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Abstract

To solve the scalability problem introduced by the ex-
ponential growth of malware, numerous automated mal-
ware analysis techniques have been developed. Unfor-
tunately, all of these approaches make previously un-
addressed assumptions that manifest as weaknesses to
the tenability of the automated malware analysis process.
To highlight this concern, we developed two obfuscation
techniques that make the successful execution of a mal-
ware sample dependent on the unique properties of the
original host it infects. To reinforce the potential for mal-
ware authors to leverage this type of analysis resistance,
we discuss the Flashback botnet’s use of a similar tech-
nique to prevent the automated analysis of its samples.

1 Introduction

Malware analysis is the process of understanding the
behavior of malicious programs. Information collected
from malware analysis can be used to detect simi-
lar malware, repair damaged systems, and dismantle
malicious infrastructure (e.g., C&C servers) [15, 2, 7,
16, 8]. As these activities endanger the cyber crimi-
nal’s profit model, attackers have continuously devel-
oped techniques to prevent malware from being ana-
lyzed. In response, defenders have created new tech-
niques [14, 10, 1, 5, 13] to address malware analysis re-
sistance. This arms race has lasted for decades and in
general, neither side has yet claimed a definitive advan-
tage.

In this paper we demonstrate that through novel reuse
of existing techniques traditionally reserved for digital
rights management (DRM), automated malware analysis
can be made ineffective and unscalable. Specifically, we
introduce the concepts of host identity-based encryption
(HIE) and instruction set localization (ISL), which inter-
relate the successful execution of a malware sample with
unique properties of the original host it infects. Note that

these techniques are not intended to prevent a human an-
alyst from employing manual efforts to understand the
behavior of a particular piece of malware (e.g., Stuxnet).

1.1 Background

Many early software obfuscation techniques (such as
packing) were designed to complicate static analysis
and omitted concerns about what an analyzer could
learn by running a program. Later, virtual machine-
based obfuscation was used to prevent static analysis on
dumped memory images (e.g., which can include un-
packed code). Thus, while these techniques have suc-
cessfully rendered static analysis infeasible, they do not
pose a significant threat to dynamic analysis. As part of
evolutions in the threat landscape, malware authors re-
alized this flaw and began integrating dynamic analysis
detections. As an example, some malware samples will
attempt to detect whether they are being debugged [11],
or whether execution is occurring in a virtual environ-
ment [9]. If detection is successful, a given malware
instance will not exhibit malicious behavior. Although
these techniques have met with some degree of success,
they remain brittle to mitigation, as researchers can de-
vise new techniques (e.g., [14, 5]) to make their analysis
environment appear normal. Based on this observation,
our obfuscation techniques are designed to be effective
against two key conceptual challenges faced by malware
authors:

• (A1): It is difficult to reliably distinguish an analy-
sis environment from a production environment;

• (A2): It is impossible to hide high level (e.g. system
call and network) behaviors from dynamic analysis.

The motivation behind overcoming these challenges
is that the effectiveness of our obfuscation techniques
should not be limited to existing analysis environments
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or mechanisms. Concisely, they should be able to resist
all potential analysis techniques in the predictable future.

The Goal. Instead ofpreventing a human analyst from
understanding a piece of malicious software, the goal of
our obfuscation techniques is toprevent human analysts
from analyzing the malware efficientlywith what have
become ubiquitous automated means. Since manually
analyzing the entirety of new malware samples created
each day is known to be untenable, we will focus on de-
feating automated malware analysis.

1.2 Defeating Automated Malware Analy-
sis

The intuition behind our obfuscation techniques arises
from the decades-old operational model of the anti-
malware industry. This model consists of four phases:
capture, analysis, signature generation, and runtime de-
tection. In the first phase, malware samples are collected
in several ways: honeypots, mail filters, web crawlers,
client submissions, and malware exchanges. Samples
collected are then put into an isolated environment for
analysis. Any sample that is believed to be malicious
will be sent to the signature generation phase, where in-
variant characteristics will be extracted from the binary.
Finally, the generated signature will be dispatched to in-
dividual antivirus clients to detect the malware instance,
or better, other variants of the same family.

The problem with this model is thatmalware samples
are captured and analyzed in two different environments.
Therefore, instead of trying to detect a particular analysis
environment or popular virtualization container used to
create automated malware analysis systems, we assume
that any environment other than the originalis an analy-
sis environment. In other words, malware that possesses
the protections we propose will behave maliciously only
on the original host that was infected; any attempt to
execute a given sample in another environment will
result in incorrect execution. This goal is achieved
through two techniques.

Host Identity-based Encryption (HIE). Before deploy-
ing a malware instance on a given system, informa-
tion (based on system hardware and software) that can
uniquely identify this system is collected. This informa-
tion is then used to derive a key (or host ID) that will be
used to encrypt certain portions of the malware instance.
At runtime, the malware instance will gather the same
set of information again and use it to derive a decryption
key. Thus, if the instance is put into a different execution
environment, decryption will fail and the sample will not
exhibit malicious behavior.

A straightforward implementation of HIE involves en-
crypting the entire malware binary (e.g., encryption key-

based packing). While such an approach could provide
ideal protection for a program, this method may actually
benefit the defender. As an example, once an analysis
system is made aware that the sample leverages HIE, ex-
ecution failure could be used to determine whether the
host ID is correct, which can ease the process of brute-
forcing the decryption key. A more appropriate use of
this technique may involve encryption of only mech-
anisms critical to the malware. As an example, por-
tions of code or data associated with the sample’s do-
main name generation algorithm (used to contact C&C
servers) could be encrypted. Then, even if decryption
fails, the sample will attempt to resolve or connect to the
wrong C&C server. The malware analysis system would
in turn treat this information as real.

HIE has two major advantages. First, it uses mod-
ern cryptography, which means that knowledge of how a
key is derived does not affect the integrity of the protec-
tion; unless the defender can guess the same decryption
key, they cannot unlock the sample. Second, any two
instances of malware will possess different decryption
keys; intelligence gathered from successfully analyzing
one malware instance provides no advantage in analyz-
ing the second. As an example, some malware instances
attempt to detect whether their execution is inside a vir-
tual environment (e.g., by detecting the emulated hard
drive). Once a defender discovers this particular method,
they can modify their environment to mitigate attempted
detections by all samples that use it. However, with HIE,
even if the analyst knows samplea expects environment
α, this result cannot be used to run a sampleb that ex-
pects environmentβ .

Although it shares similarities with conventional
DRM techniques (i.e., locking software to a specific en-
vironment), HIE is different in several ways. First, to
prevent protection bypass, DRM systems often assume
the highest privilege level on a system or utilize spe-
cial hardware. Without precluding itself from portions
of its target audience, HIE cannot (and does not) make
the same assumptions. Second, the goal of DRM is to
prevent the protections of even a single instance of copy-
righted material from being broken (because the unpro-
tected copy could then be widely distributed). In con-
trast, to be effective, HIE only needs to prevent the suc-
cessful processing of large volumes of malware in an ac-
ceptably small time period. Finally, although it is pos-
sible to enumerate all possible host configurations and
brute force a decryption key, use of a sufficiently large
key space will make this process unacceptably ineffi-
cient.

Despite its advantages, host identity-based encryption
is not considered sufficiently resistant to forgery. Thus,
we also propose a network-based identifier that is
derived at the C&C server. The combination of host
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and network-based keys are used by instruction set
localization (ISL), a second technique that provides a
malware instance running on an infected system with its
actual malicious behavior.

Instruction Set Localization. Instruction set virtual-
ization (e.g., as used in VMProtect and Code Virtual-
izer) is an obfuscation technique that protects software
by transforming the source code, intermediate represen-
tation, or native machine code of a program into byte-
code for an arbitrarily chosen instruction set architec-
ture. At runtime, the execution semantics of the origi-
nal program are fulfilled by a native interpreter bundled
with the bytecode. Malware obfuscated with this tech-
nique is thus not vulnerable to memory dump or unpack-
ing strategies, as the executable code present in the bi-
nary is bytecode representing an unknown machine lan-
guage. This property makes instruction set virtualization
a successor to more traditional transformations that en-
crypt, compress, or otherwise reversibly transform na-
tively executable code. However, as mentioned above,
this technique does not pose a significant challenge to
dynamic analysis, as researchers have already developed
techniques [13, 4] capable of automatically reverse engi-
neering bytecode execution semantics.

To fix the weaknesses associated with instruction set
virtualization, we propose a technique similar to HIE,
whereby a virtualized instruction set is bound (orlo-
calized) to a specific environment. In this scenario, a
malware instance deployed on a given system represents
only an interpreter of bytecode for a virtualized instruc-
tion set. All malicious tasks, which will be requested
from and provided by the C&C server, represent byte-
code to be interpreted.

The interpreter’s request for a task includes the host
identifier of the infected system. The C&C server com-
bines the host identifier with a network identifier and
uses this information as part of virtualizing the native
code representing the malicious task. The bytecode
given to the infected host will thus only run on that spe-
cific host, as determined by forgery-resistant host and
network-based identifiers.

Similar to HIE, this obfuscation technique offers sev-
eral guarantees. First, unless the interpreter deployment-
time (or infection-time) signature matches the runtime
signature, the task cannot be executed correctly due to
incorrect bytecode interpretation. Second, the only way
to understand the task is to correctly determine its in-
terpretation, such as by brute-forcing the combination of
host and network identifiers.

Malware instances that use ISL hold several advan-
tages. First, they will (in general) be more extensible, in a
manner similar to a Platform-as-a-Service (PaaS) model.
In addition, a given instance will contain no information

about its actual malicious tasks, which can complicate
the identification of behaviors. Finally, botnets assem-
bled using these instances will offer better resistance to
analysis and tracking, as without access to the original
infected host, researchers and security practitioners will
need to forge both host and network-level identifiers.

2 Prototype Design

In this section, we present additional details on the design
of host identity-based encryption (HIE) and instruction
set localization (ISL).

2.1 Host Identity-based Encryption

The operational particulars of host identity-based
encryption present two major challenges. First, the
specifics of generating a sufficiently unique ID for the
host must be decided. Second, deployment logistics
must be worked out, which will include the use of
intermediate code agents that determine the host ID to
which the delivered malware instance will be bound.

Host ID Generation. As mentioned previously, identi-
fier generation is a critical part of a DRM system. If a
DRM scheme fails to generate an appropriately unique
ID, the protections otherwise afforded are easily by-
passed. For this reason, many schemes require execu-
tion at the highest privilege levels (e.g., the OS kernel
or hypervisor), or special hardware capable of providing
trusted information (e.g., TPM).

Identifier generation is likewise a critical part of HIE
and ISL, but requires additional considerations. First, a
malware author cannot assume availability of the highest
privilege level, as in contrast to legitimate DRM systems,
malware may execute as an unprivileged user. For sim-
ilar reasons, attackers also cannot assume there will be
hardware support. Thus, the information used must be
retrievable without any privilege.

Second, information for identifier generation cannot
be collected from a single source, as unlike a legitimate
DRM system, this information may not be trusted. Thus,
to prevent brute force attacks, host identifier generation
must use multiple sources to increase key space. How-
ever, the information must also be as stable as possible to
minimize the introduction of false positives. As the sta-
bility of information usually decreases with size, a trade-
off must be made.

To the benefit of the proposed system, on current com-
modity systems, there exists sufficient information that is
unique, invariant, and requires no privilege to obtain. As
an example, on Windows systems, the following could
be used to create the host-based identifier:

3



• The Environment Block. When a process is cre-
ated, Windows stores environment information in
the process’ address space. In our design we use
the process owner’s username, computer name, and
CPU identifier. As the environment block is directly
accessible by code that executes inside a given pro-
cess, this information can be obtained without API
or system calls.

• MAC address. The MAC address of the NIC can
be obtained from theGetAdaptersInfoAPI.

• GPU info. GPU information can be obtained
from the GetAdapterIdentifier method of
IDirect3D9Ex interface. In our design, we use the
device description.

• SID of the user. Using the token of a process, the
GetTokenInformationAPI can be used to obtain
the SID of the process’ owner. This identifier is
unique across a Windows domain.

Once collected, this information can be concatenated
and used as an input to a cryptographic hash function
(e.g. bcrypt) to generate the host identifier, which will
then be used as the encryption/decryption key. Due to
time constraints, we did not examine the viability of file
system or registry information to supplement the above
design, but believe they are likewise a rich source of
stable, uniquely identifiable information.

Malware Deployment. As mentioned previously, an ad-
ditional challenge is introduced by the need to obtain
a host identifier prior to deploying a malware instance
bound to that identifier. Solutions to this problem are
complicated by exploit reliability concerns that mandate
shellcode be as small as possible. Thus, gathering infor-
mation used to produce the host identifier must instead
be deferred to an intermediate downloader agent.

The use of multiple, intermediate deployment agents
creates an additional hurdle. That is, if security prac-
titioners capture exploit shellcode or the intermediate
downloader, they could use these agents to obtain a mal-
ware instance bound to their analysis environment. To
solve this problem, we propose using one-time URLs
similar to those offered in password reset procedures.
More specifically, before the shellcode or downloader is
sent to the infected host, the server will assign it a unique
path to download the next stage. Although the opera-
tional specifics will vary based on the attack vector (e.g.,
drive-by download versus email attachment), in all cases
the one-time URL will also be short-lived.

2.2 Instruction Set Localization

The design of ISL requires overcoming three major chal-
lenges: network identifier generation, transformation
rule generation, and fault tolerance.

Network Identifier Generation. Network identifiers are
already used by companies like Google and Facebook to
prevent session hijacking. Similar to their selections, the
following could be used as the network identifier:

• Geo-location. The IP address is the most straight-
forward candidate for the network identifier, but
is not sufficiently stable. For this reason the geo-
location of the IP address should be used instead at
the granularity of state or province. This choice of
granularity permits a certain level of mobility while
maintaining the objectives of ISL.

• Autonomous System Number (ASN). In general,
geo-location alone comprises a sufficient network
identifier. However, as the publication of this infor-
mation is not mandatory, geo-location databases can
contain outdated or incorrect data. For this reason,
the ASN should be used as well.

As it is collected at the C&C server, we consider
information used to create the network identifier un-
forgeable.

Transformation Rule Generation. Ideally, an execu-
tion environment’sunique ID (the combination of the
host and network identifiers) would be mapped to a
unique virtual instruction set. However, as designing
such a system exceeds the scope of this paper, we instead
propose an alternative but equally effective approach.
That is, only one virtual instruction set is used, but each
malware instance receives atask decryption keyderived
from the unique ID when deployed. When responding to
a task request, the C&C server will encrypt the task using
a key derived from the malware instance’s unique ID. If
there is a mismatch (e.g., in the network identifier used to
create the unique ID), the decryption routine will gener-
ate invalid or incorrect bytecode that does not reveal the
malicious task.

As the proposed design replaces per-host unique
virtual instruction sets with task decryption keys, gen-
eration of this component merits additional discussion.
Although straightforward, creating a task decryption key
by simply hashing the unique ID could compromise the
protections provided by ISL. In this scenario, security
practitioners could leverage knowledge of the features
used in unique ID generation to reproduce a key for
a given execution environment, or worse, search a
malware analysis database to identify samples that use
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the same key and successfully decrypt tasks sent to
them. To prevent this potential attack, a keyed hash (e.g.,
HMAC) should be used instead; the corresponding key
would be kept on the C&C server and known only to the
botnet operator.

3 Discussion

Operational Security. Both HIE and ISL are imple-
mented using modern cryptography and thus are immune
to knowledge of how keys are generated– the only way
to break their protections is to derive the correct keys.
As security organizations automatically analyze malware
in environments separate from those originally infected,
derivation of the correct keys requires searching through
the entire key space, which is of non-trivial size. More-
over, some configuration information (i.e., that used to
derive the network identifier) may be impossible to du-
plicate.

Another advantage of HIE and ISL is that they are
insensitive to analysis techniques. That is, regardless
of the employed analysis granularity (e.g., fine-grained
dataflow analysis used in [16] or high-level, blackbox
network intelligence collection), the resistance offered
by HIE and ISL can be broken only if the configuration
parameters of the original execution environment are
successfully matched.

Potential Countermeasures.One straightforward idea
for bypassing the protections provided by HIE and ISL
is to analyze samples in the original environments they
infected. While such an approach may work for samples
collected by high-interaction honeypots, for a variety of
practical reasons the use of this method is not feasible for
other sources. Challenges include monitoring system ca-
pability limitations (e.g., of low-interaction honeypots),
legal and privacy considerations and impact on business
operations and continuity (e.g., for client submissions).
As samples collected by high-interaction honeypots rep-
resent only a small portion of all collected samples, the
effectiveness of this approach is limited.

An alternative to analyzing malware on the systems
originally infected is the collection and duplication of
host and network-level environment information. How-
ever, for similar (though perhaps less significant) pol-
icy and privacy reasons, the implementation of this idea
would face significant hurdles. Moreover, even if the
host identifier can be successfully forged, duplication of
the correct network identifier would require analysis sys-
tem deployment on an unprecedented, globally coopera-
tive scale.

Another potential countermeasure is to record and col-
lect the network activity between an infected host and

the C&C server, then replay that communication dur-
ing analysis. Without one additional protection, this ap-
proach would bypass ISL and could be combined with
attacks or cooperative efforts to forge the host identifier.
However, the use of SSL/TLS for C&C communication
mitigates the successful use of this response.

Finally, the very manner by which HIE and ISL pro-
tect a malware instance could be leveraged by the secu-
rity community to create instability in a set of host or
network identifiers and thus prevent successful or cor-
rect execution (i.e., the allergy attack [3]). However, this
countermeasure could also make legitimate software sys-
tems that use the same information equally unreliable.
As such, the success of this response may depend on the
willingness of users to accept security over usability.

4 Concept Integration by Malware

At the inception of this paper, concerns were raised
about the extent to which malware authors would adopt
techniques like HIE and ISL; the rise of the Flashback
botnet supports the practicability of their use in real-
world malware.

The Flashback Botnet. In September 2011, Flash-
back emerged as malware that targeted Mac OS X. By
April 2012, the botnet representing Flashback-infected
systems had grown to over 600,000 Macintosh systems.
This size makes Flashback the most considerable threat
built using Mac OS X thus far.

While its size and propagation activities are interest-
ing, the operational properties of Flashback malware re-
inforce the concerns expressed in this paper. To elab-
orate, the initial Flashback agent connects to its C&C
server and downloads one or more additional payloads
(e.g., those that can illegally monetize the victim’s use of
search engines). When requesting a payload, the agent
submits the hardware UUID of the infected system. This
value is then hashed (via MD5) to create a key that, in
combination with the RC4 stream cipher, binds the pay-
load to that system. Like HIE, unless the hardware UUID
of the system matches the one used to create the payload,
it will not execute successfully.

While Flashback’s use of a system’s hardware UUID
bears some similarities to HIE, other aspects of the mal-
ware’s operation are less sophisticated. For example,
Flashback’s use of encryption does not optimally protect
its domain name generation algorithm, which is thus eas-
ier to reverse engineer. In addition, communication be-
tween a Flashback-infected system and the C&C server
is in plaintext, which permits impersonation of the C&C.

Despite its other shortcomings, Flashback demon-
strates that malware authors have already begun using
protections like those described in this paper. Security
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researchers must therefore prepare for a future of mali-
cious software that will only run on the systems it origi-
nally infects.

5 Related Work

Previous security research has included the design of
analysis-resistant malware. As an example, Sharif, et al
introduced the design and implementation of a technique
calledconditional code obfuscation[12], which encrypts
trigger-based code with a key derived from an input that
would activate the trigger. In a manner somewhat con-
ceptually similar to HIE and ISL, code protected by this
mechanism cannot be decrypted unless the threat analyst
can derive an input that would activate the trigger.

More recently, Dunn et. al proposed using TPM to
cloak the execution of malware [6]. Like HIE, this work
also proposes the idea of encrypting a payload with a
key specific to a particular host. In contrast to our work
(which ensures that malware is not executed in an analy-
sis environment), the goal of Dunn’s research is to make
host-levelmonitoringof malware infeasible.

6 Conclusion

In this paper we proposed two obfuscation techniques–
host identity-based encryption (HIE) and instruction set
localization (ISL)–that make the successful execution of
a malware sample dependent on the unique properties of
the original host it infects. Going forward, researchers
must include ways to mitigate these protections or ex-
amine alternatives to threat detection and analysis. To
highlight the current and future importance of the asso-
ciated concerns, we discussed the Flashback botnet’s use
of a similar technique to prevent the automated analysis
of its samples.
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