activates exactly one location in each set and so it activates K locations
overall . Conversely, each location is activated by the KN addresses in its defining
cubicle (by fewer if the cubicle spil ls over the edge of the space). The systematic
placement of the hard locations allows addresses to be converted into activation
vectors very eff iciently in a hardware realization or in a computer simulation (Albus
1980).

Correspondence of the hard locations to the granule cells of the cerebellum is

R K⁄ N

1 R 1–() K⁄+()N

R K⁄ N

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 31

natural in Albus’ model. To make the model li fe-like, each input variable (i.e., each
coordinate of the address) is encoded in R + K − 1 bits. A bit in the encoding
represents a mossy fiber, so that a vector of N input variable (an address) is
presented to CMAC as binary inputs on N(R + K − 1) mossy fibers. In the model,
each granule cell receives input from N mossy fibers, and each mossy fiber provides
input to at least granule cells.

The 20-bit code for an input variable sn with range R = 17 and with K = 4 is given
in Table 3.1. It corresponds to the encoding of the variables s1 and s2 in Figure 6.8
in Albus’ book (1981, p. 149). The bits are labeled with letters above the code in
Table 3.1, and the same letters appear below the code in four rows. Bit A, for
example, is on (+) when the input variable is at most 3, bit B is on when the input
variable falls between 4 and 7, and so forth.

((TABLE 3.1. Encoding a 17-level Input Variable sn …))

This encoding mimics nature. Many receptor neurons respond maximally to a
specific value of an input variable and to values near it. An address bit (a mossy
fiber) represents such a receptor, and it is (+)1 when the input variable is near this
specific value. For example, this “central” value for bit B is 5.5.

The four rows of labels below the code in Table 3.1 correspond to the four sets
of cubicles (K = 4) that define the hard locations (the granule cells) of CMAC. The
first set depends only on the input bits labeled by the first row. If the code for an
input variables sn has Q1 first-row bits (Q1 = 5 in Table 3.1), then the NQ1 first-row
bits of the N input variables define Q1

N hard locations by assigning a location to
each set of N inputs that combines one first-row bit from each input variable. The
second set of Q2

N hard locations is defined similarly by the NQ2 second-row bits,
and so forth with the rest.

We are now ready to describe Albus’ CMAC design as a special case of Jaeckel’s
hyperplane design. The N input variables sn are encoded and concatenated into an
N(R + K − 1)-bit address x, which wil l have NK 1s and
N(R − 1) −1s. The address matrix A will have ∑k Qk

N rows, and each row will
have N 1s, arranged according to the description in the preceding paragraph. The
rest of A will be 0s (for “don’t care”; there will be no −1s in A). The activation
vector y can then be computed as in the hyperplane design: the mth location is
activated by x if the 1s of the hard address A m are matched by 1s in x (i.e., iff A m ⋅
x = N).

If the number of input variables is large enough (e.g., N > 20), the number of rows
in the address matrix A, as given above, will be so large that building a hard location
for each address in A is impractical. To handle such cases, many addresses in A will
use a single hard location. The contributions into a location’s contents from
disparate parts of the address space will t hen act as noise with respect to each other.
The mapping of the addresses in A to the hard locations is pseudorandom and is

R K⁄ N

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 32

effected by a hashing function. Multiple assignment of memory locations in this
manner has been described also by Kohonen and Reuhkala (1978; Kohonen 1980)
in a method called redundant hash addressing.

After a set of locations has been activated, CMAC is ready to transfer data. Here,
as with the sparse distributed memory, we can look at a single coordinate of a data
words only, say, the uth coordinate. Since CMAC data are continuous or graded
rather than binary, the storage and retrieval rules cannot be identical to those of a
sparse distributed memory, but they are similar. Retrieval is simpler: we use the sum
su as output and we omit the final thresholding. From the regularity of CMAC it
follows that the sum is over K active locations.

From this is derived a storage (learning) rule for CMAC: Before storing the
desired output value at x, retrieve su using x as the address and compute the error
su − . If the error is acceptable, do nothing. If the error is too large, correct the K
active counters (elements of the matrix C) by adding g(− su)/K to each, where g
(0 < g ≤ 1) is a gain factor that affects the rate of learning. This storage rule implies
that the counters in C count at intervals no greater than one Kth of the maximum
allowable error (the counting interval in the basic sparse distributed memory is 1).

In summary, multidimensional input to CMAC can be encoded into a long binary
vector that serves as an address to a hyperplane-design sparse distributed memory.
The address bits and the hard-address decoders correspond very naturally to the
mossy fibers and the granule cells of the cerebellum, respectively, and the activation
of a hard location corresponds to the firing of a granule cell . The synapses of the
parallel fibers with the Purkinje cells are the storage sites suggested by the model,
and the value of an output variable is represented by the firing frequency of a
Purkinje cell . Training of CMAC is by error-correction, which presumably is the
function of the climbing fibers in the cerebellum.

3.8. SDM Research

So far in this chapter we have assumed that the hard addresses and the data are a
uniform random sample of their respective spaces (the distribution of the hard
locations in CMAC is uniform systematic). This has allowed us to establish a base
line: we have estimated signal, noise, fidelity, and memory capacity, and we have
suggested reasonable values for various memory parameters. However, data from
real processes tend to occur in clusters, and large regions of the address space are
empty. When such data are stored in a uniformly distributed memory, large numbers
of locations are never activated and hence are wasted, and many of the active
locations are activated repeatedly so that they, too, are mostly wasted as their
contents turn into noise.

There are many ways to counter this tendency of data to cluster. Let us look at the
clustering of data addresses first. Several studies have used the memory efficiently

p̂u

p̂u

p̂u

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 33

by distributing the hard addresses A according to the distribution of the data
addresses X. Keeler (1988) observed that when the two distributions are the same
and the activation radius H is adjusted for each storage and retrieval operation so
that nearly optimal number of locations are activated, the statistical properties of the
memory are close to those of the basic memory with uniformly random hard
addresses. In agreement with that, Joglekar (1989) experimented with NETtalk data
and got his best results by using a subset of the data addresses as hard addresses
(NETtalk transcribes English text into phonemes; Sejnowski and Rosenberg 1986).
In a series of experiments by Danforth (1990), recognition of spoken digits,
encoded in 240 bits, improved dramatically when uniformly random hard addresses
were replaced by addresses that represented spoken words, but the selected-
coordinate design with three coordinates performed the best. In yet another
experiment, Saarinen et al. (1991b) improved memory utilization by distributing
the hard addresses with Kohonen’s self-organizing algorithm.

Two studies have shown that uniform random hard addresses can be used with
clustered data if the rule for activating locations is adjusted appropriately. In
Kanerva (1991), storage and retrieval require two steps: the first to determine a
vector of N positive weights for each data address X t, and the second to activate
locations according to a weighted Hamming distance between X t and the hard
addresses A. In Pohja and Kaski (1992), each hard location has its own radius of
activation Hm, which is chosen based on the data addresses X so that the probabili ty
of activating a location is nearly optimal.

It is equally important to deal with clustering in the stored words. For example,
some of their bits may be mostly on, some may be mostly off, and some may depend
on others. It is possible to analyze the data (X, Z) and the hard addresses A and to
determine optimal storage and retrieval algorithms (Danforth 1991), but we can
also use iterative training by error correction, as described above for Albus’ CMAC.
This was done by Joglekar and by Danforth in their above-mentioned experiments.
When error correction is used, it compensates for the clustering of addresses as
well , but it also introduces the possibilit y of overfitting the model to the training set.

Two studies by Rogers (1989a, 1990a) deal specifically with the interactions of
the data with the hard addresses A. In the first of these he concludes that, in
computing the sum vector s, the active locations should be weighted according to
the words stored in them—in fact, each active counter Cm,u might be weighted
individually. This would take into account at once the number of words stored in a
hard location and the uniformity of those words, so as to give relatively litt le weight
to locations or counters that record mostly noise. In the second study he uses a
genetic algorithm to arrive at a set of hard addresses that would store the most
information about a variable in weather data.

Other research issues include the storage of sequences (Manevitz 1991) and the

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 34

hierarchical storage of data (Manevitz and Zemach 1997).
Most studies of sparse distributed memory have used binary data and have dealt

with multivalued variables by encoding them according to an appropriate binary
code. Table 3.1 is an example of such a code. Important about the code is that the
Hamming distance between codewords corresponds to the difference between the
values being encoded (it grows with the difference until a maximum of 2k is
reached, after which the Hamming distance stays at the maximum). Jorgensen
(1990) proposes the Radial Basis Sparse Distributed Memory that uses ideas from
radial-basis functions and probabilistic neural networks to deal with continuous
variables; the paper also introduces the Infolding Net for working with
nonstationary data. The use of continuous variables by Prager and Fallside has been
discussed in Section 3.6.4.

Sparse distributed memory has been simulated on many computers (Rogers
1990b), including the highly parallel Connection Machine (Rogers 1989b) and
special-purpose neural-network computers (Nordström 1991). Hardware
implementations have used standard logic circuits and memory chips (Flynn et al.
1987) and programmable gate arrays (Saarinen et al. 1991a). A systolic-array
implementation of sparse distributed memory and a resistor circuit for computing
the Hamming distances have been described by Keeler and Denning (1986).

3.9. Associative Memory as a Component of a System

In practical systems, an associative memory plays but a part. It can store and recall
large numbers of large patterns (high-dimensional vectors) based on other large
patterns that serve as memory cues, and it can store and recall long sequences of
such patterns, doing it all i n the presence of noise. In addition to generating output
patterns, the memory provides an estimate of their reliabilit y based on the data it has
stored. But that is all; the memory assigns no meaning to the data beyond the
reliability estimate. The meaning is determined by other parts of the system, which
are also responsible for processing data into forms that are appropriate for an
associative memory. Sometimes these other tasks are called preprocessing and
postprocessing, but the terms are misleading inasmuch as they imply that
preprocessing and postprocessing are minor peripheral functions. They are major
functions—at least in the nervous systems of animals they are—and feedback from
memory is integral to these “peripheral” functions.

For an example of what a sensory processor must do in producing patterns for an
associative memory, consider identifying objects by sight, and assume that the
memory is trained to respond with the name of an object, in some suitable code,
when presented with an object (i.e., when addressed by the encoding for the object).
In what features should objects be encoded? To make eff icient use of the memory,
all views of an object—past, present, and future—should get the same encoding,

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 35

and any two different objects should get different encodings. The name, as an
encoding, satisfies this condition and so it is an ideal encoding, except that it is
arbitrary. What we ask of the visual system is to produce an encoding that reflects
physical reality and that can serve as an input to an associative memory, which then
outputs the name.

For this final naming step to be successful—even with views as yet unseen—
different views of an object should produce encodings that are similar to each other
as measured by something like the Hamming distance, but that are dissimilar to the
encodings of other objects. A raw retinal image (a pixel map) is a poor encoding,
because the retinal cells excited by an object vary drastically with viewing distance
and with gaze relative to the object. It is simple for us to fix the gaze—to look
directly at the object—but it is impractical to bring objects to a standard viewing
distance in order to recognize them. Therefore, the visual system needs to
compensate for changes in viewing distance by encoding—by expressing images in
features that are relatively insensitive to viewing distance. Orientation of lines in the
retinal image satisfy this condition, making them good features for vision. This may
explain the abundance of orientation-sensitive neurons in the visual cortex, and why
the human visual system is much more sensitive to rotation than to scale (we are
poor at recognizing objects in new orientations; we must resort to mental rotation).
Encoding shapes in long vectors of bits for an associative memory, where a bit
encodes orientation at a location, has been described by Kanerva (1990).

What about the claim that “peripheral” processing, particularly sensory
processing, is a major activity in the brain? Large areas of the brain are specific to
one sensory modality or another.

In robots that learn, an associative memory stores a world model that relates
sensory input to action. The flow of events in the world is presented to the memory
as a sequence of large patterns. These patterns encode sensor data, internal-state
variables, and commands to the actuators. The memory’s ability to store these
sequences and to recall them under conditions that resemble the past, allows its use
for predicting and planning. Albus (1981, 1991) argues that intelligent behavior of
animals and robots in complex environments requires not just one associative
memory but a large hierarchy of them, with the sensors and the actuators at the
bottom of the hierarchy.

3.10. Summary

In this chapter we have explored a number of related designs for an associative
memory. Common to them is a feed-forward architecture through two layers of
input coefficients or weights represented by the matrices A and C. The matrix A is
constant, and the matrix C is variable. The M rows of A are interpreted as the
addresses of M hard locations, and the M rows of C are interpreted as the contents

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 36

of those locations. The rows of A are a random sample of the hard-address space in
all but the Albus’ CMAC model, in which the sample is systematic. When the
sample is random, it should allow for the distribution of the data.

The matrix A and the threshold function y transform N-dimensional input vectors
into M-dimensional activation vectors of 0s and 1s. Since M is much larger than N,
the effect is a tremendous increase over the input dimension and a corresponding
increase in the separation of patterns and in memory capacity. This simpli fies the
storage of words by matrix C. The training of C can be by the outer-product
learning rule, by error correction (delta rule), by an analytic solution of a set of
linear inequaliti es, or by a combination of the above. Training, by and large, is fast.
These memories require much hardware per stored pattern, but the resolution of the
components can be low.

The high fan-out and subsequent fan-in (divergence and convergence) implied by
these designs are found also in many neural circuits in the brain. The
correspondence is most striking in the cortex of the cerebellum, suggesting that the
cerebellum could function as an associative memory with billions of hard locations,
each one capable of storing several-hundred-bit words.

The properties of these associative memories imply that if such memory devices,
indeed, play an important part in the brain, the brain must also include devices that
are dedicated to the sensory systems and that transform sensory signals into forms
appropriate for an associative memory.

Pattern Computing. The nervous system offers us a new model of computing, to
be contrasted with traditional numeric computing and symbolic computing. It deals
with large patterns as computational units and therefore it might be called pattern
computing. The main units in numeric computing are numbers, say, 32-bit integers
or 64-bit floating-point numbers, and we think of them as data; in symbolic
computing they are pointers of fewer than 32 bits, and we can think of them as
names (very compact, “ ideal” encodings; see discussion on sensory encoding in
Sec. 3.9). In contrast, the units in pattern computing have hundreds or thousands of
bits, they serve both as pointers and as data, and they need not be precise. Nature
has found a way to compute with such units, and we are barely beginning to
understand how it is done. It appears that much of the power of pattern computing
derives from the geometry of very-high-dimensional spaces and from the
parallelism in computing that it allows.

Acknowledgments

This work was supported by the National Aeronautics and Space Administration
(NASA) Cooperative Agreement NC2-387 with the Universities Space Research
Association (USRA). Computers for the work were a gift from Apple Computer

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 37

Company. Many of the ideas came from the SDM Research Group of RIACS at the
NASA–Ames Research Center. We are indebted to Dr. Michael Raugh for
organizing and directing the group.

References

Albus, J.S. 1971. A theory of cerebellar functions. Mathematical Biosciences
10:25–61.

Albus, J.S. 1980. Method and Apparatus for Implementation of the CMAC
Mapping Algorithm. U.S. Patent No. 4,193,115.

Albus, J.S. 1981. Brains, Behavior, and Robotics. Peterborough, N.H.: BYTE/
McGraw–Hill .

Albus, J.S. 1989. The Marr and Albus theories of the cerebellum: Two early models
of associative memory. Proc. COMPCON Spring ’89 (34th IEEE Computer
Society International Conference, San Francisco), pp. 577–582. Washington,
D.C.: IEEE Computer Society Press.

Albus, J.S. 1991. Outline for a theory of intelli gence. IEEE Trans. Systems, Men,
and Cybernetics 31(3):473–509.

Anderson, J.A. 1968. A memory storage module utilizing spatial correlation
functions. Kybernetik 5(3):113–119.

Chou, P.A. 1989. The capacity of the Kanerva associative memory. IEEE Trans.
Information Theory 35(2):281–298.

Clarke, T.J.W., Prager, R.W., and Fallside, F. 1991. The modified Kanerva model:
Theory and results for real-time word recognition. IEE Proceedings–F
138(1):25–31.

Danforth, D. 1990. An empirical investigation of sparse distributed memory using
discrete speech recognition. Proc. Int. Neural Network Conference (Paris), Vol.
1, pp. 183–186. Norwell, Mass.: Kluver Academic. (Complete report, with the
same title, in RIACS TR 90.18, Research Institute for Advanced Computer
Science, NASA Ames Research Center.)

Danforth, D. 1991. Total Recall in Distributed Associative Memories. Report
RIACS TR 91.3, Research Institute for Advanced Computer Science, NASA
Ames Research Center.

Flynn, M.J., Kanerva, P., Ahanin, B., Bhadkamkar, N., Flaherty, P. and Hinkley, P.
1987. Sparse Distributed Memory Prototype: Principles of Operation. Report
CSL–TR78–338, Computer Systems Laboratory, Stanford University.

Hassoun, M.H. 1988. Two-level neural network for deterministic logic processing.
In N. Peyghambarian, ed., Optical Computing and Nonlinear Materials (Proc.
SPIE 881:258–264).

Hassoun, M.H., and Youssef, A.M. 1989. High performance recording algorithm
for Hopfield model associative memories. Optical Engineering 28(1):46–54.

Hopfield, J.J. 1982. Neural networks and physical systems with emergent collective
computational abiliti es. Proc. Nat. Acad. Sci. U.S.A. (Biophysics) 79(8):2554–
2558. (Reprinted in J.A. Anderson and E. Rosenfeld, eds., Neurocomputing:
Foundations of Research, pp. 460–464. Cambridge, Mass.: MIT Press.)

Ito, M. 1984. The Cerebellum and Neuronal Control. New York: Raven Press.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 38

Jaeckel, L.A. 1988. Two Alternate Proofs of Wang’s Lune Formula for Sparse
Distributed Memory and an Integral Approximation. Report RIACS TR 88.5,
Research Institute for Advanced Computer Science, NASA Ames Research
Center.

Jaeckel, L.A. 1989a. An Alternative Design for a Sparse Distributed Memory.
Report RIACS TR 89.28, Research Institute for Advanced Computer Science,
NASA Ames Research Center.

Jaeckel, L.A. 1989b. A Class of Designs for a Sparse Distributed Memory. Report
RIACS TR 89.30, Research Institute for Advanced Computer Science, NASA
Ames Research Center.

Joglekar, U.D. 1989. Learning to Read Aloud: A Neural Network Approach Using
Sparse Distributed Memory. Master’s thesis, Computer Science, UC Santa
Barbara. (Reprinted as report RIACS TR 89.27, Research Institute for Advanced
Computer Science, NASA Ames Research Center.)

Jorgensen, C.C. 1990. Distributed Memory Approaches for Robotic Neural
Controllers. Report RIACS TR 90.29, Research Institute for Advanced
Computer Science, NASA Ames Research Center.

Kanerva, P. 1988. Sparse Distributed Memory. Cambridge, Mass.: Bradford/MIT
Press.

Kanerva, P. 1990. Contour-map encoding of shape for early vision. In D.S.
Touretzky, ed., Neural Information Processing Systems, Vol. 2, pp. 282–289
(Proc. NIPS–89). San Mateo, Cali f.: Kaufmann.

Kanerva, P. 1991. Effective packing of patterns in sparse distributed memory by
selective weighting of input bits. In T. Kohonen, K. Mäkisara, O. Simula, and J.
Kangas, eds., Artifi cial Neural Networks, Vol. 1, pp. 279–284 (Proc. ICANN–91,
Helsinki). Amsterdam: Elsevier/North–Holland.

Keeler, J.D. 1988. Comparison between Kanerva’s SDM and Hopfield-type neural
networks. Cognitive Science 12:299–329.

Keeler, J.D., and Denning, P.J. 1986. Notes on Implementation of Sparse
Distributed Memory. Report RIACS TR 86.15, Research Institute for Advanced
Computer Science, NASA Ames Research Center.

Kohonen, T. 1972. Correlation matrix memories. IEEE Trans. Computers C
21(4):353–359. (Reprinted in J.A. Anderson and E. Rosenfeld, eds.,
Neurocomputing: Foundations of Research, pp. 174–180. Cambridge, Mass.:
MIT Press.)

Kohonen, T. 1980. Content-Addressable Memories. New York: Springer–Verlag.
Kohonen, T. 1984. Self-Organization and Associative Memory, 2nd ed. New York:

Springer–Verlag.
Kohonen, T., and Reuhkala, E. 1978. A very fast associative method for the

recognition and correction of misspelt words, based on redundant hash
addressing. Proc. Fourth Int. Joint Conference on Pattern Recognition (Kyoto),
pp. 807–809.

Llinás, R.R. 1975. The cortex of the cerebellum. Scientifi c American 232(1):56–71.
Loebner, E.E. 1989. Intelligent network management and functional cerebellum

synthesis. Proc. COMPCON Spring ’89 (34th IEEE Computer Society
International Conference, San Francisco), pp. 583–588. Washington, D.C.: IEEE

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 39

Computer Society Press. (Reprinted in The Selected Papers of Egon Loebner,
pp. 205–209. Palo Alto: Hewlett Packard Laboratories, 1991.)

Manevitz, L.M. 1991. Implementing a “sense of time” via entropy in associative
memories. In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, eds., Artifi cial
Neural Networks, Vol 2, pp. 1211–1214 (Proc. ICANN–91, Helsinki).
Amsterdam: Elsevier/North–Holland.

Manevitz, L.M., and Zemach, Y. 1997. Assigning meaning to data: Using sparse
distributed memory for multilevel cognitive tasks. Neurocomputing 14:15–39.

Marr, D. 1969. A theory of cerebellar cortex. J. Physiol. (London) 202:437–470.
Nordström, T. 1991. Designing and Using Massively Parallel Computers for

Artificial Neural Networks. Licentiate thesis 1991:12L, Luleå University of
Technology, Sweden.

Pohja, S., and Kaski, K. 1992. Kanerva’s Sparse Distributed Memory with Multiple
Hamming Thresholds. Report RIACS TR 92.06, Research Institute for
Advanced Computer Science, NASA Ames Research Center.

Prager, R.W., and Fallside, F. 1989. The modified Kanerva model for automatic
speech recognition. Computer Speech and Language 3(1):61–81.

Rogers, D. 1989a. Statistical prediction with Kanerva’s sparse distributed memory.
In D.S. Touretzky, ed., Neural Information Processing Systems, Vol. 1, pp. 586–
593 (Proc. NIPS–88). San Mateo, Cali f.: Kaufmann.

Rogers, D. 1989b. Kanerva’s sparse distributed memory: An associative memory
algorithm well-suited to the Connection Machine. Int. J. High Speed Computing
1(2):349–365.

Rogers, D. 1990a. Predicting weather using a Genetic Memory: A combination of
Kanerva’s sparse distributed memory and Holland’s genetic algorithms. In D.S.
Touretzky, ed., Neural Information Processing Systems, Vol. 2:, pp. 55–464
(Proc. NIPS–89). San Mateo, Cali f.: Kaufmann.

Rogers, D. 1990b. BIRD: A General Interface for Sparse Distributed memory
Simulators. Report RIACS TR 90.3, Research Institute for Advanced Computer
Science, NASA Ames Research Center.

Rosenblatt, F. 1962. Principles of Neurodynamics. Washington, D.C.: Spartan.
Rumelhart, D.E., and McClelland, J. L., eds. 1986. Parallel Distributed Processing,

Vols. 1 and 2. Cambridge, Mass.: Bradford/MIT Press.
Saarinen, J., Lindell , M., Kotilainen, P., Tomberg, J., Kanerva, P., and Kaski, K.

1991a. Highly parallel hardware implementation of sparse distributed memory.
In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, eds., Artificial Neural
Networks, Vol. 1, pp. 673–678 (Proc. ICANN–91, Helsinki). Amsterdam:
Elsevier/North–Holland.

Saarinen, J., Pohja, S., and Kaski, K. 1991b. Self-organization with Kanerva’s
sparse distributed memory. In T. Kohonen, K. Mäkisara, O. Simula, and
J. Kangas, eds., Artifi cial Neural Networks, Vol. 1, pp. 285–290 (Proc. ICANN–
91, Helsinki). Amsterdam: Elsevier/North–Holland.

Sejnowski, T.J., and Rosenberg, C.R. 1986. NETtalk: A Parallel Network that
Learns to Read Aloud. Report JHU/EECS-86/01, Department of Electrical
Engineering and Computer Science, Johns Hopkins University. (Reprinted in

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 40

J.A. Anderson and E. Rosenfeld, eds., Neurocomputing: Foundations of
Research, pp. 663–672. Cambridge, Mass.: MIT Press.)

Will shaw, D. 1981. Holography, associative memory, and inductive generalization.
In G.E. Hinton and J.A. Anderson, eds., Parallel Models of Associative Memory,
pp. 83–104. Hil lsdale, N.J.: Erlbaum.

KANERVA / SDM AND RELATED MODELS / 02/02/02 / P. 41

 Table 3.1
Encoding a 17-level Input Variable sn in 20 Bits (K = 4)

——
 Input bit

 sn ——
 F M S A G N T B H P V C J Q W D K R X E

——
0 + + + + - - - - - - - - - - - - - - - -

 1 - + + + + - - - - - - - - - - - - - - -
 2 - - + + + + - - - - - - - - - - - - - -
 3 - - - + + + + - - - - - - - - - - - - -
 4 - - - - + + + + - - - - - - - - - - - -
 5 - - - - - + + + + - - - - - - - - - - -
 6 - - - - - - + + + + - - - - - - - - - -
 7 - - - - - - - + + + + - - - - - - - - -
 8 - - - - - - - - + + + + - - - - - - - -
 9 - - - - - - - - - + + + + - - - - - - -
10 - - - - - - - - - - + + + + - - - - - -
11 - - - - - - - - - - - + + + + - - - - -
12 - - - - - - - - - - - - + + + + - - - -
13 - - - - - - - - - - - - - + + + + - - -
14 - - - - - - - - - - - - - - + + + + - -
15 - - - - - - - - - - - - - - - + + + + -
16 - - - - - - - - - - - - - - - - + + + +
——

 A B C D E
 F G H J K

 M N P Q R
 S T V W X

——

