
Machine Learning manuscript No.
(will be inserted by the editor)

Temporal-Difference Search in Computer Go

David Silver1, Richard Sutton2 and Martin Müller2

Abstract Temporal-difference learning is one of the most successful and broadly applied
solutions to the reinforcement learning problem; it has been used to achieve master-level
play in chess, checkers and backgammon. The key idea is to update a value function from
episodes of real experience, by bootstrapping from future value estimates, and using value
function approximation to generalise between related states. Monte-Carlo tree search is
a recent algorithm for high-performance search, which has been used to achieve master-
level play in Go. The key idea is to use the mean outcome of simulated episodes of ex-
perience to evaluate each state in a search tree. We introduce a new approach to high-
performance search in Markov decision processes and two-player games. Our method,
temporal-difference search, combines temporal-difference learning with simulation-based
search. Like Monte-Carlo tree search, the value function is updated from simulated ex-
perience; but like temporal-difference learning, it uses value function approximation and
bootstrapping to efficiently generalise between related states. We apply temporal-difference
search to the game of 9× 9 Go, using a million binary features matching simple patterns of
stones. Without any explicit search tree, our approach outperformed an unenhanced Monte-
Carlo tree search with the same number of simulations. When combined with a simple
alpha-beta search, our program also outperformed all traditional (pre-Monte-Carlo) search
and machine learning programs on the 9× 9 Computer Go Server.

1 Introduction

Reinforcement learning (RL) can be subdivided into two fundamental problems: learning
and planning. The goal of learning is for an agent to improve its policy from its interactions
with its environment. The goal of planning is for an agent to improve its policy without
further interaction with its environment, by a process of deliberation during the available
computation time.

Despite the apparent differences between these two problems, they are intimately re-
lated. During learning, the agent interacts with the real environment, by executing actions
and observing their consequences. During planning the agent can interact with a model of
the environment, by simulating actions and observing their consequences. In both cases the
agent updates its policy from samples of experience. In this article we demonstrate that an

1. University College London 2. University of Alberta

2

agent can both learn and plan effectively, in large and challenging environments, by applying
the method of temporal-differences to both real and simulated experience.

We focus on the game of Go as a concrete example of a large, challenging environment
in which traditional approaches to learning and planning have failed to produce significant
success. Go has more than 10170 states, up to 361 legal moves, and the long-term effect
of a move may only be revealed after hundreds of additional moves. There are no simple
heuristics by which to evaluate a position, and it has proven surprisingly difficult to encode
human expert knowledge in machine usable form, either by handcrafted pattern databases
or by machine learning (Müller, 2002).

Recently, a new family of search algorithms based on Monte-Carlo simulation, have rev-
olutionised computer Go and achieved human master-level play for the first time (Coulom,
2006; Gelly and Silver, 2007). The key idea of these algorithms is to use the mean outcome
of random simulations to evaluate positions. In Monte-Carlo tree search many thousands
of random games are simulated by self-play, starting from the current position, and adding
each new position into a search tree. The value of each position in the tree is estimated by
the mean outcome of all simulations that visit that position. The search tree is used to guide
simulations along the most promising paths, by selecting the child node with the highest
value or potential value (Kocsis and Szepesvari, 2006).

However, Monte-Carlo tree search suffers from two major deficiencies. First, each posi-
tion is evaluated independently, without any generalisation between similar positions. Sec-
ond, Monte-Carlo simulation produces a high variance estimate of the value of each posi-
tion. As a result, the basic Monte-Carlo tree search algorithm can require prohibitively large
numbers of simulations when applied to very large search spaces, such as 19 × 19 Go. In
practice, the strongest current Go programs deal with these issues by using domain specific
prior knowledge (Chaslot et al., 2008), generalisation among subtrees (Gelly and Silver,
2011), and carefully hand-tuned simulation policies (Gelly et al., 2006). In this article we
develop a much more general framework for simulation-based search that addresses these
two weaknesses. This framework represents a spectrum of search algorithms that includes
Monte-Carlo tree search, but also allows for two important dimensions of variation. First, it
uses value function approximation to generalise between related positions. Second, it uses
bootstrapping to reduce the variance of the estimated value.

Our framework draws extensively from successful examples of reinforcement learning
in classic games such as chess (Veness et al., 2009), checkers (Schaeffer et al., 2001), and
backgammon (Tesauro, 1994). In each of these games, temporal-difference learning (TD
learning) has been used to achieve human master-level play. In each case, a value func-
tion was trained offline from games of self-play, typically requiring weeks or even months
of computation. This value function was then used to evaluate leaf positions in a high-
performance alpha-beta search.

However, in very large environments such as Go, it is difficult to construct a global value
function with any degree of accuracy (Müller, 2002). Instead of weakly approximating the
value of every position, we approximate the value of positions that occur in the subgame
starting from now until termination. This new idea is implemented by re-training the value
function online, by TD learning from games of self-play that start from the current position.
This re-training procedure occurs in real-time, in a matter of seconds. The value function
evolves dynamically throughout the course of the game, specialising more and more to the
particular tactics and strategies that are relevant to this game and this position. We demon-
strate that this method, which we call temporal-difference search (TD search), can provide
a dramatic improvement to the quality of position evaluation.

3

In Section 3 we focus on a direct reinforcement learning approach to computer Go. This
approach is based on a straightforward application of TD learning to 9×9 Go. We introduce a
simple, expansive representation of Go knowledge, using local shape features, that requires
no prior knowledge of the game except for the grid structure of the board. We present an
empirical study of TD learning in 9×9 Go, using the program RLGO,1 to develop intuitions
about the core algorithms and concepts used throughout this article. Using TD learning and
a million local shape features, RLGO achieved a competent level of play in 9× 9 Go.

In Section 4 we focus on a simulation-based search approach to computer Go. In this
section we develop our main idea: the TD search algorithm. We build on the reinforcement
learning approach from Section 3, but here we apply TD learning online to the current
subgame. We present an empirical study of TD search in 9× 9 Go, again using local shape
features in the program RLGO, to explore this new paradigm. Using TD search and a million
local shape features, RLGO achieved a dramatic improvement of around 500 Elo points over
TD learning. Without any explicit search tree, TD search achieved better performance than
an unenhanced Monte-Carlo tree search.

The remainder of the article focuses on high-performance combinations of learning and
search. In Section 5 we introduce the Dyna-2 algorithm. This algorithm contains two sets
of parameters: a long-term memory, updated by TD learning; and a short-term memory,
updated by TD-search. Finally, in Section 6 we introduce a two-phase search that combines
TD search with a traditional alpha-beta search (successfully) or a Monte-Carlo tree search
(unsuccessfully). When both TD learning and TD search were combined together, using
an enhanced alpha-beta search, RLGO achieved a higher rating on the 9 × 9 Computer Go
Server than all traditional (pre-Monte-Carlo) search and machine learning programs.

2 Background

2.1 Markov Decision Processes and Markov Games

A Markov decision process (MDP) consists of a set of states S and a set of actions A. The
dynamics of the MDP, from any state s and for any action a, are determined by transition
probabilities, Pass′ = Pr(st+1 = s′|st = s, at = a), specifying the distribution over the
next state s′. Finally, a reward function,Rass′ = E[rt+1|st = s, at = a, st+1 = s′], specifies
the expected reward for a given state transition. We consider episodic MDPs which terminate
with probability 1 in a distinguished terminal state. The return Rt =

∑T
k=t rk is the total

reward accumulated in that episode from time t until reaching the terminal state at time T .
A policy, π(s, a) = Pr(at = a|st = s), maps a state s to a probability distribution over

actions. The value function, V π(s) = Eπ[Rt|st = s], is the expected return from state s
when following policy π. The action value function, Qπ(s, a) = Eπ[Rt|st = s, at = a],
is the expected return after selecting action a in state s and then following policy π. The
optimal value function is the unique value function that maximises the value of every state,
V ∗(s) = max

π
V π(s),∀s ∈ S and Q∗(s, a) = max

π
Qπ(s, a), ∀s ∈ S, a ∈ A. An optimal

policy π∗(s, a) is a policy that maximises the action value function from every state in the
MDP, π∗(s, a) = argmax

π
Qπ(s, a).

A symmetric alternating Markov game (SAM game) is a natural generalisation of a
Markov decision process to zero-sum, perfect information, two-player games such as chess,
checkers, backgammon or Go (Littman, 1994). An agent and an opponent alternately select

1 RLGO is open source software, http://sourceforge.net/projects/rlgo

http://sourceforge.net/projects/rlgo

4

actions from the same set, a ∈ A, according to separate policies π1(s, a) and π2(s, a).
As in an MDP, there are transition probabilities, Pass′ , and a reward function, Rass′ . The
agent seeks to maximise its total reward, whereas the opponent seeks to minimise the total
reward. A self-play policy is a single policy π(s, a) that is used by both agent and opponent,
π1(s, a) = π2(s, a) = π(s, a). The value function, V π(s), is the expected return for the
agent from state s when following self-play policy π. A minimax optimal policy for a SAM
game is a self-play policy that both maximises the agent’s value function and minimises
the opponent’s value function. This policy corresponds to optimal play under the worst-case
assumption that the opponent plays perfectly.

2.2 Monte-Carlo Learning

Monte-Carlo evaluation provides a particularly simple, model-free method for estimating
the value function for a given policy π. The value of state s is estimated by the mean return
of all episodes that visit state s, without requiring any model of the MDP. This provides an
unbiased, but high variance estimate of V π(s).

Monte-Carlo control (Sutton and Barto, 1998) combines Monte-Carlo evaluation with
ε–greedy policy improvement. An action value function is estimated by Monte-Carlo eval-
uation, so that Q(s, a) is the mean return of all episodes in which action a was selected
from state s. An ε–greedy policy is used to combine exploration (selecting a random action
with probability ε) with exploitation (selecting argmax

a
Q(s, a) with probability 1 − ε). If

all states are visited infinitely many times, and ε decays to zero in the limit, Monte-Carlo
control converges to the optimal action-value function Q∗(s, a) for all states s and actions a
(Tsitsiklis, 2002), and hence to the optimal policy π∗(s, a).

2.3 Temporal-Difference Learning

Temporal-difference learning (TD learning) is a model-free method for policy evaluation
that bootstraps the value function from subsequent estimates of the value function. In the
TD(0) algorithm, the value function is bootstrapped from the very next time-step. Rather
than waiting until the complete return has been observed, the value function of the next state
is used to approximate the expected return. The TD-error δVt is measured between the value
at state st and the value at the subsequent state st+1. For example, if the agent thinks that
Black is winning in position st, but that White is winning in the next position st+1, then this
inconsistency generates a TD-error. The TD(0) algorithm adjusts the value function so as to
correct the TD-error and make it more consistent with the subsequent value,

δVt = rt+1 + V (st+1)− V (st)

∆V (st) = αδVt (1)

where α is a step-size parameter controlling the learning rate.
The TD(λ) algorithm bootstraps the value of a state from subsequent values many steps

into the future. The parameter λ ∈ [0, 1] determines the temporal span over which bootstrap-
ping occurs. At one extreme, TD(0) bootstraps the value of a state only from its immediate
successor. At the other extreme, TD(1) updates the value of a state from the final return; it
is equivalent to Monte-Carlo evaluation.

5

To implement TD(λ) online, an eligibility trace e(s) is maintained for each state. The
eligibility trace represents the total credit assigned to a state for any subsequent errors in
evaluation. It combines a recency heuristic with a frequency heuristic: states which are vis-
ited most frequently and most recently are given the greatest eligibility (Sutton, 1984),

et(s) =

{
λet−1(s) + 1 if s = st
λet−1(s) otherwise

∆Vt(s) = αδVtet(s) (2)

If all states are visited infinitely many times, and with appropriate step-sizes, TD(λ)
converges to V π for all values of λ (Dayan and Sejnowski, 1994).

The Sarsa(λ) algorithm (Rummery and Niranjan, 1994) combines TD(λ) with ε–greedy
policy improvement. Sarsa estimates an action value function, Q(s, a), for each state s and
action a. At each time-step t, the next action at is selected by an ε–greedy policy with
respect to the current action values Q(s, ·). The action value function is then updated from
the sample tuple of experience, (st, at, rt+1, st+1, at+1), by using the TD(λ) update rule
for action values,

δQt = rt+1 +Q(st+1, at+1)−Q(st, at)

et(s, a) =

{
λet−1(s, a) + 1 if s = st and a = at
λet−1(s, a) otherwise

∆Q(s, a) = αδQtet(s, a) (3)

If all states are visited infinitely many times, and ε decays to zero in the limit, Sarsa(λ)
converges to the optimal action-value function Q∗ for all values of λ (Singh et al., 2000).

TD learning can be applied to SAM games in an analogous fashion. The self-play
Sarsa(λ) algorithm estimates an action value function Q(s, a) for the current self-play pol-
icy, again updated by TD(λ). The next action at is selected by an ε–greedy self-play policy
that selects, with probability 1− ε, the action with maximum value for the agent, or the ac-
tion with minimum value for the opponent. The convergence results for TD learning can be
extended directly to SAM games (Littman, 1996). Under similar conditions self-play Sarsa
will converge on the minimax optimal value function.

In many games and environments, it can be more efficient to consider the afterstate
value V (s ◦ a), for the “afterstate” reached after selecting action a from state s, rather than
the action-valueQ(s, a) (Sutton and Barto, 1998). The afterstate Sarsa algorithm is identical
to Sarsa(λ) except that it applies TD(λ) to afterstate values instead of action values. In de-
terministic problems, the afterstate is simply the successor state, and the afterstate Sarsa(λ)
update is equivalent to the basic TD(λ) update in Equation 2.

2.4 Value Function Approximation

In table lookup the value function has a distinct value V (s) for each state s. In large en-
vironments table lookup is not practical and the value function must be approximated. A
common and successful approach (Sutton, 1996) is to use a feature vector φ(s) to represent
state s, and to approximate the value function V (s) by a linear combination of features φ(s)
and weights θ.

6

The linear TD(0) algorithm combines the TD(0) algorithm with linear value function ap-
proximation. Each parameter is updated in proportion to the TD-error and the corresponding
feature value. It is analogous to stochastic gradient descent algorithms for linear regression,
such as the LMS or Widrow-Hoff rule (Widrow and Stearns, 1985),

V (s) = φ(s) · θ (4)

∆θ = αδVtφ(st) (5)

Many problems are best described by a binary outcome z indicating success or failure,
e.g. winning a game, solving a puzzle or achieving a goal state. These problems can be de-
scribed by a terminal reward of r = 1 for success, r = 0 for failure, and no intermediate
rewards. In this case, the value function V π(s) is equal to the probability of achieving a
successful outcome from state s under policy π, V π(s) = Pr(z = 1|s, π). However, lin-
ear approximation is not well suited to modelling probabilities (Jordan, 1995). Instead, a
logistic function, σ(x) = 1

1+e−x
, can be used to squash the value function into the desired

range [0, 1]. The logistic TD(0) algorithm (Silver, 2009) is a temporal-difference learning
algorithm for logistic-linear value function approximation. It minimises the cross-entropy
between the current and subsequent value estimates, and is analogous to stochastic gradient
descent algorithms for logistic regression (Jordan, 1995),

V (s) = σ(φ(s) · θ)
∆θ = αδVtφ(st) (6)

The linear TD(λ) algorithm combines TD(λ) with linear value function approximation.
Similarly, the logistic TD(λ) algorithm combines TD(λ) with logistic-linear value function
approximation. In both cases, an eligibility trace vector e represents the credit assigned to
each feature for subsequent errors,

et = λet−1 + φ(st) (7)

∆θ = αδVtet (8)

The linear Sarsa(λ) algorithm combines linear TD(λ) with ε–greedy policy improve-
ment (see Algorithm 1). The action value function is approximated by a linear combination
of features, Q(s, a) = φ(s, a) · θ, where φ(s, a) is now a feature vector representing both
state s and action a. Although there are no guarantees of convergence, linear Sarsa chat-
ters within some bounded region of the optimal value function (Gordon, 1996). The logistic
Sarsa(λ) algorithm is identical except that it uses logistic linear value function approxima-
tion, Q(s, a) = σ(φ(s, a) · θ).

3 Temporal-Difference Learning with Local Shape Features

In this section we learn a position evaluation function for the game of Go, without requiring
any domain knowledge beyond the grid structure of the board. We use a simple representa-
tion, based on local 1× 1 to 3× 3 patterns, that is intended to capture intuitive shape knowl-
edge, and can be computed particularly efficiently in the context of a high-performance
search. We evaluate positions using a linear combination of these pattern features, and learn
weights by TD learning and self-play. This same approach could in principle be used to
automatically construct an evaluation function for many other games.

7

Algorithm 1 Linear Sarsa(λ)

1: procedure LINEAR-SARSA(λ)
2: θ ← 0 . Clear weights
3: loop
4: s← s0 . Start new episode in initial state
5: e← 0 . Clear eligibility trace
6: a← ε–greedy action from state s
7: while s is not terminal do
8: Execute a, observe reward r and next state s′

9: a′ ← ε–greedy action from state s′

10: δQ← r +Q(s′, a′)−Q(s, a) . Calculate TD-error
11: θ ← θ + αδQe . Update weights
12: e← λe+ φ(s, a) . Update eligibility trace
13: s← s′, a← a′

14: end while
15: end loop
16: end procedure

3.1 Shape Knowledge in Go

The concept of shape is extremely important in Go. A good shape uses local stones effi-
ciently to maximise tactical advantage (Matthews, 2003). Professional players analyse posi-
tions using a large vocabulary of shapes, such as joseki (corner patterns) and tesuji (tactical
patterns). The joseki at the bottom left of Figure 1a is specific to the white stone on the 4-4
intersection,2 whereas the tesuji at the top-right could be used at any location. Shape knowl-
edge may be represented at different scales, with more specific shapes able to specialise the
knowledge provided by more general shapes (Figure 1b). Many Go proverbs exist to de-
scribe shape knowledge, for example “ponnuki is worth 30 points”, “the one-point jump is
never bad” and “hane at the head of two stones” (Figure 1c).

3.1.1 Prior Approaches to Shape Knowledge Representation

Commercial computer Go programs rely heavily on the use of pattern databases to represent
shape knowledge (Müller, 2002). Many man-years have been devoted to hand-encoding pro-
fessional expertise in the form of local pattern rules. Each pattern recommends a move to be
played whenever a specific configuration of stones is encountered on the board. The config-
uration can also include additional features, such as requirements on the liberties or strength
of a particular stone. Unfortunately, pattern databases suffer from the knowledge acquisi-
tion bottleneck: expert shape knowledge is hard to quantify and encode, and the interactions
between different patterns may lead to unpredictable behaviour.

Prior work on learning shape knowledge has focused on predicting expert moves by
supervised learning (Stoutamire, 1991; van der Werf et al., 2002; Stern et al., 2006). This
approach has achieved a 30–40% success rate in predicting the move selected by a human
player, across a large data-set of human expert games. However, it has not led directly to
strong play in practice, perhaps due to its focus on mimicking rather than understanding a
position. For example, supervised learning programs often respond appropriately to familiar
moves, but respond bizarrely to unusual moves.

A second approach has been to train a multi-layer perceptron, using TD learning by
self-play (Schraudolph et al., 1994). The networks implicitly contain some representation

2 Intersections are indexed inwards from the corners, starting at 1-1 for the corner intersection itself.

8

A

B

E

E

E

E

E

E

C

E

E

E

D

D

F

F

F

D

D

F

F

F

F

F

F

shapes

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

I

I

I

G

G

G

I

I

I

G

G

G

I

I

I

G

G

G

J

J

J

H

H

H

J

J

J

H

H

H

J

J

J

H

H

H

Black to play

Fig. 1 a) The pattern of stones near A forms a common joseki that is specific to the 4-4 intersection. Black
B captures the white stone using a tesuji that can occur at any location. b) In general a stone on the 3-3
intersection (C) helps secure a corner. If it is surrounded then the corner is insecure (D), although with
sufficient support it will survive (E). However, the same shape closer to the corner is unlikely to survive (F).
c) Go players describe positions using a large vocabulary of shapes, such as the one-point jump (G), hane
(H), net (I) and turn (J).

of local shape, and utilise weight sharing to exploit the natural symmetries of the Go board.
This approach has led to stronger Go playing programs, such as Dahl’s Honte (Dahl, 1999)
and Enzenberger’s NeuroGo (Enzenberger, 2003). However, these networks utilise a great
deal of specific Go knowledge in the network architecture and input features. Furthermore,
the computational cost of these networks is relatively high, reducing their desirability for
the high-performance search algorithms discussed in the remainder of this article.

3.1.2 Local Shape Features

Local shape features are a simple representation of shape knowledge that is particularly fast
to compute. They represent the set of local board configurations within all square regions up
to size m×m.

A state in the game of Go, s ∈ {·, ◦, •}N×N , consists of a state variable for each inter-
section of a size N ×N board, with three possible values for empty, black and white stones
respectively.3 We define a local shape l to be a specific configuration of state variables within
some size k square region of the board, l ∈ {·, ◦, •}k×k. We exhaustively enumerate all pos-
sible local shapes within all square regions up to size k ≤ m, and at all possible locations
(including overlapping locations). The local shape feature φi(s) has value 1 in state s if the
board exactly matches the ith local shape li, and value 0 otherwise.

The local shape features are combined into a large feature vector φ(s). This feature
vector is very sparse: exactly one local shape is matched in each square region of the board;
all other local shape features have value 0.

3.1.3 Weight Sharing

We use weight sharing to exploit the symmetries of the Go board (Schraudolph et al., 1994).
We define an equivalence relationship over local shapes, such that all rotationally and reflec-
tionally symmetric local shapes are placed in the same equivalence class. In addition, each
equivalence class includes inversions of the local shape, in which all black and white stones
are flipped to the opposite colour.

3 Technically the state also includes the full board history, so as to avoid repetitions (known as ko).

9

0.209 0.155 -0.047

-0.209 -0.155 0.047

0.209 -0.155 0.047

-0.209 0.155 0.047

0.268 0.171 -0.039

-0.268 -0.171 0.039

0.268 -0.171 0.039

-0.268 0.171 0.039

θLD θLI

Location Dependent Location Independent

Fig. 2 Examples of location dependent and location independent weight sharing.

The local shape with the smallest index j within the equivalence class is considered to
be the canonical example of that class. Every local shape feature φi in the equivalence class
shares the weight θj of the canonical example, but the sign may differ. If the local shape
feature has been inverted from the canonical example, then it uses negative weight sharing,
θi = −θj , otherwise it uses positive weight sharing, θi = θj . In certain equivalence classes
(for example empty local shapes), an inverted shape is identical to an uninverted shape, so
that either positive or negative weight sharing could be used, θi = θj = −θj ⇒ θi = θj = 0.
We describe these local shapes as neutral, and assume that they are equally advantageous to
both sides. All neutral local shapes are removed from the representation.

Rotational and reflectional symmetries are exploited by applying a whole-board rota-
tion and/or reflection to a local shape. The vector of location dependent weights θLD shares
weights among all rotational, reflectional and colour inversion symmetries. The vector of lo-
cation independent weights θLI also incorporates translation symmetry: all local shapes that
have the same configuration, regardless of its absolute location on the board, are included in
the same equivalence class. Figure 2 shows some examples of both types of weight sharing.

For each size of square up to 3×3, all local shape features are exhaustively enumerated,
using both location dependent and location independent weights. This provides a hierarchy
of local shape features, from very general configurations that occur many times each game,
to specific configurations that are rarely seen in actual play. Smaller local shape features
are more general than larger ones, and location independent weights are more general than
location dependent weights. The more general features and weights provide no additional
information, but may offer a useful abstraction for rapid learning. Table 1 shows, for 9 ×
9 Go, the total number of local shape features of each size; the total number of distinct
equivalence classes, and therefore the total number of unique weights; and the maximum
number of active features (features with value of 1) in the feature vector.

10

Local shape features Total features Unique weights Max active features
1× 1 Location Independent 243 1 81
1× 1 Location Dependent 15 81
2× 2 Location Independent 5184 8 64
2× 2 Location Dependent 344 64
3× 3 Location Independent 964467 1418 49
3× 3 Location Dependent 61876 49
Total 969894 63303 388

Table 1 Number of local shape features of different sizes in 9 × 9 Go. The number of unique weights
describes the number of distinct equivalence classes using weight sharing.

3.2 Learning Algorithm

Our objective is to win games of Go. This goal can be expressed by a binary reward function,
which gives a reward of r = 1 if Black wins and r = 0 if White wins, with no intermediate
rewards. The value function V π(s) is defined to be the expected total reward from state s
when following policy π. This value function is Black’s winning probability from state s
(see Section 2.4). Black seeks to maximise his winning probability, while White seeks to
minimise it. We approximate the value function by a logistic-linear combination of local
shape features and both location dependent and location independent weights,

V (s) = σ
(
φ(s) · θLI + φ(s) · θLD

)
(9)

We measure the TD-error between the current value V (st), and the value after both
player and opponent have made a move, V (st+2). In this approach, which we refer to as
a two–ply update, the value is updated between successive moves with the same colour to
play. The current player is viewed as the agent, and his opponent is viewed as part of the
environment. We contrast this approach to a one–ply update, used in prior work such as TD-
Gammon (Tesauro, 1994) and NeuroGo (Enzenberger, 2003), that measures the TD-error
between Black and White moves.

We update both location dependent and location independent weights by logistic TD(0)
(see Section 2.4). For each feature φi, the shared value for the corresponding weights θLIi
and θLDi is updated. This can lead to the same shared weight being updated many times in
a single time-step.4

It is well-known that TD learning, much like the LMS algorithm in supervised learning,
is sensitive to the choice of learning rate (Singh and Dayan, 1998). If the features are scaled
up or down in value, or if more or less features are included in the feature vector, then the
learning rate needs to change accordingly. To address this issue, we divide the step-size by
the total number of currently active features, ||φ(st)||2 =

∑n
i=1 φ(st)

2. As in the normalised
LMS algorithm, (Haykin, 1996), this normalises the update by the total signal power of the
features. We refer to this normalised, two–ply, logistic TD(0) update as logistic NTD2(0),

∆θLD = ∆θLI = α
φ(st)

||φ(st)||2
(V (st+2)− V (st)) (10)

Our control algorithm is based on self-play, afterstate Sarsa (see Section 2.3), using the
logistic NTD2(0) update. The policy is updated after every move t, by using an ε–greedy

4 An equivalent state representation would be to have one feature φi(s) for each equivalence class i, where
φi(s) counts the number of occurrences of equivalence class i in state s.

11

policy. With probability 1− ε the player selects the move a that maximises (Black) or min-
imises (White) the afterstate value V (s◦a). With probability ε the player selects a move with
uniform random probability. The learning update is applied whether or not an exploratory
move is selected.

Because the local shape features are sparse, only a small subset of features need be
evaluated and updated. This leads to an an efficient O(k) implementation, where k is the
total number of active features. This requires just a few hundred operations, rather than
evaluating or updating a million components of the full feature vector.

3.2.1 Training Procedure

We initialise all weights to zero, so that rarely encountered features do not initially contribute
to the evaluation. We train the weights by executing a million games of self-play in 9×9 Go.
Both Black and White select moves using an ε–greedy policy over the same value function
V (s). The same weights are used by both players, and are updated after both Black and
White moves by logistic NTD2(0).

All games begin from the empty board position, and terminate when both players pass.
To prevent games from continuing for an excessive number of moves, we prohibit moves
within single-point eyes, and only allow the pass move when no other legal moves are avail-
able. Games are scored by Chinese rules, assuming that all stones are alive, and using a komi
of 7.5.

3.2.2 Computational Performance

On a 2 Ghz processor, using the default parameters, RLGO 1.0 evaluates approximately
500,000 positions per second. RLGO uses a number of algorithmic optimisations in order to
efficiently and incrementally update the value function. Nevertheless, the dominant compu-
tational cost in RLGO is position evaluation during ε–greedy move selection. In comparison,
the logistic NTD2(0) learning update is relatively inexpensive, and consumes less than 10%
of the overall computation time.

3.3 A Case Study of TD Learning in 9× 9 Computer Go

In this empirical study we trained RLGO 1.0 for a million games of self-play, with each
of several different parameter settings, and saved the weights θ at logarithmically spaced
intervals. We then ran a tournament between multiple instances of RLGO, each using a
different vector of saved weights. In addition, we included the well-known baseline program
GnuGo 3.7.10 (level 10), a strong traditional search program, in every tournament. Each
tournament consisted of at least 1,000 games for each instance of RLGO.

After all matches were complete, the results were analysed by the bayeselo program
to establish an Elo rating for every program. The Elo scale (Elo, 1978) assumes a logistic
distribution with winning probability Pr(A beats B) = 1

1+10
µB−µA

400

, where µA and µB are

the Elo ratings for player A and player B respectively. On this scale, a difference of 200
Elo corresponds to a ~75% winning rate for the stronger player, and a difference of 500 Elo
corresponds to a ~95% winning rate. Following convention, GnuGo (level 10) anchors the
scale with a constant rating of 1800 Elo. Each plot contains error bars corresponding to 95%
confidence intervals over these Elo ratings.

12

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 1000 10000 100000 1e+06

E
lo

 r
at

in
g

Training games

Control: Multiple Runs

Fig. 3 Multiple runs using the default learning algorithm and local shape features.

Unless otherwise specified, we used the NTD2(0) learning algorithm (Equation 10) with
logistic-linear value function approximation (Equation 9) and default parameter settings of
α = 0.1 and ε = 0.1. All local shape features were used for all square regions from 1 × 1

up to 3× 3, using both location dependent and location independent weight sharing. During
tournament testing games, moves were selected by a simple one–ply maximisation (Black)
or minimisation (White) of the value function, with no random exploration.

Figure 3 demonstrates that our learning algorithm is fairly consistent, producing similar
performance over the same timescale in 8 different training runs with the same parameters,
with a performance ranging over ~100 Elo at the end of training. It is therefore reasonable to
assume that performance differences in excess of 100 Elo between individual training runs,
are likely to be significant. Due to computational constraints the remaining experiments are
based on a single training run for each parameter setting.

3.3.1 Local Shape Features in 9× 9 Go

Perhaps the single most important property of local shape features is their huge range of
generality. To assess this range, we counted the number of times that each equivalence class
of feature occurs during training, and plotted a histogram for each size of local shape and
for each type of weight sharing (see Figure 4). Each histogram forms a characteristic curve
in log-log space. The most general class, the location independent 1×1 feature representing
the material value of a stone, occurred billions of times during training. At the other end of
the spectrum, there were tens of thousands of location dependent 3×3 features that occurred
just a few thousand times, and 2,000 that were never seen at all. In total, each class of feature
occurred approximately the same amount overall, but these occurrences were distributed in
very different ways. Our learning algorithm must cope with this varied data: high-powered
signals from small numbers of general features, and low-powered signals from a large num-
ber of specific features.

We ran several experiments to analyse how different combinations of local shape fea-
tures affect the learning rate and performance of RLGO 1.0. In our first experiment, we used
a single size of square region (see Figure 5(a)). The 1×1 local shape features, unsurprisingly,
performed poorly. The 2 × 2 local shape features learnt very rapidly, but their representa-
tional capacity was saturated at around 1000 Elo after approximately 2,000 training games.
The 3× 3 local shape features learnt very slowly, but exceeded the performance of the 2× 2

features after around 100,000 training games.
In our next experiment, we combined multiple sizes of square region (see Figures 5(b)

and 5(c)). Using all features up to 3× 3 effectively combined the rapid learning of the 2× 2

13

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

N
um

be
r

of
 fe

at
ur

es

Occurrences of feature during training

Histogram of Feature Occurrence

Location Dependent 3x3
Location Independent 3x3

Location Dependent 2x2
Location Independent 2x2

Location Dependent 1x1
Location Independent 1x1

Fig. 4 Histogram of feature occurrences during a training run of 1 million games.

features with the better representational capacity of the 3× 3 features; the final performance
was better than for any single shape set, reaching 1200 Elo, and apparently still improving
slowly. In comparison, the 3×3 features alone learnt much more slowly at first, taking more
than ten times longer to reach 1100 Elo We conclude that a redundant representation, in
which the same information is represented at multiple levels of generality, confers a signifi-
cant advantage for at least a million training games.

We also compared a variety of different weight sharing schemes (see Figure 5(d)).
Without any weight sharing, learning was very slow, eventually achieving 1000 Elo after
a million training games. Location dependent weight sharing provided an intermediate rate
of learning, and location independent weights provided the fastest learning. The eventual
performance of the location independent weights was equivalent to the location dependent
weights, and combining both types of weight sharing together offered no additional bene-
fits. This suggests that the additional knowledge offered by location dependent shapes, for
example patterns that are specific to edge or corner situations, was either not useful or not
successfully learnt within the training time of these experiments.

3.3.2 Logistic Temporal-Difference Learning

In Figures 6(a) and 6(b) we compare our logistic TD learning algorithm to a linear TD
learning algorithm, for a variety of different step-sizes α. In the latter approach, the value
function is represented directly by a linear combination of features, with no logistic function;
the weight update equation is otherwise identical to logistic NTD2(0) (Equation 10).

Logistic TD learning is considerably more robust to the choice of step-size. It achieved
good performance across three orders of magnitude of step-size, and improved particularly
quickly with an aggressive learning rate. With a large step-size, the value function steps up
or down the logistic function in giant strides. This effect can be visualised by zooming out of
the logistic function until it looks much like a step function. In contrast, linear TD learning
was very sensitive to the choice of step-size, and diverged when the step-size was too large,
α ≥ 0.1.

14

 0

 200

 400

 600

 800

 1000

 1200

 100 1000 10000 100000 1e+06

E
lo

 r
at

in
g

Training games

Local Shapes of Single Size

Size=1x1
Size=2x2
Size=3x3

(a) Learning curves for one size of local shape feature: 1×1,
2× 2 and 3× 3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 1000 10000 100000 1e+06

E
lo

 r
at

in
g

Training games

Local Shapes of Cumulative Sizes

MaxSize=1x1
MaxSize=2x2
MaxSize=3x3

(b) Cumulative sizes: 1× 1; 1× 1 and 2× 2; and 1× 1,
2× 2 and 3× 3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 1000 10000 100000 1e+06

E
lo

 r
at

in
g

Training games

Local Shape Features of Anti-Cumulative Size

MinSize=1
MinSize=2
MinSize=3

(c) Anti-cumulative sizes: 1× 1, 2× 2 and 3× 3; 2× 2
and 3× 3; and 3× 3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 1000 10000 100000 1e+06

E
lo

 r
at

in
g

Training games

Weight Sharing

None
LD
LI

LD and LI

(d) Learning curves for different weight sharing rules

Fig. 5 TD learning in 9× 9 Go with different sets of local shape features.

Logistic TD learning also achieved better eventual performance. This suggests that,
much like logistic regression for supervised learning (Jordan, 1995), the logistic representa-
tion is better suited to representing probabilistic value functions.

3.3.3 One and two–ply Updates

When training from self-play, TD learning can use either one–ply or two–ply updates (see
Section 3.2). We compare the performance of these two updates in Figure 6(c). Surprisingly,
one–ply updates, which were so effective in TD-Gammon, performed very poorly in RLGO.
This is due to our more simplistic representation: RLGO does not differentiate between
Black’s turn and White’s turn to play. As a result, whenever a player places down a stone,
the value function is improved for that player. This leads to a large TD-error corresponding to
the current player’s advantage, which cannot ever be corrected. This error signal overwhelms
the information about the relative strength of the move, compared to other possible moves.
By using two–ply updates, this problem can be avoided altogether.5 An alternative approach
would be to use a richer representation, so that identical positions can be differentiated
depending on the colour to play, as was done in TD-Gammon.

5 Mayer also reports an advantage to two–ply TD(0) when using a simple multi-layer perceptron (Mayer,
2007).

15

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 1000 10000 100000 1e+06

E
lo

 r
at

in
g

Training games

Linear TD

Alpha=0.001
Alpha=0.003
Alpha=0.01
Alpha=0.03
Alpha=0.1
Alpha=0.3
Alpha=1.0

(a) Linear NTD2(0). Weights diverged for step-sizes ofα ≥
0.1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 1000 10000 100000 1e+06

E
lo

 r
at

in
g

Training games

Logistic TD

Alpha=0.001
Alpha=0.003
Alpha=0.01
Alpha=0.03
Alpha=0.1
Alpha=0.3
Alpha=1.0

(b) Logistic NTD2(0).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 1000 10000 100000 1e+06

E
lo

 r
at

in
g

Training games

Temporal Difference

1-ply
2-ply

(c) Learning curves for one–ply and two–ply updates.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 1000 10000 100000 1e+06

El
o

ra
tin

g

Training games

Logistic TD(Lambda) with Accumulating Traces

Lambda=0.0
Lambda=0.2
Lambda=0.4
Lambda=0.6
Lambda=0.8
Lambda=1.0

Logistic TD(Lambda)

(d) Logistic NTD2(λ) with different values of λ.

Fig. 6 Parameter study for TD learning in 9× 9 Go.

3.3.4 Logistic TD(λ)

The logistic TD learning algorithm can incorporate a λ parameter that determines the time-
span of the temporal difference (see Section 2.4). Here, we initialised all eligibility traces to
zero at the start of each game, and used a normalised, two–ply variant of logistic TD(λ) that
we refer to as NTD2(λ),

et+1 ← λet +
φ(st)

||φ(st)||2
(11)

∆θt = α(V (st+2)− V (st))et (12)

In Figure 6(d) we compare the performance of logistic NTD2(λ) for different settings of
λ. High values of λ, especially λ = 1, performed substantially worse, presumably due to the
higher variance of the updates. The difference between lower values of λwas not significant.

3.3.5 Alpha-Beta Search

To complete our study of position evaluation in 9 × 9 Go, we used the learnt value func-
tion V (s) as a heuristic function to evaluate the leaf positions in a fixed-depth alpha-beta
search. We ran a tournament between several versions of RLGO 1.0, including GnuGo as a

16

Search depth Elo rating Standard Error
Depth 1 859 ± 23
Depth 2 1067 ± 20
Depth 3 1229 ± 18
Depth 4 1226 ± 20
Depth 5 1519 ± 19
Depth 6 1537 ± 19

Table 2 Performance of full width, fixed depth, alpha-beta search, using the learnt weights as an evaluation
function. Weights were trained using default settings for 1 million training games. Elo ratings were established
by a tournament amongst several players using the same weights. Each player selected moves by an alpha-
beta search of the specified depth.

Search depth Elo rating on CGOS
1 1050
5 1350

Table 3 Elo ratings established by RLGO 1.0 on the first version of the Computer Go Server, using 10 minute
time controls against a variety of computer opponents.

benchmark player, using an alpha-beta search of various fixed depths; the results are shown
in Table 2.

Tournaments between alpha-beta search engines based on the same evaluation function
often exaggerate the performance benefit of additional search. To gain some additional in-
sight into the performance of our program, RLGO played online in tournament conditions
against a variety of different opponents on the Computer Go Server (CGOS). The Elo rating
established by RLGO 1.0 is shown in Table 3.

The approach used by RLGO represents a departure from the search methods used in
many previous computer Go programs. Traditional search programs such as The Many Faces
of Go versions 1–11, and GnuGo favour a heavyweight, knowledge intensive evaluation
function, which can typically evaluate a few hundred positions with a shallow global search.
In contrast, RLGO 1.0 combines a fast, lightweight evaluation function with a deeper, global
search that evaluates millions of positions. Using a naive, fixed-depth alpha-beta search,
RLGO 1.0 was not able to compete with the heavyweight knowledge used in previous ap-
proaches. However, a fast, simple evaluation function can be exploited in many ways, and
we explore some of these possibilities in the remainder of this article. In the next section
we view temporal-difference learning as an essential element of the search algorithm, rather
than an offline preprocessing step that is completed before search begins.

4 Temporal-Difference Search

In a SAM game G, the current state st defines a new game, G′t, that is specific to this state. In
the subgame G′t, the rules are the same, but the game always starts from state st. It may be
substantially easier to solve or perform well in the subgame G′t, than to solve or perform well
in the original game G: the search space is reduced and a much smaller class of positions
will be encountered. The subgame can have very different properties to the original game:
certain patterns or features will be successful in this particular situation, which may not in
general be a good idea. The idea of temporal-difference search (TD search) is to apply TD
learning to G′t, using subgames of self-play that start from the current state st.

TD search can also be applied to any MDPM. The current state st defines a sub-MDP
M′t that is identical toM except that the initial state is st. Again, the local sub-MDPM′t

17

may be much easier to solve or approximate than the full MDPM. TD search applies TD
learning toM′t, by generating episodes of experience that start from the current state st.

Rather than trying to learn a policy that covers every possible eventuality, TD search
focuses on the subproblem that arises from the current state: how to perform well now. Life
is full of such situations: you don’t need to know how to climb every mountain in the world;
but you’d better have a good plan for the one you are scaling right now. We refer to this idea
of focusing the agent’s resources on the current moment as temporality.

4.1 Simulation-Based Search

In reinforcement learning, the agent samples episodes of real experience and updates its
value function from real experience. In simulation-based search the agent samples episodes
of simulated experience and updates its value function from simulated experience. This
symmetry between learning and planning has an important consequence: algorithms for
reinforcement learning can also become algorithms for planning, simply by substituting
simulated experience in place of real experience.

Simulation-based search requires a generative model of the MDP or SAM game, which
can sample state transitions and rewards from Pass′ and Rass′ respectively. However, it is
not necessary to know these probability distributions explicitly; the next state and reward
could be generated by a black box simulator. The effectiveness of simulation-based search
depends in large part on the accuracy of the model. In this article we sidestep the model
learning problem and only consider MDPs or SAM games for which we have a perfect
generative model or perfect knowledge of the game rules.

Simulation-based search algorithms sample experience in sequential episodes. Each
simulation begins in a root state s0. At each step u of simulation, an action au is selected
according to a simulation policy, and a new state su+1 and reward ru+1 is generated by the
MDP model. This process repeats, without backtracking, until a terminal state is reached.
The values of states or actions are then updated from the simulated experience.

Simulation-based search is usually applied online, at every time-step t, by initiating
a new search that starts from the current state s0 = st. The distribution of simulations
then represents a probability distribution over future experience from time-step t onwards.
Simulation-based search exploits temporality by learning from this specific distribution of
future experience, rather than learning from the distribution of all possible experience.6

Furthermore, as the agent’s policy improves, the future experience distribution will become
more refined. It can focus its value function on what is likely to happen next, given the
improved policy, rather than learning about all possible eventualities.

4.1.1 Monte-Carlo Search

Monte-Carlo simulation is a very simple simulation-based search algorithm for evaluating
candidate actions from a root state s0. The search proceeds by simulating complete episodes
from s0 until termination, using a fixed simulation policy. The action values Q(s0, a) are
estimated by the mean outcome of all simulations with candidate action a.

6 In non-ergodic environments, such as episodic tasks, this distribution can be very different. However,
even in ergodic environments, the short-term distribution of experience, generated by discounting or by trun-
cating the simulations after a small number of steps, can be very different from the stationary distribution.
This local transient in the problem can be exploited by an appropriately specialised policy.

18

Monte-Carlo tree search (MCTS) is perhaps the best-known example of a simulation-
based search algorithm. It makes use of Monte-Carlo simulation to evaluate the nodes of
a search tree (Coulom, 2006). There is one node, n(s), corresponding to every state s en-
countered during simulation. Each node contains a total count for the state, N(s), and a
value Q(s, a) and count N(s, a) for each action a ∈ A. Simulations start from the root
state s0, and are divided into two stages. When state su is contained in the search tree, a
tree policy selects the action with the highest value or highest potential value. Otherwise,
a random default policy is used to roll out simulations to completion. After each simula-
tion s0, a0, r1, s1, a1, ..., rT , each node n(su) in the search tree is updated incrementally to
maintain the count and mean return from that node,

N(su)← N(su) + 1 (13)

N(su, au)← N(su, au) + 1 (14)

Q(su, au)← Q(su, au) +
Ru −Q(su, au)

N(su, au)
(15)

The Upper Confidence Tree (UCT) algorithm (Kocsis and Szepesvari, 2006) is a Monte-
Carlo tree search that treats each state of the search tree as a multi-armed bandit. During the
first stage of simulation, actions are selected by the UCB1 algorithm (Auer et al., 2002)
by the tree policy. Each action value is augmented by an exploration bonus that is highest
for rarely visited state-action pairs, and the algorithm selects the action a∗ maximising the
augmented value,

Q⊕(s, a) = Q(s, a) + c

√
2 logN(s)

N(s, a)
(16)

a∗ = argmax
a

Q⊕(s, a) (17)

where c is a scalar constant controlling the trade-off between exploration and exploitation.
The performance of UCT can often be significantly improved by incorporating domain

knowledge into the default policy (Gelly et al., 2006). The UCT algorithm, using a care-
fully chosen default policy, has outperformed previous approaches to search in a variety
of challenging games, including Go (Gelly et al., 2006), General Game Playing (Finnsson
and Björnsson, 2008), Amazons (Lorentz, 2008), Lines of Action (Winands and Björnsson,
2009), multi-player card games (Schäfer, 2008; Sturtevant, 2008), and real-time strategy
games (Balla and Fern, 2009).

4.1.2 Beyond Monte-Carlo Tree Search

In Monte-Carlo tree search, states are represented individually. The search tree is based on
table lookup, where each node stores the value of exactly one state. Unlike table lookup,
only some visited states are stored in the search tree. Once all states have been visited and
added into the search tree, Monte-Carlo tree search is equivalent to Monte-Carlo control
using table lookup (see Section 2.2), applied to the subproblem starting from st; and with
the same guarantees of convergence to the optimal policy. Just like table lookup, Monte-
Carlo tree search cannot generalise online between related states. Positions in the search tree
are evaluated independently: there is no generalisation between similar nodes in the search

19

Algorithm 2 Linear TD Search
1: θ ← 0 . Initialise parameters
2: procedure SEARCH(s0)
3: while time available do
4: e← 0 . Clear eligibility trace
5: s← s0
6: a← ε–greedy(s;Q)
7: while s is not terminal do
8: s′ ∼ Pa

ss′ . Sample state transition
9: r ←Ra

ss′ . Sample reward
10: a′ ← ε–greedy(s′;Q)
11: δQ← r +Q(s′, a′)−Q(s, a) . TD-error
12: θ ← θ + αδQe . Update weights
13: e← λe+ φ(s, a) . Update eligibility trace
14: s← s′, a← a′

15: end while
16: end while
17: return argmax

a
Q(s0, a)

18: end procedure

tree; no generalisation to new nodes in the search tree; and no generalisation to positions
encountered by the default policy.

Our new method, TD search, uses value function approximation instead of using a search
tree. In this approach, the outcome of a single simulation from state s can be used to update
the value function for a large number of similar states to s. As a result, TD search can be
much more efficient given the same number of simulations. Furthermore, the value function
approximates the value of any position s ∈ S, even if it has never been visited. In principle,
this means that every step of each simulation can be informed by the value function, without
ever exiting the agent’s knowledge-base; although in practice, an informed default policy
may still be beneficial.

In addition, Monte-Carlo search must wait many time-steps until the final outcome of a
simulation is known. This outcome depends on all of the agent’s decisions, and on the envi-
ronment’s uncertain responses to those decisions, throughout the simulation. In our frame-
work, we use TD learning instead of Monte-Carlo evaluation, so that the value function
can bootstrap from subsequent values. In reinforcement learning, bootstrapping often pro-
vides a substantial reduction in variance and an improvement in performance (Singh and
Dayan, 1998; Sutton and Barto, 1998). TD search brings this advantage of bootstrapping to
simulation-based search.

TD search uses value function approximation and bootstrapping, which both introduce
bias into the value function estimate. In particular, an approximate value function cannot
usually represent the optimal value function. In principle, this bias could be reduced by
using a richer function approximator, for example by including table lookup features in the
representation. However, when simulation-based search is applied to large state spaces, the
vast majority of states are visited a small number of times, and the variance in their values
typically dominates the bias. In these cases the reduced variance of TD search may be much
more important than the unbiased evaluation of Monte-Carlo search.

20

4.2 Linear Temporal-Difference Search

Linear TD search is a simulation-based search algorithm in which the value function is
updated online, from simulated experience, by linear TD learning. Each search begins from
a root state s0. The agent simulates many episodes of experience from s0, by sampling from
its current policy πu(s, a), and from a transition model Pass′ and reward model Rass′ , until
each episode terminates.

Instead of using a search tree, the agent approximates the value function by using fea-
tures φ(s, a) and adjustable weights θu, using a linear combination Qu(s, a) = φ(s, a) · θu.
After every step u of simulation, the agent updates the parameters by TD learning, using the
TD(λ) algorithm.

The weights are initialised to zero at the first real time-step. At each subsequent real
time-step, the weights are reused, so that the value function computed by the last search at
time-step t− 1 provides the initial value function for the new search at time-step t.

The agent selects actions by using an ε–greedy policy πu(s, a) that with probability 1−ε
maximises the current value function Qu(s, a), and with probability ε selects a random ac-
tion. As in the Sarsa algorithm, this interleaves policy evaluation with policy improvement,
with the aim of finding the policy that maximises expected total reward from s0, given the
current model of the environment.

Linear TD search applies the linear Sarsa(λ) algorithm to the subgame or sub-MDP that
starts from the state s0, and thus has the same convergence properties as linear Sarsa(λ), i.e.
continued chattering but no divergence (Gordon, 1996) (see Section 2.4). We note that other
online, incremental reinforcement learning algorithms could be used in place of Sarsa(λ),
for example policy gradient methods (Sutton et al., 2000), if guaranteed convergence were
required. However, the computational simplicity of Sarsa is highly desirable during online
search.

4.3 Temporal-Difference Search and Monte-Carlo Tree Search

TD search is a general planning method that includes a spectrum of different algorithms.
At one end of the spectrum, we can set λ = 1 to give Monte-Carlo search algorithms, or
alternatively we can set λ < 1 to bootstrap from successive values. We can use table lookup,
or we can generalise between states by using abstract features.

In order to reproduce Monte-Carlo tree search, we use λ = 1 to backup values directly
from the final return, without bootstrapping (see Section 2.3). We use one table lookup
feature IS,A for each state S and each action A,

IS,A(s, a) =

{
1 if s = S and a = A

0 otherwise
(18)

We also use a step-size schedule of α(s, a) = 1/N(s, a), where N(s, a) counts the
number of times that action a has been taken from state s. This computes the mean return of
all simulations in which action a was taken from state s, in an analogous fashion to Monte-
Carlo evaluation. Finally, in order to grow the search tree incrementally, in each simulation
we add one new feature IS,A for every actionA, for the first visited state S that is not already
represented by table lookup features.

In addition, temporal-difference search can incorporate more sophisticated exploration
policies than ε–greedy. For example, one could construct upper confidence bounds on the

21

value function, and select actions optimistically with respect to these upper confidence
bounds. This could give a more systematic search, analogous to the UCT algorithm.

4.4 Temporal-Difference Search in Computer Go

As we saw in Section 3, local shape features provide a simple but effective representation
for some intuitive Go knowledge. The value of each shape can be learnt offline, using TD
learning and training by self-play, to provide general knowledge about the game of Go.
However, the value function learnt in this way is rather myopic: each square region of the
board is evaluated independently, without any knowledge of the global context.

Local shape features can also be used during TD search. Although the features them-
selves are very simple, TD search is able to learn the value of each feature in the current
board context. This can significantly increase the representational power of local shape fea-
tures: a shape may be bad in general, but good in the current situation. By training from
simulated experience, starting from the current state, the agent can focus on what works
well now.

Local shape features provide a simple but powerful form of generalisation between sim-
ilar positions. Unlike Monte-Carlo tree search, which evaluates each state independently,
the value θi of a local shape φi is reused in a large class of related states {s : φi(s) = 1}
in which that particular shape occurs. This enables TD search to learn an effective value
function from fewer simulations than is possible with Monte-Carlo tree search.

In Section 3 we were able to exploit the symmetries of the Go board by using weight
sharing. However, by starting our simulations from the current position, we break these
symmetries. The vast majority of Go positions are asymmetric, so that for example the value
of playing in the top-left corner will be significantly different to playing in the bottom-right
corner. Thus, we do not utilise any form of weight-sharing during TD search. However, local
shape features that consist entirely of empty intersections are assumed to be neutral and are
removed from the representation.7

We apply the TD search algorithm to 9×9 computer Go using 1×1 to 3×3 local shape
features. We modify the basic TD search algorithm to exploit the probabilistic nature of the
value function, by using logistic NTD2(0) with an ε–greedy policy and default parameters
of α = 0.1 and ε = 0.1,

V (s) = σ(φ(s) · θ) (19)

∆θ = α
φ(st)

||φ(st)||2
(V (st+2)− V (st)) (20)

As discussed earlier, one could imagine using a more systematic exploration policy, for
example by maximising an upper confidence bound on the value function. However, initial
results using this approach were discouraging (Silver, 2009), and therefore we focus on
simple ε–greedy in the experiments below.

Once each TD search is complete, move a is selected greedily, with no exploration, so
as to maximise (Black) or minimise (White) the afterstate value, V (s ◦ a).

7 If empty shapes are used, then the algorithm is less effective in opening positions, as the majority of
credit is assigned to features corresponding to open space.

22

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

Comparison of TD Search with Vanilla UCT

Vanilla UCT (Fuego default policy)
Vanilla UCT (Random default policy)

TD Search (Fuego default policy)
TD Search (no default policy)

(a) Comparison of TD search and vanilla UCT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 100 1000 10000

E
lo

 r
at

in
g

Training games

Switching policy to Fuego default policy

SwitchTime=1
SwitchTime=2
SwitchTime=4
SwitchTime=8

SwitchTime=16
SwitchTime=32
SwitchTime=64

(b) Performance of TD search when switching to the Fuego
default policy. The number of moves at which the switch oc-
curred was varied between 1 and 64.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

TD Search with Cumulative Sizes of Local Shape Feature

MaxSize=1x1
MaxSize=2x2
MaxSize=3x3

(c) Cumulative sizes: 1 × 1; 1 × 1 and 2 × 2; and 1 × 1,
2× 2 and 3× 3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

TD Search with Anti-Cumulative Sizes of Local Shape Feature

MinSize=1x1
MinSize=2x2
MinSize=3x3

(d) Anti-cumulative sizes: 1 × 1, 2 × 2 and 3 × 3; 1 × 1
and 2× 2; and 3× 3

Fig. 7 TD search in 9× 9 Go.

4.5 A Case Study of TD Search in 9× 9 Go

We implemented the TD search algorithm in our Go program RLGO 2.4. We ran a tourna-
ment between different versions of RLGO, for a variety of different parameter settings, and
a variety of different simulations per move (i.e. varying the search effort). Each Swiss-style
tournament8 consisted of at least 200 games for each version of RLGO. After all matches
were complete, the results were analysed by the bayeselo program (Coulom, 2008) to estab-
lish an Elo rating for every program. Two benchmark programs were included in each tour-
nament. First, we included GnuGo 3.7.10, set to level 10 (strong, default playing strength),
which was assigned an anchor rating of 1800 Elo in all cases. Second, we used an imple-
mentation of UCT in Fuego 0.1 (Müller and Enzenberger, 2009) that we refer to as vanilla
UCT. This implementation was based on the UCT algorithm, with RAVE and heuristic prior
knowledge extensions turned off. Vanilla UCT uses the handcrafted default policy in Fuego.
The UCT parameters were set to the best reported values for the original MoGo program
(Gelly et al., 2006): exploration constant = 1, first play urgency = 1.

23

4.5.1 Default Policy

The basic TD search algorithm uses no prior knowledge in its simulation policy. One way
to incorporate prior knowledge is to switch to a handcrafted default policy, as in the Monte-
Carlo tree search algorithm. We ran an experiment to determine the effect on performance
of switching to the default policy from Fuego 0.1 after a constant number of moves T . The
results are shown in Figure 7(b).

Switching policy was consistently most beneficial after 2-8 moves, providing around a
300 Elo improvement over no switching. This suggests that the knowledge contained in the
local shape features is most effective when applied close to the root, and that the general
domain knowledge encoded by the handcrafted default policy is more effective in positions
far from the root.

We also compared the performance of TD search against the vanilla UCT implementa-
tion in Fuego 0.1. We considered two variants of each program, with and without a hand-
crafted default policy. The same default policy from Fuego was used in both programs.
When using the default policy, the TD search algorithm switched to the Fuego default pol-
icy after T = 6 moves. When not using the default policy, the ε–greedy policy was used
throughout all simulations. The results are shown in Figure 7(a).

The basic TD search algorithm, which utilises minimal domain knowledge based only
on the grid structure of the board, significantly outperformed vanilla UCT with a random
default policy. When using the Fuego default policy, TD search again outperformed vanilla
UCT, although the difference was not significant beyond 2,000 simulations per move.

In our subsequent experiments, we switched to the Fuego default policy after T = 6

moves. This had the additional benefit of increasing the speed of our program by an order
of magnitude, from around 200 simulations per second to 2,000 simulations per second on a
2.4 GHz processor. For comparison, the vanilla UCT implementation in Fuego 0.1 executed
around 6,000 simulations per second.

4.5.2 Local Shape Features

The local shape features that we use in our experiments are quite naive: the majority of
shapes and tactics described in Go textbooks span considerably larger regions of the board
than 3× 3 squares. When used in a standard reinforcement learning context, the local shape
features achieved a rating of around 1200 Elo (see Section 3). However, when the same
representation was used in TD search, combining the 1 × 1 and 2 × 2 local shape features
achieved a rating of almost 1700 Elo with just 10,000 simulations per move, more than
vanilla UCT with an equivalent number of simulations (Figure 7(c)).

The importance of temporality is aptly demonstrated by the 1 × 1 features. Using TD
learning, a static evaluation function based only on these features achieved a rating of just
200 Elo (see Section 3). However, when the feature weights are adapted dynamically, these
simple features are often sufficient to identify the critical moves in the current position.
TD search increased the performance of the 1 × 1 features to 1200 Elo, a similar level of
performance to TD learning with a million 1× 1 to 3× 3 features.

Surprisingly, including the more detailed 3× 3 features provided no statistically signifi-
cant improvement. However, we recall from Figure 5(b), when using the standard paradigm
of TD learning, that there was an initial period of rapid 2× 2 learning, followed by a slower
period of 3× 3 learning. Furthermore we recall that, without weight sharing, this transition

8 Matches were randomly selected with a bias towards programs with a similar number of wins.

24

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

Temporal-Difference Search: Learning Rate

Alpha=0.001
Alpha=0.003
Alpha=0.01
Alpha=0.03
Alpha=0.1
Alpha=0.3
Alpha=1.0

(a) Varying the step-size α.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

TD(Lambda) Search

Lambda=0.0
Lambda=0.2
Lambda=0.4
Lambda=0.6
Lambda=0.8
Lambda=1.0

(b) TD search using logistic NTD2(λ) and varying λ.

Fig. 8 Parameter study for TD search in 9× 9 Go.

took place after many thousands of simulations. This suggests that our TD search results
correspond to the steep region of the learning curve, and that the rate of improvement is
likely to flatten out with additional simulations.

4.5.3 Parameter Study

In our next experiment we varied the step-size parameter α (Figure 8(a)). The results clearly
show that an aggressive learning rate is most effective across a wide range of simulations per
move. However, the rating improvement for the most aggressive learning rates flattened out
with additional computation, after 1,000 simulations per move for α = 1, and after 5,000
simulations per move for α = 0.1 and α = 0.3. This suggests that a decaying step-size
schedule might achieve better performance with longer search times.

We extend the TD search algorithm to utilise TD(λ), using the eligibility trace update
equation described in Section 3. We study the effect of the temporal-difference parameter λ
in Figure 8(b). Bootstrapping (λ < 1) provided a significant performance benefit.

Previous work in simulation-based search has largely been restricted to Monte-Carlo
methods (Tesauro and Galperin, 1996; Kocsis and Szepesvari, 2006; Gelly et al., 2006;
Gelly and Silver, 2007; Coulom, 2007). However, our results suggest that generalising these
approaches to temporal-difference methods may provide significant benefits when value
function approximation is used.

4.5.4 Temporality and Temporal Coherence

Successive positions are strongly correlated in the game of Go. Each position changes in-
crementally, by just one new stone at every non-capturing move. Groups and fights develop,
providing specific shapes and tactics that may persist for a significant proportion of the
game, but are unique to this game and are unlikely to ever be repeated in this combination.
We conducted two experiments to disrupt this temporal coherence, so as to gain some insight
into its effect on TD search.

In our first experiment, we selected moves according to an old value function from a
previous search. At move number t, the agent selects the move that maximises the value
function that it computed at move number t − k, for some move gap 0 ≤ k < t. The
results, shown in Figure 9(a), indicate the rate at which the global context changes. The value

25

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 0 2 4 6 8 10 12 14 16

E
lo

 r
at

in
g

Delay in Evaluation (number of moves)

Temporal-Difference Search with Delayed Evaluation

(a) TD search with 10,000 simulations/move. The results of
the latest search are only used after a k move delay.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

Temporal-Difference Search with Weight Resetting

Reuse previous
Reset to zero

(b) Comparison of TD search when the weights are reset to
zero at the start of each search, to when the weights are reused
from the previous search.

Fig. 9 Studying the effect of temporality in TD search.

function computed by the search is highly specialised to the current situation. When it was
applied to the position that arose just 6 moves later, the performance of RLGO, using 10,000
simulations per move, dropped from 1700 to 1200 Elo, the same level of performance that
was achieved by standard TD learning (see Section 3). This also explains why it is beneficial
to switch to a handcrafted default policy after around 6 moves (see Figure 7(b)).

In our second experiment, instead of reusing the weights from the last search, we reset
the weights θ to zero at the beginning of every search, so as to disrupt any transfer of knowl-
edge between successive moves. The results are shown in Figure 9(b). Resetting the weights
dramatically reduced the performance of our program by between 400–800 Elo. This sug-
gests that a very important aspect of TD search is its ability to accumulate knowledge over
several successive, highly related positions.

4.5.5 Board Sizes

Finally, we compared the performance of TD search with vanilla UCT, on board sizes from
5 × 5 up to 15 × 15. As before, the same default policy was used in both cases, beyond the
search tree for vanilla UCT, and after T = 6 moves for TD search. The results are shown in
Figure 10.

In 5 × 5 Go, vanilla UCT was able to play near-perfect Go, and significantly outper-
formed the approximate evaluation used by TD search. In 7 × 7 Go, the results were in-
conclusive, with both programs performing similarly with 10,000 simulations per move.
However, on larger board sizes, TD search outperformed vanilla UCT by a margin that in-
creased with larger board sizes. In 15 × 15 Go, using 10,000 simulations per move, TD
search outperformed vanilla UCT by around 500 Elo. This suggests that the importance of
generalising between states increases with larger branching factors and larger search spaces.
Taking account of the 3 to 4-times slower execution speed of TD search compared to vanilla
UCT (Figure 11), the two algorithms perform comparably on larger board sizes.

These experiments used the same default parameters from the 9 × 9 experiments. It is
likely that both TD search and vanilla UCT could be improved by retuning the parameters
to the different board sizes. Note also that the strength of the reference program, GnuGo,
varies considerably across board sizes.

26

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

TD Search in 5 x 5 Go

TD Search
Vanilla UCT

GnuGo
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

TD Search in 7 x 7 Go

TD Search
Vanilla UCT

GnuGo

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

TD Search in 9 x 9 Go

TD Search
Vanilla UCT

GnuGo
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

TD Search in 11 x 11 Go

TD Search
Vanilla UCT

GnuGo

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

TD Search in 13 x 13 Go

TD Search
Vanilla UCT

GnuGo
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 1000 10000

E
lo

 r
at

in
g

Simulations per move

TD Search in 15 x 15 Go

TD Search
Vanilla UCT

GnuGo

Fig. 10 Comparison of TD search and vanilla UCT with different board sizes.

5 Dyna-2: Integrating Long and Short-Term Memories

In many problems, learning and search must be combined together in order to achieve good
performance. Learning algorithms slowly extract knowledge, from the complete history of
training data, that applies very generally throughout the domain. Search algorithms use and
extend this knowledge, rapidly and online, so as to evaluate local states more accurately.
Learning and search often interact in a complex and surprising fashion, and the most suc-
cessful approaches integrate both processes together (Schaeffer, 2000; Fürnkranz, 2001).

In Section 3 we used TD learning to extract general domain knowledge from games
of self-play (Schraudolph et al., 1994; Enzenberger, 1996; Dahl, 1999; Enzenberger, 2003;
Silver et al., 2007). In Section 4, we used TD search to form a local value function approx-
imation, without any general domain knowledge (see Section 4). In this section we develop
a unified architecture, Dyna-2, that combines both TD learning and TD search.

27

 1000

 10000

 100000

 5 7 9 11 13 15

S
im

ul
at

io
ns

 p
er

 s
ec

on
d

Board size

Simulation Speed Comparison

TD Search (RLGO)
Vanilla UCT (Fuego)

Fig. 11 Speed comparison between TD search and vanilla UCT with different board sizes.

5.1 Dyna and Dyna-2

Sutton’s Dyna architecture (Sutton, 1990) applies TD learning both to real experience and
to simulated experience. The agent learns a model of the MDP from real experience, and
updates its action value function from both real and simulated experience. For example, the
Dyna-Q algorithm remembers all state transitions and rewards from all visited states and
actions in its real experience. Before selecting the next real action, the agent executes some
number of planning steps. At each step, a previously visited state and action is selected, and
a state transition and reward are sampled from the memorised experience. The action value
is updated by applying TD(λ) to each sampled transition (planning), and also to each real
transition (learning).

The key new idea of Dyna-2 is to maintain two separate memories: a long-term memory
that is learnt from real experience; and a short-term memory that is used during search, and
is updated from simulated experience. Furthermore, we specifically consider simulations
which are drawn sequentially in episodes that start from the current state. As we saw in
the previous section, this helps focus learning on the future distribution from time-step t
onwards, rather than the global distribution over all possible states.

5.2 Long and Short-Term Memories

Domain knowledge contains many general rules, but even more special cases. Chess grand-
master Kevin Spraggett once said, “I spent the first half of my career learning the principles
for playing strong chess and the second half learning when to violate them” (Schaeffer,
1997). Long and short-term memories can be used to represent both aspects of knowledge.

We define a memoryM = (φ, θ) to be a vector of features φ, and a vector of correspond-
ing parameters θ. The feature vector φ(s, a) compactly represents the state s and action a,
and provides an abstraction of the state and action space. The parameter vector θ is used to
approximate the value function, by forming a linear combination φ(s, a) · θ of the features
and parameters in M .

In our architecture, the agent maintains two distinct memories: a long-term memory
M = (φ, θ) and a short-term memory M = (φ, θ).9 The agent also maintains two distinct

9 These names are suggestive of each memory’s function, but are not related to biological long and short-
term memory systems. There is also no relationship to the Long Short-Term Memory algorithm for training
recurrent neural networks (Hochreiter and Schmidhuber, 1997).

28

approximations to the value function. The long-term value function, Q(s, a), uses only the
long-term memory to approximate the true value function Qπ(s, a). The short-term value
function, Q(s, a), uses both memories to approximate the true value function, by forming a
linear combination of both feature vectors with both parameter vectors,

Q(s, a) = φ(s, a) · θ (21)

Q(s, a) = φ(s, a) · θ + φ(s, a) · θ (22)

The long-term memory is used to represent general knowledge about the problem, i.e.
knowledge that is independent of the agent’s current state. For example, in chess the long-
term memory could know that a bishop is worth 3.5 pawns. The short-term memory is used
to represent local knowledge about the problem, i.e. knowledge that is specific to the agent’s
current region of the state space. The short-term memory is used to correct the long-term
value function, representing adjustments that provide a more accurate local approximation
to the true value function. For example, in a closed endgame position, the short-term mem-
ory could know that the black bishop is worth 1 pawn less than usual. These corrections
may actually hurt the global approximation to the value function, but if the agent contin-
ually adjusts its short-term memory to match its current state, then the overall quality of
approximation can be significantly improved.

5.3 Dyna-2

The core idea of Dyna-2 is to combine TD learning with TD search, using long and short-
term memories. The long-term memory is updated from real experience, and the short-term
memory is updated from simulated experience, in both cases using the TD(λ) algorithm. We
denote short-term parameters with a bar, x, and long-term parameters with no bar, x.

At the beginning of each real episode, the contents of the short-term memory are cleared,
θ = 0. At each real time-step t, before selecting its action at, the agent executes a simulation-
based search. Many simulations are launched, each starting from the agent’s current state st.
After each step of computation u, the agent updates the weights of its short-term memory
from its simulated experience (su, au, ru+1, su+1, au+1), using the TD(λ) algorithm. The
TD-error is computed from the short-term value function, δu = ru+1 + Q(su+1, au+1) −
Q(su, au). Actions are selected using an ε–greedy policy that maximises the short-term
value function au = argmax

b
Q(su, b). This search procedure continues for as much com-

putation time as is available.
When the search is complete, the short-term value function represents the agent’s best

local approximation to the optimal value function. The agent then selects a real action at us-
ing an ε–greedy policy that maximises the short-term value function at = argmax

b
Q(st, b).

After each time-step, the agent updates its long-term value function from its real experi-
ence (st, at, rt+1, st+1, at+1), again using the TD(λ) algorithm. This time, the TD-error is
computed from the long-term value function, δt = rt+1 + Q(st+1, at+1) − Q(st, at). In
addition, the agent uses its real experience to update its state transition model Pass′ and its
reward model Rass′ . The complete algorithm is described in pseudocode in Algorithm 3.

The Dyna-2 architecture learns from both the past and the future. The long-term memory
is updated from the agent’s actual past experience. The short-term memory is updated from
sample episodes of what could happen in the future. Combining both memories together
provides a much richer representation than is possible with a single memory.

29

Algorithm 3 Episodic Dyna-2

1: procedure LEARN
2: Initialise Pa

ss′ ,R
a
ss′ . State transition and reward models

3: θ ← 0 . Clear long-term memory
4: loop
5: s← s0 . Start new episode
6: θ ← 0 . Clear short-term memory
7: e← 0 . Clear eligibility trace
8: SEARCH(s)
9: a← ε–greedy(s;Q)

10: while s is not terminal do
11: Execute a, observe reward r, state s′

12: Pa
ss′ ,R

a
ss′ ← UPDATEMODEL(s, a, r, s′)

13: SEARCH(s′)
14: a′ ← ε–greedy(s′;Q)
15: δQ← r +Q(s′, a′)−Q(s, a) . TD-error
16: θ ← θ + αδQe . Update weights
17: e← λe+ φ . Update eligibility trace
18: s← s′, a← a′

19: end while
20: end loop
21: end procedure

22: procedure SEARCH(s)
23: while time available do
24: e← 0 . Clear eligibility trace
25: a← ε–greedy(s;Q)
26: while s is not terminal do
27: s′ ∼ Pa

ss′ . Sample state transition
28: r ←Ra

ss′ . Sample reward
29: a′ ← ε–greedy(s′;Q)

30: δQ← r +Q(s′, a′)−Q(s, a) . TD-error
31: θ ← θ + αδQe . Update weights
32: e← λe+ φ . Update eligibility trace
33: s← s′, a← a′

34: end while
35: end while
36: end procedure

A particular instance of Dyna-2 must specify learning parameters: a set of features φ
for the long-term memory; a temporal-difference parameter λ; an exploration rate ε and a
learning rate α. Similarly, it must specify the equivalent search parameters: a set of features
φ for the short-term memory; a temporal-difference parameter λ; an exploration rate ε and a
learning rate α.

The Dyna-2 architecture subsumes a large family of learning and search algorithms. If
there is no short-term memory, φ = ∅, then the search procedure has no effect and may be
skipped. This results in the linear Sarsa algorithm (see Section 2.4). If there is no long-term
memory, φ = ∅, then Dyna-2 reduces to the TD search algorithm. As we saw in Section
4, this algorithm itself subsumes a variety of simulation-based search algorithms such as
Monte-Carlo tree search.

Finally, we note that real experience may be accumulated offline prior to execution.
Dyna-2 may be executed on any suitable training environment (e.g. a helicopter simulator)
before it is applied to real data (e.g. a real helicopter). The agent’s long-term memory is

30

b

a

b

a

Fig. 12 a) A 1 × 1 local shape feature with a central black stone. This feature acquires a strong positive
value in the long-term memory. b) In this position, move b is the winning move. Using only 1×1 local shape
features, the long-term memory suggests that move a should be played. The short-term memory will quickly
learn to correct this misevaluation, reducing the value of a and increasing the value of b. c) A 3 × 3 local
shape feature making two eyes in the corner. This feature acquires a positive value in the long-term memory.
d) Black to play, using Chinese rules, move a is now the winning move. Using 3× 3 features, the long-term
memory suggests move b, believing this to be a good shape in general. However, the short-term memory
quickly realises that move b is redundant in this context (black already has two eyes) and learns to play the
winning move at a.

learnt offline during a preliminary training phase. When the agent is placed into the real
environment, it uses its short-term memory to adjust to the current state. Even if the agent’s
model is inaccurate, each simulation begins from its true current state, which means that the
simulations are usually fairly accurate for at least the first few steps. This allows the agent
to dynamically correct at least some of the misconceptions in the long-term memory.

5.4 Dyna-2 in Computer Go

We have already seen that local shape features can be used with TD learning, to learn general
Go knowledge (see Section 3). We have also seen that local shape features can be used with
TD search, to learn the value of shapes in the current situation (see Section 4). The Dyna-2
architecture lets us combine the advantages of both approaches, by using local shape features
in both the long and short-term memories.

Figure 12 gives a very simple illustration of long and short-term memories in 5×5 Go. It
is usually bad for Black to play on the corner intersection, and so long-term memory learns
a negative weight for this feature. However, Figure 12 shows a position in which the corner
intersection is the most important point on the board for Black: it makes two eyes and allows
the Black stones to live. By learning about the particular distribution of states arising from
this position, the short-term memory learns a large positive weight for the corner feature,
correcting the long-term memory.

In general, it may be desirable for the long and short-term memories to utilise different
features, which are best suited to representing either general or local knowledge. In our
computer Go experiments, we focus our attention on the simpler case where both vectors of
features are identical, φ = φ. In this special case, the Dyna-2 algorithm can be implemented
more efficiently, using just one memory during search. At the start of each real game, the
contents of the short-term memory are initialised to the contents of the long-term memory,
θ ← θ, and the short-term value function is computed simply by Q(s, a) = φ(s, a) · θ. As
a result, only one memory and one value function are required during actual play, and the
resulting search algorithm (after initialising the short-term memory) reduces to TD search
(Algorithm 2).

We compared our algorithm to the vanilla UCT implementation from the Fuego 0.1 pro-
gram (Müller and Enzenberger, 2009), as described in Section 4.5. Both RLGO and vanilla

31

Long and Short-Term: 1x1,2x2,3x3
Long and Short-Term: 1x1,2x2
Long and Short-Term: 1x1
Short-Term: 1x1,2x2,3x3
Short-Term: 1x1,2x2
Short-Term: 1x1
Long-Term: 1x1,2x2,3x3
Long-Term: 1x1,2x2
Long-Term: 1x1
Vanilla UCT

W
in

ni
ng

 P
er

ce
nt

ag
e

vs
. G

nu
G

o

Fig. 13 Winning percentage of RLGO 2.4 against GnuGo 3.7.10 (level 0) in 9× 9 Go, for different numbers
of simulations per move. Local shape features were used in either the long-term memory (dotted lines), the
short-term memory (dashed lines), or both memories (solid lines). The long-term memory was trained in a
separate offline phase from 100,000 games of self-play. Local shape features varied in size from 1× 1 up to
3× 3. Each point represents the winning percentage over 1,000 games.

UCT used an identical default policy. We separately evaluated both RLGO and vanilla UCT
by running 1,000 game matches against GnuGo 3.7.10 (level 0).10

We compared the performance of several different variants of our algorithm. First, we
evaluated the performance of the long-term memory by itself, φ = ∅, which is equivalent to
the TD learning algorithm developed in Section 3. Second, we evaluated the performance
of the short-term memory by itself, φ = ∅, which is equivalent to the TD search algorithm
developed in Section 4. Finally, we evaluated the performance of both long and short-term
memories, making use of the full Dyna-2 algorithm. In each case we compared the perfor-
mance of local shape features of different sizes (see Figure 13).

Using only the long-term memory, RLGO 2.4 achieved a winning rate of just 5% against
GnuGo. Using only the short-term memory, RLGO achieved better performance per simula-
tion than vanilla UCT, by a small margin, for up to 20,000 simulations per move. RLGO out-
performed GnuGo with 5,000 or more simulations. Using both memories, RLGO achieved
significantly better performance per move than vanilla UCT, by a wide margin for few sim-
ulations per move and by a smaller but significant margin for 20,000 simulations per move.
Using both memories, it outperformed GnuGo with just 2,000 or more simulations.

32

Search algorithm Memory Elo rating on CGOS
Alpha-beta Long-term 1350
Dyna-2 Long and short-term 2030
Dyna-2 + alpha-beta Long and short-term 2130

Table 4 The Elo ratings established by RLGO 2.4 on the Computer Go Server.

Long and Short-Term: 1 ply
Long and Short-Term: 2 ply
Long and Short-Term: 3 ply
Long and Short-Term: 4 ply
Long and Short-Term: 5 ply
Long and Short-Term: 6 ply
Long-Term: 1 ply
Long-Term: 2 ply
Long-Term: 3 ply
Long-Term: 4 ply
Long-Term: 5 ply
Long-Term: 6 ply
Vanilla UCT

W
in

ni
ng

 P
er

ce
nt

ag
e

vs
. G

nu
G

o

Fig. 14 Winning percentage of RLGO 2.4 against GnuGo 3.7.10 (level 0) in 9 × 9 Go, using a two-phase
search with Dyna-2 and alpha-beta. A full-width α-β search was used for move selection, using a value
function based on either the long-term memory alone (dotted lines), or both long and short-term memories
(solid lines). Using only the long-term memory corresponds to a traditional alpha-beta search. Using both
memories, but only a 1-ply search, corresponds to the Dyna-2 algorithm. The long-term memory was trained
offline from 100,000 games of self-play. Each point represents the winning percentage over 1,000 games.

6 Two-Phase Search

6.1 Two-Phase Alpha-Beta Search

In games such as chess, checkers and Othello, human world-champion level play has been
exceeded by combining a heuristic evaluation function with alpha-beta search. The heuristic
function is a linear combination of binary features, and can be learnt offline by TD learning
and self-play (Baxter et al., 2000; Schaeffer et al., 2001; Buro, 1999). In Section 3, we saw
how this approach could be applied to Go, by using local shape features. In the previous
sections we developed a significantly more accurate approximation of the value function,
by combining long and short-term memories, using both TD learning and TD search. Can
this more accurate value function be successfully used to evaluate positions in a traditional
alpha-beta search?

We refer to this approach, in which a simulation-based search is followed by a second
complementary search, as a two-phase search. We now consider a two-phase search in which

10 GnuGo plays significantly faster at level 0 than at its default level 10, so that results can be collected
from many more games. Level 0 is approximately 150 Elo weaker than level 10.

33

an alpha-beta search is performed after each TD search. As in Dyna-2, after the simulation-
based search is complete, the agent selects a real move to play. However, instead of directly
maximising the short-term value function, an alpha-beta search is used to find the best move
in the depth d minimax tree, where the leaves of the tree are evaluated according to the
short-term value function Q(s, a).

The two-phase algorithm can also be viewed as an extension to alpha-beta search, in
which the evaluation function is dynamically updated. At the beginning of the game, the
evaluation function is set to the contents of the long-term memory. Before each alpha-beta
search, the evaluation function is re-trained by a TD search. The alpha-beta search then
proceeds as usual, but using the updated evaluation function.

We compared the performance of the two-phase search algorithm to a more traditional
search algorithm. In the traditional search, the long-term memoryQ(s, a) is used as a heuris-
tic function to evaluate leaf positions, as in Section 3. The results are shown in Figure 14.
To compare the relative performance relative to computation time, note that a 5-ply alpha-
beta search took approximately the same computation time as 1,000 simulations in RLGO
or 3,000 simulations in Fuego.

Dyna-2 outperformed traditional search by a wide margin. Using only 200 simulations
per move, RLGO exceeded the performance of a full-width 6-ply search. When combined
with alpha-beta in the two-phase search algorithm, the results were even better. Alpha-
beta provided a substantial performance boost of around 15-20% against GnuGo, which
remained approximately constant throughout the tested range of simulations per move. With
5,000 simulations per move, the two-phase algorithm achieved a winning rate of almost 80%
against GnuGo. These results suggest that the benefits of alpha-beta search are largely com-
plementary to the simulation-based search.

Finally, we implemented a high-performance version of our two-phase search algorithm
in RLGO 2.4. In this tournament version, time was dynamically allocated, approximately
evenly between the two search algorithms, using an exponentially decaying time control.
We extended the TD search to use multiple processors, by sharing the long and short-term
memories between processes, and to use pondering, by simulating additional games of self-
play during the opponent’s thinking time. We extended the alpha-beta search to use several
well-known extensions: iterative deepening, transposition table, killer move heuristic, and
null-move pruning (Schaeffer, 2000). RLGO competed on the 9 × 9 Computer Go Server
(CGOS), which uses 5 minute time controls, for several hundred games in total. The ratings
established by RLGO are shown in Table 4.

Using only an alpha-beta search, based on the long-term memory alone, RLGO estab-
lished a rating of 1350 Elo. Using Dyna-2, using both long and short-term memories, but
no alpha-beta search, RLGO established a rating of 2030 Elo. Using the two-phase search
algorithm, including Dyna-2 and also an alpha-beta search, RLGO established a rating of
2130 Elo. If we view the two-phase search as an extension to alpha-beta, then we see that
dynamically updating the evaluation function offers dramatic benefits, improving the per-
formance of RLGO by 800 Elo. If we view the two-phase search as an extension to Dyna-2,
then the performance improves by a more modest, but still significant 100 Elo.

For comparison, the strongest traditional Go programs (for example GnuGo and Many
Faces of Go 11, based on alpha-beta search and handcrafted pattern databases, have been
rated at ~1800 Elo on CGOS. Similarly, the strongest reinforcement learning Go programs
(for example NeuroGo (Enzenberger, 2003) and Honte (Dahl, 1999)), have been rated at
~1850 Elo; and the strongest supervised learning Go programs (for example Magog (van der
Werf et al., 2002)) have been rated at ~1700 Elo. These previous programs incorporated
a great deal of sophisticated handcrafted knowledge about the game of Go, whereas the

34

Initial value function Wins vs. GnuGo Error
Zero value, zero count 61% ± 2%
Handcrafted prior knowledge 66% ± 2%
Long-term value Q(s, a) 68% ± 2%
Short-term value Q(s, a) 67% ± 3%

Table 5 Two-phase search in MoGo using an enhanced Monte-Carlo tree search and initialising the value of
new nodes to a given value function. The long-term value function was learnt from 100,000 games; the short-
term value function was learnt online from 3,000 simulations per move. MoGo was then given an additional
3,000 simulations per move.

domain knowledge in RLGO is minimal. RLGO’s performance on CGOS is comparable to or
exceeds the performance of many unenhanced Monte-Carlo tree search programs. However,
it is significantly weaker than the strongest Monte-Carlo tree search programs (for example
Zen, Fuego and MoGo), which exploit domain specific knowledge to achieve ratings in
excess of 2600 Elo on CGOS (Chaslot et al., 2008).

6.2 Two-Phase Monte-Carlo Tree Search

Finally, we consider a two-phase search in which a TD search is followed by a Monte-Carlo
tree search, rather than an alpha-beta search. In this approach, the value of new nodes in the
Monte-Carlo tree search is initialised to the short-term value function Q(s, a). The count of
new nodes is initialised to a constant valueM corresponding to the level of confidence in the
value function (equivalent to a beta prior). We hooked RLGO’s value function into one of
the strongest Monte-Carlo tree search programs, MoGo (Gelly et al., 2006), enhanced by the
RAVE algorithm (Gelly and Silver, 2007), and evaluated its performance in 9×9 Go against
GnuGo (level 10) when given just 3000 simulations per move, for the best value of M .
For comparison, we also evaluated MoGo using several other choices of node initialisation:
using MoGo’s handcrafted prior knowledge to initialise nodes; using RLGO’s long-term
value functionQ(s, a) to initialise nodes; and intialising nodes to zero value with zero count.
The results are summarised in Table 5; more details can be found in (Gelly and Silver, 2007,
2011; Silver, 2009).

Using the long-term value function produced a significant improvement over the zero
value function, and comparable performance to the handcrafted prior knowledge in MoGo.11

Surprisingly, using the short-term value function did not produce any additional performance
benefit. This is almost certainly due to the temporality of the short-term memory. In Section
4 we saw that the short-term value function learnt by TD search is specialised to positions
occurring up to 6 moves in the future; beyond this point it is no better than a static evaluation
function learnt by TD learning. However, high performance Monte-Carlo search programs
such as MoGo routinely search to depths of 10 or more moves, so that the majority of leaf
evaluations are not improved by TD search.

An initial phase of TD learning can also be used to learn a default policy for Monte-
Carlo search. The default policy can either act greedily with respect to the long-term value
function (Gelly and Silver, 2007), or the policy parameters can be optimised directly (Silver
and Tesauro, 2009); the latter approach leading to better results in practice (Huang et al.,
2009).

11 Subsequent versions of MoGo improved the handcrafted prior knowledge and produced significantly
higher performance.

35

7 Conclusion

Reinforcement learning is often considered a slow procedure. Outstanding examples of suc-
cess have, in the past, learnt a value function from months of offline computation. However,
this does not need to be the case. Many reinforcement learning methods, such as Monte-
Carlo learning and TD learning, are fast, incremental, and scalable. When such a reinforce-
ment learning algorithm is applied to experience simulated from the current state, it produces
a high performance search algorithm.

Monte-Carlo tree search algorithms, such as UCT, have recently received much atten-
tion. However, this is just one example of a simulation-based search algorithm. There is a
spectrum of algorithms that vary from table lookup to highly abstracted state representa-
tions, and from Monte-Carlo evaluation to TD learning. Value function approximation can
provide rapid generalisation in large problems, and bootstrapping can be advantageous in
the presence of function approximation. By varying these dimensions in the TD search al-
gorithm, we have achieved better search efficiency, in 9× 9 Go, than a vanilla UCT search.
Furthermore, the advantage of TD search increased with larger board sizes.

The Monte-Carlo tree search algorithm retains several advantages over TD search. It
can typically execute more simulations per second, and given unlimited time and memory
algorithms it will converge on the optimal policy. In the last few years it has been enhanced
by domain knowledge and various heuristics and extensions, to produce the first master-
level Go programs. In many ways our initial implementation of TD search is more naive: it
uses a fixed set of straightforward features, a simplistic ε–greedy exploration strategy, a non-
adaptive step-size, and a constant policy switching time. The promising results of this basic
strategy suggest that the full spectrum of simulation-based methods, not just Monte-Carlo
and table lookup, merit further investigation.

36

References

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multi-armed
bandit problem. Machine Learning, 47(2–3):235–256.

Balla, R. and Fern, A. (2009). UCT for tactical assault planning in real-time strategy games.
In 21st International Joint Conference on Artificial Intelligence.

Baxter, J., Tridgell, A., and Weaver, L. (2000). Learning to play chess using temporal dif-
ferences. Machine Learning, 40(3):243–263.

Buro, M. (1999). From simple features to sophisticated evaluation functions. In 1st Inter-
national Conference on Computers and Games, pages 126–145.

Chaslot, G., Chatriot, L., Fiter, C., Gelly, S., Hoock, J., Perez, J., Rimmel, A., and Teytaud,
O. (2008). Combining expert, online, transient and online knowledge in Monte-Carlo
exploration. In 8th European Workshop on Reinforcement Learning.

Coulom, R. (2006). Efficient selectivity and backup operators in Monte-Carlo tree search.
In 5th International Conference on Computer and Games, pages 72–83.

Coulom, R. (2007). Computing Elo ratings of move patterns in the game of Go. In Computer
Games Workshop.

Coulom, R. (2008). Whole-history rating: A bayesian rating system for players of time-
varying strength. In Computers and Games, pages 113–124.

Dahl, F. (1999). Honte, a Go-playing program using neural nets. In Machines that learn to
play games, pages 205–223. Nova Science.

Dayan, P. and Sejnowski, T. (1994). TD(λ) converges with probability 1. Machine Learning,
14(1):295–301.

Elo, A. (1978). The Rating Of Chess Players, Past & Present. Arco.
Enzenberger, M. (1996). The integration of a priori knowledge into a Go playing neural

network. http://www.cs.ualberta.ca/ emarkus/neurogo/neurogo1996.html.
Enzenberger, M. (2003). Evaluation in Go by a neural network using soft segmentation. In

10th Advances in Computer Games Conference, pages 97–108.
Finnsson, H. and Björnsson, Y. (2008). Simulation-based approach to general game playing.

In 23rd Conference on Artificial Intelligence, pages 259–264.
Fürnkranz, J. (2001). Machine learning in games: A survey. In Machines That Learn to

Play Games, pages 11–59. Nova Science Publishers.
Gelly, S. and Silver, D. (2007). Combining online and offline learning in UCT. In 17th

International Conference on Machine Learning, pages 273–280.
Gelly, S. and Silver, D. (2011). Monte-Carlo tree search and rapid action value estimation

in computer go. Artificial Intelligence, 175:1856–1875.
Gelly, S., Wang, Y., Munos, R., and Teytaud, O. (2006). Modification of UCT with patterns

in Monte-Carlo Go. Technical Report 6062, INRIA.
Gordon, G. (1996). Chattering in SARSA(lambda) - a CMU learning lab internal report.

Technical report, Carnegie Mellon University.
Haykin, S. (1996). Adaptive Filter Theory. Prentice Hall.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9(8):1735–1780.
Huang, S., Coulom, R., and Lin, S. (2009). Monte-Carlo simulation balancing in practice.

In 7th International Conference on Computers and Games, pages 119–126.
Jordan, M. (1995). Why the logistic function? A tutorial discussion on probabilities and

neural networks. Technical Report Computational Cognitive Science Report 9503, Mas-
sachusetts Institute of Technology.

37

Kocsis, L. and Szepesvari, C. (2006). Bandit based Monte-Carlo planning. In 15th European
Conference on Machine Learning, pages 282–293.

Littman, M. (1994). Markov games as a framework for multi-agent reinforcement learning.
In 11th International Conference on Machine Learning, pages 157–163.

Littman, M. (1996). Algorithms for Sequential Decision Making. PhD thesis, Brown Uni-
versity.

Lorentz, R. (2008). Amazons discover monte-carlo. In Computers and Games, pages 13–24.
Matthews, C. (2003). Shape up. GoBase.
Mayer, H. (2007). Board representations for neural Go players learning by temporal differ-

ence. In IEEE Symposium on Computational Intelligence and Games.
Müller, M. (2002). Computer Go. Artificial Intelligence, 134:145–179.
Müller, M. and Enzenberger, M. (2009). Fuego – an open-source framework for board games

and Go engine based on Monte-Carlo tree search. Technical Report TR09-08, University
of Alberta, Department of Computing Science.

Rummery, G. and Niranjan, M. (1994). On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering Depart-
ment.

Schaeffer, J. (1997). One Jump Ahead: Challenging Human Supremacy in Checkers.
Springer Verlag.

Schaeffer, J. (2000). The games computers (and people) play. Advances in Computers,
50:189–266.

Schaeffer, J., Hlynka, M., and Jussila, V. (2001). Temporal difference learning applied to
a high-performance game-playing program. In 17th International Joint Conference on
Artificial Intelligence, pages 529–534.

Schäfer, J. (2008). The UCT algorithm applied to games with imperfect information.
Diploma Thesis. Otto-von-Guericke-Universität Magdeburg.

Schraudolph, N., Dayan, P., and Sejnowski, T. (1994). Temporal difference learning of
position evaluation in the game of Go. In Advances in Neural Information Processing 6,
pages 817–824.

Silver, D. (2009). Reinforcement Learning and Simulation Based Search in the Game of Go.
PhD thesis, University of Alberta.

Silver, D., Sutton, R., and Müller, M. (2007). Reinforcement learning of local shape in
the game of Go. In 20th International Joint Conference on Artificial Intelligence, pages
1053–1058.

Silver, D. and Tesauro, G. (2009). Monte-Carlo simulation balancing. In 26th International
Conference on Machine Learning, pages 119–126.

Singh, S. and Dayan, P. (1998). Analytical mean squared error curves for temporal differ-
ence learning. Machine Learning, 32(1):5–40.

Singh, S., Jaakkola, T., Littman, M., and Szepesvari, C. (2000). Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine Learning, 38:287–308.

Stern, D., Herbrich, R., and Graepel, T. (2006). Bayesian pattern ranking for move predic-
tion in the game of Go. In 23rd International Conference of Machine Learning, pages
873–880.

Stoutamire, D. (1991). Machine Learning, Game Play, and Go. PhD thesis, Case Western
Reserve University.

Sturtevant, N. (2008). An analysis of UCT in multi-player games. In 6th International
Conference on Computers and Games, pages 37–49.

Sutton, R. (1984). Temporal credit assignment in reinforcement learning. PhD thesis, Uni-
versity of Massachusetts.

38

Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on ap-
proximating dynamic programming. In 7th International Conference on Machine Learn-
ing, pages 216–224.

Sutton, R. (1996). Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In Advances in Neural Information Processing Systems 8, pages
1038–1044.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: an Introduction. MIT Press.
Sutton, R., McAllester, D., Singh, S., and Mansour, Y. (2000). Policy gradient methods for

reinforcement learning with function approximation. In In Advances in Neural Informa-
tion Processing Systems 12, pages 1057–1063. MIT Press.

Tesauro, G. (1994). TD-gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation, 6:215–219.

Tesauro, G. and Galperin, G. (1996). On-line policy improvement using Monte-Carlo
search. In Advances in Neural Information Processing 9, pages 1068–1074.

Tsitsiklis, J. (2002). On the convergence of optimistic policy iteration. Journal of Machine
Learning Research, 3:59–72.

van der Werf, E., Uiterwijk, J., Postma, E., and van den Herik, J. (2002). Local move
prediction in Go. In 3rd International Conference on Computers and Games, pages 393–
412.

Veness, J., Silver, D., Blair, A., and Uther, W. (2009). Bootstrapping from game tree search.
In Advances in Neural Information Processing Systems 19.

Widrow, B. and Stearns, S. (1985). Adaptive Signal Processing. Prentice-Hall.
Winands, M. and Björnsson, Y. (2009). Evaluation function based Monte-Carlo LOA. In

12th Advances in Computer Games Conference.

	Introduction
	Background
	Temporal-Difference Learning with Local Shape Features
	Temporal-Difference Search
	Dyna-2: Integrating Long and Short-Term Memories
	Two-Phase Search
	Conclusion

