A Study of Internet Instant Messaging and
Chat Protocols

Raymond B. Jennings lll, Erich M. Nahum, David P. Olshefski, Debanjan Saha, Zon-Yin Shae,
and Chris Waters, IBM T.J. Watson Research Center

Abstract

Instant messaging (IM) and network chat communication have seen an enormous
rise in popularity over the last several years. However, since many of these systems
are proprietary, little has been described about the network technology behind them.
This analysis helps bridge this gap by providing an overview of the available features,
functions, system architectures, and protocol specifications of the three most popular
network IM protocols: AOL Instant Messenger, Yahoo! Messenger, and Microsoft
Messenger. We describe common features across these systems and highlight distinc-
tions between them. Where possible, we discuss the advantages and disadvantages of
different technical approaches used in these systems to support different features
and functions. We also briefly discuss ongoing efforts to standardize IM and chat-
based protocols in IETF and other standards bodies.

nstant messaging (IM) and Internet chat communication

have seen enormous growth over the last several years.

IM is the private network communication between two

users, whereas a chat session is the network communica-
tion between two or more users. Chat sessions can either be
private, where each user is invited to join the session, or pub-
lic, where anyone can join the session. There are on the order
of 100 million Internet IM users, where a user is defined as a
unique name on one of the major public IM networks —
AOL Instant Messenger (AIM), Microsoft Messenger (MSN),
or Yahoo! Messenger (YMSG). To date, little has been docu-
mented about the network protocols used by these systems.
The protocols are not standardized, many of them are propri-
etary, and they are even seen as a control point in this busi-
ness by the companies involved. This is demonstrated by the
repeated attempts of the IM services to lock out users of
other systems, in an attempt to keep their customers private.
However, enough information is available to determine the
broad characteristics of these systems. We have also used
packet tracing of IM traffic in order to glean further details
into these protocols and systems.

In this article we present an overview of IM protocols as
exemplified by the three popular systems: AIM, MSN, and
YMSG. While each has been designed and implemented sep-
arately, the overall group exhibits similar characteristics with
respect to network and system architecture. For example, all
of the IM protocols allow authenticating with a central server,
engaging in private messages, and conversing in public chat
rooms. In addition, some IM systems allow file transfers, Web
cam usage, using privacy controls, maintaining buddy lists,
voice chat sessions, and other options. We discuss these topics
in more detail in the sections to follow. We analyze the most
recent IM clients available. However, all of the major IM pro-
tocols have undergone significant revisions over the years, and
changes to the protocols occur on a regular basis.

As with all networked applications, IM and chat protocols
have a large potential design space. This survey helps expose

some of the dimensions available to a protocol designer and
how existing IM systems chose to decide them. Where possi-
ble, we describe advantages and disadvantages of each design
choice, especially when the choice affects security.

Features and Functions

Most IM systems, including the three that we analyze herein,
use a client-server architecture. IM providers typically host a
set of servers that customers log in to and exchange messages
with. A fundamental issue faced by IM service providers, and
thus designers of the protocols, is how the systems will scale
with large numbers of users. Ideally, each provider desires to
have millions of customers logged on to their systems at each
time. This in turn requires that organizations have a system
architecture that can scale with the number of users. Two
approaches are available here: symmetric and asymmetric. In a
symmetric architecture, each server performs identical func-
tions, such that a client need not distinguish which server it
contacts to engage in an activity with. In an asymmetric
approach, each server is dedicated to a particular activity such
as logging in, discovering other users on the network, main-
taining a chat room, or forwarding an instant message.

The client-server architecture allows IM service providers
to keep some degree of control over their users. On the posi-
tive side, it helps overcome some of the technical issues asso-
ciated with traversing the firewalls that the clients are often
behind. On the negative side, since both control and data
paths go through the central servers, scaling the service to
millions of users is difficult. The scalability issue is particularly
difficult for voice chat sessions. As IM services are beginning
to support voice-chat communications, peer-to-peer data
paths are being used.

AIM uses a client-server architecture for normal operations
but uses a peer-to-peer approach for voice-chat sessions
where the initiator talks directly to the recipient after coordi-
nating through the system. Two clients thus communicate

16 0890-8044/06/$20.00 © 2006 IEEE

IEEE Network ¢ July/August 2006

directly, without using a chat room, using a proprietary voice
protocol. YMSG also uses a client-server architecture for nor-
mal operations as well as voice-chat service. YMSG voice traf-
fic is routed through a centralized voice-chat server. Clients
first contact a setup server “vc.yahoo.com” which then redi-
rects the client to the voice-chat hosting server. One benefit of
the YMSG centralized voice server approach is that it can
support multiple users within the same voice-chat session and
each user can specify their own voice specification with the
central voice server based on their network speed. MSN uses
a client-server architecture for normal operations and peer-to-
peer for voice-chat communication. MSN voice-chat sessions
are also limited between two users.

All three services provide a range of administrative and
management functions. Most IM systems have mechanisms
for maintaining lists of friends (and even enemies). These are
typically called “buddy lists,” “allow lists,” and “block lists.”
These lists are maintained as persistent state on the server,
which the clients synchronize with when they log in. The lists
are used for several purposes. Buddy lists identify people that
a user wishes to monitor the presence of (for example, to be
notified when they log in). Block lists identify people that a
user wishes to be isolated from, so that the user is not both-
ered or harassed by those people. Block lists are a form of
blacklisting; some systems have the complementary feature of
a whitelist called allow lists, which specify that only people on
the list may communicate with the user. AIM, YMSG, and
MSN all have buddy lists and block lists. AIM and MSN also
have allow lists. MSN even has “reverse forward lists,” which
informs you of those users that have you on their forward
(allow) lists. AIM has an additional feature that specifies a
granularity of blocking, called a warning. Warnings are sent in
response to received messages that the client finds unpleasant
or inappropriate. Recipients of warning messages are penal-
ized by having their sending rate lowered. Warning levels
degrade slowly over time.

A usability feature that some IM systems provide is meta-
messages that indicate that the other user in an IM session is
typing. This improves interactivity, allowing the user to realize
that the other party is in the process of composing a message
and potentially hold off on their own typing. The “typing”
messages are consequently a message type in the IM protocol.
AIM, YMSG, and MSN have such message types. AIM even
has three granularities: typing, not typing, and typed but
erased. One option YMSG provides that the others do not is
the ability to send IM’s to users that are not currently logged
on to the system. The system saves the messages on persistent
storage and then delivers them to the recipient when that per-
son logs on to the service.

An interesting feature offered by AIM is the ability to
engage in secure communications by encrypting the IM ses-
sion. Clients can obtain public keys from AOL, as well as the
corresponding certificates to verify them. Secure instant mes-
sages are done using SSL and the two peer public keys.
Secure chat rooms are created using a shared 256-bit AES
secret key chosen by the chat room creator; invitations to the
chat room include the secret key. YMSG and MSN do not
have any similar capability. Peer-to-peer text communication
is also offered by some systems using direct TCP connections
between clients, sometimes called “side chats.” AIM and
YMSG have this feature, but MSN does not.

System Architecture

All three commercial systems use server clusters for scalabili-
ty. AIM and MSN take the asymmetric approach. AIM defines
several types of servers: login, BOS (basic OSCAR services),

icon, user search, chat room setup, and chat room hosting.
MSN defines three types: dispatch, notification, and switch-
board. We describe how these servers are used in more detail
below.

In contrast, YMSG takes the symmetric approach. Clients
need only contact one type of server and then route all kinds
of activities though that particular server. For example,
YMSG connects to a random server in the
cs##.msg.dcn.yahoo.com domain, where ## is a two-digit
decimal number. All subsequent communication is routed
through that server.

Session Distribution

We now examine in detail how the different systems distribute
sessions across the servers in response to different actions.

The AIM system architecture is depicted in Fig. 1. In AIM,
after the client logs in with the main authentication server
(step 1 in Fig. 1), the client is directed to a BOS server. The
client opens a single TCP connection to the BOS server (step
2), which is effectively the control channel. Most subsequent
communication occurs over this connection, such as basic
instant messages. Persistent connections are also made to the
email server (step 3) and the user interest server (step 4). New
services (checking email status, looking up a user, etc.) require
sending a service request to the BOS server, which replies with
a new IP address and TCP port number to contact for that
particular service. A new connection is then made to that serv-
er. The exception is when a user wishes to join or create a chat
room session. In this case, the client first contacts the BOS
server to get access to the chat room setup server (step 5),
which grants permission to a chat room. The credentials from
the chat room setup server are then presented to the BOS
server (step 6), which then points the client to a particular chat
room server (step 7). Each chat room session is maintained
using a separate TCP connection. The connection to the chat
room setup server persists until several minutes after all chat
room sessions are ended. The BOS server can force a client to
switch to another BOS server through a migration message.

In 1998, AOL purchased Mirabilis Ltd., the creator of the
ICQ instant-messaging software, and converted the AIM net-
work to use a version of the ICQ OSCAR protocol. OSCAR,
which stands for Open System for Communication in Real-
time, is somewhat misleading, since AOL has never published
the specifications of the protocol. There are some differences
between features supported by ICQ and AIM but overall the
underlying protocol is the same.

The MSN system architecture is shown in Fig. 2. MSN also
has an asymmetric architecture, but with only three types of
servers: dispatch, notification, and switchboard. A client ini-
tially contacts the well-known dispatch server (step 1 in Fig. 2)
if it does not know of any notification servers. The dispatch
server then redirects the client to a notification server. The
client then opens a single connection to the notification server
(step 2) and maintains this connection as long as the client is
logged into the system. This is the control channel in the
MSN architecture. The notification server maintains the pres-
ence of users in the system, and points the client to individual
switchboard servers when a new instant message or chat ses-
sion is created (step 4); step 3 will be discussed in the next
subsection. The switchboard server is used both for chat ses-
sions and instant messages to other clients; this differs from
the other services in that MSN treats instant messages and
private chat rooms identically. Instant messages are actually
chat rooms set up between two users where additional users
can be invited to the chat room. The TCP connection to the
switchboard is open for the lifetime of the chat or IM commu-

IEEE Network ¢ July/August 2006

Email
server

Authorization BOS
server

server

‘1 1 Login/authorization

\

“__’

@ Main control channel and IM data channel

@ Email control channel and messages

@ User interest control channel and messages

(5 ,\' Request permission to join/create chat room

N

User interest
server

Buddy icon
server

Chat room
setup server

Chat room servers

@ Use permission to obtain chat room IP address

r7 ‘. Talk to server hosting chat room

Permanent connection (over user login lifetime)
Transient connection (over event lifetime)
Persistent connection (created on demand with
idle timeout)

W Figure 1. AIM system architecture.

nication to the other client. The switchboard server also han-
dles invitations for file transfers, video, and voice. While MSN
does not have an explicit migration mechanism, the notifica-
tion server can close the client connection, forcing the client
to start over.

YMSG, on the other hand, is very simple due to its sym-
metric architecture, and is shown in Fig. 3. The same connec-
tion is used for all instant messages and chat sessions.

Many corporate environments employ firewalls to screen
unwanted traffic, with a common default to allow HTTP traf-
fic. Because of this, many IM systems allow tunneling over
HTTP as a way around these firewalls. Interestingly, the three
commercial IM systems all use the same symmetric architec-
ture when tunneled over HTTP; namely, the client only inter-
acts with a single HTTP front-end server. The native IM
protocol is effectively encapsulated on top of HTTP, with
commands and responses being multiplexed over HTTP con-
nections. AIM uses two HTTP connections; one for submit-
ting requests asynchronously, and the other that blocks
waiting for the responses. YMSG uses a single synchronous
connection, such that each request blocks until a response is
received from the network. MSN also uses a single connec-
tion, but submits requests asynchronously and either receives
a response or polls for a response depending upon the type of
request.

User Authentication

The first thing users do when they log on to an IM network is
authenticate themselves to the system. Again, several
approaches are possible here, with clear implications for
security. Some IM systems do not go through the full authen-
tication process that is done in other contexts (e.g., SSL/TLS
[1]), since both the user and the system share a secret key
known only to the two of them: the user’s name and pass-
word. While the initial system sign-up is typically done using
HTTP secured by SSL/TLS, once the name and password are
decided, login authentication is typically done by exchanging
hashes of the shared secret. In this way, the password is never
transmitted in the clear over the network, although the user
name is. Both AIM and YMSG work this way. The advantage
to this approach is that expensive crypto operations are
avoided, such as RSA public key or AES shared key encryp-
tion. Instead, relatively cheaper authentication algorithms
based on MD5 and/or SHA are used. The disadvantage is
that confidentiality is not provided; observers can monitor
the packet exchanges and determine who has logged in, even
if they cannot determine the password. Since the hash algo-
rithms are well known, and the challenge and hash result are
sent in the clear, the systems are vulnerable to dictionary
attacks. Users must therefore use passwords that are difficult

18

IEEE Network ¢ July/August 2006

Dispatch

servers servers

TCP connections

(@,
=

.

| | | |
| | | |

Notification

(/ 1 \) Notification server lookup @ Control channel “/ 3 :‘. Login/authorization '\' 4 :% IM and chat conversations

) Switchboard
po servers

PN MSN passport A
} servers

Persistent connection (over login lifetime)
Transient connection (over event lifetime)

M Figure 2. MSN system architecture.

to crack. In addition, performing the exchange in the clear
could lead to connection hijacking; for example, AIM uses
the cookie returned by the logon server as a credential sent
in the clear to the BOS server. This credential must be used
within 30 seconds or the connection will be terminated by the
BOS server. This suggests that there is a window of opportu-
nity where an adversary could monitor the conversation, cap-
ture the cookie, and use it to impersonate the victim to the
BOS server.

MSN uses the Microsoft Passport system. After a client
identifies itself to the MSN notification server, it is redirected
to the Passport login server (step 3 in Fig. 2), where authenti-
cation is performed over SSL. The login server then supplies
the client with several encrypted cookies that serve as creden-
tials to the MSN notification servers. While the internal cryp-
to algorithms are not publicly documented, the encrypted
cookies are sent in the clear. Thus an attacker could attempt
to use the cookies for impersonation and man-in-the-middle
attacks [2, 3].

Data Transfer

One of the key issues in any IM or chat protocol is how proto-
col headers and payloads are encoded. The representation of
this data can take two forms. Historically, many network pro-
tocols have used a binary representation of data in network
byte order; examples include TCP and IP. Application-layer
protocols such as HTTP and SMTP have tended to use a text-
based approach. The main advantage to the binary represen-
tation is that it makes most efficient use of space on the
network. The advantage of the text-based approaches is that
the representation is closer to the way humans view informa-
tion, and thus debugging is easier.

AIM and YMSG both use binary representation for their
headers. AIM uses a two-level binary structure, called FLAP
and SNAC packets, illustrated in Fig. 4. FLAP packets have
fixed-length headers and variable-length data; SNAC packets
are a subtype of FLAP packets that include several additional
fixed-length fields followed by a variable data component.

YMSG, in contrast, has a single-level structure of fixed-
length fields followed by variable-length data, as shown in Fig.
5. The data field is a sequence of key-value pairs, where keys
are represented as a variable-length ASCII number.

AIM and YMSG have different methods of encoding head-
er information. AIM favors a variable-length encoding that is
more efficient in how much space on the wire it takes; YMSG
has a more regular structure that is simpler to parse and
decode.

Unlike AIM and YMSG, MSN headers are text based, as
shown in Fig. 6. MSN headers take the form of <command,
transactionID, parameterList, \r\n>, where command is a
three-letter encoding, transactionID is an integer number, and
parameterList depends on the command. Figure 7 shows an
example of some MSN messages during the login phase,
where different protocol and operating versions are specified
and the client is transferred to a notification server. VER
indicates what native protocol versions are supported by the
client. CVR indicates Locale ID, OS type, OS version, plat-
form architecture, client type, client version, and fixed string
of “MSMSGS” followed by the passport ID. XFR is sent by
the server indicating the IP address and port of the new noti-
fication server NS followed by a 0 and the old IP address and
port.

One potential problem for IM service providers are users
that send data at excessive rates, flooding the network with
useless traffic and inconveniencing other users. While TCP
provides some protection against this through congestion con-
trol, some IM providers have apparently decided that this is
not sufficient. Thus, several systems provide some kind of rate
control to prevent SPAM or denial of service within their net-
works. AIM has a relatively complex algorithm that has differ-
ent rate limits based on the message type. Rates are based on
a time window (in seconds). If the client exceeds the rate, the
user will be warned, and if the bad behavior persists, the serv-
er will start dropping messages and will even eventually dis-
connect the client. YMSG has a static limit of three IMs per
second, which is enforced by the client. This implies that rate
limiting could be circumvented by third-party clients (such as

IEEE Network ¢ July/August 2006

connection

Client

@ Login/authorization

@ Control channel

@ IM and chat conversations _ _ _ _

Persistent connection
(over login lifetime)

Transient connection
(over event lifetime)

M Figure 3. YMSG system architecture.

gaim or xchat) that do not enforce the limit. MSN, on the
other hand, does not have any rate-limiting control.

Another way that IM systems minimize the load on their
networks is by getting rid of idle clients. Idle clients cause
load on the systems by consuming memory (such as con-
nection state) and even CPU cycles (through timer man-
agement). Thus, each system maintains a keep-alive
heartbeat message; if the client does not provide a heart-
beat or response to a query, the connection may be termi-
nated. In the case of AIM, the client must send a
keep-alive every minute to the server. YSMG has two
types of heartbeat requests, a primary and a secondary,
that the server generates and the client must respond to. It
is not immediately clear why two types of session timeouts
are used. Typical values are 60 minutes for the primary
and 13 minutes for the secondary. MSN has both client
and server heartbeats. When the client pings, the server
responds with how long the client should wait until the
next ping. When the server pings, it is a challenge to the
clientd, which must then respond with an MD35 hash of the
challenge and the client ID.

Future Directions

Recently, the IETF has embarked on an effort to standardize
IM and chat protocols. Two competing standards are being
developed: one based on SIMPLE [4] and a second one based
on XMPP [5].

SIMPLE is an extension to the Session Initiation Protocol
(SIP) [6] thst adds instant messaging and presence. SIP is a
text-based control-plane protocol for establishing multimedia
sessions such as Voice over IP. SIP can be transmitted over
UDP, TCP, or SSL/TLS. The SIP/SIMPLE working group
defines two models for messaging and chat sessions: the pager
model and the session model. The pager model is appropriate
when a user wishes to send a small number of short messages.
The session model is intended for extended conversations,
such as chat groups.

The SIP/SIMPLE pager metaphor is similar to that of a
two-way pager or SMS enabled handset; there is no notion of
a session with an explicit start and end, nor any explicit associ-
ation between messages. IM payloads are carried inside the
SIP packet via a new MESSAGE method. SIMPLE thus uses
the SIP routing infrastructure to deliver messages to end-
points. Since SIP is designed and used primarily for transport-
ing control messages, there is potential for traffic congestion
within the SIP infrastructure when SIP messages contain IM
payloads. To help address this issue, the IM payload is limited
at 1300 bytes in SIMPLE which allows it to be carried in a
1500 byte Ethernet packet.

In the SIMPLE session model, there is an explicit conversa-
tion with a clear beginning and end. The IM payload is not
carried in the SIP message, but in the media session estab-
lished by SIP, and transported using the Message Session
Relay Protocol (MSRP) [7]. The session model is much more
complex than the pager mode, but has a number of benefits
[8]- In MSRP, since the IM message payloads are not trans-
ported using the SIP signaling infrastructure, the messages
sent can be very large. MSRP can establish both IM and voice

sessions simultaneously; it also allows endpoints to

create local IM servers and invite peers to enter a

Channel

ID
(1 byte)

Command
start

(1 byte)

Sequence
number

(2 bytes)

Data
field
(variable)

chat/voice session at that server. These features
make it much easier to integrate IM with voice
applications and are consequently very desirable
among wireless carriers and network providers

(Table 1).

XMPP, the Extensible Messaging and Presence
Protocol, is an alternative to SIMPLE. The basic
syntax and semantics of XMPP were developed

Sub-
type
(2 bytes)

Family

type
(2 bytes)

Flags
(2 bytes)

Request
ID

(2 bytes)

SNAC
data
(variable)

originally within the Jabber open-source communi-
ty [9]. While XMPP provides a generalized, extensi-
ble framework for exchanging XML data, it is
intended mainly for the purpose of building IM and

presence applications. IETF chartered the XMPP

W Figure 4. AIM FLAP and SNAC packet formats.

working group in 2002 with the objective of adapt-
ing the Jabber protocol to be suitable as an
IETF instant-messaging and presence technolo-

gy. XMPP is thus more fully developed and

MSG"”
(4 bytes)

Protocol version
(4 bytes)

Data length
(2 bytes)

Service
(2 bytes)

Status
(4 bytes)

Session ID
(4 bytes)

Data (variable length)

M Figure 5. YMSG packet format.

deployed, with current estimates of more than
200,000 registered users in the Jabber system [9].
While XMPP is not bound to a specific architec-
ture, it is currently being deployed in a client-
server manner, similar to IRC [10] or network
mail (SMTP). XMPP supports both instant mes-
sages and chat rooms, and relies on TCP for
congestion control. XMPP allows, but does not
require, the use of SSL/TLS as a method for
securing the stream from tampering and eaves-
dropping.

20

IEEE Network ¢ July/August 2006

Command
(3 ASCII characters)

Parameter list
(variable length ASCII)

Transaction ID

(ASCIl integer) “/r/n"”

XMPP has enjoyed support from the Jabber

open-source community. SIMPLE, on the other
hand, has gained industry support (e.g., Microsoft
Messenger, IBM Sametime). Notably, SIMPLE
and XMPP can benefit from each other and seem

M Figure 6. MSN packet format.

to be moving in that direction. The Jabber com-
munity has indicated the desire to use SIP to set
up messaging sessions. The SIMPLE working
group is making use of XML for message trans-
port (e.g., XCAP to allow users modify IM and
presence information accessibility policy).

VER 29 MSNP10 MSNP9 CVRO\r\n

CVR 30 0x0409 winnt 5.0 1386 MSNMSGR 6.2.0137 MSMSGS
erichnahum@hotmail.com\r\n

XFR 31 NS 207.46.106.126:1863 0 207.46.104.20:1863\r\n

Summary

Little is known about the technical aspects of
commercial Internet IM and chat protocols, due to the closed
proprietary nature of these systems. We have presented a tax-
onomy of different feature and functions supported by most
common systems, namely, AOL Instant Messenger (AIM),
Yahoo Messenger (YMSG), and MSN Messenger (MSN). We
have also examined the system architectures and protocols
that power these systems. Out of all the systems, AIM sup-
ports the most features and thus is the most complex network
IM protocol. This may be a result of the fact that AIM has
the largest user base of the three systems. We also briefly dis-
cussed possible future approaches to IM and chat communica-
tion using IETF standardized protocols such as SIMPLE and
XMPP. It seems clear that IM and Internet chat are here to
stay, and will continue to evolve over time.

References

[1]T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” IETF RFC 2246, Jan. 1999.

[2] D. Kormann and A. Rubin, “Risks of the Passport Single Signon Protocol,”
Comp. Networks, vol. 33, 2000, pp. 51-58.

[3] A. Pashalidis and C. Mitchell, “A Taxonomy of Single Sign-on Systems,” 8th
Australasian Conf. Info. Sec. and Privacy, Wollongong, Australia, July 2003.

[4] B. Campbell et al., “Session Initiation Protocol (SIP) Extension for Instant Mes-
saging,” |IETF RFC 3428, Dec. 2002.

[5] P. Saint-Andre, Ed., “Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence,” IETF RFC 3921, Oct. 2004.

[6] J. Rosenberg et al., “SIP: Session Initiation Protocol,” IETF RFC 3261, June 2002.

[7] B. Campbell, R. Mahy, and C. Jennings, “The Message Session Relay Proto-
col,” draft-ietf-simple-message-sessions-11.ixt, July 2005.

[8] R. Mahy, “Benefits and Motivation for Session Mode Instant Messaging,”
draft-mahy-simple-why-session-mode-01.ixt, Feb. 2005.

[9] Jabber Soz;wure Foundation, http://www.jabber.org

[10] J. Oikarinen and D. Reed, “Internet Relay Chat Protocol,” IETF RFC 1459,
May 1993.

Additional Reading

[1] P. Vixie et al., “Dynamic Updates in the Domain Name System,” IETF RFC
2136, Apr. 1997.

[2] M. Day, S. Aggarwal, and J. Vincent, “Instant Messaging/Presence Protocol
Requirements,” [ETF RFC 2779, Feb. 2000.

[3] C. Dewes, A. Wichmann, and A. Feldmann, “An Analysis of Internet Chat
Systems,” ACM SIGCOMM Internet Measurement Conf., Miami Beach, FL,
Oct. 2003.

Biographies

RAYMOND B. JENNINGS Il (raymondj@us.ibm.com) received his B.S. in electrical
engineering from Western New England College and his M.S. in computer engi-
neering from Manhattan College. He is an advisory engineer at the IBM T. J.
Watson Research Center, Yorktown Heights, New York. He works in the area of
network system software and enterprise networking. He is also a Ph.D. candidate
in the Department of Computer Science at Polytechnic University.

M Figure 7. MSN message examples.

Binary-based protocol Y Y N
ASCll-based protocol N N Y
Supports P2P connections Y Y N
Rate-limiting support Y Y N
User-created public chat rooms | N Y Y

M Table 1. IM protocol comparison.

ERICH NAHUM (nahum@us.ibm.com) received his B.A. in computer science from
the University of Wisconsin-Madison, and his M.S. and Ph.D. degrees in comput-
er science from the University of Massachusetts at Amherst. He is a research staff
member at the IBM T. J. Watson Research Center. He works in the areas of net-
worked server performance, workload characterization and generation, TCP,
HTTP, and security.

DAVID OLSHEFSKI (olshef@us.ibm.com) received his B.S. in computer science from
the State University of New York at Albany and his M.S. in computer science
from Rensselaer at Hartford. He is an advisory programmer at the IBM T. J.
Watson Research Center. He works in the area of network system software and
enterprise networking. He is also a Ph.D. candidate in the Department of Com-
puter Science at Columbia University.

DEBANJAN SAHA (dsaha@us.ibm.com) received a B.Tech. degree from the Indian
Institute of Technology, and M.S. and Ph.D. degrees from the University of Mary-
land at College Pci, all in computer science. He is with the Security and Net-
working Department of the IBM T. J. Watson Research Center. He has authored
numerous papers and is a co-recipient of IEEE Communications Society’s 2004
Fred W. Ellersick prize paper award and 2003 William R. Bennett prize paper
award. He is one of the first implementers of MPLS, a primary author of the
GMPLS standard in [ETF, and a co-author of a book on that subject.

ZON-YIN SHAE (zshae@us.ibm.com) received his B.A. and M.S. degrees in elec-
tronic engineering from National Chiao-Tung University, Taiwan, and his Ph.D.
in electrical engineering from the University of Pennsylvania at Philadelphia. He
is a senior engineer at the IBM T. J. Watson Research Center. He worEs in the
areas of multimedia networking, SIP/VolIP converged networks, multimedia traf-
fic, and data analysis.

CHRISTOPHER J. WATERS received a B.A. in mathematics from the University of
Utah. He works as a mathematician for the Department of Defense. He performs
research in several areas, including network security and analysis of communica-
tions metadata. He has taught network security classes for government employees.
He is collaborating on research projects at IBM T. J. Watson Research Center.

IEEE Network ¢ July/August 2006

21

