
focus

22	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

s o f t war e deve l opm en t t o o l s

Using Static Analysis
to Find Bugs

Nathaniel Ayewah and William Pugh, University of Maryland

David Hovemeyer, York College of Pennsylvania

J. David Morgenthaler and John Penix, Google

FindBugs, an open
source static-analysis
tool for Java,
evaluates what kinds
of defects can be
effectively detected
with relatively
simple techniques.

S
oftware quality is important, but often imperfect in practice. We can use many
techniques to try to improve quality, including testing, code review, and for-
mal specification. Static-analysis tools evaluate software in the abstract, with-
out running the software or considering a specific input. Rather than trying

to prove that the code fulfills its specification, such tools look for violations of reason-
able or recommended programming practice. Thus, they look for places in which code
might dereference a null pointer or overflow an array. Static-analysis tools might also

flag an issue such as a comparison that can’t pos-
sibly be true. Although the comparison won’t cause
a failure or exception, its existence suggests that it
might have resulted from a coding error, leading to
incorrect program behavior.

Some tools also flag or enforce programming
style issues, such as naming conventions or the use
of curly braces in conditionals and looping struc-
tures. The lint program for C programs1 is gener-
ally considered the first widely used static-analysis
tool for defect detection, although by today’s stan-
dards it’s rather limited. Researchers have done
significant work in the area over the past decade,
driven substantially by concerns over defects that
lead to security vulnerabilities, such as buffer over-
flows, format string vulnerabilities, SQL injection,
and cross-site scripting. A vibrant commercial in-
dustry has developed around advanced (and expen-
sive) static-analysis tools,2,3 and several companies
have their own proprietary in-house tools, such as
Microsoft’s PREfix.4 Many commercial tools are
sophisticated, using deep analysis techniques. Some
can use or depend on annotations that describe in-

variants and other intended software properties
that tools can’t easily infer, such as the intended re-
lationship between function parameters.

FindBugs is an example of a static-analysis tool
that looks for coding defects.5–7 The FindBugs
project began as an observation, developed into an
experiment, and snowballed into a widely used tool
with more than half a million downloads world-
wide. The observation that started it all was that
some Java programs contained blatant mistakes
that were detectable with fairly trivial analysis
techniques. Initial experiments showed that even
“production quality” software contained such mis-
takes and that even experienced developers made
them. FindBugs has grown, paying careful atten-
tion to mistakes that occur in practice and to the
techniques and features needed to effectively incor-
porate it into production software development.

Here, we review the types of issues FindBugs
identifies, discuss the techniques it uses, and look
at some experiences using FindBugs on Sun’s Java
Development Kit (JDK) and Google’s Java code
base.

	 September/October 2008 I E E E S o f t w a r E 	 23

FindBugs in practice
In its current form, FindBugs recognizes more than
300 programming mistakes and dubious coding id-
ioms that it can identify using simple analysis tech-
niques. FindBugs also uses more sophisticated anal-
ysis techniques, devised to help effectively identify
certain issues—such as dereferencing of null point-
ers—that occur frequently enough to warrant their
development. Unlike some other tools designed to
provide security guarantees, FindBugs doesn’t try
to identify all defects in a particular category or
prove that software doesn’t contain a particular de-
fect. Rather, it’s designed to effectively identify low-
hanging fruit—to cheaply detect defects we believe
developers will want to review and remedy.

Many developers use FindBugs ad hoc, and a
growing number of projects and companies are
integrating it into their standard build and testing
systems. Google has incorporated FindBugs into its
standard testing and code-review process and has
fixed more than 1,000 issues in its internal code
base that FindBugs has identified.

Defects in real code
To appreciate static analysis for defect detection
in general, and FindBugs in particular, it helps to
be familiar with some sample defects found in real
code. Let’s look at some examples from Sun’s JDK
1.6.0 implementation, which also are representative
of code seen elsewhere.

One unexpectedly common defect is the infi-
nite recursive loop—that is, a function that always
returns the result of invoking itself. We originally
extended FindBugs to look for this defect because
some freshman at the University of Maryland
had trouble understanding how Java constructors
worked. When we ran it against build 13 of Sun’s
JDK 1.6, we found five infinite recursive loops,
including

public String foundType() {
 return this.foundType();
}

This code should have been a getter method for
the field foundType, but the extra parenthesis means
it always recursively calls itself until the stack over-
flows. Various mistakes lead to infinite recursive
loops, but the same simple techniques can detect
them all. Google has found and fixed more than 70
infinite recursive loops in their code base, and they
occur surprisingly frequently in other code bases
we’ve examined.

Another common bug pattern is when software
invokes a method but ignores its return value, de-

spite the fact that doing so makes no sense. An ex-
ample is the statement s.toLowerCase(), where s is a String.
Because Strings in Java are immutable, the toLowerCase()
method has no effect on the String it’s invoked on,
but rather returns a new String. The developer prob-
ably intended to write s = s.toLowerCase(). Another ex-
ample is when a developer creates an exception but
forgets to throw it:

try { ... }
catch (IOException e) {
 new SAXException(....);
}

FindBugs uses an intraprocedural dataflow anal-
ysis to identify places in which the code could deref-
erence a null pointer.5,7 Although developers might
need to examine dozens of lines to understand some
defects reported by FindBugs, most can be under-
stood by examining only a few lines of code. One
common case is using the wrong relational or Bool-
ean operation, as in a test to see whether (name != null
|| name.length > 0). Java evaluates the && and || opera-
tors using short-circuit evaluation: the right-hand
side is evaluated only if needed in order to determine
the expression’s value. In this case, Java will evalu-
ate the expression name.length only when name is null,
leading to a null pointer exception. The code would
be correct if it had used && rather than ||. FindBugs
also identifies situations in which the code checks
a value for null in some places and unconditionally
dereferences it in others. The following code, for ex-
ample, checks the variable g to see if it’s null, but if
it is null, the next statement will always deference it,
resulting in a null pointer exception:

if (g != null)
 paintScrollBars(g,colors);
g.dispose();

FindBugs also performs an intraprocedural type
analysis that takes into account information from
instanceof tests and finds errors such as checked casts
that always throw a class cast exception. It also
finds places in which two objects guaranteed to be
of unrelated types are compared for equality (for
example, where a StringBuffer is compared to a String,
or the bug Figure 1 shows).

Many other bug patterns exist, some covering
obscure aspects of the Java APIs and languages. A
particular pattern might find only one issue in sev-
eral million lines of code, but collectively these find
a significant number of issues. Examples include
checking whether a double value is equal to Double.
NaN (nothing is equal to Double.NaN, not even Double.NaN)

FindBugs
doesn’t try
to identify
all defects

in a particular
category.

24	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

or performing a bit shift of a 32-bit int value by a
constant value greater than 31.

what findBugs doesn’t find
FindBugs doesn’t look for or report numerous po-
tential defects that more powerful tools report.2–4
We designed it this way for two reasons: to keep
the analysis relatively simple and to avoid generat-
ing too many warnings that don’t correspond to
true defects.

One such case is finding null pointer dereferences
that occur only if a particular path through the pro-
gram is executed. Reasoning reported such an issue
in Apache Tomcat 4.1.24.8 Reasoning warns that if
the body of the first if statement isn’t executed but
the body of the second if statement is executed, then
a null pointer exception will occur:

HttpServletResponse hres = null;
if (sres instanceof HttpServletResponse)
 hres = (HttpServletResponse) sres;
// Check to see if available
if (!(...).getAvailable()) {
 hres.sendError(...)

The problem is that the analysis doesn’t know
whether that path is feasible. Perhaps the condition
in the second statement can be true only if the con-
dition in the first statement is true. In some cases,
the conditions might be closely related and some
simple theorem proving can show whether the path
is feasible or infeasible. But showing that a particu-
lar path is feasible can be much harder, and is in
general undecidable.

Rather than worry about whether particular
paths are feasible, FindBugs looks for branches or
statements that, if executed, guarantee that a null
pointer exception will occur. We’ve found that al-

most all null pointer issues we report are either real
bugs or inconsistent code with branches or state-
ments that can’t be executed. Code that is merely
inconsistent might not be changed if it’s already
used in production, but generally would be con-
sidered unacceptable in new code if found during
code review.

We also haven’t pursued checks for array indi-
ces that are out of bounds. Detecting such errors re-
quires tracking relations between various variables
(for instance, is i less than the length of a), and can
become arbitrarily complicated. Some simple tech-
niques might accurately report some obvious bugs,
but we haven’t yet investigated this.

FindBugs nuts and bolts
FindBugs has a plug-in architecture in which de-
tectors can be defined, each of which might report
several different bug patterns. Rather than use a
pattern language to describe bugs (as PMD9 and
Metal10 do), FindBugs detectors are simply writ-
ten in Java using various techniques. Many simple
detectors use a visitor pattern over the class files
or method byte codes. Detectors can access infor-
mation about types, constant values, and special
flags, as well as values stored on the stack or in local
variables.

Detectors can also traverse the control-flow
graph, using the results of data-flow analysis such as
type information, constant values, and nullness. The
data-flow algorithms all generally use information
from conditional tests, so that the analysis results in-
corporate information from instanceof and null tests.

FindBugs doesn’t perform interprocedural con-
text-sensitive analysis. However, many detectors
use global information, such as subtype relation-
ships and fields accessed across the entire applica-
tion. A few detectors use interprocedural summary
information, such as which method parameters are
always dereferenced.

FindBugs groups each bug pattern into a cat-
egory (such as correctness, bad practice, perfor-
mance, and internationalization) and assigns each
bug pattern report either high, medium, or low
priority. FindBugs determines priorities via heuris-
tics unique to each detector or pattern that aren’t
necessarily comparable across bug patterns. In nor-
mal operation, FindBugs doesn’t report low-priority
warnings.

The most important aspect of the FindBugs
project is perhaps how we develop new bug detec-
tors: we start with real bugs and develop the sim-
plest possible technique that effectively finds such
bugs. This approach often lets us go from finding a
particular instance of a bug to implementing a de-

Figure 1. The FindBugs
Swing GUI. The
interface shows
FindBugs reviewing
a bug in Sun’s Java
Development Kit.

	 September/October 2008 I E E E S o f t w a r E 	 25

tector that can effectively find instances of it within
hours. Many bugs are quite simple—one bug pat-
tern most recently added to FindBugs occurs when
the code casts an int value to a char and checks the
result to see whether it’s –1. Because the char type
in Java is unsigned, this check will never be true.
A post on http://worsethanfailure.com inspired this
bug detector, and within less than an hour, we had
implemented a detector that found 11 such errors in
Eclipse 3.3M6.

We can run FindBugs from the command line,
using Ant or Maven, within Eclipse or NetBeans,
or in a stand-alone GUI (see Figure 1). We can save
the analysis results in XML, which we can then
further filter, transform, or import into a database.
FindBugs supports two mechanisms that let users
and tools identify corresponding warnings from dif-
ferent analysis runs, even if line numbers and other
program artifacts have changed.6 This lets tools de-
termine which issues are new and track audits and
human reviews.

FindBugs experiences
We’ve evaluated the issues FindBugs uncovered in
Sun’s JDK 1.6.0 implementation elsewhere.11 To
briefly summarize, we looked at each FindBugs
medium- or high-priority correctness warning that
was in one build and not reported in the next,
even though the class containing the warning was
still present. Out of 53 such warning removals, 37
were due to a small targeted program change that
seemed to narrowly focus on remedying the issue
the warning described. Five were program changes
that changed the code such that FindBugs no longer
reported the issue, even though the change didn’t
completely address aspects of the underlying issue.
The remaining 11 warnings disappeared owing to
substantial changes or refactorings that had a larger
scope than just removing the one defect.

In previous research, we also manually evalu-
ated all the medium- and high-priority correctness
warnings in build 105 (the official release of Java
1.6.0). We classified the 379 medium- and high-
priority correctness warnings as follows:

5 occurred owing to bad analysis on FindBugs’
part (in one case, it didn’t understand that a
method call could change a field);
160 were in unreachable code or likely to have
little or no functional impact;
176 seemed to have functional impact; and
38 seemed to have substantial functional im-
pact—that is, the method containing the warn-
ing would clearly behave in a way substantially
at odds with its intended function.

■

■

■

■

A detailed breakdown of the defect classification
associated with each bug pattern appears in our
previous paper.11 Clearly, any such classification is
open to interpretation, and other reviewers would
likely produce slightly different classifications. Also,
our assessment of functional impact might differ
from the actual end-user perspective. For example,
even if a method is clearly broken, it might never
be called or be invokable by user code. However,
given many bug patterns’ localized nature, we
have some confidence in our classifications’ general
soundness.

Experiences at Google
Google’s use of FindBugs has evolved over the past
two years in three distinct phases. We used the les-
sons learned during each phase to plan and develop
the next one.

The first phase involved automating FindBugs
to run over all newly checked-in Java source code
and store any generated warnings. A simple Web
interface let developers check projects for possible
bugs and mark false positives. Our initial database
couldn’t track warnings over different versions, so
the Web interface saw little use. Developers couldn’t
determine which warnings applied to which file ver-
sions or whether the warnings were fresh or stale.
When a defect was fixed, this event wasn’t reported
by our process. Such stale warnings have a greater
negative impact on the developer’s user experience
than a false positive. Successfully injecting Find-
Bugs into Google’s development process required
more than just making all warnings available out-
side an engineer’s normal workflow.

In our project’s second phase, we implemented
a service model in which two of the authors (Da-
vid Morgenthaler and John Penix) spent half the
time evaluating warnings and reporting those we
decided were significant defects in Google’s bug-
tracking systems. Over the next six months, we
evaluated several thousand FindBugs warnings
and filed more than 1,000 bug reports. At first,
this effort focused on bug patterns we chose on
the basis of our own opinions about their impor-
tance. As we gained experience and developer
feedback, we prioritized our evaluation on the ba-
sis of our prior empirical results. We ranked the
different patterns using both the observed false-
positive rate and the observed fix rate for issues
we filed as bugs. Thus, we spent more time evalu-
ating warnings that developers were more likely
to fix. This ranking scheme carried over into the
third phase, as we noticed that our service model
wouldn’t scale well as Google grew.

We observed that, in many cases, filing a bug

Stale
warnings

have a greater
negative

impact on the
developer’s

user
experience
than a false

positive.

26	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

report was more effort than simply fixing the code.
To better scale the operation, we needed to move
the analysis feedback closer to the development
workflow. In the third and current phase, we ex-
ploit Google’s code-review policy and tools. Be-
fore a developer checks code changes into Google’s
source-control system, another developer must first
review them. Different tools help support this pro-
cess, including Mondrian, a sophisticated, internal
Web-based review tool.12

Mondrian lets reviewers add inline comments
to code that are visible to other Mondrian users,
including the original requester. Engineers discuss
the code using these comments and note completed
modifications. For example, a reviewer might re-
quest in an inline comment, “Please rename this
variable.” In response, the developer would make
the requested change and reply to the original com-
ment with an inline “Done.” We let Mondrian us-
ers see FindBugs, and other static-analysis warn-
ings, as inline comments from our automated
reviewer, BugBot. We provide a false-positive sup-
pression mechanism and let developers filter the
comments displayed by “confidence” from high-
est to lowest. Users select the minimum confidence
level they wish to see, which suppresses all lower-
ranked warnings.

This system scales quite well, and we’ve seen
more than 200 users verify or suppress thousands
of warnings in the past six months. We must still
make some improvements, such as automatically
running FindBugs on each development version
of a file while developers are reviewing it and be-
fore they check it in. The main lesson we learned
from this experience is that developers will pay
attention to, and fix, FindBugs warnings if they
appear seamlessly within the workflow. It helps
that code reviewers can also see the warnings and
request fixes as they review the code. Our rank-

ing and false-positive suppression mechanisms are
crucial to keeping the displayed warnings relevant
and valuable so that users don’t start ignoring the
more recent, important warnings along with the
older, more trivial ones.

Survey of findBugs users
Many studies on static-analysis tools focus on their
correctness (are the warnings they identify real
problems?), their completeness (do they find all
problems in a given category?), or their performance
in terms of memory and speed. As organizations
begin integrating these tools into their software
processes, we must consider other aspects of the
interactions between these tools and users or pro-
cesses. Do these tools slow down the process with
unnecessary warnings, or is the value they provide
(in terms of problems found) worth the investment
in time? What’s the best way to integrate these tools
into a given process? Should all developers interact
with the tools, or should quality assurance special-
ists winnow out less useful warnings?

Few rules of thumb exist about the best ways
to use static-analysis tools. Rather different soft-
ware teams use a hodgepodge of methods. Many
users don’t even have a formal process for finding
defects using tools—they run the tools only occa-
sionally and aren’t consistent in how they respond
to warnings. In the end, users might not derive full
value from static-analysis tools, and some might
discontinue their use, incorrectly perceiving that
they lack value.

The FindBugs team has started a project that
aims to identify and evaluate tool features, validate
or invalidate assumptions tool vendors hold, and
guide individuals and teams wanting to use static-
analysis tools effectively. At this early stage, it isn’t
clear what the problems are and what questions we
should investigate in more depth. So, we’re con-
ducting some surveys and interviews to get qualita-
tive feedback from FindBugs users. We want to de-
termine who our users are, how they use FindBugs,
how they integrate it into their processes, and what
their perception of its effectiveness is. Beyond sur-
veys and interviews, we hope to spend time observ-
ing users in their work environments to capture the
nuances in their interactions with this tool.

The following sections detail some observations
from the surveys and interviews.

On FindBugs’ utility and impact. The central challenge
for tool creators is to identify warnings that users
are concerned with. Tools such as FindBugs assess
each warning on the basis of its severity (how serious
the problem is in general) and the tool’s confidence

Table 1
Users that review at least high-priority warnings

for each category (out of 252)
Bug category reviewed Percentage of users

Bad practice 96

Performance 96

Correctness 95

Multithreaded correctness 93

Malicious code vulnerability 86

Dodgy 86

Internationalization 57

	 September/October 2008 I E E E S o f t w a r E 	 27

in the analysis. As one user pointed out, however,
users are really interested in risk—especially high-
risk warnings, or those that might cause the code
to fail and expose the organization. A risk-based
assessment will be different from organization to
organization and from project to project. Because
FindBugs doesn’t have access to an all-knowing,
context-specific oracle, it can’t perfectly serve ev-
ery user. Our survey and user feedback show that
FindBugs is detecting many problems users are in-
terested in, and these users are willing to invest the
time needed to review the warnings.

Recall that FindBugs prioritizes its warnings
into high, medium, and low. Our survey indicates
that most users review at least the high-priority
warnings in all categories (see Table 1). This is the
expected outcome because such warnings are in-
tended to be the sorts of problems any user would
want to fix. We were surprised by the number of
users that also review lower-priority warnings (al-
though the review categories vary from user to
user). This indicates that although high-priority
warnings are relevant to most users, lower-priority
ones are relevant depending on the user’s context.
Users can tune FindBugs to include low-priority
warnings in the categories in which they’re particu-
larly interested.

Many users run FindBugs out of the box with-
out any tuning—55 percent of our survey respon-
dents indicated that they don’t filter any bug pat-
terns. One user suggested that FindBugs provide
preset configurations that selectively filter out detec-
tors depending on the user’s context. Users working
on Web applications have different priorities from
those working on desktop applications; organiza-
tions want warnings about debugging facilities,
such as references to JUnit when the code is near
release but not while it’s under development.3 We
must conduct more research to determine how to
cluster users into different contexts and which de-
tectors are most relevant for each context.

Users’ willingness to review warnings and fix is-
sues also depends on project characteristics and or-
ganization, such as the time investment they’re will-
ing to put into each review and their tolerance for
false positives. Users analyzing older, more stable
code bases are less likely to change code in response
to a warning than users analyzing recently written
code. We suspect that FindBugs warnings have rela-
tively low review times and are easy to fix, and that
few false positives exist for those detectors that us-
ers care about. We plan to do more studies to exam-
ine this more closely.

Some users are wary of “tuning code” to Find-
Bugs by modifying the code to remove even low-pri-

ority warnings or adding annotations. Some other
users willingly make these modifications, even if
they’re convinced that the code in question can’t ac-
tually behave incorrectly. Of course, this is easier to
do if the code is new. Some users do this to increase
their confidence in their code’s quality (one user com-
mented that “the effort to reformulate source code
to avoid FindBugs warnings is time well spent”).

Some users who are unaware of FindBugs’ warn-
ing-suppression facilities fix all warnings to ensure
that future warnings aren’t drowned out by older,
unresolved issues. Particularly on style issues, such
tuning can lead to conflicts between different tools
that users must then resolve. One example is the
use of annotations to aid null-pointer-dereferencing
detectors. FindBugs provides a set of annotations,
but so do some other tools. To prevent a conflict for
users, some vendors and users have come together
to propose Java Specification Request (JSR) 305,
which standardizes annotations used to indicate
nullness (among other things).13,14

Another observation is that users might choose
to ignore some warnings because they’ve taken
steps to mediate the problems using other facili-
ties. For example, a user indicated that he ignored
warnings associated with Web security because he
relied heavily on input validation and white-listing
to control program inputs. Input validation is a nat-
ural way to fight SQL injection, cross-site scripting,
and other security problems. Unfortunately, static-
analysis tools are sometimes unaware of the input
validation processes and might report warnings even
if effective input validation schemes are in place.

On organizational policies. Many survey partici-
pants don’t have formal policies for using FindBugs
(see Table 2) and use it in an ad hoc way (that is,

Table 2
Formal policies for using FindBugs

Policy for using findBugs Percentage of users

Our developers only occasionally run FindBugs
manually

60

No policy on how soon each FindBugs issue must
be human-reviewed

81

Running FindBugs is NOT required by our process,
or by management

76

FindBugs warnings are NOT inserted into a separate
bug-tracking database

83

No policy on how to handle warnings designated
“Not a Bug”

55

Internationalization 57

28	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

a developer occasionally runs it manually). Some-
times weeks go by between two runs of FindBugs
because users are focused on adding features and
fighting problems of which they’re aware. Indeed,
it appears that many users hadn’t considered that
formal policies might make their tool use more
effective until they took the survey. Most respon-
dents indicated that their organizations don’t en-
force any limits on how long warnings can go un-
reviewed. This makes it likely that many reviews
take place closer to the release date, when the pres-
sure means that the emphasis is more on suppress-
ing warnings than fixing code.

A few organizations have policies ranging from
requiring a FindBugs run as part of a quality assur-
ance or release process to breaking the central build
or disallowing a code check-in if any unresolved
FindBugs warnings exist. Other policies include au-
tomatically inserting warnings into a bug tracker,
having one or two people who maintain FindBugs
and review warnings, requiring that warnings are
human reviewed within a given time limit or warn-
ing-count threshold, integrating FindBugs into code
review, running FindBugs automatically overnight
and emailing problems to developers, and using a
continuous-build server to display active warnings.

Many teams realize the need for a way to sup-
press warnings that aren’t bugs or that are low-
impact issues (see Table 3). FindBugs filters were the
most common method, followed by source-level sup-
pression using annotations (such as @SuppressWarnings).
As we mentioned, some users change the code
anyway to make the warning go away. Others use
FindBugs filters, and some have internal scripts or
processes for suppression. Source-level suppression
(inserting line-level, method-level, or class-level an-
notations) also attracts some users because the sup-
pression information is readily available to anyone
who works on that code in the future. Source-level
suppression might be more effective if the annota-
tions are automatically inserted in response to an
action by a reviewer.

In many cases, the person who writes the code
is responsible for reviewing the warning, deciding

whether it’s relevant, and resolving the issue. Many
organizations place the responsibility for deciding
whether a warning is a bug into a single individual’s
hands. (Eleven percent of users said a team does the
review, and 14 percent indicated that a reviewer can
make independent decisions only for trivial cases.)
This raises questions about whether two different
individuals will see warnings the same way. We
plan to study this effect in FindBugs.

I t’s become fairly clear that static-analysis tools
can find important defects in software. This is
particularly important when it comes to secu-

rity defects (such as buffer overflows and SQL injec-
tions) because the cost incurred by deploying such
a defect can easily run into the millions of dollars.
Many coding defects that FindBugs discovers, such
as potentially throwing a null pointer exception, are
less severe in the sense that fewer of them will likely
have multimillion dollar costs. So, it’s particularly
important for our research to look at static-analysis
tools’ cost effectiveness.

Software developers are busy, with many differ-
ent tasks and ways to achieve swift development of
correct and reliable software. We need to develop
procedures and best practices that make using
static-analysis tools more effective than alternative
uses of developer time, such as spending additional
time performing manual code review or writing
test cases.

We believe that we’ve achieved that goal with
FindBugs, although we haven’t yet measured or
demonstrated it. Through user surveys, we found
that actual FindBugs use is more diverse than we’d
expected and that many things we believe to be best
practices have yet to be widely adopted. Very few
FindBugs users, for example, use a build system
that automatically identifies and flags new issues.
We’re continuing studies with users and develop-
ment organizations because it seems clear to us that
development, measurement, validation, and adop-
tion of best practices for static-analysis tools is key
to enabling their effective use.

Acknowledgments
We thank Fortify Software for sponsoring the Find-
Bugs project, and SureLogic, Google, and Sun Micro-
systems for additional support.

References
 1. I.F. Darwin, Checking C Programs with Lint, O’Reilly,

1988.
 2. S. Hallem, D. Park, and D. Engler, “Uprooting Soft-

ware Defects at the Source,” ACM Press Queue, vol. 1,
no. 8, 2003, pp. 64–71.

Table 3
Handling issues designated “Not a bug”

Mechanism for suppressing issues Percent of users

Filter out using FindBugs filters 25

Suppress using @SuppressWarnings 17

Close in a bug tracker or database 5

No policy 55

	 September/October 2008 I E E E S o f t w a r E 	 29

 3. B. Chess and J. West, Secure Programming with Static
Analysis, 1st ed., Addison-Wesley Professional, 2007.

 4. W.R. Bush, J.D. Pincus, and D.J. Sielaff, “A Static
Analyzer for Finding Dynamic Programming Errors,”
Software Practice and Experience, vol. 30, no. 7, 2000,
pp. 775–802.

 5. D. Hovemeyer, J. Spacco, and W. Pugh, “Evaluat-
ing and Tuning a Static Analysis to Find Null Pointer
Bugs,” Proc. 6th ACM SIGPLAN-SIGSOFT Workshop
Program Analysis for Software Tools and Eng. (PASTE
05), ACM Press, 2005, pp. 13–19.

 6. J. Spacco, D. Hovemeyer, and W. Pugh, “Tracking
Defect Warnings across Versions,” Proc. 2006 Int’l
Workshop Mining Software Repositories (MSR 06),
ACM Press, 2006, pp. 133–136.

 7. D. Hovemeyer and W. Pugh, “Finding More Null
Pointer Bugs, but Not Too Many,” Proc. 7th ACM SSIG-
PLAN-SIGSOFTWorkshop Program Analysis for Software
Tools and Eng. (PASTE 07), ACM Press, 2007, pp. 9–14.

 8. Reasoning Inspection Service Defect Data Report for
Tomcat, Version 4.1.24, tech. report, Reasoning, Inc.,
Jan. 2003.

 9. T. Copeland, PMD Applied, Centennial Books, 2005.
 10. B. Chelf, D. Engler, and S. Hallem, “How to Write

System-Specifi c, Static Checkers in Metal,” Proc. 2002
ACM SIGPLAN-SIGSOFT Workshop Program Analysis for
Software Tools and Eng. (PASTE 02), ACM Press, 2002,
pp. 51–60.

 11. N. Ayewah et al., “Evaluating Static Analysis Defect
Warnings on Production Software,” Proc. 7th ACM
SIGPLAN-SIGSOFT Workshop Program Analysis for Soft-
ware Tools and Eng. (PASTE 07), ACM Press, 2007, pp.
1–8.

 12. “Mondrian: Code Review on the Web,” Dec.
2006, http://video.google.com/videoplay?docid=
-8502904076440714866.

 13. D. Hovemeyer and W. Pugh, “Status Report on JSR-
305: Annotations for Software Defect Detection,”
Companion to the 22nd ACM SIGPLAN Conf. Object-
Oriented Programming Systems and Applications,
ACM Press, 2007, pp. 799–800.

 14. JSR 305: Annotations for Software Defect Detection,
http://jcp.org/en/jsr/detail?id=305.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Nathaniel Ayewah is a PhD student in computer science at the University of Mary-
land, College Park. His research interests include understanding the way users interact with
software tools and using information visualization to support creativity. Ayewah received
his MS in computer science from Southern Methodist University. Contact him at ayewah@
cs.umd.edu.

David Hovemeyer is an assistant professor of computer science at York College of
Pennsylvania. His research interests include static analysis to fi nd bugs. Hovemeyer received
his BA in computer science from Earlham College. He developed FindBugs as part of his PhD
research at the University of Maryland, College Park, in conjunction with his thesis advisor
William Pugh. Contact him at david.hovemeyer@gmail.com.

J. David Morgenthaler is a senior software engineer at Google. His research
interests include software tools, in particular static analysis for code visualization,
refactoring, and defect detection and combinatorial algorithms for alphabetic binary trees.
Morgenthaler received his PhD in computer science from the University of California, San
Diego. Contact him at jdm@google.com.

John Penix is a senior software engineer in Google’s Test Engineering organization,
where he tries to detect more defects than he injects. He’s currently working on the tools
that are used to gather, prioritize and display static-analysis warnings. Penix received his
PhD in computer engineering from the University of Cincinnati. He serves on the steering
committee of the IEEE/ACM International Conference on Automated Software Engineering.
Contact him at jpenix@google.com.

William Pugh is a professor at the University of Maryland, College Park. His research
interests include developing tools to improve software productivity. Pugh received his PhD
in computer science from Cornell University. He is a Packard Fellow, and invented Skip Lists,
a randomized data structure that is widely taught in undergraduate data structure courses.
Contact him at pugh@cs.umd.edu.

IEEE Software is 25 years old this year. For a special 25th anniversary edition, we’re looking
for anecdotes on how IEEE Software has helped you over the years.

Has it helped you advance your career, educate others, overcome challenges, or keep up with new trends?
Have you used the content in a course you taught?
Has it inspired you to adopt a new technique?
Has it pointed you to directions or resources that would have remained obscure otherwise?
Has it ever helped your project overcome a problem?
Has it affected the way your organization operates?
Has it caused you to see software development or the software development profession in a new light?

Send your stories not exceeding 500 words to software@computer.org with a subject line
of “25th anniversary” by 22 September 2008.

•
•
•
•
•
•
•

Remember When … ?

