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In this article we introduce a dynamical model of securities prices based on a
particular notion of “irrational exuberance” and “market fear” generated by
the under- or overreaction of market participants. The addition of a small
amount of irrational behavior (behavioral noise) allows us to reproduce realis-
tic distribution of price returns that would be absent in a perfectly rational
world. Our model of asset dynamics is based on cognitive biases of market
participants and their reaction to price momentum. The resulting price dynam-
ics yields fat-tailed distributions of returns. When we apply our model to the
pricing of option contracts we obtain implied volatility skews and smiles gen-
erated by the irrational behavior of market participants.

1 Introduction

In this article we introduce a dynamical model of securities prices based on a
specific (and restrictive) notion of “irrational exuberance” and “market fear”
generated by the under- or overreaction of market participants.! The under- or
overreaction generates price momentum, particularly for short time horizons.
The addition of a small amount of behavioral noise allows us to reproduce the
basic characteristics of empirically observed distributions of price returns. These
characteristics are absent in perfectly rational pricing models. Importantly, while
interesting from the perspective of understanding securities price dynamics,
these distributional properties and the mechanisms that generate them have sig-
nificant implications for derivative pricing models.

Models of securities prices are key to pricing derivatives on securities such as
options. Among the few options pricing models that have been truly successful
in both theory and practice is the valuation model derived by Black and Scholes
(1973). In the ideal Black—Scholes (BS) framework implied volatility would be
constant across option maturities and exercise price (or moneyness). In practice,
these conditions are violated more often than not. The implied volatility of
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traded options exhibits persistent biases commonly referred to as skews, smirks
and smiles (Bakshi, Cao and Chen, 1998; Derman, 1999); and Blynt and Uglum,
1999). Plausible explanations of this phenomenon include asymmetries caused
by a combination of fat and thin tails of the distribution of stock prices and
changes in state variables such as interest rates and volatility (Lipton, 2002).
Furthermore, a plot of daily implied volatility with fixed time-to-maturity and
exercise price looks highly irregular. These issues have become central to the
debate over alternative models for the underlying security, and are the focus of
this article.

Over the years, three basic approaches have been used to extend the BS model
(see, for example, Babbel and Merril, 1996, and references therein). These
approaches relax one or more of the simplifying assumptions made by Black and
Scholes for analytical convenience, providing more realistic extensions to the
original model. Each one of these approaches has its advantages and problems.
The first approach makes volatility a function of the underlying security’s price
(local volatility models). Thus, volatility only fluctuates because price does.
In practice, price and volatility are not perfectly correlated, which makes this
approach questionable. The second approach introduces additional stochastic
processes for state variables such as volatility and interest rates. Because this
approach requires only a handful of phenomenological assumptions for the
dynamics of the underlying state variables, it has been adopted by most academ-
ics and practitioners (Lipton, 2002). The third approach includes models that
replace the standard Wiener random walk process for security prices with more
realistic processes such as jump processes, Levy flights, fractal walks or simi-
larly complex stochastic processes (Bouchard and Sornette, 1994; Bibby and
Sorensen, 2001; Barndorff-Nielsen and Sheppard, 2001; Antonuccio and
Proebsting, 2003; Dragulescu and Yakovenko, 2002; and Sornette, Malevergne
and Muzy, 2003). Because of their mathematical complexity none of these radi-
cal models has been firmly established to date. The model we introduce here
combines the second and third approaches using phenomenological assumptions
about the reaction of market participants to price changes.

One of the fundamental tenets of all of these models is the impossibility of
sustainable risk-free profits in efficient markets. This has lead researchers to pos-
tulate that prices are random walks with no memory or concept of price
momentum. Although this extreme form of the market efficiency hypothesis is
intuitively appealing and cannot be rejected under certain types of statistical
tests, it is rarely spelled out carefully when it is used to describe the dynamics of
security prices over extremely short periods of time. Unfortunately, real financial
markets do not resemble the ones described by the ideal random walk models. In
practice, investors and arbitrageurs are limited in their ability to restore price
changes instantaneously, as explained in Fama (1997), O’Hara (1998), Thaler
(1999), Shefrin (1999) and Schiffler (2000) and references therein.

Furthermore, most pricing models are based on the additional assumption that
market participants are perfectly “rational” in the sense that they do not follow
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price trends because prices are unpredictable in nature. Even if security prices
are set in the aggregate under quasi-equilibrium conditions that may eliminate
sustainable arbitrage opportunities, the equilibrium may not necessarily be
“rational” in this restricted sense. As a practical example, recall the recent “‘irra-
tional exuberance” period of the NASDAQ, when the market value of some
Internet and telecom firms was exceedingly higher than their intrinsic value.
Investors kept buying these hot stocks driven by price momentum despite the
lack of sustainable earnings (or any earnings at all) and the poor business models
of those firms. The “tronic” boom and the “Nifty Fifty” craze of the 1960s and
1970s showed similar speculative behavior (see Malkiel, 1981).

Unfortunately, models based on standard random walks with Wiener
processes fail to capture not only these basic issues but also many other crucial
aspects of real price fluctuations — for example, the possibility of market crashes
or extraordinary returns. More importantly, under the standard assumption of
random walks with normally distributed returns, severe crashes are absent as the
probability of extreme events is embarrassingly small. However, from the practi-
cal point of view the most interesting phenomena are precisely these extreme
events such as bubbles and crashes — for which relatively little data are available
because few of these events occur. Catastrophic events aside, the frequency of
extreme stock returns is systematically larger than the extrapolation based on
small and moderate events would suggest under a normal distribution of returns
(Bouchaud, Cizeau, Leloux, and Potters, 1999; and Johansen and Sornette,
2002). There is, therefore, a need for better theoretical description of crashes and
extreme events to supplement the shortage of data.

Because of the important role of human behavior in determining the dynamics
of securities prices, we incorporate a specific form of irrational behavior into our
model consistent with typical trading patterns of investors (Thaler, 1999;
Schiller, 2000; Hirshleifer, 2001; and Baker and Stein, 2002). Our model
includes cognitive biases of market participants based on price momentum and
the level of equity prices. The resulting price dynamics yields fat-tailed distribu-
tions of returns and allows for severe price changes such as crashes and bubbles.
Finally, when we apply our model to the pricing of option contracts we obtain
implied volatility skews and smiles generated by the irrational behavior of mar-
ket participants.

The rest of the article is organized as follows. In Section 2 we analyze the
evolution of security prices introducing a dynamical approach to irrational trad-
ing that leads to fat-tailed distributions of returns. Section 3 focuses on hedging
strategies. Section 4 discusses the pricing of options on the underlying security.
Our results are discussed in Section 5.

2 A model of irrational exuberance and market fear

In principle, an ideal model of the dynamics of security prices must include a
market-microstructure description of supply-demand dynamics and investors’
preferences that lead to changes in returns. Here we simplify the problem by
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including a phenomenological description of the basic features of the dynamics
of security prices when market participants under- or overreact to price trends,
forcing the security’s return to randomly deviate from its fundamental value.

At the intuitive level the economic interpretation for our particular choice of
security prices and returns as state variables driven by stochastic feedback is as
follows. Investors have some prior views about the company in question and
some idiosyncratic responsiveness to new information. If they are too conserva-
tive when they receive news about the company, they may tend not to re-evaluate
their view as much as the information warrants. This behavior gives rise to mar-
ket underreaction to earnings announcements which impacts on stock returns.
We describe this situation with a (dissipative) mean reversion process for the
security’s return. While market underreaction to news is well documented empir-
ically it may not describe some important instances of price momentum such as
bubbles, crashes and extreme events (Shleifer, 2000). During price bubbles and
crashes investors tend to react to past price trends as opposed to actual news. For
example, bullish investors may attach themselves to an over-optimistic view of
the company during upward price trends. Similarly, bearish investors may attach
themselves to an over-pessimistic view during a downward price trend. In doing
so, they discount the possibility that the bullish (bearish) price trends are the
result of behavioral dynamics rather than a change in the future prospects of the
company. This gives rise to the market overreaction to upward and downward
price moves that can create positive feedback and, therefore, potentially unstable
dynamics for both stock prices and excess returns (Shliefer, 2000). We describe
this situation assuming that the security’s return can deviate temporarily from its
fundamental value through random feedback.

We begin by describing a model for security prices. We seek to quantify
several of the effects of using a model that includes a reasonable and behav-
iorally motivated form of price momentum. Let ¥ =1log(S/S,) where § is the
security price and S, is a reference price. The standard assumption is that the
security’s return follows a Wiener process (or Brownian motion) with normally
distributed independent increments. That is,

2
dx:(u—%)dt+cdz (1)

Here the random variable Z follows a Wiener process, |L is the security’s growth
rate and © its volatility.

The model described in the following reduces to equation (1) when all market
participants are rational and information is incorporated into prices instanta-
neously. Technically, there are two random variables we are interested in, the
log-price and the excess return of the security. These variables are described
with a stochastic dynamical system that has embedded in it the concept of price
momentum (bullish-bearish directional change). The particular model intro-
duced here is based on a mean-reverting Ornstein—Uhlenbeck process with
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multiplicative and additive noises that generate random feedback:
62
Log-price adjustment dy=|u+&- B dr+0ydZ, 2

Excess return adjustment d§ = —ﬁ(ed t+ s—:dZ]) +ndZz, 3)

Here & is the random excess return above (below) the expected return U. The
parameter 0 is the sensitivity of market participants to price return discrepancies
(which leads to mean reversion), 1 is the magnitude of random changes in excess
return and € is the strength of the force of price momentum, ie, the herd-like
“irrational behavior”. For simplicity, parameters U, G, 6, € and 1 are assumed
constant, and 0 > 0 for a stable mean reverting process. For analytical convenience
we also assume that the random variables Z,, Z, and Z, follow independent
Wiener processes.

The effective volatility of the security ¢ is a function of the parameters of the
model as shown in equation (8). For perfectly efficient and rational markets the
effective volatility is

0(8 = 0) = \/(n/6)2+ 63

where o, is the volatility of the standard Brownian motion. The introduction of
the additional parameter G, allows us to model any arbitrary combination of
rational and irrational dynamics. For example, for 6 =& =1 =0 the stochastic
term in equation (2) comes from Z, only, producing a standard Brownian
motion.

The additional term e£dZ, in equation (3) may seem a minor correction to
readers familiar with the standard Ornstein—Uhlenbeck process, but in fact, it
changes the fundamental structure of the familiar mean reverting process com-
pletely. This additional level of price randomness introduces a concept absent
from the standard rational investor framework: the possibility of extreme price
changes, bubbles and crashes caused by irrational behavior. Although similar
effects are obtained from nonlinear and/or stochastic volatility models, note that
our model of market over/underreaction is fundamentally different from the
models of stochastic volatility and market feedback reported in the literature
(Dragulescu and Yakovenko, 2002, and Sornette and Andersen, 2002). The
model described in equations (2) and (3) is characterized by strong inertial
effects caused by random positive feedback, which lead to extreme changes in
price returns, as opposed to extreme price changes caused by random deviations
of the stock volatility.

To illustrate this point Figure 1 shows a random path obtained from equations
(2) and (3) and a Brownian motion (random walk) obtained from the standard
Wiener process in equation (1). This is obtained from equations (2) and (3) in
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FIGURE | Typical realization of equations (2) and (3) for a five-year period for daily
values, i = 0.00028, 6, = 0, 6=0.3, 1 =0.0032, £=0.3 (FT) and the standard
Wiener process equation (1) with ¢ =1/6 (BM).

Simulations of stock price changes
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the limit © = € =1 = 0 with volatility 6. (Note that the same Brownian motion
limit is obtained when the relaxation process is extremely fast. That is, for € = 0,
0, =0 and 6 — e with constant volatility 6 =1/0). The fat-tailed stochastic
process in equations (2) and (3) (upper curve labeled FT) and the standard
Brownian motion (lower curve labeled BM) may seem similar but there are
some noticeable differences caused by extreme events. More precisely, notice
the sharp drop in the stock price a little after r=1.5 and 2.5 years. These
extreme events are similar to market crashes although there are not actual price
“jumps” but price moves with very steep trends.

Although equations (2) and (3) may appear somewhat unusual, they have an
insightful economic interpretation. For stable market conditions with rational
participants (¢ =0) one might believe that markets prevent price returns from
wandering too far from the expected return W. The price adjustment process is
such that if the actual return is less than the expected return W, the adjustment
may consist of some buyers rising their bids for the security in anticipation of a
future price increase. In contrast, if the actual return is higher than the expected
return U, the adjustment may consist of some sellers increasing their offers of the
security in anticipation of a downward price correction. Thus, for stable rational
markets (¢ = 0), the price return v = i + & fluctuates, but it will revert to a mean
return .. The speed of price corrections is driven by the sensitivity of market
participants to expected return discrepancies: 6 > 0. In this limit, whatever errors
investors make in forecasting the future are random errors rather than the result
of stubborn bias towards either optimism or pessimism.
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Note that in the limit of perfectly rational market participants (¢ = 0) and ideal
market efficiency (0 — o), prices follow a random walk in which price changes
have a completely unpredictable component. That is, given a small time interval
OA7r> 1, equation (3) yields EAr=(M/B)AZ,, and the stochastic price adjust-
ments in equation (2) become completely random. This limit corresponds to the
adiabatic elimination of fast relaxation processes. This is the result of rational
market participants incorporating all possible information into prices and
quickly eliminating any profit opportunity (see Farmer and Lo, 1999). In this
limit, equations (2) and (3) play a role similar to the differential equation
dS/S =udt + 6dZ in the BS model and its extensions. We return to this point in
Section 3.

When € # 0 (no matter how small) the dynamic is completely different. In this
case, market participants tend to overreact, under-react or exhibit random “irra-
tional behavior”, leading to explosive situations such as bubbles and crashes. Let
us consider the price adjustment process (2) and (3) during a small time interval
At. Although for 6 >0 the stabilizing mean reverting mechanism for price
returns is still present, when OAr < OAr + € AZ; market participants overreact to
price return discrepancies, and when 0 <0Ar+€AZ, < 0Ar they under-react
with respect to the “rational” case € = 0. In contrast, when 0A7 + €eAZ; < 0 mar-
ket participants exhibit irrational behavior, and the price adjustment process may
be unstable during a small time interval Ar. More precisely, when OAr+
€AZ, <0 the price adjustment process is such that if the actual return is less than
the expected return L, the adjustment may consist of some sellers actually
increasing their offers of the security in anticipation of a further price decreases
(“bearish” view). In contrast, if the actual return is higher than the expected
return W, the adjustment may consist of some buyers increasing their bids for the
security hoping for future increases in price (“bullish” view). In simple terms,
market participants struggle to find their way through the give and take between
risk and return, one moment engaging in rational behavior and the next showing
irrational emotional impulses. The result of this random mixture is a market that
fails to perform consistently with the way perfectly rational models predict it
will perform. In this case, emotions driven by cognitive difficulties destroy the
self-control essential to rational decision-making. This “irrational” regime leads
to situations with extreme price adjustments.

Due to the natural tendency for investors to weight losses more heavily than
gains (loss aversion), one cannot expect the dynamics of irrational behavior
described here with a single parameter to be valid for arbitrarily large security
prices and excess returns. A more realistic model may include different values of
e for positive and negative excess returns and different security prices. When
prices and returns are bigger than some psychological reference values, market
participants may be asymptotically more rational (€ — o) and may show differ-
ent sensitivity parameters than the constant values required in equations (2) and
(3). For simplicity, here we assume that our simplified model of irrational
behavior is valid for prices and returns lower than some practical cut-off values.
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In the general case € # 0 the stochastic process followed by the log-price  and
its instantaneous excess return & in equations (2) and (3) can be described in terms
of the probability distribution P(, , 1) in phase space of a random log-price ¥,
in the interval [, % + d)] and random excess return &, in the interval [, § + d&]
at time ¢. From equations (2) and (3) the differential equation describing the evo-
lution of the probability distribution of log-prices and excess returns is:

oP oP
o foon e
:%[eap]ﬂ-—g (n2+82§2)P]+—— 4)

The analysis of the stationary distribution of returns implied from equation (4)
provides a first look at the mechanics of the model and the origin of the fat-
tailed distribution of returns. The stationary and homogeneous marginal distri-
bution of the instantaneous excess return & is obtained by setting the time and
log-price derivatives to zero:

a{ 0cp+ L0 [(n2+e’e?) P]} )

& 29§
The solution to this equation (except for a normalization factor) is
1 0
Ry(©)= B=— (6)

PRSI T ,
[1+(8§J ] )
n

The stationary distribution of excess returns Po(i) is a modified ¢-distribution
with non-integer degrees of freedom that shows heavy tails. As market partici-
pants become more rational (¢ — 0), the distribution is asymptotically normally
distributed (B — oo) and security prices behave like ideal random walks with
normal random increments. The role of the probability distribution in equation
(6) will become clear in equations (A9) and (A10) in the appendix.

For illustration purposes the above stationary and homogeneous distribution
can be compared to the average distribution of daily returns observed over an
extended period of time and aggregated over all stock prices. Although, this
average distribution is not equivalent to equation (6), it is a first-order approxi-
mation that shows very similar patterns for extreme returns. Figures 2 and 3
show the empirical average distributions of daily returns for the S&P500 index
for the period January 1980 to February 2002, and the NASDAQ index for the
period January 1985 to February 2002. Figures 2 and 3 also show the stationary
distribution of instantaneous excess return in equation (6) and a normal distribu-
tion (standard Brownian motion) fitted to the central peak of the distribution.
Figure 4 shows similar results for IBM stock for the period January 1980 to

URL: www.thejournalofrisk.com Journal of Risk



A dynamical model of market under- and overreaction 99

FIGURE 2 Distribution of daily returns for the S&P500 index, a normal distribution
and equation (6) with B = 1.5 and /e = 0.019.

Distribution of daily returns for the S&P500 index (1980-2002)
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FIGURE 3 Distribution of daily returns for the NASDAQ index, a normal distribu-
tion and equation (6) with B = I.5 and /€ = 0.024.

Distribution of daily returns for the NASDAQ index (1985-2002)
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February 2002. The parameter 3 = 1.5 is the same in all figures, and is in agree-
ment with the values reported in the literature (Plerou, Gopikrishnan, Gabaix,
Nunez-Amaral and Stanley, 2001). The daily-volatility parameter 1 /€ is consis-
tently higher for individual securities than for well-diversified security indices.
Shorter time periods show similar patterns for indices and stocks with more
noise in the tails of the distributions.

Although the distribution P,(&) exhibits the characteristic heavy tails of the
average empirical distributions, it does not represent the actual distribution of
prices and returns because it is obtained by setting the log-prices and time deriv-
atives to zero (homogeneous and stationary solution). The actual distribution is
obtained from equation (4) for an arbitrary log-price ¥, excess return & and time
t. This requires several transformations and approximations that are described in
the appendix. Following the derivation and notation in the appendix, the approx-
imate solution to the marginal distribution of log-prices obtained from equation
(4) is:

pn= [ POLENIE

1 (X—Xo—(u—ﬁz/z)(l—to))z
= exp)-
\2me% (1 — 1) ’ 26° (1~ 1o)
1 ¢ "

x— :
Ao n=0p! (AOG«/t—to )n

3" A O, (X—Xo— (H - 02/2)(1—%))

X

(N

" N
Equation (7) indicates that the bulk of the marginal distribution of log-prices
resembles a normal distribution with an effective volatility given by the “irra-
tionality” of market participants (bullish-bearish views).

2 2 2
6’ = 4“ +063 ~ ?2+c§~—n - +0p (8)
e 00+ €0 5 2
07| 1+ —
20

Here ¢ = + 1/2. That is, in the limit € — 0 market participants become rational
and the effective volatility approaches the value

V(n/6)*+6}
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FIGURE 4 Distribution of daily returns for IBM stock, a normal distribution and
equation (6) with B = 1.5 and 1/e = 0.026.

Distribution of daily returns for IBM (1980-2002)
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Also note that equations (7) and (8) indicate that the normal-like central peak of
the distribution of log-prices is narrower than in the “rational” normal case as
observed in practice.

One should expect the leading normal distribution term in equation (7) to be
valid for a moderate range of security price changes confined to the central peak
of the distribution. The tails of the distribution are driven by the higher-order
corrections in equation (7), which also modify the actual return and volatility of
log-prices:

_ 1 c?
= lim —E[x(t+AD)—x®)|~p-——
L= lim = E[x(+An0-30]=n-= ©)
62 = lim iE[(X(HAr)—X(t))Z]
At—0 At
2 2
NPT (LB_A)_LBA_ (10)
Ak (t—1y) |\ Ao 9k Ay 9k?

Here we introduced A(0, 1) = A,,. Equations (7)—(10), which are based on a sim-
ple model of the mechanics of market under- or overreaction, show some of the
basic characteristics of the observed distribution of real stock prices. For long-
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term horizons the impact of the fat tail contributions diminishes, leading to a
normal distribution of log-prices. This suggests that models of investors’ behav-
ior might help to explain some empirical issues that have remained unanswered
for years.

3 Hedging strategies for fat-tailed distributions of returns

The exact hedging of options for the type of fat-tailed processes described here
is beyond the scope of standard hedging strategies based on a tangent approxi-
mation with continuous and costless hedging. It is clear that a more meaningful
concept of hedging can be generalized to minimize measures of the residual risk
in the spirit of the models such as the ones described in Bouchaud and Sornette
(1994), Schal (1994) and Schweizer (1995). However, given that the standard
delta hedging strategy is still widely used among practitioners for hedging
options, one may ask what kind of corrections can be added to preserve the spirit
of the strategy while accounting for the fat-tailed nature of the distribution of
returns and realistic time steps for hedging. In this section we provide a simpli-
fied first-order correction to the standard delta hedging strategy for small values
of the parameter €, and discuss why the hedging strategy may fail in practice due
to imperfect and incomplete market conditions caused by the particular nature of
the stochastic processes. Our first-order correction also provides the basis for the
discussion in Section 4.

When the dynamics of price changes is given by equation (1) (Brownian
motion), a hedge portfolio composed of options and the underlying security can
be made immune to changes in the security price using a delta-hedging strategy.
In principle, the same strategy could be applied to the processes described in
equations (2) and (3) under the (unrealistic) assumption of instantaneous trading.
However, since the stochastic processes in equations (2) and (3) do not have the
same self-similar diffusion characteristics as the Brownian motion in equation
(1), a change in any small time step At used for hedging will produce different
results. The differences between the stochastic processes in equations (2) and (3)
and the process in equation (1), together with the fact that expression (7) is only
an approximate solution, introduce uncertainty in the valuation of options when
there is frequent but not instantaneous hedging. Here we approach this problem
introducing an argument similar to the one described in Sobehart and Keenan
(2002, 2003) to analyze the impact of market uncertainty and curvature effects
in options pricing under imperfect and incomplete market conditions.

Deriving an approximate pricing methodology for fat-tailed distributions of
returns and economically meaningful hedging time steps Az requires several
steps. First we solve the stochastic equations (2) and (3). Second we construct a
hedging strategy for a small but finite time interval and take the appropriate
mathematical limit as Az — 0. Third we show the impact of the non-normal
nature of the price changes. Finally, we provide a mechanism for pricing options
in the limit when the discrepancy between the random walk with normally dis-
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tributed increments and the stochastic process in equations (2) and (3) is small.
The tricky point is that, since the problem contains a stochastic variable x with
non-normal random increments and relaxation processes, the hedging procedure
is ambiguous until we specify exactly how the limit is approached and what is
the relevance of the different terms being neglected as At — 0.

Equations (2) and (3) represent a two-dimensional linear system of stochastic
differential equations. These equations can be solved under certain technical
restrictions for the homogenous and inhomogeneous solutions. From equation
(3) the excess return &(7) is

Z,

En=e""V8g+n [V Vdz,(5) an
Zy(ty)

Here £, is a constant determined by the initial conditions, and
g2
V(1) = e+7 (t=t9) +&(2,() - Z,(1y)) (12)

From equation (2) the log-price y(¥) is

2
1) =% +[u—"7] (1=1t0) + 00(20 (=2 (19))
t "
+J.E,Oe‘”(t'>dt’+nj. J. VOV 47, (s)d 1’ (13)

ty fo Z,(ty)

Here y,is a constant determined by the initial conditions. Notice that in the limit
€ =0 and 6 — < with 11/0 constant (rational and efficient markets), the general
solution 7 reduces to a pseudo-Brownian motion:

X~(u—%62)t+6020+(g) Z,

with effective volatility

c= \3“3(5% +(n/6)2

Also note that when € # 0 the excess return & can be driven by the random
amplification of the process Z, caused by the stochastic process Z;. This leads to
fat-tailed distributions of stock returns. In the following we introduce an asymp-
totic analysis in the limit € << 01/2and 6 >> 1.
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Using equations (11)—(13) the change in the security price during a small time
interval At is:

~1s2\a AZ A
AS; =Siine =S8 =5, (e(u 20) 1+69AZy+ Y—l)

62
= S,((u - 7) At+0gAZy+AY

+5 (00AZy+A7)"+ 0(ar?)) (14

Here O(At3/2) denotes higher-order terms in powers of At and AY = Y(t +
At) — Y(t) , where Y(¢) is defined by the last two terms in equation (13)

t t Zo(t")
v() = [ee " dren] [er O dzy)dr (15)
fo o Zy(ty

Notice that the increment AY in equation (15) does not have the same self-similar
diffusion characteristics as the process AZ,. The increment AY exhibits the char-
acteristics of a diffusion process only for time scales greater than the relaxation
time of return adjustments 1/6. Figure 5 shows the effective volatility
EY| AY2/At] as a function of OAt for different values of the parameter €. The
values were calculated averaging 10,000 Monte Carlo simulations of the relevant
terms in equations (2) and (3). The effective volatility of AY remains relatively
constant for time steps OAr>>1. For low values of OAr the inertial effects
become evident.

From a practical point of view, hedging for intervals shorter than 1/0 is not
very meaningful because 1/0 is the characteristic trading time for eliminating
price disturbances. In the following we consider the limit A — 0 as the “eco-
nomically meaningful” limit where the time interval At is short enough for any
practical hedging purpose but it is long enough for AY to exhibit diffusion
characteristics (0Ar> 1). We denote this particular limit: At — 0*. This mathe-
matical construct allows us to calculate a meaningful “effective” volatility for
AY preserving the standard derivation of options pricing equations using hedging
strategies. A more formal approach may require a derivation based on multiple
time-scales perturbation analysis.

Following the standard derivation of the BS model, assume that at time ¢ we
construct an ideal hedge portfolio @ composed of a long position in the option
C(S, 1) and a short position dC/dS in the underlying security S.

D(S,1)=C—-094CS (16)

Let us fix > 0 and consider the capital gain of the portfolio at time ¢+ Az. A
Taylor expansion of equation (16) yields a formal description of the portfolio
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FIGURE 5 Effective volatility EY| AY2/At] as a function of OAt for different values of
the ratio /62 and /6 = 0.2.
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A(thq)(SHA,,t+At)—(D(S,,t)=Ql+QQ+Q3+Q4+QS+Q6 (17)
where
a
Q) =5,=2(S,, 1)(60AZy +AY)

Q, = usta—(s,,z)m

2
Q, = [aq> (S, z)+—523 (S:- t))At
52

Q, = %S,%(s aa(;) (s, r)] ((GOAZO +Ay) - czm)
2 2 2
Q5= 25 [aach(g,, f)- aasz (5, t))A
Q= 0(Ar?) (18)

Here {, =S, + ¢,A S, for some appropriate ¢, satisfying 0 < ¢, < 1. The appropriate
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limit of terms €2, €2, and €5 in equations (17) and (18) can be easily recognized
as the leading contributions to Ito’s lemma. Notice that |Q4 | ~ O(Ar) for each
random realization of AZ, and AY but EV-2[Q,] ~ O(At2, ®At) and EY-Z[Q3] ~
O(At?). Here EV-2[AZ ) AY] =0, ®(e, 0) = EY[AY?/At] - (6% - 0(2)) and EX(f)is
the expectation of f(X) with respect to the random variable X at time . If ¢ rep-
resents the correct effective volatility for the processes Z, and Y, one should expect
® ~ O(A?). In the limit Az — 0, term Q5 vanishes because S, is continuous. Term
€2 includes higher-order contributions in At that vanish as At — 0.

Because the hedge (17) removes the leading stochastic term in AfY/2, we can
take the limit of equations (17) and (18) for the rate of change in the quasi-con-
tinuously hedged portfolio

. oD 2
Po, = tim p¥Z| A% | 0% L2 i ] s2 O (19)
1 2 ! aSz

At—0* At ot At—0*

Here L is the operator defined by the time and price derivatives. In the BS frame-
work the return on the ideal hedge portfolio is claimed to be certain and equal to
the riskless rate (that is, equation (19) reduces to i@, =r®,). However, from
equations (17) and (18) the variance of the changes in the hedge portfolio is:

2
lim EVZ (ﬁ—iq) =
At—0* At
lim E®Y iS 0[5 9%
At 0* 2 'as\t as

2
x(%((cocp+\y)2— lim m)—l)J >0 (20)
c

Ar—0"

Here ¢2= AZ%/ At, where @ ~N(0,1) is a normal random variable, and
y2 = AYZ/At, where Y(¢) is described in equation (15). Note from equation (20)
that even if d®/9S =0 as a result of the hedging strategy, the portfolio is still
exposed to additional risk if d2®/9S52 # 0 (curvature or gamma risk). Equations
(19) and (20) indicate that the hedge portfolio is not riskless due to the non-
normal nature of the price increments and curvature effects that cannot be
diversified or hedged away.
In the limit € << 6172 and 6 >> 1 we have

AY%V“CGZ— G(Z)AZZ

and, therefore, the discrepancy between the actual fat-tailed price return and a
normally distributed return can be assumed to be a random hedging error term.
In this limit we calculate a first-order correction to the standard Brownian
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motion neglecting the higher-order terms that describe heavy tails and other
effects. Imposing that equation (19) must yield a risk-adjusted return on the port-
folio (I: @, = p®,) to compensate for non-normal effects that cannot be hedged
away, equations (17)—(19) immediately yield the alternative first-order options
pricing equation

aC aC o* 29°C
—+pS, —+—8  —-pC=0 21
This leading-order approximate equation is equivalent to the Black—Scholes
equation for instantaneous hedging but with an effective volatility and a risk-
adjusted return that, in general, will depend on the risk preferences of the
options market participants:

p—rzf(St,Ct,t, lim EL(Q4/®tAt)2J)

At—0*

This might appear to be a drawback of our calculations but the lack of perfect
hedging caused by non-continuous trading, non-normal price changes and curva-
ture clearly reflects reality. Market participants are well aware of the risk of
imperfect hedging, and will require additional compensation for any residual
risk exposure resulting from the non-normal distribution of returns and other
effects. It is clear from equations (15)—(20) that the hedging strategy leading to
equation (21) may fail in practice due to imperfect and incomplete market condi-
tions caused by the particular nature of the stochastic processes.

4 The impact of irrational behavior in options pricing

In this section we show how the under- or overreaction to changes in returns can
contribute to the observed volatility skew and smile effects recognizing, of
course, that there may be other important factors that can also contribute to this
phenomenon such as stochastic changes in volatility, interest rates or other state
variables. Because the literature on this area is extensive, it is difficult to provide
both a good technical description of our model and a fair and meaningful com-
parison with other approaches in this introductory article. For a comparison of
different approaches we refer readers to the recent work in Potters, Cont and
Bouchaud (1998), Bouchaud, Iori and Sornette (1996), Lipton (2002) and refer-
ences therein. The extension of our model to many state variables is concep-
tually straightforward. To illustrate our ideas, in the following we focus only on
one state variable: the price of the underlying security. This makes the algebra
simpler and our discussion easier to follow.

Here we analyze the impact of irrational behavior in options pricing in the limit
of nearly rational markets (€ << 812 and 8 >> 1) using the arguments explained in
Section 3. More precisely, when the discrepancies between the process in equa-
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tion (1) and the processes in equations (2) and (3) are small and portfolio hedging
occurs frequently but not continuously (At — 0%), the discounting rate of the
option may include a risk-adjusted gain required by investors as a compensation
for any additional risk introduced by higher-order terms that cannot be hedged
away, as shown in the first-order pricing equation (21). In the following, we
assume that the distribution of prices required for pricing options is given by
equation (7) where we replace the riskless rate r and price drift u with a risk-
adjusted return p. The derivation of the correct distribution for realistic hedging
and option replication strategies remains an open problem.

To further clarify our point, let us focus on the value of a European call option
at time ¢ with exercise price K and maturity 7. From equations (7)—(21) and the
assumption of nearly rational markets we obtain

cs.tp.o)=e P VE(S-K)"

l « i" d"A

(22)

Here

B,(S, 1;p, G) = srn(dl,m/T— t) ~KeTOT (d,,0) (23)

! J.Hn(z+y) e~ (24)

L, (xy)= \/?
T Jw

log(S/K)+(p+6%/2) (T~ 1) —
d1= N d2=d1—6\5T—t (25)
oVT —t

Notice that the first term of the Taylor series (n = 0) is the standard BS formula
Cyg (S, t; p; 0) with risk premium p and volatility 6. Figure 6 shows the shape of
the additional contributions to the option value for the first few terms.

If at each point in time the option value C(S, ¢; p; ©) is fitted with the BS for-
mula for a call option Cy (S, #;7; G,) containing an implied volatility 6; and the
risk-free rate 7, then the irrational behavior of market participants will cause the
implied parameter o, to differ from the observed security’s volatility . To illus-
trate, consider the ideal case where the discrepancy between the implied
volatility and the security’s volatility is small, and where the BS formula is a
good estimate of the option prices observed in the market —ie, Cy¢ (S, t;7;6;) =
C(S, t;p; 0,). Then, a first-order Taylor series expansion in terms of the implied
volatility and risk premium yields
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FIGURE 6 B, for n<4 as a function of the option’s moneyness for maturity
T —t = 30 days. The security’s price is S = 100, the security’s volatility is ¢ = 30%, the
risk-free rate is r = 5%, the required risk premium is p —r = 0.5%.
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C(s. t;, 6)+%—C(p— r)=Cps (S, 1;r,0)+ (1;5 (6;-0) (26)
r

Equation (26) has to be solved for the implied volatility G; in terms of the stock
price S and effective volatility ¢. This first-order approximation yields

‘\“ 2n K d12/2 oC
co4 2 - L 2
o, G+\“T—t 3 e |:C Cps + > (p r):| 27)

The implied volatility ¢, given in equation (27) is a function of both the option
moneyness and time-to-maturity due to two related contributions. The first con-
tribution C — Cp¢ represents the actual impact of irrational behavior on the
distribution of option prices. The second contribution in p — r shows the impact
of the additional risk premium required for holding an option that cannot be per-
fectly replicated using an ideal BS hedging strategy due to the fat-tailed nature
of the distribution of returns. In practice, there could be different levels of risk
premia for different exercise prices K and maturity 7.

Figures 7 and 8 sketch the first-order volatility correction (equation (27))
introduced by the irrational behavior of market participants and the required risk
premium p — r, across moneyness for different times to expiration. To illustrate
the curves include only corrections for n =1, 2 and 4. Other corrections are
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FIGURE 7 Implied volatility as a function of the option’s moneyness for different
times to expiration T—t =30, 60 and 90 days. The security’s price is S = 100, the
security’s volatility is ¢ = 30%, the risk-free rate is r = 5%, the required risk premium
is p—r = 0.5%.To illustrate the curves include only corrections for n = I,2 and 4.
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FIGURE 8 Implied volatility as a function of the option’s moneyness for different
times to expiration T—t =30, 60 and 90 days The security’s price is S = 100, the
security’s volatility is 6 = 30%, the risk-free rate is r = 5%, the required risk premium
is p —r=0.5%.To illustrate the curves include only corrections for n =2 and 4.
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assumed negligible small. Note that different shapes of skews and smiles can be
obtained by changing the relative weights of the contributions B, in equation
(23), which depend on the distribution of excess returns as indicated in equations
(A10)-(A12) in the Appendix. Finally, notice the similarity between the results
from equation (27) and the models for the skew and smile effects described in
Natemberg (1994), Malz (1997), Derman (1999), Alexander (2001), and Derman
and Zou (2001).

5 Conclusions

In this article we introduced a model of irrational exuberance and fear in equity
markets based on the under- and overreaction of market participants to price
trends. In our model market participants struggle to find their way through the
give and take between risk and return, one moment engaging in rational behavior
and the next yielding to irrational emotional impulses. We show that a simple
dynamical model incorporating this type of behavior leads to fat-tailed distribu-
tions of returns and other characteristics that are remarkably consistent with
observed market dynamics. We also analyzed the asymptotic impact of irrational
behavior in options pricing in the limit of nearly rational markets and frequent
trading. Note however that the derivation of the correct pricing equation remains
an open problem. The results discussed here are particularly important because
the same basic approach can also be applied to the development of a pricing
theory for credit derivatives and corporate liabilities.

Appendix

The joint distribution of log-prices and returns is obtained from equation (4) for
an arbitrary log-price Y, excess return & and time 7. This requires several trans-
formations and approximations.

First we normalize equation (4) using the scale transformations x=
e3(x - xo)/M, y =€&/m, and T=¢€3(¢ - 1,)), where Y, and ¢, are initial reference
values.

oP oP _ 9 1 92 5 vy 0°P

—+(y+o)=—=B—[yP]+=—|(1+y°) P|+~— (A1)

01 ox  dy 2 9y2 [( ) ] 2 9x2

Here o0 = €(U —62/2)/1 and 6 is defined in equation (6), and Y= (¢2G,/M)>.
Rather than solving equation (A1) using the rigorous Laplace transformation

approach, we introduce the Fourier representation

P(x,y,7) = %ﬂc(y,k,m) et dkd o (A2)
4n

This allows us to easily analyze the basic dynamics of the solutions. Of course,
this comes at the expense of a detailed description of initial conditions and tran-
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sient effects. Using equation (A2), equation (A1) reduces to

2
L) 20 24y 28 i B+1-io- T i ik(y+0) | G=0  (A3)
2 9y? dy 2

Introducing the additional transformations y = sinh () and G = F/(1 + y2)@+1D/2,
where ¢ = B + 1/2, equation (A3) yields

d*F

du’

+[¢ —2i(0+ ko) - yk*—2ik sinh(u)— 00 +1) tanh(u)

F=0 (A4)

Equation (A4) must be solved with the additional boundary conditions F(+ o) =
F(—<0) = 0 to obtain sensible solutions for extreme excess returns. In principle,
the numerical solution of equations (A2)—(A4) provides the distribution of prices
at different points in time. However, we can obtain an insightful view on the
solutions in the limit where the random excess return is small, that is u << 1. In
this limit equation (A4) yields

d’F . ’ . P
. +[¢—2z(w+koc)—yk —2iku—o(0+Du?| F=0 (A5)
du

Notice that the first-order approximation ¢(¢ + 1)u? in equation (AS5) over-
estimates the effective potential ¢ (¢ + 1)tanh?(u) in equation (A4) for large
values of u, while the term 2iku in equation (AS5) underestimates the term
2iksinh (1) in equation (A4). Both approximations affect the nature of the solu-
tions for extreme values and may introduce spurious effects. A more rigorous
description may require an analysis based on matched asymptotic expansions for
different values of u.
A final transformation of variables in equation (AS5) yields
d’F 5
§+[k—z ] F=0, F(teo)=F(—o0)=0 (A6)

Here z(&, k)= [c(u+b/c?) and A= (b%/c2—d)/c where b=ik, c={0(¢+1)
and d = 2i(® + ko) + Yk — 0. The Sturm-Liouville problem (A6) can be solved
analytically. Its general solution is

oo

F(x)= Y a,H,(2) e 2, A, =2n+1 (A7)
n=0

99

Here H, (z) is the Hermite polynomial of degree “n”. The coefficients a, are
determined by additional conditions imposed on the initial distribution of prices
and excess returns. Because z = \fc (arcsinh (€€ /M) + ik/c2), equation (A7) indi-
cates that the probability distribution will exhibit fat tails as a function of the
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excess return &. This also affects the distribution of log-prices as we show below.

Also notice that in order to satisfy equation (A6), the eigenvalue A, and wave
number k impose a constraint on the possible values for the frequencies required
in equation (A7).

1
o(0+1)

ok, n):%(¢—\E¢(¢+1)xn—2iak—6k2), S=v+ (A8)

This condition reduces the double integral in ® and k in equation (A6) to a
single integral in k.

Finally, the distribution of the log-price % and instantaneous excess return & at
time ¢ results:

P(X’E.;’t):

oo

+oo
1 3
g‘[ PR exp{ik%(x—X0)+i0)(k,n)82(t—t0)}dk (A9)

—oo n:()
Here

a, () H,, (2(5, b)) =< &2

2\ (9+1)/2
1+(EE’)
n

Equations (A9) and (A10) provide the general description of the distribution of
prices and returns. In order to understand the nature of this distribution, let us
analyze the asymptotic behavior of the marginal distribution of log-prices

400
PO D= [ PO, & NdE

+o0 3
1 ., €
= EJ; A(k,1) exp{sz(X -%0)

2
- %(&c2 +2iock)(t—t0)}dk (Al1)

Here

oo

+o0 2,
A=, [e.(& kit exp{—%(x¢(¢+1>>»n—¢)<r—to>} (A12)

n=0 —oo

Note the time decay of the different contributions to the coefficient A(k, ). From
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equation (A12) the characteristic time-scale for exponential decay for n > 1 and
¢ >> 1 is approximately T, ~ 1/(e2n0). The slow time decay for n =0 is caused
by the linear approximations leading to equation (A5) and, therefore, can be
neglected.

Assuming that the security price is known with certainty at time ¢, but the
excess return has initial density function f(§), the initial condition on the distri-
bution of prices and excess return is P(X, &, 1) = f(€)d () — x), Where d(x) is
the Dirac delta-function. This condition immediately provides a normalization
condition for the constants a, and, therefore, for A(k, ;). Since we are interested
in the marginal distribution of prices, the initial condition reduces to
p(x, t9) =8(x — %) This condition yields A(k,t,)=A,=¢>n. That is, the
Fourier coefficients are independent of k at time #,. Of course, this condition
changes for 7 > #, as indicated in equation (A12). Expanding A(k, 7) in a Taylor
series for small wave number k (diffusion approximation), equation (All) can
be recognized as the asymptotic Fourier representation of a normal distribution
with higher-order corrections

+ oo
1 0A
p(x, )= E_L |:A(O,t)+ka—k(0, z)+..}

X ex iki( - )—§(8k2+2ikoc)(t—t) dk
p n X—%Xo > 0

1 (X—Xo—(!i— 02/2)(f—f0))2
= ——expy—

/ 2
V2167 (1 — 1) 267 (t—19)

xiz i T4 0.1

Ao Zon! (AOG\;’t—tO )n ok"

(X—Xo ~(n- 62/2)(l—l0))
o4t —1

x H, (A13)

1. The main results of the model were recently reported in Sobehart and Farengo (2002).
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