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FindBugs, an open 
source static-analysis 
tool for Java, 
evaluates what kinds 
of defects can be 
effectively detected 
with relatively 
simple techniques.

S
oftware quality is important, but often imperfect in practice. We can use many 
techniques to try to improve quality, including testing, code review, and for-
mal specification. Static-analysis tools evaluate software in the abstract, with-
out running the software or considering a specific input. Rather than trying 

to prove that the code fulfills its specification, such tools look for violations of reason-
able or recommended programming practice. Thus, they look for places in which code 
might dereference a null pointer or overflow an array. Static-analysis tools might also 

flag an issue such as a comparison that can’t pos-
sibly be true. Although the comparison won’t cause 
a failure or exception, its existence suggests that it 
might have resulted from a coding error, leading to 
incorrect program behavior.

Some tools also flag or enforce programming 
style issues, such as naming conventions or the use 
of curly braces in conditionals and looping struc-
tures. The lint program for C programs1 is gener-
ally considered the first widely used static-analysis 
tool for defect detection, although by today’s stan-
dards it’s rather limited. Researchers have done 
significant work in the area over the past decade, 
driven substantially by concerns over defects that 
lead to security vulnerabilities, such as buffer over-
flows, format string vulnerabilities, SQL injection, 
and cross-site scripting. A vibrant commercial in-
dustry has developed around advanced (and expen-
sive) static-analysis tools,2,3 and several companies 
have their own proprietary in-house tools, such as 
Microsoft’s PREfix.4 Many commercial tools are 
sophisticated, using deep analysis techniques. Some 
can use or depend on annotations that describe in-

variants and other intended software properties 
that tools can’t easily infer, such as the intended re-
lationship between function parameters.

FindBugs is an example of a static-analysis tool 
that looks for coding defects.5–7 The FindBugs 
project began as an observation, developed into an 
experiment, and snowballed into a widely used tool 
with more than half a million downloads world-
wide. The observation that started it all was that 
some Java programs contained blatant mistakes 
that were detectable with fairly trivial analysis 
techniques. Initial experiments showed that even 
“production quality” software contained such mis-
takes and that even experienced developers made 
them. FindBugs has grown, paying careful atten-
tion to mistakes that occur in practice and to the 
techniques and features needed to effectively incor-
porate it into production software development.

Here, we review the types of issues FindBugs 
identifies, discuss the techniques it uses, and look 
at some experiences using FindBugs on Sun’s Java 
Development Kit (JDK) and Google’s Java code 
base.
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FindBugs in practice
In its current form, FindBugs recognizes more than 
300 programming mistakes and dubious coding id-
ioms that it can identify using simple analysis tech-
niques. FindBugs also uses more sophisticated anal-
ysis techniques, devised to help effectively identify 
certain issues—such as dereferencing of null point-
ers—that occur frequently enough to warrant their 
development. Unlike some other tools designed to 
provide security guarantees, FindBugs doesn’t try 
to identify all defects in a particular category or 
prove that software doesn’t contain a particular de-
fect. Rather, it’s designed to effectively identify low-
hanging fruit—to cheaply detect defects we believe 
developers will want to review and remedy.

Many developers use FindBugs ad hoc, and a 
growing number of projects and companies are 
integrating it into their standard build and testing 
systems. Google has incorporated FindBugs into its 
standard testing and code-review process and has 
fixed more than 1,000 issues in its internal code 
base that FindBugs has identified.

Defects in real code
To appreciate static analysis for defect detection 
in general, and FindBugs in particular, it helps to 
be familiar with some sample defects found in real 
code. Let’s look at some examples from Sun’s JDK 
1.6.0 implementation, which also are representative 
of code seen elsewhere.

One unexpectedly common defect is the infi-
nite recursive loop—that is, a function that always 
returns the result of invoking itself. We originally 
extended FindBugs to look for this defect because 
some freshman at the University of Maryland 
had trouble understanding how Java constructors 
worked. When we ran it against build 13 of Sun’s 
JDK 1.6, we found five infinite recursive loops, 
including

public String foundType() {
    return this.foundType();
}

This code should have been a getter method for 
the field foundType, but the extra parenthesis means 
it always recursively calls itself until the stack over-
flows. Various mistakes lead to infinite recursive 
loops, but the same simple techniques can detect 
them all. Google has found and fixed more than 70 
infinite recursive loops in their code base, and they 
occur surprisingly frequently in other code bases 
we’ve examined.

Another common bug pattern is when software 
invokes a method but ignores its return value, de-

spite the fact that doing so makes no sense. An ex-
ample is the statement s.toLowerCase(), where s is a String. 
Because Strings in Java are immutable, the toLowerCase() 
method has no effect on the String it’s invoked on, 
but rather returns a new String. The developer prob-
ably intended to write s = s.toLowerCase(). Another ex-
ample is when a developer creates an exception but 
forgets to throw it:

try { ... }
catch (IOException e) {
    new SAXException(....);
}

FindBugs uses an intraprocedural dataflow anal-
ysis to identify places in which the code could deref-
erence a null pointer.5,7 Although developers might 
need to examine dozens of lines to understand some 
defects reported by FindBugs, most can be under-
stood by examining only a few lines of code. One 
common case is using the wrong relational or Bool-
ean operation, as in a test to see whether (name != null 
|| name.length > 0). Java evaluates the && and || opera-
tors using short-circuit evaluation: the right-hand 
side is evaluated only if needed in order to determine 
the expression’s value. In this case, Java will evalu-
ate the expression name.length only when name is null, 
leading to a null pointer exception. The code would 
be correct if it had used && rather than ||. FindBugs 
also identifies situations in which the code checks 
a value for null in some places and unconditionally 
dereferences it in others. The following code, for ex-
ample, checks the variable g to see if it’s null, but if 
it is null, the next statement will always deference it, 
resulting in a null pointer exception:

if (g != null)
    paintScrollBars(g,colors);
g.dispose();

FindBugs also performs an intraprocedural type 
analysis that takes into account information from 
instanceof tests and finds errors such as checked casts 
that always throw a class cast exception. It also 
finds places in which two objects guaranteed to be 
of unrelated types are compared for equality (for 
example, where a StringBuffer is compared to a String, 
or the bug Figure 1 shows).

Many other bug patterns exist, some covering 
obscure aspects of the Java APIs and languages. A 
particular pattern might find only one issue in sev-
eral million lines of code, but collectively these find 
a significant number of issues. Examples include 
checking whether a double value is equal to Double.
NaN (nothing is equal to Double.NaN, not even Double.NaN) 

FindBugs 
doesn’t try  
to identify  
all defects  

in a particular 
category.



24	 I E E E  S o f t w a r E    w w w . c o m p u t e r . o r g / s o f t w a r e

or performing a bit shift of a 32-bit int value by a 
constant value greater than 31.

what findBugs doesn’t find
FindBugs doesn’t look for or report numerous po-
tential defects that more powerful tools report.2–4 
We designed it this way for two reasons: to keep 
the analysis relatively simple and to avoid generat-
ing too many warnings that don’t correspond to 
true defects.

One such case is finding null pointer dereferences 
that occur only if a particular path through the pro-
gram is executed. Reasoning reported such an issue 
in Apache Tomcat 4.1.24.8 Reasoning warns that if 
the body of the first if statement isn’t executed but 
the body of the second if statement is executed, then 
a null pointer exception will occur:

HttpServletResponse hres = null;
if (sres instanceof HttpServletResponse)
     hres = (HttpServletResponse) sres;
// Check to see if available
if (!(...).getAvailable()) {
     hres.sendError(...)

The problem is that the analysis doesn’t know 
whether that path is feasible. Perhaps the condition 
in the second statement can be true only if the con-
dition in the first statement is true. In some cases, 
the conditions might be closely related and some 
simple theorem proving can show whether the path 
is feasible or infeasible. But showing that a particu-
lar path is feasible can be much harder, and is in 
general undecidable.

Rather than worry about whether particular 
paths are feasible, FindBugs looks for branches or 
statements that, if executed, guarantee that a null 
pointer exception will occur. We’ve found that al-

most all null pointer issues we report are either real 
bugs or inconsistent code with branches or state-
ments that can’t be executed. Code that is merely 
inconsistent might not be changed if it’s already 
used in production, but generally would be con-
sidered unacceptable in new code if found during 
code review.

We also haven’t pursued checks for array indi-
ces that are out of bounds. Detecting such errors re-
quires tracking relations between various variables 
(for instance, is i less than the length of a), and can 
become arbitrarily complicated. Some simple tech-
niques might accurately report some obvious bugs, 
but we haven’t yet investigated this.

FindBugs nuts and bolts
FindBugs has a plug-in architecture in which de-
tectors can be defined, each of which might report 
several different bug patterns. Rather than use a 
pattern language to describe bugs (as PMD9 and 
Metal10 do), FindBugs detectors are simply writ-
ten in Java using various techniques. Many simple 
detectors use a visitor pattern over the class files 
or method byte codes. Detectors can access infor-
mation about types, constant values, and special 
flags, as well as values stored on the stack or in local 
variables.

Detectors can also traverse the control-flow 
graph, using the results of data-flow analysis such as 
type information, constant values, and nullness. The 
data-flow algorithms all generally use information 
from conditional tests, so that the analysis results in-
corporate information from instanceof and null tests.

FindBugs doesn’t perform interprocedural con-
text-sensitive analysis. However, many detectors 
use global information, such as subtype relation-
ships and fields accessed across the entire applica-
tion. A few detectors use interprocedural summary 
information, such as which method parameters are 
always dereferenced.

FindBugs groups each bug pattern into a cat-
egory (such as correctness, bad practice, perfor-
mance, and internationalization) and assigns each 
bug pattern report either high, medium, or low 
priority. FindBugs determines priorities via heuris-
tics unique to each detector or pattern that aren’t 
necessarily comparable across bug patterns. In nor-
mal operation, FindBugs doesn’t report low-priority 
warnings.

The most important aspect of the FindBugs 
project is perhaps how we develop new bug detec-
tors: we start with real bugs and develop the sim-
plest possible technique that effectively finds such 
bugs. This approach often lets us go from finding a 
particular instance of a bug to implementing a de-

Figure 1. The FindBugs 
Swing GUI. The 
interface shows 
FindBugs reviewing 
a bug in Sun’s Java 
Development Kit.
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tector that can effectively find instances of it within 
hours. Many bugs are quite simple—one bug pat-
tern most recently added to FindBugs occurs when 
the code casts an int value to a char and checks the 
result to see whether it’s –1. Because the char type 
in Java is unsigned, this check will never be true. 
A post on http://worsethanfailure.com inspired this 
bug detector, and within less than an hour, we had 
implemented a detector that found 11 such errors in 
Eclipse 3.3M6.

We can run FindBugs from the command line, 
using Ant or Maven, within Eclipse or NetBeans, 
or in a stand-alone GUI (see Figure 1). We can save 
the analysis results in XML, which we can then 
further filter, transform, or import into a database. 
FindBugs supports two mechanisms that let users 
and tools identify corresponding warnings from dif-
ferent analysis runs, even if line numbers and other 
program artifacts have changed.6 This lets tools de-
termine which issues are new and track audits and 
human reviews. 

FindBugs experiences
We’ve evaluated the issues FindBugs uncovered in 
Sun’s JDK 1.6.0 implementation elsewhere.11 To 
briefly summarize, we looked at each FindBugs 
medium- or high-priority correctness warning that 
was in one build and not reported in the next, 
even though the class containing the warning was 
still present. Out of 53 such warning removals, 37 
were due to a small targeted program change that 
seemed to narrowly focus on remedying the issue 
the warning described. Five were program changes 
that changed the code such that FindBugs no longer 
reported the issue, even though the change didn’t 
completely address aspects of the underlying issue. 
The remaining 11 warnings disappeared owing to 
substantial changes or refactorings that had a larger 
scope than just removing the one defect.

In previous research, we also manually evalu-
ated all the medium- and high-priority correctness 
warnings in build 105 (the official release of Java 
1.6.0). We classified the 379 medium- and high- 
priority correctness warnings as follows:

5 occurred owing to bad analysis on FindBugs’ 
part (in one case, it didn’t understand that a 
method call could change a field);
160 were in unreachable code or likely to have 
little or no functional impact;
176 seemed to have functional impact; and
38 seemed to have substantial functional im-
pact—that is, the method containing the warn-
ing would clearly behave in a way substantially 
at odds with its intended function.

■

■

■

■

A detailed breakdown of the defect classification 
associated with each bug pattern appears in our 
previous paper.11 Clearly, any such classification is 
open to interpretation, and other reviewers would 
likely produce slightly different classifications. Also, 
our assessment of functional impact might differ 
from the actual end-user perspective. For example, 
even if a method is clearly broken, it might never 
be called or be invokable by user code. However, 
given many bug patterns’ localized nature, we 
have some confidence in our classifications’ general 
soundness.

Experiences at Google
Google’s use of FindBugs has evolved over the past 
two years in three distinct phases. We used the les-
sons learned during each phase to plan and develop 
the next one.

The first phase involved automating FindBugs 
to run over all newly checked-in Java source code 
and store any generated warnings. A simple Web 
interface let developers check projects for possible 
bugs and mark false positives. Our initial database 
couldn’t track warnings over different versions, so 
the Web interface saw little use. Developers couldn’t 
determine which warnings applied to which file ver-
sions or whether the warnings were fresh or stale. 
When a defect was fixed, this event wasn’t reported 
by our process. Such stale warnings have a greater 
negative impact on the developer’s user experience 
than a false positive. Successfully injecting Find-
Bugs into Google’s development process required 
more than just making all warnings available out-
side an engineer’s normal workflow.

In our project’s second phase, we implemented 
a service model in which two of the authors (Da-
vid Morgenthaler and John Penix) spent half the 
time evaluating warnings and reporting those we 
decided were significant defects in Google’s bug-
tracking systems. Over the next six months, we 
evaluated several thousand FindBugs warnings 
and filed more than 1,000 bug reports. At first, 
this effort focused on bug patterns we chose on 
the basis of our own opinions about their impor-
tance. As we gained experience and developer 
feedback, we prioritized our evaluation on the ba-
sis of our prior empirical results. We ranked the 
different patterns using both the observed false-
positive rate and the observed fix rate for issues 
we filed as bugs. Thus, we spent more time evalu-
ating warnings that developers were more likely 
to fix. This ranking scheme carried over into the 
third phase, as we noticed that our service model 
wouldn’t scale well as Google grew.

We observed that, in many cases, filing a bug  

Stale  
warnings  

have a greater 
negative  

impact on the 
developer’s 

user 
experience  
than a false 

positive. 
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report was more effort than simply fixing the code. 
To better scale the operation, we needed to move 
the analysis feedback closer to the development 
workflow. In the third and current phase, we ex-
ploit Google’s code-review policy and tools. Be-
fore a developer checks code changes into Google’s 
source-control system, another developer must first 
review them. Different tools help support this pro-
cess, including Mondrian, a sophisticated, internal 
Web-based review tool.12 

Mondrian lets reviewers add inline comments 
to code that are visible to other Mondrian users, 
including the original requester. Engineers discuss 
the code using these comments and note completed 
modifications. For example, a reviewer might re-
quest in an inline comment, “Please rename this 
variable.” In response, the developer would make 
the requested change and reply to the original com-
ment with an inline “Done.” We let Mondrian us-
ers see FindBugs, and other static-analysis warn-
ings, as inline comments from our automated 
reviewer, BugBot. We provide a false-positive sup-
pression mechanism and let developers filter the 
comments displayed by “confidence” from high-
est to lowest. Users select the minimum confidence 
level they wish to see, which suppresses all lower-
ranked warnings.

This system scales quite well, and we’ve seen 
more than 200 users verify or suppress thousands 
of warnings in the past six months. We must still 
make some improvements, such as automatically 
running FindBugs on each development version 
of a file while developers are reviewing it and be-
fore they check it in. The main lesson we learned 
from this experience is that developers will pay 
attention to, and fix, FindBugs warnings if they 
appear seamlessly within the workflow. It helps 
that code reviewers can also see the warnings and 
request fixes as they review the code. Our rank-

ing and false-positive suppression mechanisms are 
crucial to keeping the displayed warnings relevant 
and valuable so that users don’t start ignoring the 
more recent, important warnings along with the 
older, more trivial ones.

Survey of findBugs users
Many studies on static-analysis tools focus on their 
correctness (are the warnings they identify real 
problems?), their completeness (do they find all 
problems in a given category?), or their performance 
in terms of memory and speed. As organizations 
begin integrating these tools into their software 
processes, we must consider other aspects of the 
interactions between these tools and users or pro-
cesses. Do these tools slow down the process with 
unnecessary warnings, or is the value they provide 
(in terms of problems found) worth the investment 
in time? What’s the best way to integrate these tools 
into a given process? Should all developers interact 
with the tools, or should quality assurance special-
ists winnow out less useful warnings?

Few rules of thumb exist about the best ways 
to use static-analysis tools. Rather different soft-
ware teams use a hodgepodge of methods. Many 
users don’t even have a formal process for finding 
defects using tools—they run the tools only occa-
sionally and aren’t consistent in how they respond 
to warnings. In the end, users might not derive full 
value from static-analysis tools, and some might 
discontinue their use, incorrectly perceiving that 
they lack value.

The FindBugs team has started a project that 
aims to identify and evaluate tool features, validate 
or invalidate assumptions tool vendors hold, and 
guide individuals and teams wanting to use static-
analysis tools effectively. At this early stage, it isn’t 
clear what the problems are and what questions we 
should investigate in more depth. So, we’re con-
ducting some surveys and interviews to get qualita-
tive feedback from FindBugs users. We want to de-
termine who our users are, how they use FindBugs, 
how they integrate it into their processes, and what 
their perception of its effectiveness is. Beyond sur-
veys and interviews, we hope to spend time observ-
ing users in their work environments to capture the 
nuances in their interactions with this tool.

The following sections detail some observations 
from the surveys and interviews.

On FindBugs’ utility and impact. The central challenge 
for tool creators is to identify warnings that users 
are concerned with. Tools such as FindBugs assess 
each warning on the basis of its severity (how serious 
the problem is in general) and the tool’s confidence 

Table 1
Users that review at least high-priority warnings 

for each category (out of 252)
Bug category reviewed Percentage of users

Bad practice 96

Performance 96

Correctness 95

Multithreaded correctness 93

Malicious code vulnerability 86

Dodgy 86

Internationalization 57
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in the analysis. As one user pointed out, however, 
users are really interested in risk—especially high-
risk warnings, or those that might cause the code 
to fail and expose the organization. A risk-based 
assessment will be different from organization to 
organization and from project to project. Because 
FindBugs doesn’t have access to an all-knowing, 
context-specific oracle, it can’t perfectly serve ev-
ery user. Our survey and user feedback show that 
FindBugs is detecting many problems users are in-
terested in, and these users are willing to invest the 
time needed to review the warnings.

Recall that FindBugs prioritizes its warnings 
into high, medium, and low. Our survey indicates 
that most users review at least the high-priority 
warnings in all categories (see Table 1). This is the 
expected outcome because such warnings are in-
tended to be the sorts of problems any user would 
want to fix. We were surprised by the number of 
users that also review lower-priority warnings (al-
though the review categories vary from user to 
user). This indicates that although high-priority 
warnings are relevant to most users, lower-priority 
ones are relevant depending on the user’s context. 
Users can tune FindBugs to include low-priority 
warnings in the categories in which they’re particu-
larly interested.

Many users run FindBugs out of the box with-
out any tuning—55 percent of our survey respon-
dents indicated that they don’t filter any bug pat-
terns. One user suggested that FindBugs provide 
preset configurations that selectively filter out detec-
tors depending on the user’s context. Users working 
on Web applications have different priorities from 
those working on desktop applications; organiza-
tions want warnings about debugging facilities, 
such as references to JUnit when the code is near 
release but not while it’s under development.3 We 
must conduct more research to determine how to 
cluster users into different contexts and which de-
tectors are most relevant for each context.

Users’ willingness to review warnings and fix is-
sues also depends on project characteristics and or-
ganization, such as the time investment they’re will-
ing to put into each review and their tolerance for 
false positives. Users analyzing older, more stable 
code bases are less likely to change code in response 
to a warning than users analyzing recently written 
code. We suspect that FindBugs warnings have rela-
tively low review times and are easy to fix, and that 
few false positives exist for those detectors that us-
ers care about. We plan to do more studies to exam-
ine this more closely.

Some users are wary of “tuning code” to Find-
Bugs by modifying the code to remove even low-pri-

ority warnings or adding annotations. Some other 
users willingly make these modifications, even if 
they’re convinced that the code in question can’t ac-
tually behave incorrectly. Of course, this is easier to 
do if the code is new. Some users do this to increase 
their confidence in their code’s quality (one user com-
mented that “the effort to reformulate source code 
to avoid FindBugs warnings is time well spent”).

Some users who are unaware of FindBugs’ warn-
ing-suppression facilities fix all warnings to ensure 
that future warnings aren’t drowned out by older, 
unresolved issues. Particularly on style issues, such 
tuning can lead to conflicts between different tools 
that users must then resolve. One example is the 
use of annotations to aid null-pointer-dereferencing 
detectors. FindBugs provides a set of annotations, 
but so do some other tools. To prevent a conflict for 
users, some vendors and users have come together 
to propose Java Specification Request (JSR) 305, 
which standardizes annotations used to indicate 
nullness (among other things).13,14

Another observation is that users might choose 
to ignore some warnings because they’ve taken 
steps to mediate the problems using other facili-
ties. For example, a user indicated that he ignored 
warnings associated with Web security because he 
relied heavily on input validation and white-listing 
to control program inputs. Input validation is a nat-
ural way to fight SQL injection, cross-site scripting, 
and other security problems. Unfortunately, static- 
analysis tools are sometimes unaware of the input 
validation processes and might report warnings even 
if effective input validation schemes are in place.

On organizational policies. Many survey partici-
pants don’t have formal policies for using FindBugs 
(see Table 2) and use it in an ad hoc way (that is, 

Table 2
Formal policies for using FindBugs

Policy for using findBugs Percentage of users

Our developers only occasionally run FindBugs  
manually

60

No policy on how soon each FindBugs issue must  
be human-reviewed

81

Running FindBugs is NOT required by our process,  
or by management

76

FindBugs warnings are NOT inserted into a separate 
bug-tracking database

83

No policy on how to handle warnings designated  
“Not a Bug”

55

Internationalization 57
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a developer occasionally runs it manually). Some-
times weeks go by between two runs of FindBugs 
because users are focused on adding features and 
fighting problems of which they’re aware. Indeed, 
it appears that many users hadn’t considered that 
formal policies might make their tool use more 
effective until they took the survey. Most respon-
dents indicated that their organizations don’t en-
force any limits on how long warnings can go un-
reviewed. This makes it likely that many reviews 
take place closer to the release date, when the pres-
sure means that the emphasis is more on suppress-
ing warnings than fixing code.

A few organizations have policies ranging from 
requiring a FindBugs run as part of a quality assur-
ance or release process to breaking the central build 
or disallowing a code check-in if any unresolved 
FindBugs warnings exist. Other policies include au-
tomatically inserting warnings into a bug tracker, 
having one or two people who maintain FindBugs 
and review warnings, requiring that warnings are 
human reviewed within a given time limit or warn-
ing-count threshold, integrating FindBugs into code 
review, running FindBugs automatically overnight 
and emailing problems to developers, and using a 
continuous-build server to display active warnings.

Many teams realize the need for a way to sup-
press warnings that aren’t bugs or that are low- 
impact issues (see Table 3). FindBugs filters were the 
most common method, followed by source-level sup-
pression using annotations (such as @SuppressWarnings). 
As we mentioned, some users change the code 
anyway to make the warning go away. Others use 
FindBugs filters, and some have internal scripts or 
processes for suppression. Source-level suppression 
(inserting line-level, method-level, or class-level an-
notations) also attracts some users because the sup-
pression information is readily available to anyone 
who works on that code in the future. Source-level 
suppression might be more effective if the annota-
tions are automatically inserted in response to an 
action by a reviewer.

In many cases, the person who writes the code 
is responsible for reviewing the warning, deciding 

whether it’s relevant, and resolving the issue. Many 
organizations place the responsibility for deciding 
whether a warning is a bug into a single individual’s 
hands. (Eleven percent of users said a team does the 
review, and 14 percent indicated that a reviewer can 
make independent decisions only for trivial cases.) 
This raises questions about whether two different 
individuals will see warnings the same way. We 
plan to study this effect in FindBugs.

I t’s become fairly clear that static-analysis tools 
can find important defects in software. This is 
particularly important when it comes to secu-

rity defects (such as buffer overflows and SQL injec-
tions) because the cost incurred by deploying such 
a defect can easily run into the millions of dollars. 
Many coding defects that FindBugs discovers, such 
as potentially throwing a null pointer exception, are 
less severe in the sense that fewer of them will likely 
have multimillion dollar costs. So, it’s particularly 
important for our research to look at static-analysis 
tools’ cost effectiveness.

Software developers are busy, with many differ-
ent tasks and ways to achieve swift development of 
correct and reliable software. We need to develop 
procedures and best practices that make using 
static-analysis tools more effective than alternative 
uses of developer time, such as spending additional 
time performing manual code review or writing 
test cases.

We believe that we’ve achieved that goal with 
FindBugs, although we haven’t yet measured or 
demonstrated it. Through user surveys, we found 
that actual FindBugs use is more diverse than we’d 
expected and that many things we believe to be best 
practices have yet to be widely adopted. Very few 
FindBugs users, for example, use a build system 
that automatically identifies and flags new issues. 
We’re continuing studies with users and develop-
ment organizations because it seems clear to us that 
development, measurement, validation, and adop-
tion of best practices for static-analysis tools is key 
to enabling their effective use.
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